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1 Introduction

Scattering amplitudes as well as further quantities in Quantum Field Theory contain a rich
mathematical structure, whose understanding has frequently expanded our calculational
reach — benefiting both phenomenological tests of the Standard Model of Particle Physics
at the LHC as well as more formal studies.

At one-loop order, and in certain cases also at higher loop orders, the functions that
occur in Feynman integrals and thus in Quantum Field Theory are multiple polylogarithms
(MPLs) [1–6], which are by now very well understood. Increasing the loop order, the next
class of functions we encounter are elliptic multiple polylogarithms (eMPLs), on which there
has been much recent progress [7–34], in particular by studying the two-loop massive sunrise
integral in two dimensions [7, 10–14, 16, 20, 35–41] (see figure 1a). More recently, also more
complicated Feynman integrals are starting to be understood, in particular the two-loop
ten-point double-box integral with massless internal propagators in four dimensions [23, 33]
(see figure 1b). Beyond eMPLs, also integrals over more complicated geometries than
elliptic curves occur [42–60]; an understanding of the corresponding spaces of functions is
still in its infancy. For a recent review on functions in scattering amplitudes beyond MPLs,
see [61].
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Our good understanding of MPLs is to a large extend due to the Hopf algebra struc-
ture underlying these functions [62–66], and in particular the symbol [63]. The symbol map
associates to each MPL f a simple tensor product, S(f) =∑

log(ϕi1)⊗· · ·⊗ log(ϕik).1 The
entries in this tensor product, called symbol letters, are logarithms of rational or algebraic
functions ϕi of the kinematic invariants. Since a tensor product is easy to manipulate,
and the identities of the symbol letters, log(a) + log(b) = log(ab), are well understood,
the symbol provides a powerful way of finding identities between MPLs and for simplify-
ing expressions. The symbol moreover manifests physical properties of the corresponding
function. For example, the first entry of the symbol describes the discontinuities, which
are heavily restricted in particular in massless theories resulting in so-called first-entry
conditions [67]. Moreover, discontinuities in overlapping channels are forbidden by the
so-called Steinmann conditions [68, 69], restricting which symbol letter in the second entry
can follow a particular letter in the first entry. The symbol has made possible enormous
progress for quantities consisting of MPLs, both in relation to phenomenology and more
formal studies, including in particular powerful bootstrap techniques [70–99].

While the symbol for eMPLs was defined in [25, 100], it has so far not been put to much
use, and is still much less understood than its analog for MPLs. One reason is that the
symbol letters Ω(i) for eMPLs are themselves elliptic functions of the kinematic invariants.
In particular, Ω(−1) = −2πiτ occurs as a letter, where τ = ω2/ω1 is the ratio of the two
periods of the elliptic curve. The letters Ω(0) satisfy simple identities as the consequence
of the group law on the elliptic curve. In [33], some identities for the elliptic letters Ω(i)

with i = 1, 2 were observed numerically in the study of the symbol of the ten-point elliptic
double-box integral. Using these identities, it was found that the elliptic letters in the
first two entries simplify to logarithms, manifesting the same first-entry condition as for
polylogarithmic amplitudes as well as the Steinmann conditions. Moreover, the last entries
were found to be given by simple elliptic integrals Ω(0), with Ω(2) only occurring in the
third entry preceding the modular parameter τ in the last entry.

In this paper, we show how the identities observed in [33] for Ω(1) are a consequence of
Abel’s theorem [101]. Moreover, we demonstrate that the identities observed in [33] for Ω(2)

are a consequence of the elliptic Bloch relation [102, 103] for the elliptic dilogarithm, which
generalizes the Bloch relation for the classic dilogarithm and which have also been studied in
the context of finding identities between elliptic multiple polylogarithms [104, 105]. While
the identities for Ω(1) can be reduced to three-term identities similar to log(a) + log(b) =
log(ab) in the case of the logarithm, the elliptic Bloch relation, and thus the identities
for Ω(2), are five-term identities similar to the Bloch relation for the classical dilogarithm,
which are made manifest only by the symbol. Thus, we introduce a symbol prime S ′ for
the symbol letters Ω(2) (and similarly for Ω(n>2)) in analogy to the symbol for MPLs and
eMPLs, which makes the identities due to the elliptic Bloch relation manifest.

In general, eMPLs transform under modular transformations of τ in a complicated
way [30, 32], and results given in terms of eMPLs are not manifestly double periodic.
However, in the examples we studied, we find that the symbol prime makes both double

1Note that in contrast to much of the literature on MPLs, we are not suppressing the log in the notation.
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(a) . (b) .

Figure 1. The sunrise integral in two dimensions with unequal internal masses (a) as well as the
ten-point double-box integral in four dimensions with massless internal propagators (b).

periodicity as well as a simple behavior under modular transformations manifest. Finally, it
makes also part of the integrability conditions manifest, which result from the requirement
that partial derivatives commute.

To illustrate the use of the symbol for eMPLs, the application of the identities of
elliptic letters as well as the symbol prime, we study two concrete examples. The first
example is the two-loop sunrise integral in two dimensions with all internal masses being
unequal (see figure 1a). The second example is the ten-point two-loop double-box integral
in four dimensions with massless internal propagators (see figure 1b). In addition to the
aforementioned properties and techniques, we also demonstrate how the (elliptic) symbol
reduces to polylogarithmic symbol in kinematic limits where the elliptic curve degenerates.

The remainder of this paper is organized as follows. We review elliptic multiple poly-
logarithms in section 2. In section 3, we derive identities for elliptic symbol letters — based
on Abel’s addition theorem for Ω(1)’s and by introducing the symbol prime map for Ω(2)’s.
We illustrate the use of these techniques for the unequal-mass sunrise integral in section 4
and for the ten-point double-box integral in section 5. In particular, we provide analytic
results for the non-elliptic nine-point double-box integral and its symbol, which result from
taking the soft limit of the ten-point double-box integral. We conclude with a discussion
and an outlook on open questions in section 6. In appendix A, we review the calcula-
tion of the unequal-mass sunrise integral via Feynman parameters using our conventions
and notation. The details of simplifying the symbols for the sunrise integral, as well as
the expressions of the functions and symbols for the ten-point elliptic integral and its soft
limit, are included as supplementary material attached to this paper (sunrise_symbol.nb,
doublebox_omega2 and doublebox_soft).2

2 Review of elliptic multiple polylogarithms

Let us first review several elementary facts about elliptic multiple polylogarithms; see [19,
20, 25, 26] for further details. We follow the notations and conventions of [33], which differ
slightly from those of [19, 20, 25, 26].

2In this article, we only provide the expression for the ten-point double box in the normalization by the
period −ω2 since the corresponding expressions in the normalization by the period ω1 can be found in the
ancillary files of [33].
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2.1 Elliptic multiple polylogarithms on the elliptic curve

In this paper, the elliptic curves C are described by monic quartic polynomials:

y2 = P4(x) = x4 + a3x
3 + a2x

2 + a1x+ a0 . (2.1)

Such elliptic curves can be birationally mapped to Weierstrass form

Y 2 = 4X3 − g2X − g3 (2.2)

using the rational point at (x, y) = (+∞,+∞), where (X,Y ) are related to (x, y) by

X = 1
12

(
a2 + 3a3x+ 6x2 + 6y

)
,

Y = 1
4

(
a1 + 2a2x+ 3a3x2 + 4x3 + a3y + 4xy

)
.

(2.3)

On the curve C, we can introduce elliptic multiple polylogarithms E4, which are recur-
sively defined as [19]3

E4 ( n1 ... nk
c1 ... ck ;x) =

∫ x

0
dx′ ψn1

(
c1, x

′)E4
( n2 ... nk
c2 ... ck ;x′

)
(2.4)

with E4(;x) = 1, where

ψ0(0, x) =
1
y
, ψ−1(∞, x) = x

y
,

ψ1(c, x) =
1

x− c
, ψ−1(c, x) =

yc
y(x− c)

,
(2.5)

with yc = y|x=c. The definitions of ψn(c, x) for n = ±2,±3, . . . can be found in [19]; the
kernels (2.5) are sufficient for the purpose of this paper, though.

The class of elliptic multiple polylogarithms E4 ( n1 ... nk
c1 ... ck ;x) contains in particular all

non-elliptic (Goncharov) multiple polylogarithms, defined by

G(c1, . . . , cn;x) =
∫ x

0

dx′

x′ − c1
G(c2, . . . , cn;x′) (2.6)

with G(;x) = 1, since by definition E4
( 1 ... 1
c1 ... ck ;x

)
≡ G(c1, . . . , ck;x).

In general, any integral of the form∫ dx
y

G(x, y) , (2.7)

where G is a polylogarithm whose letters are rational functions of x and y, can be converted
to E4 functions with only the four kinds of integration kernels defined in (2.5).4 In partic-
ular, this is the case for the (unequal-mass) sunrise integral and the ten-point double-box
integral, which we will study as examples in sections 4–5.

3The subscript “4” indicates that the elliptic curve is given by a quartic polynomial. Analogous functions
for a cubic polynomial were also defined in [19].

4Since G is a polylogarithm, the integration kernels have only simple poles, in addition to being rational
in x and y. While all integration kernels ψn have only simple poles, only ψ−1,0,+1 are rational functions
of x, y.
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2.2 From the elliptic curve to the torus

The functions E4 are defined on the elliptic curve and directly arise from the Feynman-
parameter representation of Feynman integrals. However, the purity of some elliptic Feyn-
man integrals, such as integrals of the form (2.7), is not visible when expressed in terms of
E4 functions since taking the total derivative of a E4 function does not necessarily decrease
its length [25].5 On the other hand, iterated integrals defined on the torus, such as the Γ̃
functions we will review below, are manifestly pure and hence allow a symbol map defined
via the total derivative.

To connect both sides, we first need a bijection between the elliptic curve C and the
torus C/Λ, where Λ is the lattice generated by the periods ω1 and ω2 of the elliptic
curve. For an elliptic curve of the form (2.1), one can find such a map through the bi-
rationally equivalent curve in the Weierstrass normal form: first solve (x, y) in terms of
(X,Y ) from (2.3), then replace X and Y with the Weierstrass elliptic function ℘(z) and its
derivative ℘′(z), respectively. This gives

z 7→ (x, y) = (κ(z), κ′(z)) , (2.8)

where
κ(z) = 6a1 − a2a3 + 12a3℘(z)− 24℘′(z)

3a23 − 8a2 − 48℘(z)
. (2.9)

It is easy to see that κ(0) = ∞, and hence all lattice points are mapped to the infinity point
in the (x, y)-space. Furthermore, each point c in the x-space corresponds to two points
(c,±yc) on the elliptic curve C and hence to two images on the torus C/Λ, which we denote
by z±c ; these two images satisfy

z+c + z−c = z−∞ + z+∞ ≡ z−∞ modΛ , (2.10)

since the corresponding points (X±
c , Y

±
c ) and(

X−
∞, Y

−
∞
)
=
(

1
48

(
3a23 − 8a2

)
, 1
32

(
−8a1 + 4a2a3 − a33

))
(2.11)

are on the same line in (X,Y )-space.
The inverse map from the torus to the elliptic curve is simply given by the Abel-Jacobi

map. We assume that the four roots of y2(x) come in complex conjugate pairs as shown
in figure 2.6 Then, the torus image z+c for any real c is given by

z+c =
∫ c

−∞

dx
y
. (2.12)

Hence, z+∞ is one period of the torus, and we choose it to be ω2. The image z−c can be
obtained by (2.10) together with z−∞ =

∫
γ−

dx/y, and the other period is ω1 =
∫
γ1
dx/y; see

figure 2 for the definitions of the integration contours γ− and γ1. Due to the distribution
of roots, ω2 and iω1 are positive reals.

5This can be seen concretely by how the integration kernels ψ−1(∞, x)dx and ψ−1(c, x)dx are related to
the kernels of pure functions given below in (2.16).

6For a discussion of other possible distributions of roots, see [19].
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r1
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r2

r3

γ1γ−

=x

<x

Figure 2. The distribution of the four roots of y2(x) and the two integration contours γ1 and γ−
defining the period ω1 and z−∞. The contour γ2 which defines the period ω2 runs along the real axis.

2.3 Elliptic multiple polylogarithms on the torus

Due to the equivalence between the elliptic curve and the torus, another way to define
elliptic multiple polylogarithms is via iterated integrals on a torus. Such iterated integrals
can be formulated in several ways. In this paper, we use the so-called Γ̃ functions [19, 25],
which are defined as7

Γ̃ ( n1 ... nk
w1 ... wk ;w|τ) =

∫ w

0
dw′ g(n1) (w′−w1, τ

)
Γ̃
( n2 ... nk
w2 ... wk ;w′|τ

)
(2.13)

with Γ̃(;w|τ) = 1; we will frequently suppress the dependence on τ for ease of notation.
Such an iterated integral is said to have length k and weight ∑k nk, and in contrast to the
case of MPLs both quantities are not necessarily equal. The integration kernels g(n)(w, τ)
are generated by the Eisenstein-Kronecker series

∂wθ1(0|τ)θ1(w + α|τ)
θ1(w|τ)θ1(α|τ)

=
∑
n≥0

αn−1g(n)(w, τ) , (2.14)

where θ1(w|τ) is the odd Jacobi theta function. All the integration kernels g(n) except
g(0) = 1 are quasi double periodic,

g(n)(w + 1) = g(n)(w) , g(n)(w + τ) =
n∑

j=0

(−2πi)j

j!
g(n−j)(w) , (2.15)

but meromorphic with only logarithmic poles at most [19, 25].
Note that the functions Γ̃ and the integration kernels g(n) are defined on the torus

with one period rescaled to be 1, and that the torus with periods (ω1, ω2) has the two
possible rescalings [1 : τ = ω2/ω1] and [1 : τ ′ = −ω1/ω2], which are related by the
modular S-transformation τ → −τ−1. We denote the images of c on [1 : τ = ω2/ω1] as
w±
c = z±c /ω1 and the images on [1 : τ ′ = −ω1/ω2] as ξ±c = z±c /(−ω2). The two are related

by ξ±c = τ ′w±
c . In what follows, most of the results are written in terms of w-coordinates,

but the corresponding results with w replaced by ξ also hold unless otherwise indicated.
The integration kernels ψn can be identified as combinations of g(j)’s by matching poles

on both sides. On the torus [1 : τ = ω2/ω1], one can easily find the following relations
7Another variant of such iterated integrals extensively used in one-loop string amplitudes are the so-called

Γ functions, whose integration kernels f (n) are double periodic but not meromorphic; see e.g. [106].
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between g(j)’s and ψn’s,

ψ1 (c, x) dx =
(
g(1)

(
w − w+

c

)
+ g(1)

(
w − w−

c

)
− g(1)

(
w − w+

∞

)
− g(1)

(
w − w−

∞
))
dw , (2.16a)

ψ−1 (c, x) dx =
(
g(1)

(
w − w+

c

)
− g(1)

(
w − w−

c

)
+ g(1)

(
w+
c

)
− g(1)

(
w−
c

))
dw , (2.16b)

ψ−1 (∞, x) dx =
(
g(1)

(
w − w−

∞
)
− g(1) (w) + g(1)

(
w−
∞
)
− ω1a3/4

)
dw , (2.16c)

ψ0(0, x)dx = ω1dw . (2.16d)

On the torus [1 : τ ′], the corresponding relations can be obtained by replacing w → ξ and
ω1 → −ω2 in (2.16).

Sometimes, it is more convenient to combine Γ̃ functions into the so-called E4 func-
tions [26], especially if the Γ̃ functions originally arose from an expression of E4 functions.
The elliptic multiple polylogarithms E4 are defined in complete analogy to (2.4):

E4 ( n1 ... nk
c1 ... ck ;x) =

∫ x

0
dx′Ψn1(c1, x′)E4

( n2 ... nk
c2 ... ck ;x′

)
(2.17)

with E4(;x) = 1,

Ψ±(n>0)(c, x)dx =
(
g(n)(w − w+

c )± g(n)(w − w−
c )

− δ±n,1
(
g(1)(w − w+

∞) + g(1)(w − w−
∞)
))
dw (2.18)

and Ψ0(x)dx = dw, as well as analogous expressions in terms of ξ. The weight of a function
E4 ( n1 ... nk

c1 ... ck ;x) is defined as ∑i |ni|.

2.4 Symbol

By construction, the total derivative of Γ̃ admits a recursive structure [25],

dΓ̃(A1, . . . , Ak;w)

=
k−1∑
p=1

(−1)np+1Γ̃(A1, . . . , Ap−1, 0⃗, Ap+2, . . . , Ak;w)× ω(np+np+1)(wp+1,p) (2.19)

+
k∑

p=1

np+1∑
r=0

[(
np−1+r−1
np−1−1

)
Γ̃(A1, . . . , A

[r]
p−1, Ap+1, . . . , Ak;w)× ω(np−r)(wp−1,p)

−
(
np+1+r−1
np+1−1

)
Γ̃(A1, . . . , Ap−1, A

[r]
p+1, . . . , Ak;w)× ω(np−r)(wp+1,p)

]
,

where 0⃗ ≡
( 0
0
)
, wi,j ≡ wi − wj , (w0, wk+1) ≡ (w, 0), (n0, nk+1) ≡ (0, 0) as well as

A
[r]
i ≡

(
ni+r
wi

)
, A

[0]
i ≡ Ai . (2.20)

The forms ω(j)(w) are exact, and we can thus write them as

ω(j)(w, τ) = (2πi)j−1dΩ(j)(w, τ) , (2.21)

– 7 –
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with

Ω(−1) (w, τ) = −2πiτ , Ω(0) (w, τ) = 2πiw , Ω(1) (w, τ) = log θ1 (w|τ)
η (τ)

,

Ω(odd j>1) (w, τ) = −2jζj+1τ

(2πi)j
+ 1

(j−1)!

∞∑
n=1

nj−1 log
((

1− e2πi(nτ−w)
) (

1− e2πi(nτ+w)
))
,

Ω(even j) (w, τ) = − 2ζjw
(2πi)j−1 + 1

(j−1)!

∞∑
n=1

nj−1 log 1− e2πi(nτ+w)

1− e2πi(nτ−w) , (2.22)

where η(τ) is the Dedekind eta function and ζj =
∑

n∈Z+ n
−j are the Riemann zeta values.8

The functions Ω(j) satisfy

g(j)(w, τ) = (2πi)j−1∂wΩ(j)(w, τ) = (2πi)j−1

j − 1
∂τΩ(j−1)(w, τ). (2.23)

The sum representation (2.22) can be derived using the sum representation of the g(n)

functions given in [25]. In particular,

(2πi)1−nΓ̃ ( n0 ;w) = Ω(n)(w)− Ω(n)(0) , (2.24)

where Ω(n)(0) vanishes for even n and is the primitive of the Eisenstein series for odd n;
see [25]. We will see below that the functions Ω(j) play the role of elliptic symbol letters.
As can be seen from (2.22), Ω(1) has a logarithmic singularity at all lattice points, while
Ω(j>1) has a logarithmic singularity at all lattice points except for the origin [25].

For a function Γ̃(n)
k of weight n and length k, we can define Γ̃(n)

k = (2πi)k−nΓ̃(n)
k .

Schematically, the differential of Γ̃(n)
k then takes the form

dΓ̃(n)
k =

∑
i

Γ̃(n−ji)
k−1 dΩ(ji)(wi) . (2.25)

Thus, it is natural to define the symbol of Γ̃(n)
k as

S
(
Γ̃(n)
k

)
=
∑
i

S
(
Γ̃(n−ji)
k−1

)
⊗ Ω(ji)(wi) . (2.26)

Note that in contrast to [25] we have included additional factors of (2πi) in the defi-
nition of the elliptic letters Ω(n) and consider the symbol of Γ̃(n)

k rather than Γ̃(n)
k .9 This

is such that the elliptic letters and symbols degenerate to logarithms and polylogarithmic
symbols without additional factors of (2πi) in the limit where the elliptic curve degenerates,
see sections 4–5.

8Recall that ζ2n = (−1)n+1B2n(2π)2n
2(2n)! with B2n being the (2n)th Bernoulli number, such that the first

terms in (2.22) can equivalently be written in terms of Bernoulli numbers.
9In [25], there is also a projection operator πk in the definition of the symbol for Γ̃ functions due to the

fact that some eMPLs of weight 0 evaluate to rational numbers, such as Γ̃ ( 0
0 ; 1) = 1. Here we exclude it

by introducing these 2πi factors.
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2.5 Shuffle regularization

Let us close this section by remarking on shuffle regularization. One can easily see that
Γ̃ ( 10 ; z) = Ω(1)(z) − Ω(1)(0) is divergent since Ω(1)(0) is singular according to (2.22). The
shuffle regularization used in [9, 25] takes Ω(1)(0) ≡ 2 log η(τ). However, that regularization
leads to an issue if we start with an integral of the form (2.7) since it is inconsistent with the
usual shuffle regularization for polylogarithms, G(0;x) ≡ log x. To see this, we apply (2.16)
to G(0; 1) = log 1 = 0 and find

0 ?= Γ̃
(
1
0 ;w

+
1 −w+

0

)
+Γ̃

( 1
w−

0 −w+
0
;w+

1 −w+
0

)
−Γ̃

( 1
w+

∞−w+
0
;w+

1 −w+
0

)
−Γ̃

( 1
w−

∞−w+
0
;w+

1 −w+
0

)
,

(2.27)
which is in general not true if we use Ω(1)(0) ≡ 2 log η(τ). To reconcile both sides, we
expand Γ̃

( 1
w′ ;w

)
= Ω(1)(w − w′) − Ω(1)(−w′) to arrive at the following regularization for

elliptic multiple polylogarithms:

Ω(1) (0) ≡ Ω(1)
(
w+
0 − w−

∞

)
+Ω(1)

(
w+
0 − w+

∞

)
− Ω(1)

(
w+
0 − w−

0

)
+Ω(1)

(
w+
1 − w−

0

)
+Ω(1)

(
w+
1 − w+

0

)
− Ω(1)

(
w+
1 − w−

∞

)
− Ω(1)

(
w+
1 − w+

∞

)
= 2 log η (τ) + log 2πi

ω1
− log y0 =

1
12

log∆− log y0 , (2.28)

where ∆ = g32 − 27g23 is the discriminant of the elliptic curve. The second equality will
be explained in the next section and the third equality shows that this regularization is
actually independent of the way we rescale the torus.

3 Identities of elliptic symbol letters and the symbol prime

We have briefly reviewed several elementary facts about elliptic multiple polylogarithms,
and we saw that the symbol letters of elliptic multiple polylogarithms are the functions
Ω(n)(w, τ). These functions stand in the way of analyzing the elliptic symbols. For one
thing, the relations among Ω(n)’s are much more complicated than the manipulation rules
log a + log b = log ab for the symbol letters of multiple polylogarithms. For another, they
depend on the kinematics in a rather indirect way — their arguments w and τ are (ratios)
of elliptic integrals involving kinematics.

In this section, we investigate the identities of the elliptic letter Ω(n)(w, τ). The most
trivial identities these letters satisfy are the following:

Parity : Ω(n)(−w) = (−1)n+1Ω(n)(w) , (3.1)

Quasi periodicity : Ω(n)(w + τ) =
n+1∑
j=0

(−1)j

j!
Ω(n−j)(w) . (3.2)

They immediately follow from (2.22). Our investigation of more non-trivial identities will
be focussed on the cases n = 0, 1, 2 since — for the two examples considered in this
paper, namely the sunrise integral and the double-box integral — the identities among
Ω(n≤2) are sufficient to simplify the symbols after using (3.1) and (3.2). We comment on a
generalization to identities among Ω(n>2) at the end of this section.
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Let us start with the slightly trivial identity

log c− b

c− a
=
∑
σ∈±

(
Ω(1)

(
wσ
c − w+

b

)
− Ω(1)

(
wσ
c − w+

a

)
− Ω(1)

(
wσ
∞ − w+

b

)
+Ω(1)(wσ

∞ − w+
a )
)
, (3.3)

which is a simple consequence of applying (2.16a) to
∫ b
a ψ1(c, x)dx = log c−b

c−a . The iden-
tity (3.3) has two important special cases. One is obtained by taking a→ ∞, giving∑

σ∈±
Ω(1)(wσ

c − w+
b ) = Ω(1)(w−

∞ − w+
∞) +

∑
σ∈±

[
Ω(1)(wσ

c − w+
∞) + Ω(1)(wσ

b − w+
∞)
]

− log
(2πi
ω1

)
− 2 log η(τ) + log(c− b) ; (3.4)

the other one is obtained by further taking b→ c, which yields

Ω(1)(w−
c −w+

c ) = 2
(
Ω(1)

(
w−
c − w+

∞

)
+Ω(1)

(
w+
c − w+

∞

)
− 2 log η (τ)− log 2πi

ω1

)
− Ω(1)

(
w−
∞ − w+

∞

)
− log yc . (3.5)

Now one can easily see that the second equality in (2.28) is the consequence of applying (3.4)
and (3.5). The two special cases are particularly useful since the letters Ω(1) on their right-
hand sides always involve w±

∞ and hence can serve as a basis.

3.1 Abel’s addition theorem

Surprisingly, a very classical and powerful theorem, Abel’s addition theorem [101], yields
other identities for Ω(0) and Ω(1).10

Let us first spell out this theorem: let C and C′ be curves given by two polyno-
mial equations

C : F (x, y) = 0 , (3.6)
C′ : Q(x, y) = 0 , (3.7)

where C is viewed as a fixed curve and C′ as a variable curve with coefficients collectively
denoted as {bi}. Suppose that these two curves intersect at n points (x1, y1), …, (xn, yn).
Let R(x, y) be a rational function defined on C. Then the following holds.

Theorem (Abel). The integral

I({bi}) =
n∑

i=1

∫ xi

x∗
R(x, y) dx , (3.8)

where x∗ is an arbitrary base point, contains at most rational functions and logarithms
of {bi}.

This theorem can be proven by showing that ∂bνI is always a rational function of {bi}
for all bν .

10See e.g. [107] for a textbook treatment of Abel’s addition theorem and [108, 109] for previous applications
to Feynman integrals.

– 10 –



J
H
E
P
0
1
(
2
0
2
3
)
0
8
9

If a symbol letter ϕ(u) can be expressed as
∫ uR(x, y)dx, one can try to find an addition

formula for ϕ(u) through Abel’s addition theorem. Of all applications of this theorem, we
are most interested in the cases that C′ has only two degrees of freedom and intersects C
at three points. For this case, Abel’s addition theorem gives

ϕ(u) + ϕ(v) = ϕ
(
T (u, v)

)
+ · · · , (3.9)

where T (u, v) is an algebraic function of u and v and ‘· · · ’ denotes simpler objects, like
logarithms.

An example is the addition formula for logarithms, log(x1) + log(x2) = log(x1x2),11

which is given by choosing

C : y = 1
x
, (3.10)

C′ : y = x2 + b1x+ b2 . (3.11)

These two curves intersect at the three points x1, x2, x3 that solve

x3 + b1x
2 + b2x− 1 = 0, (3.12)

and hence satisfy x1x2x3 = 1. Now consider

I =
3∑

i=1

∫ xi

1

dx
x
, (3.13)

which satisfies

∂bjI =
3∑

i=1

1
xi

∂xi
∂bj

= 1
x1x2x3

∂

∂bj
x1x2x3 = 0, (3.14)

since x1x2x3 = 1. Thus, I is a constant. To fix this constant, we can pick b1 = −3, b2 = 3,
such that x1 = x2 = x3 = 1, yielding I = 0. Again using x1x2x3 = 1, we thus have

0 = I = log(x1) + log(x2) + log(x3) = log(x1) + log(x2)− log(x1x2), (3.15)

as claimed.
For the case we are most interested in, the fixed curve C is given by (2.1), and we find

that a convenient choice for C′ is

y = −x2 + b1x+ b2 . (3.16)

One can easily check that these two curves intersects at three point at most. Suppose that
two intersection points are (x1, y1 =

√
P4(x1)) and (x2, y2 =

√
P4(x2)), then

b1 =
y1 − y2
x1 − x2

+ x1 + x2 , b2 =
x1y2 − x2y1
x1 − x2

− x1x2 , for x1 6= x2 , (3.17)

b1 =
P ′
4(x1)
2y1

+ 2x1 , b2 = y1 + x21 − b1x1 , for x1 = x2 , (3.18)

11This example can e.g. be found in [109].
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and

x3 =
b21 − 2b2 − a2

2b1 + a3
− x1 − x2 , y3 = −

√
P4(x3) . (3.19)

Since z+c =
∫ c
−∞ dx/y, Abel’s addition theorem tells us

z+x1 + z+x2 ≡ z+x3 modΛ , for b1 6= −a3/2 , (3.20a)
z+x1 + z+x2 ≡ 0modΛ , for b1 = −a3/2 , (3.20b)

which is the well-known group law on the elliptic curve. Furthermore, if we take b2 =
(a23 − 4a2)/8 aside b1 = −a3/2, then C and C′ only intersect at one point,

χ = a43 − 8a2a23 + 16a22 − 64a0
8
(
a33 − 4a2a3 + 8a1

) . (3.21)

Together with a little divisor theory, this gives12

2z−∞ ≡ ω1 + z+χ modω2 . (3.22)

Similarly, for the integral
∫
ψ−1(c, x)dx, the same procedure gives∫ x1

∗

yc dx
y(x− c)

+
∫ x2

∗

yc dx
y(x− c)

−
∫ x3

∗

yc dx
y(x− c)

= log c
2 − b1c− b2 + yc
c2 − b1c− b2 − yc

+ const. (3.23)

If z±x1 + z±x2 = z±x3 , applying (2.16b) to (3.23) gives

2∑
i=1

Ω(1)
(
w+
c − w+

xi

)
− Ω(1)

(
w+
c − w−

xi

)
(3.24)

= Ω(1)
(
w+
c −w+

x3

)
− Ω(1)

(
w+
c −w−

x3

)
+Ω(1)

(
w+
c

)
− Ω(1) (w−

c

)
+ log c

2 − b1c− b2 + yc
c2 − b1c− b2 − yc

.

If z±x1 + z±x2 ≡ z±x3 mod Λ, a corresponding identity can be found from (3.24) using the
quasi double periodicity of Ω(1) (3.2).

Three boundary cases of (3.24) require special care:
(i) taking c→ ∞ gives

2∑
i=1

Ω(1)(w+
xi
)− Ω(1)(w−

xi
) = Ω(1)(w+

x3)− Ω(1)(w−
x3)

− Ω(1)(ω−
∞ − ω+

∞)− log 2b1 + a3
4

+ 1
12

log∆ , (3.25)

12For any meromorphic function F on a torus, by using
∮
d logF (z) = 0 and

∮
z d logF (z) = 0, one can

conclude that the number and the sum of its poles are the same as of its zeros, where poles and zeros of
order n are counted n times. Now consider the function

F = −κ′(z)− κ(z)2 − a3κ(z)/2 + (a23 − 4a2)/8 ,

which has poles at lattice points but vanishes only at z−χ and z−∞, two intersection points of the curve
y = −x2 − a3x/2 + (a23 − 4a2)/8 and the elliptic curve. We then obtain (3.22) by using (2.10).
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(ii) taking x3 → ∞ gives

2∑
i=1

Ω(1)
(
w+
c − w+

xi

)
− Ω(1)

(
w+
c − w−

xi

)
(3.26)

= Ω(1)
(
w+
c −w+

∞

)
− Ω(1)

(
w+
c −w−

∞

)
+Ω(1)

(
w+
c

)
− Ω(1) (w−

c

)
+ log c

2 + a3c/2− b2 + yc
c2 + a3c/2− b2 − yc

.

(iii) taking c→ ∞ and x3 → ∞ gives

2∑
i=1

[
Ω(1)

(
w+
∞ − w+

xi

)
− Ω(1)

(
w+
∞ − w−

xi

)]
= −2Ω(1)

(
w+
∞ − w−

∞

)
+Ω(0)

(
w−
∞ − w+

∞

)
+ 1

6
log∆− log 4a2 − a23 + 8b2

16
. (3.27)

Eqs. (3.20), (3.3)–(3.5) as well as (3.24)–(3.27) explain the subset of the identities
numerically found in [33] which only involve Ω(0)’s and Ω(1)’s.

Note that the identities we presented in this subsection can be equivalently formulated
in terms of divisor theory, see e.g. [104].

3.2 Elliptic Bloch relation and the symbol prime

In [33], also five identities involving Ω(2)’s were observed which are much lengthier than
the other identities; each of these five identities contains at least 100 terms in the form that
they were found. It turns out all these identities are consequences of the so-called elliptic
Bloch relation [102, 103], an elliptic generalization of the five-term identity for dilogarithms,

D(x) +D(y) +D

( 1− x

1− xy

)
+D(1− xy) +D

( 1− y

1− xy

)
= 0 , (3.28)

where D(z) = =(Li2(z)) + arg(1− z) log |z| is the Bloch-Wigner function.13

In practice, it is difficult to simplify even expressions containing dilogarithms by using
the above five-term identity directly. Instead, we introduce the symbol map [63] for poly-
logarithms as an assistance; we associate to each polylogarithm a tensor product whose
entries satisfy simpler identities. We then exploit that the symbol of a combination of
polylogarithms vanishes if that combination of polylogarithms vanishes.

A similar strategy can be used for the elliptic letters Ω(2)(w) = (2πi)−1Γ̃ ( 20 ;w), al-
though they already serve as entries of the symbol for elliptic multiple polylogarithms.
Inspired by the proof of the elliptic Bloch relation for Γ̃ ( 20 ;w) in [104], we associate to
Ω(2)(w) a rank-two tensor through the symbol prime map,

S ′(Ω(2)(w)
)
= Ω(0)(w)⊗′ Ω(1)(w) , (3.29)

13To show this concretely, one would need to do the divisor-theory analog of finding a curve that intersects
the elliptic curve at precisely the points given by the more than 100 terms in the identities. An algorithm
for doing this is given in [105].
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where we have added a prime on “⊗” to distinguish it from the tensor product in the
symbol. This map has a property similar to that of the symbol map:∑

j

cjΩ(2) (wj) = 0 “⇒”
∑
j

cjS ′
(
Ω(2) (wj)

)
≡
∑
j

cjΩ(0) (wj)⊗′ Ω(1) (wj) = 0

(3.30)
for some rational coefficients cj . To show this, consider the sum∑

j cjΓ̃ ( 1 0
0 0 ;wj). According

to (2.19),

S
(
2πiΓ̃ ( 1 0

0 0 ;w)
)
= Ω(0) (w)⊗ Ω(1) (w)− Ω(2) (w)⊗ (2πiτ) , (3.31)

where we used that Γ̃ ( 00 ;w) = w, Γ̃ ( 20 ;w) = 2πiΩ(2)(w) and Ω(−1) = −2πiτ . If the argu-
ments wj and coefficients cj are such that ∑j cjΩ(2)(wj) = 0 due to an elliptic Bloch rela-
tion, ∑j cjΓ̃ ( 1 0

0 0 ;wj) = 0 according to an analogous elliptic Bloch relation [104], which in
turn implies that the second term on the right-hand side of (3.31), ∑j cjS ′(Ω(2)(wj)), drops
out in the sum. In this sense, the symbol prime makes the elliptic Bloch relations manifest.

Note that we have assumed that ∑j cjΩ(2)(wj) = 0 vanishes due to an elliptic Bloch re-
lation here in order to show that ∑j cjS ′(Ω(2)(wj)) = 0. We have indicated this in (3.30) as
“⇒”. However, we currently have no way of proving that all identities ∑j cjΩ(2)(wj) = 0
are due to an elliptic Bloch relation [102, 103]. This is similar to the case of diloga-
rithms, where (3.28) is only conjectured but not proven to generate all functional identities
among dilogarithms.

The symbol map itself has a kernel, and the same is true for the symbol prime. If∑
j Ω(2)(wj) is in the kernel of the symbol prime, i.e. S ′(

∑
j Ω(2)(wj)) = 0, the first term

on the right-hand side of (3.31) drops out in the sum. This implies that ∑j Γ̃ ( 1 0
0 0 ;wj)

and thus ∑j Ω(2)(wj) is a function of τ only. However, not all functions only of τ are in
the kernel of the symbol prime; for example, Ω(2)(τ/n) with some positive integer n only
depends on τ but has a non-vanishing symbol prime.14

One can find the action of the symbol prime map on the letters Ω(n<2) by expressing
them in terms of Ω(2) using the quasi periodicity (3.2) of Ω(n):

Ω(1)(w) = 1
6Ω

(2)(w + 2τ)− Ω(2)(w + τ) + 1
2Ω

(2)(w) + 1
3Ω

(2)(w − τ) , (3.32)

Ω(0)(w) = Ω(2)(w + τ) + Ω(2)(w − τ)− 2Ω(2)(w) , (3.33)

Ω(−1) = −Ω(2)(w + 2τ) + 3Ω(2)(w + τ)− 3Ω(2)(w) + Ω(2)(w − τ) . (3.34)

This yields

S ′
(
Ω(1) (w)

)
= Ω(0) (w)⊗′ Ω(0) (w) + Ω(−1) ⊗′ Ω(1) (w) , (3.35a)

S ′
(
Ω(0) (w)

)
= Ω(0) (w)⊗′ Ω(−1) + 2Ω(−1) ⊗′ Ω(0) (w) , (3.35b)

S ′
(
Ω(−1)

)
= 3Ω(−1) ⊗′ Ω(−1) , (3.35c)

14However, the occurrence of such a letter means that the point on the elliptic curve that corresponds
to τ/n on the torus, namely κ(ω1τ/n), should occur in the calculation of the E4 functions and hence is
algebraic in kinematics. This is not the case for the examples of the unequal-mass sunrise integral and the
ten-point double-box integral studied in sections 4–5, but it is the case for the equal-mass sunrise integral.
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where we have moreover used quasi periodicity to simplify the entries of the symbol prime.
In particular, by expressing a logarithm in terms of Ω(1)’s and Ω(0)’s either through (3.3)
or (3.24), one finds

S ′(log c) = Ω(−1) ⊗′ log c . (3.36)

Thus, for a combination of Ω(n≤2)’s and logarithms, one can compute its symbol prime. It
involves only Ω(n≤1) and can thus be simplified using the techniques discussed in sub-
section 3.1. If the symbol prime is not zero, one may search for a simpler combina-
tion of Ω(n≤2)’s and logarithms with the same symbol prime according to (3.29), (3.35)
and (3.36).15 The difference of these two combinations has to be a function of τ only,
and a simple expression for this function can be obtained by sending the independent
w-variables in the difference to any values, say 0. In this way, we have proven the five
identities involving Ω(2)’s found in [33].

The current definitions for Ω(n≤2) are sufficient for the two examples treated in this
paper. For n > 2, one might similarly define the symbol prime for Ω(n)’s as

S(n−1)
(
Ω(n)(w)

)
= 1
n− 1

Ω(0)(w)⊗(n−1) Ω(n−1)(w), (3.37)

due to the fact that,

S
(
(2πi)2−n Γ̃

(
n−1 0
0 0 ;w

))
= Ω(0) (w)⊗Ω(n−1) (w)− (n− 1)

(
Ω(n)(w)− Ω(n)(0)

)
⊗ (2πiτ) ,

(3.38)
where Ω(n)(0) is either zero or a function only depending on τ for even or odd n, respectively.
With the knowledge of the identities among Ω(n−1), we can then find identities among Ω(n)

recursively. We leave the exploration of the symbol prime for Ω(n>2) to future work.

4 Example I: unequal-mass sunrise integral

Two particularly interesting cases of elliptic Feynman integrals are the unequal-mass sun-
rise integral in two dimensions and the double-box integral in four dimensions. We will
investigate these two integrals through the tools developed so far. The main focus will
be on the sunrise integral treated in this section, since this integral is simple enough such
that the main results can be written within a couple of lines. After applying the symbol
prime map, we will see that several properties, such as double periodic invariance, modular
invariance (covariance) and part of integrability are manifest.

We calculate the unequal-mass sunrise integral in terms of elliptic multiple polylog-
arithms E4 in appendix A. This integral was originally calculated in terms of iterated
integrals on the moduli space M1,3 in [28]. We closely follow the Feynman-parameter
approach of [20] for the equal-mass case.

The resulting expression when rescaling the torus by the period ω1 is

I = ω1
2πim2

1

(
2πiT (1)

)
, (4.1)

15In particular, if the first entry of the symbol prime is only τ , then the function is the sum of logarithms
and a function of τ .
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where the periods were defined in figure 2 and T (1) is a pure combination of elliptic multiple
polylogarithms of weight one and length two,

T
(1) = E4

(
0 −1
0 −1 ;∞|τ

)
− E4

( 0 −1
0 0 ;∞|τ

)
+ E4

( 0 −1
0 r ;∞|τ

)
− E4

( 0 −1
0 ∞ ;∞|τ

)
+ 4πiE4 ( 0 0

0 0 ;∞|τ)− E4 ( 00 ;∞|τ) log t
2
2
t23
, (4.2)

where we introduced t2i = m2
i /p

2 and r = −t23/t21. Note that we have included seemingly
redundant factors of (2πi) in the numerator and denominator of (4.1) that ensure that
the prefactor degenerates to an algebraic function in the limit where the elliptic curve
degenerates, and the term in parentheses degenerates to a pure logarithm of transcendental
weight two; see subsection 4.1.

However, we can also rescale the torus by the period −ω2, finding

I = −ω2
2πim2

1

(
2πiT (2)

)
, (4.3)

with

T
(2) = E4

(
0 −1
0 −1 ;∞|τ ′

)
− E4

( 0 −1
0 0 ;∞|τ ′

)
+ E4

( 0 −1
0 r ;∞|τ ′

)
− E4

( 0 −1
0 ∞ ;∞|τ ′

)
− E4

( 0
0 ;∞|τ ′

)
log t

2
2
t23
, (4.4)

(Recall from subsection 2.1 that τ ′ = −ω1/ω2.)
According to (4.1) and (4.3), the values of T (1) and T (2) are related by T (1) = −τT (2),

but this relation is not obvious from their expressions in terms of eMPLs. In general,
eMPLs transform non-trivially under the modular S-transformation τ → τ ′ = −1/τ ; for
example,

E4 (−1
c ;x|τ) = E4

(−1
c ;x|τ ′

)
− 2πi

(
ξ+c − ξ−c

)
τ ′

E4
( 0
0 ;x|τ

′) . (4.5)

See [30] for the cases of iterated integrals of modular forms. The same is true for the
symbol, as we will see soon. However, we will see that the application of the symbol prime
map makes the behavior under the modular S-transformation manifest.

4.1 Symbol of the sunrise integral

The symbol of T (1,2) can be calculated by first rewriting E4’s in terms of Γ̃’s via (2.18) and
then applying (2.19)–(2.26). For example,

E4
( 0 −1
0 c ;x

)
= Γ̃

( 0 1
0 w+

c −w+
0
;w+

x − w+
0

)
− Γ̃

( 0 1
0 w−

c −w+
0
;w+

x − w+
0

)
(4.6)

and

S
(
2πiΓ̃

( 0 1
0 w1 ;w2

))
=
(
Ω(2)(−w1)− Ω(2)(w2 − w1)

)
⊗ Ω(−1) − Ω(0)(w2)⊗ Ω(1)(w1)

+
(
Ω(1)(w2 − w1)− Ω(1)(−w1)

)
⊗ Ω(0)(w2 − w1) . (4.7)

– 16 –



J
H
E
P
0
1
(
2
0
2
3
)
0
8
9

The simplification of the symbols in this case is slightly non-trivial: it involves some
non-trivial relations of Ω(1)’s, Ω(0)’s and logarithms as described in section 3.1; for instance,

log t1
t3

= Ω(1)
(
w+
−1 − w+

0

)
− Ω(1)

(
w+
−1 − w+

∞

)
+Ω(1)

(
w+
−1 − w−

0

)
− Ω(1)

(
w+
−1 − w−

∞

)
,

(4.8)

log t2
t3

= Ω(1)
(
w+
0 − w+

∞

)
− Ω(1)

(
w+
−1 − w+

∞

)
+Ω(1)

(
w+
−1 − w−

0

)
− Ω(1)

(
w−
∞ − w+

∞

)
.

(4.9)

(Recall from subsection 2.1 that w+
c = ω−1

1
∫ c
−∞ dx/y). All the relations involving Ω(2) in

this case are comparably trivial; they are the consequences of (3.2). We present the full
simplification in the attached file sunrise_symbol.nb.

The final result is

S
(
2πiT (1)

)
= log t

2
2
t21

⊗ Ω(0)(w+
0 ) + log t

2
1
t23

⊗ Ω(0)(w+
−1)

+
[

1
2πi

(
2E4

(
−2
−1 ;∞

)
− E4

(−2
0 ;∞

)
− E4 (−2

∞ ;∞)
)
+ log t

2
3
t22

]
⊗ (2πiτ) ,

(4.10)
where we have moreover used
E4 (−n

c ;∞)
(2πi)n−1 = Ω(n)

(
w+
∞ − w+

c

)
− Ω(n)

(
w+
0 − w+

c

)
− Ω(n)

(
w+
∞ − w−

c

)
+Ω(n)

(
w+
0 − w−

c

)
.

(4.11)
Similarly,

S
(
2πiT (2)

)
= log t

2
2
t21

⊗ Ω(0)
(
ξ+0

)
+ log t

2
1
t23

⊗ Ω(0)
(
ξ+−1

)
+
[ 1
2πi

(
2E4

(
−2
−1 ;∞

)
− E4

(−2
0 ;∞

)
− E4 (−2

∞ ;∞)
)

+ log t1
t3

+Ω(1)
(
ξ+∞ − ξ+−1

)
− Ω(1)

(
ξ+−1 − ξ+0

)]
⊗
(
2πiτ ′

)
, (4.12)

where we used (4.11) in terms of ξ-coordinates.
At this point, the symbols of the sunrise integral partially show some desired properties;

for example, the first entries of the first two terms in (4.10) and (4.12) indicate the physical
first-entry conditions known from the massless case, and their last entries are related by
simple S-transformations w → ξ. However, the first two terms on their own are neither
double periodic nor integrable.

The first entries of the last terms in (4.10) and (4.12), i.e., ∂τT (1) and ∂τ ′T
(2), are

rather complicated and the main obstacles to understanding the entire symbols, since it
is hard to see how they render the whole symbol double periodic and integrable. In this
respect, it is instructive to consider the symbol primes of these entries:

S ′
(
∂τT

(1)
)
= Ω(0)

(
w+
0

)
⊗′ log t

2
2
t21

+Ω(0)
(
w+
−1

)
⊗′ log t

2
1
t23
, (4.13)

S ′
(
∂τ ′T

(2)
)
= Ω(0)

(
ξ+0

)
⊗′ log t

2
2
t21

+Ω(0)
(
ξ+−1

)
⊗′ log t

2
1
t23
. (4.14)
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They have the following advantageous properties:

1. It is obvious that S ′(∂τT (1)) differs from S ′(∂τ ′T (2)) only by a modular S-transforma-
tion w → ξ, i.e. the symbol prime makes modular covariance manifest.

2. If we shift w+
−1 or w+

0 by τ , then ∂τT (1) changes by log t23
t21

or log t21
t22

, respectively, (and

similarly for ∂τ ′T (2)) since

S ′
(
∂τT

(1)|w+
−1→w+

−1+τ − ∂τT
(1)
)
= (2πiτ)⊗′ log t

2
1
t23

= S ′
(
− log t

2
1
t23

)
, (4.15)

S ′
(
∂τT

(1)|w+
0 →w+

0 +τ − ∂τT
(1)
)
= (2πiτ)⊗′ log t

2
2
t21

= S ′
(
− log t

2
2
t21

)
. (4.16)

The first two terms in the symbol change by corresponding terms with opposite sign
that cancel these. Thus, S(2πiT (1,2)) are double periodic.

3. Moreover, the symbol prime also makes integrability with respect to τ manifest.
This is slightly trivial in the case of the length-two sunrise integral, and will thus be
discussed in full generality for the case of the double-box integral in section 5.1.

Finally, note that the equal-mass case can be obtained smoothly by taking t1 = t2 = t3;
we will briefly comment on this case in section 6.

4.2 Degeneration at p2 = 0 and pseudo-thresholds

Next, let us see how the symbol of the unequal-mass sunrise integral behaves in kinematic
limits where the elliptic curve degenerates.

The kinematic configurations where the elliptic curve degenerates can be easily read
off from the discriminant

∆ = t42t
4
3

t201

(
(t1+ t2+ t3)2−1

)(
(t1+ t2− t3)2−1

)(
(t1− t2+ t3)2−1

)(
(−t1+ t2+ t3)2−1

)
,

(4.17)
where t2i = m2

i /p
2 as before. In particular, the sunrise integral remains finite at p2 = 0, at

the pseudo-thresholds p2 = {(m1 +m2 −m3)2, (m1 +m3 −m2)2, (m2 +m3 −m1)2} and at
the threshold p2 = (m1+m2+m3)2, while it diverges for mi = 0. The values at p2 = 0 and
the pseudo-thresholds were given in terms of MPLs in [10]. In what follows, we will show
how the symbols S(2πiT (1,2)) reproduce the corresponding symbols in these two limits.16

Null-momentum limit. As p2 → 0, t1, t2 and t3 approach infinity while their ratios
remain finite. The elliptic curve degenerates in a way that r1 → r3 and r2 → r4; cf. figure 3a.
In this case, ω1 → ∞ since the roots pinch the corresponding integration contour γ1, while

ω2 →
∫ ∞

−∞

dx
x2 +

(
1 + (t3/t1)2 − (t2/t1)2

)
x+ (t3/t1)2

= 2πi√(
1− t22

t21
− t23

t21

)2
− 4 t22t

2
3

t41

. (4.18)

16The threshold can be treated in a similar way.
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r1

r4
r2

r3

γ1

=x

<x

(a)

r1

r4
r2

r3

γ1

=x

<x
−1

(b)

Figure 3. The roots of y2(x) for the sunrise integral coincide in the null-momentum limit (a) and
pseudo-thresholds (b). In the latter case, the position of the coinciding roots relative to −1 is shown
for the case t3 > t1.

Then −(2πi)−1m−2
1 ω2 reproduces the same normalization factor as in [10] (up to a sign).

Thus, we should expect that S(2πiT (2)) reduces to the corresponding symbol. In this limit,
q = exp(2πiτ ′) vanishes, and hence all E4 (−2

c ;x) in (4.10) vanish; cf. (4.11) and (2.22).
Furthermore,

Ω(0)
(
ξ+c

)
→ log

2c+ 1− u+ v +
√
(1− u− v)2 − 4uv

2c+ 1− u+ v −
√
(1− u− v)2 − 4uv

, (4.19)

log t1
t3

+Ω(1)
(
ξ+∞ − ξ+−1

)
− Ω(1)

(
ξ+−1 − ξ+0

)
→ 0 , (4.20)

where we have introduced u = (t2/t1)2 = zz̄ and v = (t3/t1)2 = (1− z)(1− z̄). Then,

S
(
2πiT (2)

)
→ log u⊗ log 1− z̄

1− z
− log v ⊗ log z̄

z
, (4.21)

which is the symbol of −4i times the Bloch-Wigner dilogarithm D(z), in perfect agreement
with [10].

Pseudo-thresholds. Without loss of generality, we consider the pseudo-threshold
p2 = (m1 + m2 − m3)2. In terms of ti, this pseudo-threshold is equal to the condition
(t1 + t2 − t3)2 = 1. We only consider the solution t3 = t1 + t2 − 1 since the treatment for
the other solution is similar. At t3 = t1 + t2 − 1, the roots r1 and r4 pinch the real axis;
cf. figure 3b. Thus ω2 diverges and we should consider the rescaling of the torus by ω1,
T
(1). We can then close the contour γ1 with a large semi-circle in the left half-plane and

evaluate the integral via residues:

∫
γ1

t1dx(
x+ t3

t1

)√(
t21x

2 +
(
t21 + t23 − (t2 + 1)2

)
x+ t23

) = −2πi

√
t31

4t2t3
. (4.22)
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Again (2πi)−1m−2
1 ω1 reproduces the same normalization factor as in [10] at p2 = (m1 +

m2 −m3)2. Thus, we should expect that S(2πiT (1)) reduces to the corresponding symbol.
At the pseudo-threshold, q = exp(2πiτ) vanishes. Furthermore, we assume t3 > t1;17 then
all E4 (−2

c ;x) appearing in (4.10) also vanish in this limit. Each of the three last entries
in (4.10) is divergent in this limit since the roots pinch the integration contour, but all
these divergences cancel in the following combinations

Ω(0)
(
w+
∞ − w+

−1

)
= 2πi

∫ ∞

−1

dx
y

→ log
1 +

√
t3
t1t2

1−
√

t3
t1t2

, (4.23)

Ω(0)
(
w+
∞ − w+

0

)
= 2πi

∫ ∞

0

dx
y

→ log
1 +

√
t2
t1t3

1−
√

t2
t1t3

, (4.24)

Ω(0)
(
w+
0 − w+

−1

)
= 2πi

∫ 0

−1

dx
y

→ log
1 +

√
t1
t2t3

1−
√

t1
t2t3

; (4.25)

cf. figure 3b. Correspondingly, the symbol is reduced to

S
(
2πiT (1)

)
→ log t1

t2t3
⊗ log

1−
√

t1
t2t3

1 +
√

t1
t2t3

+ (t1 ↔ t2)− (t1 ↔ t3) , (4.26)

where each term is the symbol of Li2(z)−Li2(−z)+ log(z) log
(
(1−z)/(1+z)

)
— in perfect

agreement with [10].

5 Example II: double-box integral

As a second example of Feynman integrals that evaluate to elliptic multiple polylogarithms,
we consider the two-loop ten-point double-box integral:

I =
8

109 1

2

6

7

5

3

4

x8

x10 x1

x3

x5x6

=
∫

d4xld4xk
(x1 − x5)2

(x1 − xl)2(x3 − xl)2(x5 − xl)2

× (x3 − x8)2(x6 − x10)2

(xl − xk)2(x6 − xk)2(x8 − xk)2(x10 − xk)2
, (5.1)

where we have introduced the dual coordinates xi defined as xi − xi+1 = pi and the
notation xi,j = xi − xj . This integral is a particular component of the two-loop ten-
point N3MHV amplitude in planar maximally supersymmetric Yang-Mills theory (N = 4
sYM theory) [110], and was recently integrated in terms of elliptic multiple polylogarithms
in [33]. It depends on seven dual conformal cross-ratios

u1 =
x21,3x

2
5,8

x21,5x
2
3,8

, u2 =
x23,6x

2
8,10

x23,8x
2
6,10

, v1 =
x21,8x

2
3,5

x21,5x
2
3,8

, v2 =
x23,10x

2
6,8

x23,8x
2
6,10

,

u3 =
x21,3x

2
5,10

x21,5x
2
3,10

, u4 =
x21,6x

2
3,5

x21,5x
2
3,6

, u5 =
x21,5x

2
6,10

x21,6x
2
5,10

(5.2)

17The case t1 < t3 can be obtained by an analytic continuation.
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and contains the elliptic curve defined by

y2 = x4 + a3x
3 + a2x

2 + a1x+ a0

=
(
v1
u4

(
(1−u4)(x+1−v2)−u1+u3v2

)
+h1+h2

)2
−4h1h2, (5.3)

where
h1 =

u2u4
v1

(
x2 + (1−u1+v1)x+ v1

)
,

h2 =
(
x+ v1

u4

)(
(1+x−u1)

(u2u4
v1

− 1
)
+ (1−u3)v2

)
.

(5.4)

As shown in [33], the elliptic double-box integral can be evaluated in terms of E4
functions whose arguments make up the set

{ci} =
{
0,−1,∞,−u2,−v1,−

v1
u4
,−1 + u1

u3
,−u2u4u5,−u2(1−u4)−v1,

u2(u3+u4−1)−v1
1− u3

,
u2u3u4u5−v1

1− u3
,
u2u3u4u5−v1
u4(1− u3u5)

,
u2(u3u4u5v2−u1)

u3v2 − u1
,

v1(u3u4u5v2−u1)
u4(u1−u3u5v2)

,
u4u5(u2(u4−1)−v1)+v1

u4(u5 − 1)
,
u1u2(u4−1)−v1(u1−u3v2)

u1 − u3v2
,

z1−1, z̄1−1, z1,3,6,8−1, z̄1,3,6,8−1,−z3,5,8,10,−z̄3,5,8,10,−z2,−z̄2,
u2u3u4u5−v1 + r+

1− u3
,
u2u3u4u5−v1 + r−

1− u3

}
, (5.5)

where za,b,c,dz̄a,b,c,d = xa,b;c,d, (1− za,b,c,d)(1− z̄a,b,c,d) = xd,a;b,c, with the abbreviation

xa,b;c,d =
x2a,bx

2
c,d

x2a,cx
2
b,d

.

Note that u1 = x1,3;5,8, v1 = x3,5;8,1 and u2 = x3,6;8,10, v1 = x6,8;10,3, and we thus have
abbreviated z1 ≡ z1,3,5,8 and z2 ≡ z3,6,8,10. The expressions for r± are slightly lengthy,

r± = G−1
45 detG±

√
detG(45)

√
− detG

2(1− u5)x21,5x23,10x21,6x23,8x25,10
, (5.6)

where G denotes the Gram matrix (x2a,b) with a and b running over the index set of dual
coordinates {1, 3, 5, 6, 8, 10}, G−1

ij denotes the elements of the inverse of the Gram matrix
(G−1)ij , and G(ij) denotes the matrix obtained from G by deleting the i’th and j’th rows
and columns. By using (2.16), the double-box integral was also expressed in terms of Γ̃
functions on the torus [1 : τ = ω2/ω1] [33].

The last two arguments in (5.5) can be written in a slightly more compact form if we
introduce the momentum twistor variables [111],

Za
i = (λαi , xαα̇i λiα) , α, α̇ = 1, 2 , (5.7)

as well as the SL(4)-invariant 〈ijkl〉 = ϵabcdZ
a
i Z

b
jZ

c
kZ

d
l , where λi is the usual spinor-helicity

variable pµi σαα̇µ = λαi λ̃
α̇
i . In terms of these variables, the last two arguments in (5.5) can be

written as
〈9, 10, 1, (7, 8) ∩ (2, 3, 5)〉
〈1, 5, 9, 10〉〈2, 3, 7, 8〉

,
〈4, 5, 6, (2, 3) ∩ (7, 8, 10)〉
〈2, 3, 7, 8〉〈4, 5, 6, 10〉

, (5.8)
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where (ab) ∩ (ijk) = Za〈bijk〉+ Zb〈ijka〉 is the intersection point of the line (ab) and the
plane (ijk) [112].

In the present paper, we compute I in terms of Γ̃ functions on the torus rescaled as [1 :
τ ′ = −ω1/ω2], as well as the corresponding symbol. The computation is straightforward;
however, both expressions are too lengthy to be recorded in the main text and are given in
the file doublebox_omega2 in the supplementary material attached to this paper. In what
follows, we will give a schematic expression of the symbol as well as the symbol prime and
comment on several interesting aspects, such as the integrability condition and the soft
limit p10 → 0.

5.1 Symbol of the double-box integral

Let us first review some results and notations from [33]. After normalization by ω1,
T
(1) = I /ω1 is a pure combination of Γ̃ functions of length four and weight three. The

corresponding symbol S(2πiT (1)) satisfies the same physical first-entry conditions as in the
MPL cases [67]; namely, the first entries are given by log ui and log vi. The first two entries
are Li2(1− xa,b;c,d), log xa,b;c,d log xa′,b′;c′,d′ or four-mass-box functions,

− Li2(za,b,c,d) + Li2(z̄a,b,c,d)−
1
2
log(xa,b;c,d) log

(1− za,b,c,d
1− z̄a,b,c,d

)
. (5.9)

The last entries of this symbol consist of seven letters of elliptic type Ω(0). According to
these last entries, the symbol can be organized as18

S
(
2πiT (1)

)
= S (Ihex)⊗ Ω(0)

(
w+
c25

)
+ S (F−)⊗ Ω(0) (w−

∞
)
+ S (Fτ )⊗ (2πiτ)

+ S (Fz1−1)⊗ Ω(0)
(
w+
z1−1

)
+ S (Fz̄1−1)⊗ Ω(0)

(
w+
z̄1−1

)
+ S (F−z2)⊗ Ω(0)

(
w+
−z2

)
+ S (F−z̄2)⊗ Ω(0)

(
w+
−z̄2

)
, (5.10)

where Ihex is the 6D hexagon integral (normalized to be pure), c25 = 〈9,10,1,(7,8)∩(2,3,5)〉
〈1,5,9,10〉〈2,3,7,8〉 is

the 25’th element of the set (5.5) and we used Ω(0)(w+
∞) = 2πiτ . In particular, the symbols

of all weight-three functions except Fτ , that are Ihex, F−, etc., are polylogarithmic; their
symbol entries are logarithms of kinematics. Furthermore, Ihex and F− are invariant up to
a sign under the two reflections

R1 : pi → p15−i , (5.11)
R2 : pi → p10−i , (5.12)

where pi ≡ pi+10, while Fz1−1, Fz̄1−1, F−z2 and F−z̄2 form an orbit (up to a sign) under both
reflections. Besides the seven elliptic last entries, elliptic letters only appear at the third
entry of S(Fτ ) and come in only 13 linear independent combinations of Ω(2,1,0)’s. For the full
symbol alphabet and a form that is manifestly invariant under the two reflections, see [33].

18Here we use a slightly different notation for S(2πiT (1)) than the one in [33] for bookkeeping.
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In the other normalization, T (2) = −I /ω2, the structure of the symbol is almost the
same as (5.10),

S
(
2πiT (2)

)
= S (Ihex)⊗ Ω(0)

(
ξ+c25

)
+ S (F−)⊗ Ω(0) (ξ−∞)+ S (Fτ ′)⊗

(
2πiτ ′

)
+ S (Fz1−1)⊗ Ω(0)

(
ξ+z1−1

)
+ S (Fz̄1−1)⊗ Ω(0)

(
ξ+z̄1−1

)
(5.13)

+ S (F−z2)⊗ Ω(0)
(
ξ+−z2

)
+ S (F−z̄2)⊗ Ω(0)

(
ξ+−z̄2

)
.

Besides the last entries, which are simple modular S-transformations of the last entries
of S(2πiT (1)), the only difference arises from the third entry of Fτ ′ which consist of only
Ω(2)’s. Meanwhile, the Ω(2)’s appearing in the third entry of S(F ′

τ ) also come in 13 linear
independent combinations.

It is not surprising that all weight-three functions appearing in S(2πiT (1)) except Fτ

are the same as in S(2πiT (2)). Actually, for any elliptic multiple polylogarithm I given by
an integral of the form (2.7), its two normalizations, T (1) = I/ω1 and T (2) = −I/ω2, are
related by T (2) = τ ′T (1). With the last entry of T (1) being of elliptic type Ω(0), i.e.,

dT (1) =
∑
i

Fidwi + Fτdτ, (5.14)

where Fi and Fτ are elliptic multiple polylogarithms of lower length, a straightforward
computation gives

dT (2) =
∑
i

Fidξi +
(
T (1) −

∑
i

Fiwi − τFτ

)
︸ ︷︷ ︸

Fτ ′

dτ ′ . (5.15)

While it is not manifest from (5.15), this particular expression for Fτ ′ has length three.
Once we evaluate the symbol prime for the third entry of Fτ and F ′

τ , a simple connection
emerge. Both S(2πiT (1)) and S(2πiT (2)) have similar structures as in the case of the sunrise
integral:

S(2πiT (1)) =
∑
ij

S(fi)⊗
(
log aij ⊗ Ω(0)(wj) +Ωi ⊗ (2πiτ)

)
, (5.16)

with

S ′(Ωi) = Ω(0)(wj)⊗′ log aij , (5.17)

and a similar expression for S(2πiT (2)) with ξj and τ ′ in place of wj and τ . Here wj are the
six last entries except τ , aij are some algebraic functions of kinematics, fi are of the form
Li2(1 − xab;cd), log xab;cd log xa′b′;c′d′ or four-mass-box functions, and Ωi are combinations
of Ω(2,1,0) that occur in the last entry of Fτ associated with S(fi).

Let us close this subsection by remarking some advantages of the form (5.16). Firstly,
the symbol prime is manifestly double-periodic due to the same argument used in sec-
tion 4.1: under the translation wj → wj + τ ,

[Ω(−1) ⊗′ log aij ]︸ ︷︷ ︸
S′(log aij)

⊗Ω(0)(wj) + [Ω(0)(wj)⊗′ log aij ]︸ ︷︷ ︸
S′(Ωi)

⊗(2πiτ)

→ [Ω(−1) ⊗′ log aij ]⊗ Ω(0)(wj + τ) + [Ω(0)(wj + τ)⊗′ log aij ]⊗ (2πiτ) (5.18)
= [Ω(−1) ⊗′ log aij ]⊗ Ω(0)(wj) + [Ω(0)(wj)⊗′ log aij ]⊗ (2πiτ) ,
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where we have used (3.36) and Ω(−1) = −Ω(0)(τ) = −2πiτ . Secondly, this form makes
a part of the integrability conditions manifest and sheds light on the (13 linearly inde-
pendent) combinations of Ω(2,1,0) that occur in the last entry of Fτ . The integrability
condition requires

∂wjΩi + ∂τ log aij = 0 , (5.19)

which is a consequence of

S ′(Ωi) =
∑
j

Ω(0)(wj)⊗′ log aij , (5.20)

since

Ωi ⊗ τ −
∑
j

Ω(0) (wj)⊗ log aij = Ωi ⊗ τ +
∑
j

log aij ⊗Ω(0) (wj)−S
(
log aijΩ(0) (wj)

)
(5.21)

is an integrable symbol by the definition of the symbol prime. We will discuss the remaining
integrability conditions in upcoming work [113].

5.2 Soft limit

In this subsection, we will consider the soft limit p10 → 0, in which the elliptic double-box
integral remains finite and becomes polylogarithmic:

8

109 1

2

6

7

5

3

4

x8

x10 x1

x3

x5x6

p10→0−−−−→
8

9 1

2

6

7

5

3

4

x8

x1

x3

x5x6

(5.22)

In terms of momentum twistors, this limit amounts to first setting

Z10 → Z9 + αZ1 + ϵ(Z8 + βZ2) (5.23)

with finite α and β, and then taking the limit ϵ → 0 [114]. In this limit, the seven cross-
ratios become

u1 =
x21,3x

2
5,8

x21,5x
2
3,8

, u2 =
x23,6x

2
8,1

x23,8x
2
6,1

, v1 =
x21,8x

2
3,5

x21,5x
2
3,8

, v2 =
x23,1x

2
6,8

x23,8x
2
6,1

,

u3 = 1 , u4 =
x21,6x

2
3,5

x21,5x
2
3,6

= v1
u2
, u5 = 1 . (5.24)

Correspondingly, the elliptic curve (5.3) degenerates to

y2 =
(
x2 + (1− u1 + u2)x+ u2 − u1u2 + v1v2

)2 = (
(x− r)(x− r̄)

)2
, (5.25)

where

r = −1
2

(
1− u1 + u2 +

√
(1− u1 − u2)2 − 4v1v2

)
, (5.26)

r̄ = −1
2

(
1− u1 + u2 −

√
(1− u1 − u2)2 − 4v1v2

)
. (5.27)
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The double-box integral in this soft limit can be easily integrated to multiple polylog-
arithms starting from the one-fold integral representation in [33] by using, for instance,
HyperInt [115] or PolyLogTools [116]. We record both the function and the symbol
result in the file doublebox_soft in the supplementary material attached to this paper.
In the following, we demonstrate how the same result for the symbol is obtained as a limit
of the elliptic symbol of the ten-point double-box integral (5.10).

We work in the region given by positive momentum-twistor kinematics [117], where
the four roots of y2(x) in (5.3) come in complex conjugate pairs as shown in figure 2, but
both r and r̄ are negative real numbers, i.e., r1, r4 → r, while r2, r3 → r̄ in the soft limit.
Therefore, ω2 → ∞ in this limit, and

ω1 →
∫
γ1
− dx
(x− r)(x− r̄)

= 2πi
r − r̄

(5.28)

where we made the following choice for the degenerated curve (5.25) in the different regions:

y =

−(x− r)(x− r̄) , for r < Rex < r̄

(x− r)(x− r̄) , otherwise .
(5.29)

The reason for this choice is that we want to keep y non-negative on the real x-axis for the
degenerated curve, following the convention we chose for the original curve in (5.3). Again,
(2πi)−1ω1 gives the correct normalization factor for this nine-point double-box integral,
and we should expect that S(2πiT (1)) will reproduce the correct symbol in this soft limit.

The immediate problem we encounter in taking the soft limit for S(2πiT (1)) is that
not all of the seven last entries in (5.10) have smooth, definite and finite limits. While
the soft limit of c25 depends on the arbitrary parameters α and β in (5.23), the term
S(Ihex)⊗ Ω(0)(w+

c25) does not introduce a problem since S(Ihex) vanishes in the soft limit.
The integration contours for w−

∞, w+
z̄1−1 as well as w+

−z̄2 go through the pole at x = r, and
the integration contours for w+

z1−1 as well as w+
∞ = τ go through both poles at x = r and

x = r̄; see figure 4. To cancel the resulting singularities, we reorganize S(2πiT (1)) as

S
(
2πiT (1)

)
= S (F−z2)⊗ Ω(0)

(
w+
−z2

)
+ S (Fz1−1)⊗ Ω(0)

(
w+
z1−1 − w+

∞

)
+ S (Fz̄1−1)⊗ Ω(0)

(
w+
z̄1−1 − w−

∞

)
+ S (F−z̄2)⊗ Ω(0)

(
w+
−z̄2 − w−

∞

)
+ S (Fτ + Fz1−1)⊗ (2πiτ) + S (F− + Fz̄1−1 + F−z̄2)⊗ Ω(0) (w−

∞
)

+ S (Ihex)⊗ Ω(0)
(
w+
c25

)
, (5.30)

cf. figure 4. One can easily check that not only the last term but the last three terms do
not contribute in the soft limit since the three weight-three symbols making up their first
three entries vanish in the soft limit. The first four terms yield the correct polylogarithmic
symbol in the soft limit with last entries

Ω(0)
(
w+
−z2

)
→ (r − r̄)

∫ −z2

−∞

dx
(x− r) (x− r̄)

= log r + z2
r̄ + z2

,

Ω(0)
(
w+
z1−1 − w+

∞

)
→ (r − r̄)

∫ z1−1

+∞

dx
(x− r) (x− r̄)

= log 1 + r − z1
1 + r̄ − z1

,
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r1

r4
r2

r3

γ−

=x

<x
−z2 z̄1 − 1 −z̄2 z1 − 1

Figure 4. In the soft limit p10 → 0, the roots of y2(x) pairwise pinch the integration contours for
w+

z̄1−1, w
+
−z̄2 and w+

z1−1, which run along the real axis. By subtracting w−
∞ and w+

∞, respectively,
we obtain integration contours that can be deformed such they are not pinched, thus resulting in
finite integrals in the soft limit.

Ω(0)
(
w+
z̄1−1 − w−

∞

)
→ (r − r̄)

∫ z̄1−1

−i∞

−dx
(x− r) (x− r̄)

= log 1 + r̄ − z̄1
1 + r − z̄1

,

Ω(0)
(
w+
−z̄2 − w−

∞

)
→ (r − r̄)

∫ −z̄2

−i∞

−dx
(x− r) (x− r̄)

= log r̄ + z̄2
r + z̄2

. (5.31)

Note that in the soft limit z1 ≡ z1,3,5,8 and z2 ≡ z3,6,8,1 and the reflection symmetry R1 is
broken while R2 survives; thus, the symbol for this nine-point double-box integrals can be
expressed as

S ((r − r̄) I ) = S (F−z2 |p10→0)⊗ log r + z2
r̄ + z2

+ S (F−z̄2 |p10→0)⊗ log r̄ + z̄2
r + z̄2

+ (images under R2) , (5.32)

where R2 acts on the last entries via r ↔ −(1+r̄), z1 ↔ z2 and z̄1 ↔ z̄2. Furthermore,
F−z2 |p10→0 and F−z̄2 |p10→0 are related by exchanging z2 and z̄2, same as the corresponding
last entries. The reason is that z and z̄ occur symmetrically in their definition {zz̄ =
u, (1− z)(1− z̄) = v}, and thus have to occur symmetrically in the symbol as well.

The symbol alphabet of the nine-point double-box integral consists of 10 rational letters
and 11 algebraic letters:

1. Rational letters:

u1 , u2 , v1 , v2 , u1 − v2 , v1 − u2 , u1u2 − v1v2 , ∆1 , ∆2 ,

〈5(91)(23)(78)〉〈5̄(91)(23)(78)〉〈1239〉〈1789〉
〈1459〉2〈1569〉2〈2378〉3

,
(5.33)
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where we introduced the following notations:19

〈a(bc)(de)(fg)〉 = 〈abde〉〈acfg〉 − 〈acde〉〈abfg〉, (5.34)
〈ā(i i+1)(j j+1)(k k+1)〉 = 〈(i i+1) ∩ (ā) j j+1 (k, k+1) ∩ (ā)〉 (5.35)

and

∆i = (1− ui − vi)2 − 4uivi = (zi − z̄i)2 , i = 1, 2 . (5.36)

2. Algebraic letters:

• z1
z̄1

, 1− z1
1− z̄1

, 1 + r̄ − z1
1 + r − z1

, 1 + r̄ − z̄1
1 + r − z̄1

,
〈5(23)(46)(78)〉〈1239〉
〈5(19)(23)(78)〉〈2378〉 − z1
〈5(23)(46)(78)〉〈1239〉
〈5(19)(23)(78)〉〈2378〉 − z̄1

,

and five others generated by the reflection R2.

• (z1 − 1 + z̄2)(z̄1 − 1 + z2)
(z1 − 1 + z2)(z̄1 − 1 + z̄2)

.

We find that there are three different square roots in this alphabet; two of them are of four-
mass-box type and the other, that is the square root in r and r̄, arises from the leading
singularity of the whole Feynman diagram. Furthermore, the new type of square root only
appears in the last entries. The symbol alphabet is organized such that the symbol is
manifestly invariant (up to a sign) under the reflection R2, as well as under each of the
three transformations z1 ↔ z̄1, z2 ↔ z̄2, and r ↔ r̄. For an analysis of these letters through
Schubert problems, see [118].

6 Discussion and outlook

In this paper, we have investigated various techniques for manipulating and simplifying
the symbol of Feynman integrals that evaluate to elliptic multiple polylogarithms. In
particular, we studied identities between the elliptic symbol letters Ω(i).

In contrast to ordinary multiple polylogarithms, the length of an elliptic multiple
polylogarithm is not necessarily equal to its weight. A symbol letter Ω(i), whose length is
by definition one, can have weight i 6= 1. Identities for Ω(0) follow from the well-known
group law on the elliptic curve. Moreover, we found that various identities for Ω(1) can
be derived from Abel’s theorem, which generalize the identity log(a) + log(b) = log(ab) in
the polylogarithmic case. The higher-weight letters Ω(2) satisfy significantly more intricate
identities, closer to those of Li2(a) than those of log(a), which are harder to exploit in
a direct fashion. We have thus introduced the symbol prime S ′ for elliptic symbol letters
Ω(2), which plays the same role the symbol S plays for Li2(a). We also introduced a symbol
prime for Ω(i>2) but leave its exploration for future work.

We studied two concrete examples at two-loop order, namely the sunrise integral in
two dimensions and the ten-point double-box integral in four dimensions. In particular,
we provided proofs for the identities between symbol letters numerically found in [33].

19Here we use (ā) ≡ Za−1∧Za∧Za+1 to denote the dual plane of Za. Then a vanishing
〈ā(i i+1)(j j+1)(k k+1)〉 means that the three intersection points (i i+1)∩(ā), (j j+1)∩(ā) and (k k+1)∩(ā)
are on the same line, which is the dual picture of the vanishing of 〈a(i i+1)(j j+1)(k k+1)〉. We are grateful
to Cristian Vergu for pointing this out.
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In addition to identities between symbol letters, we also studied how the symbol be-
haves under kinematic limits in which the elliptic curve degenerates. We recovered the
known symbols of the sunrise integral in the null-momentum limit p2 → 0 and the pseudo
threshold p2 → (m1 +m2 −m3)2 [10], as well as the nine-point limit of the double box,
which has not previously appeared in the literature.

The numeric values of elliptic Feynman integrals are of course independent of whether
we rescale the torus by the period ω1 or −ω2; the corresponding modular parameters
τ = ω2/ω1 and τ ′ = −1/τ are related by a modular S-transformation. In particular, for
an elliptic integral of the form

∫
G(x, y) dx/y as in (2.7), its two normalizations T (1) and

T (2), which are obtained by dividing by ω1 and −ω2 respectively, are simply related by
T (2) = τ ′T (1). However, this property is not manifest when expressed in terms of elliptic
multiple polylogarithms or their symbols. Instead, we found that the application of the
symbol prime to the two examples in this paper yields symbols of the form∑

ij

S(fi)⊗
(
log aij ⊗ Ω(0)(wj) +Ωi ⊗ (2πiτ)

)
, (6.1)

with

S ′(Ωi) = Ω(0)(wj)⊗′ log aij . (6.2)

Not only the modular covariance is manifest in this form, but also the double-periodic
invariance and the integrability conditions involving τ . However, one could not expect
that the application of the symbol prime to the one-fold integral of general polylogarithms,
of the form

∫
G(x, y) dx/y, yields such a structure. As a simple counter-example, consider

the symbol of the integral
∫ c
0 log(x + a) dx/y, with arbitrary values of a and c as well as

the elliptic curve given by (5.3), which does not follow the above structure after applying
the symbol prime map. It would be very interesting to investigate why the two elliptic
Feynman integrals we considered in this paper turn out to exhibit such a structure after
applying the symbol prime map, and to study whether this property extends to further
Feynman integrals.

Already the polylogarithmic symbol has a kernel, which is given by iπ, multiple zeta
values (MZVs) and their products with MPLs. Similarly, also the symbol prime has a
kernel. As discussed in section 3.2, all functions in the kernel necessarily depend only on
the modular parameter τ , but not all functions that depend only on τ are in the kernel.
To see that the kernel can be non-trivial, consider the symbol of the equal-mass sunrise
integral, which is an iterated integral of modular forms and only depends on τ :

S
(
2πiT (1)

)
=
[ 1
2πi

(
2E4

(
−2
−1 ;∞

)
− E4

(−2
0 ;∞

)
− E4 (−2

∞ ;∞)
)]

⊗ (2πiτ) , (6.3)

where the E4 are specific combinations of Ω(2)’s given in (4.11). The application of the
symbol prime map to the first entry in (6.3) yields 0. We leave a comprehensive treatment
of the kernel of the symbol prime map to a future study.

Another interesting problem is to lift simplified symbols to simplified functions for
elliptic multiple polylogarithms. As a primary example, let us consider how to lift the
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simplified symbol (4.10) to a simplified function for the sunrise integral. By rewriting the
logarithms in (4.10) in terms of Ω(1)’s, we find a (slightly) simpler expression for T (1),

T
(1) = 2E4

(
0 −1
0 −1 ;∞|τ

)
− E4

( 0 −1
0 0 ;∞|τ

)
− E4

( 0 −1
0 ∞ ;∞|τ

)
−
(
2 log t2

t3
+ E4

(
−1
−1 ;∞

))
E4 ( 00 ;∞|τ) ,

(6.4)

(and a similar expression for T (2)), in which the E4 functions only contain c = 0,−1,∞
but not the fourth argument r that occurs in (4.2). However, the general prescription of
uplifting more complicated elliptic symbols to functions is still underexplored.20

Although the simplified symbols of the elliptic Feynman integrals manifest some desired
properties, such as double periodicity and modular covariance, after applying the symbol
prime map, the singularity structures are not completely manifest. For example, the sunrise
integral becomes singular at mi = 0 as well as at the threshold p2 = (m1 + m2 + m3)2,
as can be seen through a Landau analysis [120]. One can see the branch cut at mi = 0
explicitly from eq. (4.10) or (4.12); however, the branch cut at the threshold is not manifest
from the symbol. In general, the logarithmic letter log(a) has a logarithmic singularity if
a = 0 or a = ∞. In contrast, the elliptic letter Ω(1)(w) has a logarithmic singularity at all
lattice points, while Ω(j≥2)(w) has a logarithmic singularity at all lattice points except for
the origin. However, w is a function of the kinematics; typically, w = w+

c = 1/ω1
∫ c
−∞ dx/y,

where c is an algebraic function of the kinematics. If the configuration of roots in y does
not change as we vary c, w+

c = 0 if c = −∞ and w+
c = τ if c = +∞. However, the

configuration of roots may also vary as we vary c; we leave a comprehensive analysis to a
future study.

It would be interesting to apply the techniques used in this paper to bootstrap the
symbol of scattering amplitudes or Feynman integrals that can be expressed in terms
of elliptic multiple polylogarithms, such as the twelve-point elliptic double box. On top
of the integrability condition for the final entry τ , which is made manifest by the symbol
prime, this requires understanding the integrability condition for the other last entries [113].
Moreover, it requires an educated guess for the alphabet of symbol letters that occur in
them. For six- and seven-point amplitudes in N = 4 sYM theory, the symbol alphabet was
shown to be given by cluster algebras [80, 91, 121–123], and similar techniques have recently
been extended to Feynman integrals and amplitudes [124–127] containing symbol letters
that are given by logarithms of algebraic functions of the kinematics [87, 95, 128–134]. It
would be interesting to extend these techniques also to the elliptic case.
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A Calculation of the unequal-mass sunrise integral

In this appendix, we calculate the unequal-mass sunrise integral in two dimensions in
terms of eMPLs. This integral was originally calculated in terms of iterated integrals on
the moduli space M1,3 in [28]. We use a Feynman-parameter approach, closely following
the calculation of [20] in the equal-mass case.

The Feynman parameter representation for the unequal-mass sunrise in two dimensions
is (see e.g. [20])

I =
∫ ∞

0

dx1 dx2 δ(x3 − 1)
−p2 x1x2x3 + (m2

1x1 +m2
2x2 +m2

3x3) (x1x2 + x1x3 + x2x3)
. (A.1)

Furthermore, we introduce t2i = m2
i /p

2 and integrate out x2. This gives

I = 1
m2

1

∫ dx
y

log
(
R (x, y)

)
, (A.2)

where we have denoted x1 by x and R (x, y) is a rational function of x and y,

R (x, y) = t23 + x
(
t21 + t22 + t23 − 1

)
+ t21x

2 + t21y

t23 + x
(
t21 + t22 + t23 − 1

)
+ t21x

2 − t21y
(A.3)

with the elliptic curve defined by(
t21y
)2

=
(
t21x

2 +
(
t21 + t22 + t23 − 1

)
x+ t23

)2
− 4t22 (1 + x)

(
t21x+ t23

)
x (A.4)

=
(
t21x

2 +
(
t21 + t23 − (t2 − 1)2

)
x+ t23

) (
t21x

2 +
(
t21 + t23 − (t2 + 1)2

)
x+ t23

)
.

It is straightforward to rewrite the logarithm in (A.2) in terms of E4 functions by expanding
∂x logR (x, y) on the ψ-basis (2.5) and integrating up again:21

logR (x, y) = −E4
(−1

0 ;x
)
+ E4 (−1

∞ ;x) + E4
(
−1
−1 ;x

)
+ E4 (−1

r ;x)

+ 1− t22
t21

E4 ( 00 ;x)− log t
2
2
t23
, (A.5)

where r = −t23/t21.
In the conventions introduced in section 2, we have two rescaled tori. By using (2.16)

and (2.18), we find

logR (x, y) = E4
(
−1
−1 ;x|τ

)
− E4

(−1
0 ;x|τ

)
+ E4 (−1

r ;x|τ)

− E4 (−1
∞ ;x|τ) + 4πiE4 ( 00 ;x|τ)− log t

2
2
t23

(A.6)

21To fix the integration constant, we can consider the difference of the left and the right hand side in the
limit x→ 0.
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on the torus [1 : τ = ω2/ω1] with coordinates w, while, by using the analog of (2.16)
and (2.18),

logR (x, y) = E4
(
−1
−1 ;x|τ

′
)
− E4

(−1
0 ;x|τ ′

)
+ E4

(−1
r ;x|τ ′

)
− E4

(−1
∞ ;x|τ ′

)
− log t

2
2
t23

(A.7)

on the torus [1 : τ ′ = −ω1/ω2] with coordinates ξ. The equality of (A.6) and (A.7) is given
by the S-transformation of g(1),

g(1)(w|τ) = τ ′g(1)(ξ|τ ′) + 2πiξ , (A.8)

and the following identities on the (rescaled) tori,

z+−1 − z+0 + z+r = 0 , w+
∞ = τ , ξ+∞ = −1. (A.9)

Furthermore, there are three independent variables {w+
−1, w

+
0 , τ} and {ξ+−1, ξ

+
0 , τ

′} on each
torus, respectively, since (3.22) here gives

z−∞ = z+0 − 1
2
ω1 . (A.10)

Now the integration in (A.2) can be easily performed and gives the result (4.1)–(4.4)
in the main text.
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