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Abstract: Based on the chiral perturbation theory at the leading order, we show a signal
of the presence of a new phase in rapidly rotating QCD matter with two flavors, that is a
domain-wall Skyrmion phase. Based on the chiral Lagrangian with a Wess-Zumino-Witten
(WZW) term responsible for the chiral anomaly and chiral vortical effect, it was shown that
the ground state is a chiral soliton lattice(CSL) consisting of a stack of η-solitons in a high
density region under rapid rotation. In a large parameter region, a single η-soliton decays
into a pair of non-Abelian solitons, each of which carries SU(2)V/U(1) ≃ CP 1 ≃ S2 moduli as
a consequence of the spontaneously broken vector symmetry SU(2)V. In such a non-Abelian
CSL, we construct the effective world-volume theory of a single non-Abelian soliton to obtain
a d = 2 + 1 dimensional CP 1 model with a topological term originated from the WZW
term. We show that when the chemical potential is larger than a critical value, a topological
lump supported by the second homotopy group π2(S2) ≃ Z has negative energy and is
spontaneously created, implying the domain-wall Skyrmion phase. This lump corresponds in
the bulk to a Skyrmion supported by the third homotopy group π3[SU(2)] ≃ Z carrying a
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baryon number. This composite state is called a domain-wall Skyrmion, and is stable even in
the absence of the Skyrme term. An analytic formula for the effective nucleon mass in this
medium can be written only in terms of the meson’s constants as 4

√
2πfπfη/mπ ∼ 1.21 GeV

with the decay constants fπ and fη of the pions and η meson, respectively, and the pion mass
mπ. This is reasonably heavier than the nucleon mass in the QCD vacuum.

Keywords: Solitons Monopoles and Instantons, Chiral Lagrangian, Effective Field Theories
of QCD
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1 Introduction

Quantum Chromodynamics (QCD) is the fundamental theory of the strong interaction
described by quarks and gluons. QCD at extreme conditions such as high baryon density,
strong magnetic field, and rapid rotation has been paid much attention since it is relevant
for neutron star interiors and heavy-ion collisions [1]. Lattice QCD cannot be extended
to finite baryon density because of the notorious sign problem. Instead, at least at low
energy, the chiral Lagrangian or the chiral perturbation theory (ChPT) offers a powerful
tool since the theory is thoroughly determined by symmetry up to some constants, the
pion’s decay constant, quark masses, and so on [2, 3]. When the chiral symmetry mixing
different species of quarks (up-quarks, down-quarks and so on) is spontaneously broken,
there appear Nambu-Goldstone(NG) bosons or pions. Thus, the low-energy dynamics can
be described by the aforementioned ChPT.

One of the most important extreme conditions for QCD is strong magnetic fields because
of the interior of neutron stars and heavy-ion collisions. In the presence of an external
magnetic field, the chiral Lagrangian is accompanied by the Wess-Zumino-Witten (WZW)
term containing an anomalous coupling of the neutral pion π0 to the magnetic field via
the chiral anomaly [4, 5] in terms of the Goldstone-Wilczek (GW) current [6, 7]. It was
determined to reproduce the so-called chiral separation effect (CSE) [1, 4, 8–10] in terms
of the neutral pion π0. Then, at a finite baryon chemical potential µB under a sufficiently
strong magnetic field, the ground state of QCD with two flavors (up and down quarks) was
found to be a chiral soliton lattice (CSL) consisting of a stack of domain walls or solitons
carrying a baryon number [5, 11, 12]. However, such a CSL state was found to be unstable
against a charged pion condensation in a region of higher density and/or stronger magnetic
field [12]. In such a region, there appears a new phase, the domain-wall Skyrmion phase
in which Skyrmions are created on top of the solitons in the ground state [13, 14].1 To
show this, the effective world-volume theory on a single soliton was constructed as an O(3)
sigma model or the CP 1 model with topological terms induced from the WZW term. Then,

1A possibility of an Abrikosov’s vortex lattice was also proposed in the unstable region [15]. See also a
recent paper [16].
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topological lumps (or baby Skyrmions) supported by π2(CP 1) ≃ Z on the world volume,
corresponding to 3D Skyrmions supported by π3[SU(2)] ≃ Z in the bulk point of view, appear
in the ground state for a sufficiently large chemical potential. The composite states of a
domain wall and Skyrmions are called domain-wall Skyrmions. Such domain-wall Skyrmions
were previously proposed and studied in field theory [17–22].2 Domain-wall Skyrmions of a
2+1 dimensional version were also proposed in field theory [24–26] and have been recently
observed experimentally [27, 28] in chiral magnets [29–33] (see also refs. [34–36]).

Another important extreme condition for QCD that we focus on in this paper is a rapid
rotation. Quark-gluon plasmas produced in non-central heavy-ion collision experiments at the
Relativistic Heavy Ion Collider (RHIC) reach the largest vorticity observed thus far, of the
order of 1022/s [37, 38]. This has triggered significant attention to rotating QCD matter in
recent years [39–53]. In particular, similar but different type of CSL appears in QCD at finite
density under rapid rotation instead of a strong magnetic field.3 The anomalous term for the
η′ meson was obtained [50, 51] by matching with the chiral vortical effect (CVE) [10, 64–68]
in terms of mesons. Although the full WZW term is not known unlike the case of the
magnetic field, this CVE term is sufficient to yield a CSL phase made of the η′ meson as the
ground state in a certain parameter region [50–52], instead of that of the neutral pion π0 in
the case of the magnetic field.4 In the two-flavor case, there appears a CSL phase made of
the η meson. However, it was shown in ref. [53] that in a large parameter region, a single
η-soliton energetically decays into a pair of non-Abelian solitons, around which the neutral
pion condensation occurs. A single non-Abelian soliton spontaneously breaks the vector
symmetry SU(2)V into its U(1) subgroup, resulting in NG modes SU(2)V/U(1) ≃ CP 1 ≃ S2

localized in the vicinity of the soliton. Thus, as the case of a π0 soliton in the magnetic
field, each non-Abelian soliton carries CP 1 moduli and are called non-Abelian sine-Gordon
solitons [21, 69] (see also refs. [22, 70, 71]). In a lattice of non-Abelian solitons, the CP 1

modes at two neighboring solitons repel each other, and thus they are antialigned. The
lattice behaves as a Heisenberg anti-ferromagnet, in which we call one soliton an up-soliton
and its neighbors down-solitons, and then up and down solitons appear alternately. Such a
non-Abelian CSL can be classified into the two cases, the deconfined and dimer phases. In the
deconfined phase, an up-soliton and down-soliton repel each other, and they are separated with
the equal distance. In the dimmer phase, they attract each other at large distances and repel
at short distances, and thus constitute a molecule. The lattice can be regarded as a lattice of
molecules. On the other hand, in the confined phase, the up and down-solitons attract and
are completely overlapped to become η solitons. This is the previously known η-CSL [51], in
which the vector symmetry SU(2)V is unbroken, and no soliton carries CP 1 modes.

In this paper, we establish the presence of a new phase in rapidly rotating QCD matter,
namely a domain-wall Skyrmion phase inside the non-Abelian CSL, similar to the case of a

2The term “domain-wall Skyrmions” was first used in ref. [23] for Yang-Mills instantons absorbed into a
domain wall, which can be described as Skyrmions in the domain-wall effective theory. This term is different
from ours.

3Now CSLs appear in various situations in QCD: CSLs under thermal fluctuation [54–57], quantum
nucleation of CSLs [58, 59] and quasicrystals [60]. Possible relations between Skyrmion crystals at zero
magnetic field and the CSL phase was discussed in refs. [61–63].

4A different type of inhomogeneity of rotating matter was also discussed in refs. [48, 49].
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strong magnetic field. Within non-Abelian CSLs, either in the deconfined or dimer phase,
the vector symmetry SU(2)V is spontaneously broken into its U(1) subgroup, thus being
accompanied by NG modes SU(2)V/U(1) ≃ CP 1 ≃ S2 as mentioned above. For our purpose
we concentrate on a single non-Abelian soliton in the deconfined phase. We construct the
effective theory on a single non-Abelian soliton and obtain a CP 1 model with a topological
term originated from the WZW term. It admits topological lumps (baby Skyrmions) ensured
by the second homotopy group π2(S2) ≃ Z [72]. We find that when the chemical potential is
larger than a critical value, the topological lumps have negative energy due to the WZW term.
The lumps on the non-Abelian soliton are Skyrmions supported by the third homotopy group
π3(S3) ≃ Z in the bulk point of view [21], and they carry baryon numbers. This implies the
domain-wall Skyrmion phase in which lumps are spontaneously created in the ground state,
where the both chiral solitons and Skyrmions carry baryon numbers. The lump energy is
obtained as 4

√
2πfπfη/mπ which can be interpreted as the effective nucleon mass in this

medium (inside a soliton at finite density under rapid rotation) and is evaluated as ∼ 1.21 GeV.
This value is reasonably heavier than the nucleon mass 938 MeV in the QCD vacuum.

This paper is organized as follows. In section 2, we review non-Abelian CSLs. In
section 3, we construct the effective worldvolume theory of a single non-Abelian soliton in
the deconfined phase of non-Abelian CSL. In section 4, we constuct domain-wall Skyrmions
and find the presence of the domain-wall Skyrmion phase. Section 5 is devoted to a summary
and discussion.

2 Non-Abelian chiral soliton lattices under rotation

We focus on the phase in which the U(2)L × U(2)R chiral symmetry is spontaneously broken
down. The low-energy dynamics can thus be described by an effective field theory of the
pions — ChPT. A 2 × 2 unitary matrix represents the pion fields

U = Σeiχ0 , Σ = eiτaχa , (2.1)

where τa (a = 1, 2, 3) are the Pauli matrices with the normalization tr(τaτb) = 2δab. This field
Σ transforms under the SU(2)L × SU(2)R chiral symmetry as Σ → LΣR†, where L and R are
2×2 unitary matrices, while χ0 transforms under the axial U(1)A symmetry as χ0 → χ0 +2θ0.

Then, the effective Lagrangian at the leading order is (µ = 0, · · · , 3)

LChPT = f2
π

4 gµν tr(∂µU∂νU †) −
f2

η − f2
π

8 gµν tr(U †∂µU) tr(U †∂νU)

+ Bm

2 tr(U + U † − 212) + A

2 (det U + det U † − 2) , (2.2)

where fπ and fη are the decay constants of the pions and the U(1)A singlet (η) meson,
respectively, m is the quark mass, and A and B are parameters that cannot be determined
by symmetry alone. The first and second terms are the kinetic terms of the χa and χ0,
respectively. The third term is the mass term of the mesons, stemming from the explicit
chiral symmetry breaking due to the finite quark masses. Then, the pion mass mπ is related
to the quark mass by the Gell-Mann-Oakes-Renner relation Bm = f2

πm2
π/4. The fourth

term represents the QCD anomaly: U(1)A → Z4. The parameter A gives an additional mass

– 3 –
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term for χ0 meson given by δm2
χ0 = A/f2

η . Here, gµν is a spacetime metric representing
the rotating coordinates, and gµν is its inverse:

gµν =


1 − Ω2(x2 + y2) Ωy −Ωx 0

Ωy −1 0 0
−Ωx 0 −1 0

0 0 0 −1

 , (2.3)

gµν =


1 Ωy −Ωx 0

Ωy Ω2y2 − 1 −Ω2xy 0
−Ωx −Ω2xy Ω2x2 − 1 0

0 0 0 −1

 , (2.4)

where Ω stands for the rotation velocity. Here we have denoted (x, y, z) = (x1, x2, x3).
The external U(1)B gauge field AB

µ can couple to Σ through the GW current [6, 7]

jµ
GW = −ϵµναβ

24π2 tr LνLαLβ = ϵµναβ

24π2 tr RνRαRβ , (2.5)

where we have introduced the standard notation Lµ ≡ Σ∂µΣ† and Rµ ≡ ∂µΣ†Σ. Then, the
effective Lagrangian coupling to AB

µ can be written as

LGW = AB
µ jµ

GW ⊆ LWZW . (2.6)

In order to introduce finite baryon chemical potential µB, we choose the U(1)B gauge field as
AB

µ = (µB, 0). This is a WZW term but the full expression for rotation LWZW is not known
thus far, in contrast to the case of the magnetic field in which case the full expression is
known [4, 5]. In the external electromagnetic field, the gauge-invariant and conserved baryon
current can be derived by the “trial and error” U(1)em gauging [7]. The coupling of U(1)em
gauged GW current to AB

µ is calculated as [5, 6]

L̃WZW = AB
µ j̃µ

GW , (2.7)

j̃µ
GW = − 1

24π2 ϵµναβ{tr(LνLαLβ) − 3ie∂ν [Aα tr(QLβ + QRβ)]} , (2.8)

The second term with Σ = eiχ3τ3 becomes eB · ∇χ3/(4π2). In fact, the above equation can
be derived by reproducing the chiral separation effect (CSE) [1, 4, 8–10] in terms of the χ3
meson. This procedure is justified by the fact that the chiral anomaly coefficient determines
the transport coefficient of the CSE [66, 73]. Therefore, the anomaly matching of the CSE can
derive the part of L̃WZW. Unfortunately, the GW current is already invariant under general
coordinate transformations, so the method applied to the electromagnetic field cannot be
used. Hence, the method to derive the full expression is not known. However, when applying
this method to a rotating system, it is evident that at least the following terms exist. QCD
at finite baryon chemical potential under global rotation is known to exhibit the anomalous
current in the direction of the rotation, which is the so-called CVE [8, 10, 64, 67, 68]:

j5 = ⟨q̄γγ5q⟩ = µ2
B

π2Nc
Ω , (2.9)

– 4 –
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where q is a quark field. We note that the chiral anomaly determines the transport coefficient of
CVE. Therefore, due to the exactness of the chiral anomaly coefficient, it must be reproduced
in terms of the χ0 meson in the ChPT. The anomaly matching for the CVE gives us the
anomalous coupling of the χ0 meson to the rotation [50, 51]:

LCVE = µ2
B

2π2Nc
Ω · ∇χ0 . (2.10)

Hereafter, we interpret that LCVE is a part of LWZW.
To derive an effective Lagrangian, we adopt a modification to the conventional power

counting scheme in ChPT [56]:

∂µ , mπ ∼
√

Bm , Aµ , Ω ,∈ O(p1), (2.11)
AB

µ ∼ µB ∈ O(p−1). (2.12)

In this power counting, eq. (2.6) is of order O(p2), consistent with eq. (2.2). The sole
appearance of µB in the WZW term in eq. (2.6) permits the assignment of a negative power
counting to µB. The effective field theory up to O(p2) encompasses the terms in eq. (2.5);
however, eq. (2.5) has been overlooked in prior studies of the CSLs under rotation. For
discussions related to the magnetic field, we refer to our previous work [13, 14]. In the
QCD vacuum, the effects of the QCD anomaly are generally not suppressed. Hence, we note
that it is not feasible to incorporate the QCD anomaly’s effects into ChPT (Of course, in
the large-Nc expansion, the effects of the QCD anomaly are of the order of 1/Nc, allowing
them to be treated perturbatively [74, 75]). We underscore that an O(p4) term, such as a
Skyrme term, is unnecessary for our findings.

Our effective theory when ignoring the charged pions χ1,2 and assuming one-dimensional
dependence in the x3 coordinate reduces to

H
C

= 1 − ϵ

2 (χ′
3)2 + 1

2(χ′
0)2 + sin β(1 − cos 2χ0) + cos β(1 − cos χ0 cos χ3) − Sχ′

0 , (2.13)

where we have introduced the following quantities,

sinβ ≡ A

C
, cosβ ≡ 2Bm

C
, C ≡

√
A2 + (2Bm)2 . (2.14)

and dimensionless variables as follows:

ζ ≡
√

Cx3

fη
, ϵ ≡ 1 −

(
fπ

fη

)2

, S ≡ Ωµ2
B

2π2Nc
√

C
. (2.15)

In eq. (2.13), the prime denotes a differentiation with respect to ζ. The third and fourth
terms in eq. (2.13) are the potential terms of the χ0 and χ3:

Vpot
C

= cos β(1 − cos χ0 cos χ3) + sin β(1 − cos 2χ0) . (2.16)

For later convenience, we introduce new fields defined as

χ± ≡ χ0 ± χ3 . (2.17)

– 5 –
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Figure 1. Single η soliton and up and down non-Abelian solitons in the field space. The color denotes
the height of the potential and blues are vacua. Fixing the state (ϕ0, ϕ3) = (0, 0) at x3 = −∞, the η

soliton denoted by the black arrow connects it to (ϕ0, ϕ3) = (2π, 0) the up soliton denoted by the red
arrow connects it to (ϕ0, ϕ3) = (π, π) and the down soliton denoted by the blue arrow connects it to
(ϕ0, ϕ3) = (π,−π) at x3 = +∞.

In terms of χ+ and χ−, the Hamiltonian is reduced as

H
C

= 1
2

[
1
2

(dχ+
dζ

)2
+ (1 − cos χ+) − S

dχ+
dζ

]
+ 1

2

[
1
2

(dχ−
dζ

)2
+ (1 − cos χ−) − S

dχ−
dζ

]
− ϵ

8(χ′
+)2 − ϵ

8(χ′
−)2 + ϵ

4χ′
+χ′

− − sin β(1 − cos(χ+ + χ−)) − Sχ′
0 . (2.18)

Eq. (2.13) gives the equation of motions as follows:

χ′′
+ − 2 − ϵ

2(1 − ϵ) cos β sin χ+ + ϵ

2(1 − ϵ) cos β sin χ− − 2 sin β sin(χ+ + χ−) = 0 , (2.19)

χ′′
− − 2 − ϵ

2(1 − ϵ) cos β sin χ− + ϵ

2(1 − ϵ) cos β sin χ+ − 2 sin β sin(χ+ + χ−) = 0 . (2.20)

Let us first consider the case of ϵ = 0 and β = 0. The potential term at β = 0 is
sketched as figure 1. The configuration connecting (0, 0) and (2π, 0) is well-known as a
single sine-Gordon soliton,

χ0 = 4 tan−1 eζ−ζ0 , (2.21)

which has the transnational moduli, ζ0. On the other hand, the configuration connecting
(0, 0) and (π, π) is given by

U+ = diag(uiθ, 1) , (2.22)
θ = 4 tan−1 eζ−ζ0 . (2.23)

– 6 –
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which also has the translational moduli. We note that this soliton spontaneously breaks
the SU(2)V symmetry to a U(1) subgroup:

U+ → gU+g† = U+ , (2.24)
g = eiατ3 . (2.25)

Therefore, this soliton has not only translational moduli R but also SU(2)/U(1) ∼= CP 1 ∼= S2

moduli. We call this soliton an up soliton. The configuration connecting (0, 0) and (π,−π)
is given by the SU(2)V transformation:

U− = eiπτ1/2U+e−iπτ1/2 = diag(1, uiθ) , (2.26)

which is referred to as a down soliton. The up soliton and down soliton are connected
by the CP 1 moduli.

Next, let us consider the effects of non-zero ϵ and β. The term depending on ϵ is

− ϵ

2(χ′
3)2 = − ϵ

8(χ′
+)2 − ϵ

8(χ′
−)2 + ϵ

4χ′
+χ′

− . (2.27)

Since χ+(χ−) has a peak at the center of the up (down) soliton, the energy density of
eq. (2.27) becomes lower when the up soliton and down soliton are separated. Therefore,
there is a repulsive (attractive) force between the up and down solitons due to the finite
positive (negative) ϵ. As β increases from 0, the χ3 dependence of the potential decreases.
Therefore, the up and down soliton overlap to become the ordinary sine-Gordon soliton. The
effect of finite β is the attractive interaction between the up and down solitons.

From the preceding discussion, we identify three distinct cases concerning the arrangement
of the up and down solitons: the deconfined phase, the dimer phase, and the confined phase.

1. Deconfined Phase: if the repulsive force significantly exceeds the attractive force, the up
and down solitons fully separate. This state is termed the deconfined phase. For this
condition, the relationship between the distance d between the up and down solitons
and the distance ℓ between the same type of soliton is given by d = ℓ

2 .

2. Confined Phase: conversely, when the attractive force strongly prevails over the repulsive
force, the up and down solitons overlap entirely, denoted as d = 0. This case is referred
to as the confined phase.

3. Dimer Phase: when the attractive and repulsive forces counteract each other equally, a
molecular state of the up and down solitons forms, satisfying the condition 0 < d < ℓ

2 .

When ϵ < 0 the inter-soliton force is attractive, so that the CSL is in the confined phase.
Namely, the CSL is of the Abelian type with χ3 = 0 and χ0 is the same as that given in
eq. (2.21). Then the Hamiltonian reads

H
C

= 1
2(χ′

0)2 + (1 − cos χ0) − Sχ′
0 = 4 sech2ζ − 2S sech ζ . (2.28)

The tension (the mass per unit area) is given by integrating H over z as

σ
∣∣
1-soliton = fη√

C

∫ ∞

−∞
dζ H = fη

√
C (8 − 2πS) . (2.29)

– 7 –
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(d = 0)

Figure 2. The schemetic picture of the three phases (left) and the phase diagram for β = 0 (right).
(Left panel) The deconfined, dimer and confined phases in which up and down solitons repel, form a
molecule, and are completely overlapped, respectively. (Right panel) In this parameter choice, the
dimer phase does not appear, and the whole non-Abelian CSL implies the deconfined phase. The
green line corresponds to the noninteractive case in which the up and down solitons do not interact
each other and form lattices independently.

This becomes zero at S = 4/π, and therefore the Abelian CSL becomes the ground state
for S ≥ 4/π. This is shown in figure 2. When ϵ > 0, the inter-soliton force is repulsive
and therefore the ground state is the non-Abelian CSL. There are no analytic solutions to
eqs. (2.19) and (2.20), so that we numerically solve them and find the phase diagram. The
numerical determination of the phase diagram is done by finding out the minimum energy
state in the following way. When the ground state is a CSL, then we read the distance d

from numerical solutions for given parameter sets of ϵ and S. The numerical solutions are
independent of S since the EOMs do not includes S. We thus first solve the EOMs by fixing
ϵ and the lattice constant ℓ. Then, plugging the numerical solutions into the Hamiltonian
given in eq. (2.13) including S, we calculate the energy per one period ℓ. Repeating this
for various ℓ and ϵ, we obtain the energy

M(ϵ, ℓ, S) =
∫ ℓ

0
H dζ (2.30)

as a function of ϵ, ℓ and S. Next, we look for ℓ minimizing M(ϵ, ℓ, S) for a fixed S and ϵ, and
we specify the period ℓ(ϵ, S) as a function of ϵ and S. At this stage, we can judge whether
the ground state is CSL or not. If the minimized energy is negative, the ground state is CSL.
Otherwise, the ground state is homogeneous QCD vacuum. Finally, we read the distance d to
specify the type of CSLs: it is the Abelian confined phase (d = 0), the non-Abelian deconfined
phase (d = ℓ/2), or the non-Abelian dimer phase (0 < d < ℓ/2). As an example, the phase
diagram in the case of β = 0 is shown in figure 2 (the right panel). In the case of ϵ < 0
denoted by the blue shaded region in figure 2, the CSL is the Abelian confined CSL. The
critical angular velocity in the Abelian CSL is known to be S = 4/π [12, 53]. In the case of
ϵ = 0 denoted by the green line in figure 2, the up and down solitons do not interact, and they
form lattices independently. The total configuration is a superposition of the up CSL and
down CSL, and consequently, the confined, dimer, and deconfined CSLs are all energetically
degenerated. In the case of ϵ > 0 denoted by the red shaded region in figure 2, the ground
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state is the non-Abelian deconfined CSL. It is important that the critical angular velocity is
less than 4/π for ϵ > 0. The phases for more generic ϵ and β can be found in ref. [53].

3 Non-Abelian sine-Gordon soliton and its effective world-volume theory

In this section, we construct the effective field theory of the U(2) non-Abelian sine-Gordon
soliton under rotation by using the moduli (Manton) approximation [76–78]. On the phase
transition line between the vacuum and the deconfined phases, the single soliton enters the
system alternately, and their distance is infinite. Then, we focus only on a single up soliton:

U0 ≃ diag(eiχ+ , 1) = ei(χ+/2+χ+τ3/2) . (3.1)

Of course, one can choose the down soliton, but since they are infinitely apart, it is sufficient
to choose one. Considering a sufficiently small ϵ and small β, we can approximate χ+ ≃
4 tan−1 eζ .

So far, we have neglected the charged pions. Its general solution containing the charged
pions can be obtained from U0 by an SU(2)V transformation,

U = gU0g† , (3.2)

where g is an SU(2) matrix. Since g in eq. (3.2) is redundant with respect to a U(1) subgroup
generated by τ3, it takes a value in a coset space, SU(2)V/U(1) ≃ CP 1 ≃ S2. Together with
the translational modulus Z, the single sine-Gordon soliton has the moduli

M ≃ R× CP 1 . (3.3)

Such a soliton with non-Abelian moduli is called a non-Abelian sine-Gordon soliton [21, 69].
Let us parameterize the CP 1 moduli by the homogeneous coordinates ϕ ∈ C2 of CP 1,

satisfying [21]

ϕ†ϕ = 1 , gτ3g† = 2ϕϕ† − 12 . (3.4)

In terms of ϕ, eq. (3.2) is represented as

U = exp(iχ+ϕϕ†) = 12 + (u − 1)ϕϕ† , (3.5)

where we define u ≡ eiχ+ . Since CP 1 ≃ S2, the moduli space is also parameterized by
the three-component real vector n with the unit length condition, |n| = 1. ϕ and na are
related by the following formula:

na = ϕ†τaϕ . (3.6)

The condition ϕ†ϕ = 1 is solved by using the inhomogeneous coordinate f ∈ C as follow:

ϕ = 1√
1 + |f |2

(
1
f

)
. (3.7)

Then, the up soliton corresponds to n3 = 1 (f = 0) and the down solitons to n3 = −1 (f = ∞).
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Now, we are prepared to formulate the low-energy effective theory for a single soliton
using the moduli approximation [76–78]. Consider a single sine-Gordon soliton perpendicular
to the x3-coordinate. In what follows, the moduli parameter ϕ will be treated as fields on
the soliton’s 2 + 1-dimensional worldvolume. However, we will not do the same for the
translational modulus Z as its transverse motion is not pertinent to our investigation. By
substituting eq. (3.5) into L, we get

Lkin =
f2

π + f2
η

8 gµν∂µχ+∂νχ+ + f2
π

2 |1 − u|2gµν(ϕ†∂µϕϕ†∂νϕ + ∂µϕ†∂νϕ) , (3.8)

Lmass = (Bm + A)(−1 + cos χ+) , (3.9)

LGW = µBq

4π
|1 − u|2∂3χ+ . (3.10)

Here, q is the baby Skyrmion (lump) charge density defined by

q ≡ − i
2π

ϵij∂iϕ
†∂jϕ = 1

8π
ϵijn · (∂in × ∂jn) = i

2π
tr ([∂z̄P, ∂zP]P) , (3.11)

the integration of which over the two-dimensional space defines the topological lump number

k =
∫

d2x q ∈ π2(S2) ≃ Z . (3.12)

In eq. (3.11), P is the projection operator defined by

P ≡ ϕϕ† (3.13)

and satisfies P2 = P [79, 80]. The integrations of the above Lagrangian (3.8), (3.9) and (3.10)
over the codimension x3 give us the total effective world-volume theory of the non-Abelian
sine-Gordon soliton:

LDW =
∫

dx3(Lkin + Lmass + LGW + LCVE)

= −
8
√

C(f2
π + f2

η )
8fη

− 4fη(Bm + A)√
C

+ µ2
BΩ

2πNc

+ 4f2
πfη√
C

gαβ(ϕ†∂αϕϕ†∂βϕ + ∂αϕ†∂βϕ)

+ µBq , (3.14)

where α, β = 0, 1, 2 and we have used the integration formulas

∫ ∞

−∞
dx

[
f2

η + f2
π

8 (∂3χ+)2 + (Bm + A)(1 − cos χ+)
]

=
8
√

C(f2
π + f2

η )
8fη

+ 4fη(Bm + A)√
C

,

(3.15)∫ ∞

−∞
dx |1 − u|2 = 8fη√

C
, (3.16)∫ ∞

−∞
dx

1
4π

|1 − u|2∂3χ+ = 1 . (3.17)
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The terms in the first line in eq. (3.14) represent the tension of the domain wall. These
are constant terms irrelevant in our study; thus we ignore them hereafter. The second and
third lines in eq. (3.14) denote the Lagrangian density for the CP 1 theory in the rotating
coordinates and the lump charge density, respectively. The Lagrangian can be rewritten
in terms of the inhomogeneous coordinate f as

LDW = f2
πfη√
C

gαβ ∂αf∂βf∗

(1 + |f |2)2 + µBq . (3.18)

In order to determine the ground state, let us calculate the momentum conjugate for
∂0f and ∂0f∗:

πf ≡ ∂LDW
∂(∂0f) = ∂0f∗ + Ω(y∂1f∗ − x∂2f∗) , (3.19)

πf∗ ≡ ∂LDW
∂(∂0f∗) = ∂0f + Ω(y∂1f − x∂2f) . (3.20)

Then, the Hamiltonian can be calculated as follows:

HDW = πf ∂0f + πf∗∂0f∗ − LDW

= f2
πfη√
C

∂0f∂0f∗ + ∂if∂if
∗

(1 + |f |2)2 − µBq

− f2
πfηΩ2
√

C

(y2∂1f∂1f∗ + x2∂2f∂2f∗) + xy(∂1f∂2f∗ + ∂2f∂1f∗)
(1 + |f |2)2 . (3.21)

The last term proportional to Ω2 is at higher order O(p4) which we will omit in the following.

4 Domain-wall Skyrmion phase

In this section, we construct topological lumps in the domain-wall world-volume theory, and
show that they correspond to Skyrmions in the bulk, implying the domain-wall Skyrmion
phase. For this purpose, let us introduce the complex coordinate:

w ≡ x + iy , w̄ ≡ x − iy . (4.1)

Using these coordinates, we have

HDW = f2
πfη√
C

|∂wf |2 + |∂w̄f |2

(1 + |f |2)2 − µBq . (4.2)

When the Bogomol’nyi-Prasad-Semmerfield (BPS) equation for k > 0 [72]

∂w̄f = 0 (4.3)

or the anti-BPS equation for k < 0

∂wf = 0 (4.4)
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holds, the energy (4.2) saturates the minimum (the Bogomol’nyi bound) of the following
inequality:

EDW =
∫

d2xHDW ≥ 4πf2
πfη√
C

∣∣∣∣∫ d2x q

∣∣∣∣− µB

∫
d2x q . (4.5)

Due to the second term, anti-BPS lumps have more energy than BPS lumps. Let us consider
BPS k-lump solution [72]

f = bk−1wk−1 + · · · + b0
wk + ak−1wk−1 + · · · + a0

, (4.6)

with moduli ai, bi ∈ C (i = 0, · · · k − 1).
Now, let us show the relation between the topological lumps in the domain-wall world-

volume theory and Skyrmions in the bulk. To this end, the baryon (Skyrmion) number B in
the bulk taking a value in π3[SU(2)] ≃ Z can be calculated as (i = 1, 2, 3) [21]

B = 1
24π2

∫
d3x ϵijk tr(RiRjRk)

= − 1
8π2

∫
d3x tr

[(
∂1Σ†∂2Σ − ∂2Σ†∂1Σ

)
Σ†∂3Σ

]
= − 1

8π2

∫
dx1dx2 tr ([∂1P, ∂2P]P)

∫
dx3 |u − 1|2u∗∂3u

= i

2π

∫
dwdw̄ tr ([∂z̄P, ∂zP]P) × 1

2π

∫
dx3 (1 − cos θ)∂3θ

= k , (4.7)

with the lump number k defined in eq. (3.12) and the projection operator P defined in
eq. (3.13). Therefore, we have found that k topological lumps on the non-Abelian sine-Gordon
soliton carry a baryon number k and represent k Skyrmions in the bulk. This one-to-one
correspondence between lumps on the soliton and Skyrmions in the bulk has a sharp contrast
to the domain-wall Skyrmion in the strong magnetic field, in which case one lump in the
domain wall corresponds to two Skyrmions in the bulk.

Figure 3 shows a three-dimensional configuration of a domain-wall Skyrmion. This can
be compared with the case of that in strong magnetic field, in which a single lump has two
peaks corresponding to two Skyrmions in the bulk.

Finally, let us evaluate the energy of the lump. Substituting eq. (4.6) into eq. (4.2), we
obtain the energy of BPS k-lump configurations as5

EDW =
(

4πf2
πfη√
C

− µB

)
k. (4.8)

5In the case of domain-wall Skyrmions in the magnetic field, there is an additional term proportional to
|bk−1|2 in the k-lump energy due to the full WZW term in the domain-wall theory. By contrast, there is not
such a term in eq. (4.8). While the full WZW for the rotation is not available yet, we can understand this by
recalling the origin of such a term in the case of magnetic field. It comes from the topological term ∂3π0 in
the WZW term, counting chiral solitons. It flips its sign, −∂3π0, when the orientation of the CP 1 moduli is
at the south pole n3 = −1, while the vacuum of the domain-wall worldvolume theory is at the north pole
n3 = +1. Therefore, the center (n3 = −1) of a lump costs energy. Contrary to this, in the case of rotation,
the topological term supporting the η-solitons is ∂3η as in eq. (2.10). Since all solitons with different CP 1

moduli have the same boundary condition from η = 0 to η = π, the topological term
∫

dx3∂3η = π does not
depend on the CP 1 moduli, in contrast to the case of the magnetic field.
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Figure 3. Three-dimensional configuration of k = 1 and k = 2 domain-wall Skyrmions for QCD
at finite density under rapid rotation. An isosurface of the baryon density (1/4π2) tr [R1R2R3] is
plotted by orange surface and the blue region denotes a non-Abelian soliton. The vertical coordinate
is dimensionless as ζ ≡

√
Cx3/fη. The horizontal coordinate is also dimensionless with w̃ =

√
Cw/fη.

The top row shows k = 1 with |b0| = 1 for (a1) and |b0| = 2 for (a2) both of which are energetically
degenerated. The bottom row corresponds to f = b0/(w̃ − d)(w̃ + d). (b0, d) is taken as (1, 0) for (b1),
(2, 1) for (b2), and (3, 2) for (b3). They are also energetically degenerated.

Thus, when the chemical potential is larger than the critical value,

µB ≥ µc ≡
4πf2

πfη√
C

= 4
√

2πfπfη

mπ
∼ 1.21[GeV], (4.9)

the energy of lumps are negative, EDW ≤ 0 so that lumps are spontaneously created. This
implies the presence of the domain-wall Skyrmion phase for rotation. In the evaluation
in eq. (4.9), we have used the vacuum values of the physical quantities fπ ≈ 93 MeV and
mπ ≈ 140 MeV, and the relation fη′/fπ = 1.1 valid for the three flavors [81], assuming that
the same fη/fπ = 1.1 holds for the two flavors. The value of µc implies the effective nucleon
mass in this environment inside the soliton at finite density under rapid rotation. It is
interesting to note that this value is reasonably heavier than the nucleon mass ∼ 938 MeV
in the QCD vacuum.

5 Summary and discussion

We have shown a signal of the presence of a new phase of rapidly rotating QCD matter in
high density region, that is a domain-wall Skyrmion phase. It was previously known based
on the chiral Lagrangian with the CVE term [50] that the ground state is a CSL consisting
of a stack of η-solitons for two flavors (η′-solitons for three flavors) in a high density region
under rapid rotation [51]. In a large parameter region, a single η-soliton decays into a pair of
non-Abelian sine-Gordon solitons [21, 69], each of which carries SU(2)V/U(1) ≃ CP 1 ≃ S2
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moduli as a consequence of the spontaneous breaking of the vector symmetry SU(2)V in the
vicinity of each soliton [53]. In such a non-Abelian CSL, we have shown that the effective
world-volume theory of a single non-Abelian soliton is a d = 2 + 1 dimensional CP 1 model
[O(3) model] with a topological term originated from the WZW term, eq. (3.14). We have
shown that when the chemical potential is larger than a critical value in eq. (4.9), a lump
has negative energy to be spontaneously created on the soliton world-volume, implying
the domain-wall Skyrmion phase. This lump on the soliton world-volume corresponds to a
Skyrmion carrying a baryon number in the bulk point of view, in contrast to the domain-wall
Skyrmions in the magnetic field [13, 14], in which case one lump on the soliton worldvolume
corresponds to two Skyrmions in the bulk. The effective nucleon mass has been found to
be ∼ 1.21 GeV, which is reasonably heavier than the nucleon mass ∼ 938 MeV in the QCD
vacuum. We have worked out at the leading order O(p2) of the ChPT and do not need
higher derivative terms such as the Skyrme term.

We concentrated on the deconfined phase in which the up and down solitons appear
altnately with equal distance. Then, we focused on a single up(or down) soliton. There is
another a non-Abelian CSL which is dimer phase as in the left panel of figure 2. In such
a case, up and down solitons form a pair and such pairs constitute a lattice. Therefore,
we can discuss effective theory on a pair of up and down sotlions. Then, we can construct
domain-wall Skyrmions on a pair. This remains a future problem.

In our recent paper [14], we found a similar domain-wall Skyrmion phase in the case
of strong magnetic field. In this case, we studied a chain of Skyrmions in multiple solitons
without taking a signle-soliton approximation. In such a case, the domain-wall Skyrmion
phase extends to the lower density (with stronger magnetic field) region. The same discussion
can be repeated for the case of rapid rotation in this paper. We thus expect the domain-wall
Skymion phase is extended to a region of lower density with more rapid rotation.

We have studied the domain-wall Skyrmion phase at the leading order O(p2) of the
ChPT. At this order, the topological lumps are BPS, and thus there are no forces between
them. For instance, the configurations of two lumps at arbitrary separations in figure 3
are all energetically degenerated. This would not be the case if we go to the next leading
order O(p4). At this order, one has to include four derivative terms such as the Skyrme
term in ChPT. The more important is the inclusion of the terms proportional to the angular
velocity Ω in the domain-wall effective action in eq. (3.21) that will exert centrifugal force
on lumps. It is an important problem to investigate the next leading order O(p4), because
at that order we should be able to find Skyrmion lattice configurations as the ground state
of the domain-wall Skyrmion phase.

Next, let us discuss the limit of zero rotation. The Skyrmion energy in eq. (4.8) itself
does not depend on the rotation as a consequence of the fact that the GW current in eq. (2.5)
does not. Therefore, in the limit of zero rotation, the solitons disappear and there should
remain conventional Skyrmions in the bulk (at least in the large Nc). However, this limit can
be discussed with the Skyrme term in the next leading order O(p4). Otherwise Skyrmions
are unstable in the bulk. We leave this limit as one of the future problems.

Let us discuss the possibility that the non-Abelian CSL and domain-wall Skyrmion phase
may be reached in the near future low-energy non-central heavy-ion collision experiments.
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The magnitude of the largest vorticity of the current experiment is the order of 1022/s [37, 38].
Let us roughly estimate the critical S for a rotating nuclear matter made from 197

79Au with
saturation density n ≈ 0.16/ fm3. The corresponding µB is µB ≈ 1 GeV. Then, we estimate
the critical S as

S ≈ 0.04 , (5.1)

where we have used the vacuum values of fπ ≈ 93 MeV, fη/fπ ≈ 1.1, mπ ≈ 140 MeV,
mη ≈ 770 MeV [81, 82], and experimental angular velocity Ωexp ≈ 10 MeV [37, 38], together
with the Gell-Mann-Oakes-Renner relation for the two-flavor case,

f2
πm2

π = 2Bm , f2
η m2

η = 2Bm + 4A . (5.2)

Although the critical rotation velocity of the η′-CSL for three flavors is larger by one order of
magnitude [51], that of the non-Abelian CSL is smaller than that of the η′-CSL [53]. Our
results can be extended to more realistic case of the three-flavors. Also, the Λ(Λ̄) hyperon
polarization increases as the collision energy

√
s decreases, implying the larger angular

velocity [37, 38]. Another important issue is temperature effects. The collider experiments are
done at high temperature while our analysis is based on zero temperature. As this regards, it
was shown in the case of strong magnetic fields that finite temperatures rather increase the
stability of the CSL [56, 57]. We thus can expect that the same holds for the case of the CSL
under rapid rotation. Thus, the non-Abelian CSL and domain-wall Skyrmion phase may be
reached in the near future low-energy heavy-ion collision experiments.

In this paper, we have not considered the electromagnetism. There are two electromagnetic
couplings: the minimal and anomalous couplings. First, the non-Abelian CSL is made of the
eta meson and neutral pion and are neutral in the electromagnetism. By contrast, the charged
pions have nontrivial profiles around the lumps studied in this paper, and thus the lumps
are charged. The electromagnetic U(1) symmetry is spontaneously broken in the vicinity
of the lumps, and consequently the lumps are superconducting. More precisely, the lumps
are superconducting rings, so that their sizes are quantized if there is an external magnetic
field. Second, there is an anomalous coupling to the electromagnetism [4, 5]. Consequently,
magnetizations appear on the non-Abelian CSLs through the topological term under an
external magnetic field B [4, 5, 83]: Ltop = quµB

4π2 ∇ϕ+ ·B+ qdµB
4π2 ∇ϕ− ·B. The rotation induced

ferro(ferri) magnetism was discussed in our previous paper [53]. It is an open question how
Skyrmions considered in this paper affect on the magnetization.

If we introduce the isospin chemical potential µI , there is also an anomalous coupling to
the neutral pion π0 given by µBµI

2π2fπ
Ω · ∇π0 [50], giving an another topological term in addition

to Ω · ∇η that we have considered in this paper. In this case, both the neutral pion π0 and
η meson try to constitute a lattice with different periodicities, but it is impossible because
these solitons interact. Consequently, the ground state is not periodic anymore and is rather
a quasicrystal, as discussed in the case of strong magnetic fields [60]. In such a case, we
still can discuss domain-wall Skyrmions forcusing on an η or π0 soliton as a constituent of
the quasicrystal at least when solitons are well separated for very rapid rotation. There is
an additional term on the worldvolume theory on non-Abelian η soliton due to the above
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topological term (see footnote 5). Then, the lumps would have constraint as the case of
those for the strong magnetic field [13, 14].

While we have considered two flavors in this paper, more realistic case is three flavors in-
cluding the strange quark. In this case, the chiral symmetry SU(3)L×SU(3)L is spontaneously
broken to SU(3)V as well as the axial U(1)A symmetry, and the order parameter manifold
is [SU(3)L × SU(3)R × U(1)A]/[SU(3)V × Z3] ≃ U(3). Then, a single U(3) non-Abelian
soliton spontaneously breaks SU(3)V to its subgroup SU(2) × U(1), and thus there appear
SU(3)/[SU(2) × U(1)] ≃ CP 2 NG modes in the vicinity of the soliton. Then, CP 2 lumps
on the soliton corresponds to SU(3) Skyrmions in the bulk [21].

Now, we make comments on the domain-wall Skyrmions in quark matter at large µB.
The ground state in the two-flavors case without rotation is the two-flavor superconducting
(2SC) phase [84] in which the chiral symmetry is unbroken. Instead, for the three flavors, the
ground state without rotation is the color-flavor locked (CFL) phase [85, 86] (see ref. [84]
as a review), in which the chiral symmetry SU(3)L × SU(3)R is spontaneously broken as
well as U(1)A. As the case of three-flavor nuclear matter, an η′-CSL phase appears under
the rapid rotation [51], in which a continuity to the three-flavor CSL in nuclear matter was
also studied. The instanton effect is suppressed due to the Debye screening [87, 88] in the
large µB region, implying small β so that non-Abelian CSL is favored. Then, domain-wall
Skyrmions can be constructed as CP 2 lumps on a U(3) non-Abelian soliton. It was discussed
in ref. [89] that Skyrmions in the CFL phase can be regarded as quarks instead of baryons
and are called qualitons. Thus, quarks condensed outside the non-Abelian solitons which is
in the CFL phase may not be condensed inside the non-Abelian solitons, similar to Andreev
bound states in superconductors.

Apart from application to QCD, there are also interesting points for physics of topological
solitons. For instance, more general non-BPS solutions of the CP N−1 model can be constructed
by the Din and Zakrzewski’s projection method [79, 80, 90]. One of questions is what these
correspond to in the bulk. The other is fractional CP N−1 lumps in a twisted boundary
condition [91, 92]. What is the meaning of fractional baryons in the bulk perspective?
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