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The quantum chromodynamics (QCD) axion solves the strong CP problem and represents an attractive
particle candidate for cold dark matter (CDM). However, quantum fluctuations of the axion field during
inflation easily result in large CDM isocurvature perturbations that are in conflict with observations of the
cosmic microwave background. In this paper, we demonstrate how this problem can be solved in low-scale
models of hybrid inflation that may emerge from supersymmetric grand unified theories. We consider both
F-term hybrid inflation and D-term hybrid inflation in supergravity, explicitly taking into account the effect
of hidden-sector supersymmetry breaking. We discuss the production of cosmic strings and show how the
soft terms in the scalar potential readily allow us to achieve the correct scalar spectral index. In both cases,
we are able to identify large regions in parameter space that are consistent with all constraints. In
particular, we find that evading the CDM isocurvature constraint always requires a small Yukawa or gauge
coupling ofOð10−3Þ or smaller. This translates into upper bounds on the gravitino mass ofOð105Þ GeV in
F-term hybrid inflation and Oð109Þ GeV in D-term hybrid inflation. Our results point to interesting
scenarios in well-motivated parameter regions that will be tested in future axion and cosmic microwave
background experiments.
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I. INTRODUCTION

The Peccei-Quinn (PQ) mechanism [1,2] is a viable
and attractive solution to the strongCP problem in quantum
chromodynamics (QCD). It is based on the idea to promote
the effective QCD vacuum angle θ̄ to a pseudoscalar field—
known as the axion a ¼ faθ̄ [3,4]—which dynamically
relaxes the QCD vacuum energy until it reaches a ground
state that preserves charge parity (CP) invariance [5]. The
axion field is almost invisible; i.e., it is a weakly coupled
gauge singlet of which the couplings are suppressed by a
large decay constant fa. In concrete realizations of the PQ
mechanism [6–9], the axion is identified as the pseudo-
Nambu-Goldstone boson of a global Uð1ÞPQ symmetry that
exhibits a nonvanishing SUð3Þ color anomaly (quantified in
terms of an anomaly coefficientN) and that is spontaneously
broken at a high energy scale vPQ ¼ Nfa. As has become
clear over the years, the QCD axion entails an extremely rich
phenomenology in particle physics, astrophysics, and

cosmology (for reviews, see Refs. [10–14]), which makes
it a primary target in the hunt for new physics beyond the
Standard Model (BSM). The axion can, in particular, be
copiously produced in the early Universe, which renders
it a well-motivated particle candidate for dark matter (DM)
[15–17]. Together, these observations distinguish the PQ
mechanismas a testable andpredictiveBSMscenario that not
only solves the strong CP problem but that automatically
also accounts for the DM relic density.
In the context of inflationary cosmology [18–21], one

has to discriminate between two different implementations
of the PQ mechanism, depending on the magnitude of the
axion decay constant fa. First, consider the case in which
the Hubble rate during inflation, Hinf , always exceeds fa.
In this scenario, spontaneous PQ symmetry breaking
(PQSB) only occurs after inflation in the radiation-domi-
nated era. Similarly, if the maximal temperature in the early
Universe, Tmax, is greater than fa, the PQ symmetry is
thermally restored after inflation, and it only becomes
spontaneously broken at lower temperatures as soon as
T ∼ fa. In either case, PQ symmetry breaking occurs at late
times, which results in the production of cosmic strings.
During the QCD phase transitions, these axion strings turn
into the boundaries of domain walls [22]. One can show
that, for an anomaly coefficient N, there are actually N
different types of domain-wall solutions, which is why N is
also referred to as the domain-wall number. For N > 1, the
domain walls are stable, so they begin to dominate the total
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energy density of the Universe soon after their formation.
This is known as the domain-wall problem of the post-
inflationary PQSB scenario. There are several ways out of
this problem. An obvious solution is to simply restrict
oneself to a trivial domain-wall number, N ¼ 1. This is,
e.g., possible if only one vectorlike exotic quark contributes
to the PQ color anomaly (see Refs. [23,24] for a recent
example). In this case, the domain walls are unstable, and
the entire string-wall network decays, which results in a
certain fraction of the total axion DM relic density [25–28].
Alternatively, one may explicitly break the PQ symmetry
by means of higher-dimensional operators in the effective
theory [29] so that the domain walls become unstable even
for a nontrivial domain-wall number, N > 1. However, this
solution requires some tuning, as the tight upper bound on
the effective QCD theta angle, jθ̄j≲ 10−10 [30], restricts the
allowed amount of explicit PQ symmetry breaking.
The arguably simplest solution to the domain-wall

problem is to presume that the PQ symmetry is already
broken during inflation and never becomes restored after-
ward. This preinflationary PQSB scenario corresponds to
the second possibility of implementing the PQ mechanism
in the context of inflationary cosmology. It is realized for
large values of the axion decay constant,

fa ≳max fHinf ; Tmaxg: ð1Þ

In this scenario, all dangerous topological defects that form
at early times are vastly diluted by the exponential
expansion during inflation. We emphasize that this solution
neither constrains the value of the domain-wall number N
nor requires particular assumptions about higher-
dimensional operators in the effective theory. Instead,
one now has to deal with the implications of a sponta-
neously broken global symmetry during inflation and, in
particular, with the presence of the massless axion field.
Just like the inflaton field, the axion field develops quantum
fluctuations during inflation. These axion fluctuations are
nearly scale-invariant and uncorrelated with the adiabatic
curvature perturbations, such that they turn into cold dark
matter (CDM) isocurvature perturbations after inflation
[31–37]. Axion isocurvature perturbations have attracted
a great deal of attention in the last two decades [38–65].
On the one hand, the prediction of measurable axion
isocurvature perturbations is exciting, as it implies that
one may not only be able to probe the QCD axion
in laboratory experiments on Earth but also via observa-
tions of the anisotropies in the cosmic microwave back-
ground (CMB).On the other hand, it represents an important
restriction of the preinflationary PQSB scenario, since the
amplitude of the isocurvature power spectrum is tightly
constrained by the measurements of the Planck satellite
[66,67]. This issue is sometimes referred to as the
axion isocurvature perturbations problem. The Planck
constraint on the primordial isocurvature fraction especially

implies an upper bound on the inflationary Hubble rateHinf
that is in conflict with typical values of Hinf in high-
scale models of inflation. The preinflationary PQSB sce-
nario therefore calls for low-scale inflation with a small
Hubble rate.
In this paper, we will demonstrate that the CDM

isocurvature constraint on the inflationary Hubble scale
can be easily satisfied in low-scale models of hybrid
inflation [37,68]. To this end, we will revisit both F-term
hybrid inflation (FHI) [69,70] and D-term hybrid inflation
(DHI) [71,72] in supergravity (SUGRA). These models
represent promising inflationary scenarios. They can be
naturally embedded into supersymmetric grand unified
theories (GUTs) and hence establish a connection between
inflation and grand unification. A particularly attractive
feature is that both scenarios end in a so-called waterfall
transition, i.e., a rapid second-order phase transition that
can be identified with the spontaneous breaking of a local
GUT symmetry.1 The key idea behind our analysis is to
explicitly account for the spontaneous breaking of super-
symmetry (SUSY) in a hidden sector. As we will see,
hidden-sector SUSY breaking results in a number of soft
terms in the scalar potential that can be used to achieve
consistency with the CMB data. In FHI, the dominant soft
term turns out to be a linear tadpole term, while in DHI, the
leading soft term is a quadratic mass term. In both cases, the
size of the soft terms is controlled by the gravitino mass
m3=2. Therefore, by tuning the soft terms against the
radiative corrections in the scalar potential, one is always
able to realize a particularly flat inflaton potential, i.e., a
very small slow-roll parameter ε ≪ 1. At the same time, the
energy scale in the tree-level potential, V1=4

0 , can always be
chosen so as to reproduce the amplitude of the scalar power
spectrum, As ∝ V0=ε. Together, these two relations yield a
powerful mechanism to suppress the inflationary Hubble
scale Hinf ∝ V1=2

0 . In addition, the dependence of the slow-
roll parameter ε on m3=2 links the gravitino mass to the
Hubble rate, εðm3=2; � � �Þ ∝ H2

inf . For a given Hinf , we thus
have to choose a gravitino mass of a certain magnitude.
Otherwise, the scalar potential will be either too steep or too
flat to obtain the correct value for As. For this reason, the
CDM isocurvature constraint on Hinf can also be used to
derive upper bounds on m3=2.
To find the viable regions in parameter space, we will

study the slow-roll dynamics of FHI and DHI in a fully
analytical fashion. That is, wherever possible, we will

1The waterfall transition could, e.g., correspond to the sponta-
neous breaking of a Uð1ÞB−L gauge symmetry, in which B and L
denote baryon and lepton number, respectively. In this case,
hybrid inflation would end in what is known as the B − L phase
transition [73–80], a promising framework for a unified picture of
particle physics and cosmology [81,82]. However, for the
purposes of this paper, it will not be necessary to specify the
exact nature of the phase transition.
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refrain from resorting to the usual numerical methods that
are typically employed in the literature. On the one hand,
this will allow us to determine the implications of the CDM
isocurvature constraint on the model parameters of hybrid
inflation in an analytical and transparent manner. On the
other hand, our analysis will be rather general, so our
results are actually well suited to be used in further
investigations of hybrid inflation, beyond the question of
axion isocurvature perturbations. The main result of our
analysis will be that, in both FHI and DHI, the inflationary
Hubble scale can be pushed down to a sufficiently small
value—provided that an appropriate coupling constant is
set to a value of Oð10−3Þ or smaller. In FHI, this coupling
corresponds to the inflaton Yukawa coupling κ in the
superpotential, while in DHI, it typically corresponds to
the gauge coupling g in the waterfall sector. In both cases,
such a small coupling constant is stable against radiative
corrections and hence is technically natural. In super-
symmetric hybrid inflation, the isocurvature perturbations
problem of the QCD axion can therefore be solved without
any unnatural fine-tuning of model parameters.
The remainder of this paper is organized as follows. In

the next section, we will review the CDM isocurvature
constraint on Hinf in the preinflationary PQSB scenario. In
Secs. III and IV, we will then discuss in turn the inflationary
dynamics of FHI and DHI. In doing so, we will explicitly
distinguish between scenarios with a comparatively large
field excursion during inflation and scenarios with a very
small field excursion during inflation. In Sec. V, we will
summarize our main results and discuss a number of
interesting benchmark points in parameter space. For
readers that are primarily interested in our constraints on
parameter space and less interested in the technical details
of our slow-roll analysis, we note that most of the results
derived in this paper are included in one way or another
in Fig. 5. Finally, Sec. VI contains our conclusions and a
brief outlook.

II. AXION ISOCURVATURE PERTURBATIONS

We begin by reviewing the CDM isocurvature constraint
onHinf in the preinflationary PQSB scenario. First, we note
that most properties of the QCD axion are fixed by its decay
constant fa. This includes the axion mass ma that can be
obtained via an explicit calculation in chiral perturbation
theory [83] as well as via numerical lattice simulations [84].
The results of both approaches agree within their respective
uncertainties and yield the following expression for ma:

ma ≃ 57.0 μeV
�
1011 GeV

fa

�
: ð2Þ

Next, let us consider the axion energy density Ωah2. If the
PQ symmetry is already broken before the end of inflation,
the only contribution to the axion abundance in the present
epoch follows from the standard vacuum misalignment

mechanism [15–17]. In this case, Ωah2 ends up being
a function of the axion decay constant fa and the initial
value of the QCD vacuum angle, θ̄ini ¼ aini=fa, in the
observable patch of the Universe. For a small initial theta
angle, jθ̄inij ≪ π, and assuming that the axion field begins
to coherently oscillate before the QCD phase transition, one
finds [23,24]

Ωah2 ≃ 0.65

�
θ̄ini
10−2

�
2
�

fa
1016 GeV

�
1.17

: ð3Þ

This expression can be further refined by accounting for
anharmonic effects in the vicinity of the local maximum in
the axion scalar potential, i.e., for jθ̄inij ∼ π. Therefore,
following the analyses in Refs. [48,85], we shall modify
Eq. (3) by incorporating a correction factor Canh of the
following form,

Ωah2 ≃ 0.65

�
θ̄ini
10−2

�
2
�

Canhfa
1016 GeV

�
1.17

;

Canh ¼ 1 − ln

�
1 −

θ̄2ini
π2

�
: ð4Þ

This prediction needs to be compared with the Planck
result for the DM relic density [66],

ΩDMh2 ≃ 0.12: ð5Þ

Suppose that axions make up a fraction Fa
DM ∈ ½0; 1� of the

total DM abundance. The Planck constraint in Eq. (5) can
then be used to solve Eq. (4) for the initial theta angle as a
function of fa,

θ̄ini ¼ ðFa
DMÞ1=2θ̄DMini ; Fa

DM ¼ Ωa

ΩDM
;

θ̄DMini ≃ 4.3 × 10−3
�
1016 GeV

fa

�
0.59

; ð6Þ

which is valid and self-consistent in the small-θ̄ regime in
which Canh ≈ 1. Also, note that θ̄DMini represents the initial
theta angle that is necessary to achieve pure axion DM. The
main lesson from Eq. (6) is that large values of the axion
decay constant, fa ≫ 1012 GeV, only lead to viable axion
DM if the initial theta angle is somewhat tuned.2 However,
it is important to realize that this kind of tuning is very
different from a brute-force tuning of the QCD vacuum
angle in a theory without a dynamical axion field. First of
all, note that, even for an axion decay constant as large as
fa ∼MPl, the required tuning is only at the level of 1 out of

2An exception to this statement is models with an extremely
low Hubble rate, Hinf ≲ ΛQCD, where ΛQCD denotes the QCD
confinement scale [86,87]. However, in this paper, we will not be
interested in this part of parameter space.
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roughly 104. This is certainly less drastic than tuning θ̄ to a
value less than 10−10 by hand. But the main conceptual
difference is that, in the QCD axion scenario, the initial
theta angle becomes susceptible to anthropic reasoning. In
a theory including a dynamical axion field, θ̄ini controls the
final DM abundance [see Eq. (4)]. As pointed out by Linde
long ago [88], it may thus well be that an apparently tuned
theta angle in our observable Universe is, in fact, the
consequence of environmental selection during inflation
(see also Refs. [89,90]).
If the axion field is already present during inflation, it

will develop quantum fluctuations that exhibit the typical
standard deviation σa of a massless scalar field in an
expanding de Sitter space,

σa ¼ hδa2i1=2 ≃Hinf

2π
; ð7Þ

which translates into the following standard deviation for
the dynamical theta angle θ̄ ¼ a=fa:

σθ̄ ¼
1

fa
hδa2i1=2 ≃ Hinf

2πfa
: ð8Þ

By virtue of Eq. (4), these fluctuations in the initial theta
angle are responsible for the emergence of CDM density
isocurvature (CDI) perturbations around the time of the
QCD phase transition (i.e., at the onset of the coherent
axion oscillations) [31–37]. Because the axion fluctuations
during inflation are independent of the quantum fluctua-
tions of the inflaton field, the resulting CDI perturbations
are uncorrelated with the adiabatic curvature perturbations.
Up to corrections of Oðσ3

θ̄
Þ, the magnitude of the axion

isocurvature perturbations at a given length scale, Siso,
simply follows from the derivative of the (logarithm of the)
axion energy density with respect to the initial theta angle
(see, e.g., Ref. [48]),

Siso¼
δΩDM

ΩDM
¼Fa

DM
δΩa

Ωa
≃Fa

DM
∂ lnΩa

∂θ̄ini σθ̄ ¼Fa
DM

2σθ̄
θ̄ini

: ð9Þ

The square of this expression yields the amplitude of the
isocurvature power spectrum Piso,

Piso ¼ jSisoj2 ≃
�
Fa
DM

2σθ̄
θ̄ini

�
2

≃
�
Fa
DM

Hinf

πfaθ̄ini

�
2

¼ Fa
DMP

DM
iso ; ð10Þ

which holds in the small-θ̄ regime and up to corrections of
Oðσ4

θ̄
Þ. In Eq. (10), we again factored out the dependence

on the axion DM fraction Fa
DM. In the case of pure axion

DM, one has

PDM
iso ≃

�
Hinf

πfaθ̄DMini

�
2

: ð11Þ

The Planck data can be used to place an upper bound on
the primordial isocurvature fraction

βisoðkÞ ¼
PisoðkÞ

PadiðkÞ þ PisoðkÞ
: ð12Þ

Here, we emphasize that both power spectra Padi and Piso
are in general scale-dependent and hence functions of the
wave number k. The amplitude of the adiabatic curvature
perturbations, Padi, is fixed by the observed amplitude of
the primordial scalar power spectrum, Padi ≃ 2.2 × 10−9 at
the CMB pivot scale k ¼ 0.05 Mpc−1 [67]. For an uncor-
related mixture of adiabatic and CDI modes and assuming a
unit isocurvature spectral index, niso ¼ 1, the Planck 2015
data results in Ref. [67],

βisoðkÞ< 0.038; k¼ 0.05Mpc−1

ð95%C:L:;TT;TE;EEþ lowpÞ; ð13Þ

which translates into an upper bound on the amplitude of
the isocurvature power spectrum of

Piso ≲ 8.7 × 10−11: ð14Þ

Making use of Eq. (10), we thus obtain the following upper
bound on the inflationary Hubble rate:

Hinf ≲ 1.3 × 109 GeV

�
1

Fa
DM

�
1=2

�
fa

1016 GeV

�
0.42

: ð15Þ

Two comments are in order in view of this bound. First,
we stress that Eq. (15) is, indeed, a very tight restriction
on the allowed set of inflationary models. To see this more
explicitly, recall that, in standard single-field slow-roll
inflation, Hinf uniquely determines the tensor-to-scalar
ratio r,

r ¼ At

As
¼ 2

As

�
Hinf

πMPl

�
2

≃ 1.5 × 10−11
�

Hinf

109 GeV

�
2

; ð16Þ

where As and At denote the amplitudes of the primordial
scalar and tensor power spectra, respectively. The small
values of Hinf that are required by Eq. (15) therefore
imply that r must be unobservably small. This can also
be formulated by rewriting Eq. (15) as an upper bound
on r,

r≲ 2.4 × 10−11
�

1

Fa
DM

��
fa

1016 GeV

�
0.83

; ð17Þ

which needs to be contrasted with the current upper bound
on the tensor-to-scalar ratio, r≲ 0.1 [67]. Any detection of
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nonzero r in the near future would therefore immediately
rule out all low-scale models of inflation that are in accord
with Eq. (15).3 A second comment regarding Eq. (15) is
that the dependence on the axion DM fraction Fa

DM is
actually rather mild. Even if axions only account for, say,
10% of the total DM abundance, the bound is only relaxed
by roughly a factor 3. For this reason, it is impossible to
evade the constraint on Hinf in high-scale models of
inflation (where Hinf ∼ 1013…1014 GeV) without com-
pletely abandoning the idea of an axion DM fraction.
Thus far, we only focused on the small-θ̄ regime, in

which the anharmonic correction factor in Canh in Eq. (4)
can be neglected. However, for completeness, we mention
that all of the steps above can also be repeated including
Canh. For jθ̄inij ∼ π, this can be even done analytically. For
small values of the axion decay constant fa and large values
of jθ̄inij, a straightforward calculation yields

Hinf ≲ 88 GeV

�
1

Fa
DM

�
0.15

e−12.64ðE−1Þ;

E ¼
�
Fa
DM

1

�
0.85

�
1010 GeV

fa

�
: ð18Þ

This is an extremely strong constraint that can only be
satisfied in more or less unconventional scenarios of
inflation. In the following, we will therefore focus our
attention on the bound in Eq. (15) and its implications for
hybrid inflation. The bound in Eq. (18) will only appear in
Fig. 5, in which it serves the purpose to mark the boundary
of the viable parameter space at small values of fa.

III. LOW-SCALE F-TERM HYBRID INFLATION

A. Model setup and scalar potential

We now turn to supersymmetric hybrid inflation and
determine the implications of the CDM isocurvature con-
straint in Eq. (15) on its parameter space. First, we will
consider FHI supplemented with a hidden SUSY-breaking
sector [92]. The relevant terms in the superpotential are
given as

W ¼ κSΦΦ̄ − μ2SSþ μ2XX þ w; ð19Þ

where S denotes the chiral inflaton field, Φ and Φ̄ are two
chiral waterfall fields, and X is the Polonyi field. κ is a
dimensionless Yukawa coupling, while μS and μX denote

the inflaton and Polonyi F-term mass scales, respectively. w
represents a constant contribution to the superpotential that
arises in consequence of R symmetry breaking. Its value
needs to be tuned so as to achieve a vanishingly small
cosmological constant (CC) in the true vacuum after
inflation. The first two terms on the rhs of Eq. (19)
represent the superpotential of FHI, while the last two
terms coincide with the superpotential of the standard
Polonyi model of spontaneous SUSY breaking [93]. For
simplicity, we shall assume that all chiral fields possess a
canonical Kähler potential to leading order,

K ¼ S†SþΦ†Φþ Φ̄†Φ̄þ X†X þ χ

M2
Pl

S†SX†X þ � � � :

ð20Þ

Here, we include a higher-dimensional coupling between S
andX of which the strength is controlled by a dimensionless
coefficient χ. This operator is allowed by all symmetries and
expected to be present in the effective theory at energies
below the Planck scale,MPl ≃ 2.44 × 1018 GeV. As wewill
see, it contributes to the soft SUSY-breaking parameters in
the scalar inflaton potential. The ellipsis in Eq. (20) stands
for further higher-dimensional operators that are negligible
for the present discussion. We only remark that the Kähler
potential should also contain a higher-dimensional self-
interaction for the Polonyi field, K ⊃ −jXj4=M2� for some
highmass scaleM�, such thatX is always safely stabilized at
the origin in field space. This can, e.g., be achieved via
additional couplings tomatter fields in the hidden sector (see
Refs. [94–96] for an example based on strong gauge
dynamics). Provided that hXi ¼ 0 for all times during
and after inflation, the parameters μX, w, and m3=2 can be
related to each other based on the requirement that the CC
must vanish in the true vacuum after inflation,

w ¼ m3=2M2
Pl; m3=2 ¼

μ2Xffiffiffi
3

p
MPl

: ð21Þ

The waterfall fields Φ and Φ̄ transform in conjugate
representations of a gauge group G that may be part of a
larger GUT gauge group, G ⊆ GGUT. The inflaton and the
Polonyi field are supposed to transform as complete singlets
under the group G. In the following, we will restrict
ourselves to the simplest scenario of an Abelian gauge
group, G ¼ Uð1Þ. In this case, the gauge interactions in the
waterfall sector result in aD-term scalar potential of the form

VD ¼ g2

2
½qðjϕj2 − jϕ̄j2Þ�2; ð22Þ

where g denotes theG gauge coupling constant andþq and
−q are the G gauge charges of the waterfall fieldsΦ and Φ̄.
In the following,wewill setq ¼ 1without loss of generality.
The situation with arbitrary charge q can always be restored

3Of course, this is only true in the context of standard single-
field slow-roll inflation. In extended scenarios (e.g., in the
presence of additional sources of gravitational waves), it may
well be that the relation between r and Hinf in Eq. (16) no longer
holds. In this case, the tensor-to-scalar ratio may be boosted to
large values that are within reach of upcoming experiments,
despite a small inflationary Hubble rate (for a review of such
nonstandard scenarios, see Ref. [91]).
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by redefining the gauge coupling, g → g0 ¼ g=q. The D-
term scalar potential ensures that the vacuum expectation
values (VEVs) of the two waterfall fields coincide at all
times, hΦi ¼ hΦ̄i. Apart from this, it is irrelevant for the
dynamics of FHI. During inflation, the two waterfall fields
are stabilized at the origin in field space, hΦi ¼ hΦ̄i ¼ 0,
while after inflation (i.e., after thewaterfall phase transition),
both fields acquire a nonzero VEV,

hΦi ¼ hΦ̄i ¼ vffiffiffi
2

p ; v ¼
ffiffiffi
2

p μS
κ1=2

: ð23Þ

The VEV v characterizes the energy scale at which G
becomes spontaneously broken. It is normalized such that it
corresponds to the aligned VEVs of the two real Higgs
scalars contained in Φ and Φ̄.
The relevant contribution to the tree-level potential stems

from the F-term scalar potential,

VF ¼ ez
�
ð1 − zþ z2Þμ4S þ

ffiffiffi
2

p
ð2 − zÞμ2Sm3=2s cosφ

þ 1 − χð3 − zÞ
2ð1þ χzÞ m2

3=2s
2

�
: ð24Þ

This potential is understood to be evaluated along the
inflationary trajectory where hΦi ¼ hΦ̄i ¼ 0. The real field
variables s, φ, and z are related to the original complex
inflaton field S as follows:

S¼ sffiffiffi
2

p eiφ; S� ¼ sffiffiffi
2

p e−iφ; z¼ jSj2
M2

Pl

¼ s2

2M2
Pl

: ð25Þ

Remarkably enough, all terms in VF—except for the
constant contribution to the vacuum energy density—
correspond to corrections that only arise in the context of
SUGRA. An investigation of FHI without the proper
inclusion of SUGRA effects is therefore highly incomplete
[97,98]. At field values below the Planck scale, the F-term
scalar potential in Eq. (24) can be expanded as follows:

VF ¼ V0
F þ cs

�
1þ z

2

�
sþ 1

2
m2

ss2 þ
1

24
λss4 þOðs6Þ:

ð26Þ

Here, the leading term V0
F ¼ μ4S corresponds to the F-term

scalar potential in the global-SUSY limit. It is constant and
sets the inflationary Hubble scale during FHI. To good
approximation, we have

Hinf ≃
ðV0

FÞ1=2ffiffiffi
3

p
MPl

¼ μ2Sffiffiffi
3

p
MPl

: ð27Þ

Equation (26) also contains a linear tadpole term of
which the strength is controlled by the coefficient cs,

cs ¼ 2
ffiffiffi
2

p
μ2Sm3=2 cosφ: ð28Þ

This term has important consequences for the dynamics of
FHI [92,99–102]. In particular, it introduces a dependence
on the complex inflaton phase φ (through the cosφ factor in
cs), which breaks the rotational invariance in the complex
inflaton plane. FHI consequently turns into a two-field
model of inflation of which the full dynamics can only be
captured by a comprehensive analysis of all possible
trajectories in the complex plane [102]. However, for the
purposes of this paper, we will restrict ourselves to the case
of inflation along the negative real axis where φ ¼ π. This
is the simplest case and motivated by the fact that it will
provide us with the strongest bounds on parameter space.
As will become clear later on, our final results are therefore
valid and applicable for all trajectories in the complex plane
and do not rely on any assumption regarding the particular
choice of trajectory. Besides that, we note that also the other
coefficients in Eq. (24) have an important physical mean-
ing. m2

s and λs denote the inflaton mass and the inflaton
quartic self-coupling, respectively,

m2
s ¼ ð1 − 3χÞm2

3=2;

λs ¼ 3

�
μS
MPl

�
4

þ 6ð1 − 3χ þ 3χ2Þ
�
m3=2

MPl

�
2

: ð29Þ

In contrast to cs, these coefficients also depend on the
parameter χ in the Kähler potential. However, since the
linear tadpole term in Eq. (26) will turn out to be most
relevant for inflation, the dependence of m2

s and λs on χ is
actually negligible, and we can safely set χ ¼ 0 in the
remainder of the section.4

Next, let us compute the one-loop effective potential V1l.
In doing so, we shall work in the rigid global-SUSY limit
and neglect any gravitational corrections to the one-loop
effective potential. These corrections are suppressed by
combinations of loop factors and inverse powers of the
Planck scale and are hence negligible. V1l follows from the
standard Coleman-Weinberg formula [103], which means
that we have to determine the mass spectrum in the
waterfall sector in an arbitrary inflaton background. As
for the scalars, we find two complex mass eigenstates ϕ�
with masses m�,

m2
� ¼m2

eff �m2
F; m2

eff ¼
1

2
κ2s2; m2

F ¼ κμ2S: ð30Þ

These masses can also be written as m2
� ¼ κ2=2ðs2 � v2Þ,

which illustrates that ϕ− becomes tachyonic at the critical
inflaton field value scrit ¼ v. That is, once the inflaton s

4The situation will be different in the case of DHI in Sec. IV, in
which we will have to set χ to a value χ > 1=3 so that the inflaton
mass becomes tachyonic, m2

s < 0. In the present section, we
merely introduced χ for illustrative purposes.
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reaches its critical value, the complex scalar ϕ− becomes
unstable. This marks the onset of the waterfall transition.
The mass degeneracy among ϕþ and ϕ− is lifted by mF.
This mass parameter is a direct consequence of F-term
SUSY breaking during inflation, which is evident from its
dependence on the inflaton F-term mass scale μS. The
waterfall fermion ϕ̃ does not receive any SUSY-breaking
mass contributions. It simply acquires an ordinary Dirac
mass, mϕ̃ ¼ meff , which corresponds to the effective super-
symmetric mass meff ¼ κhSi that is induced by the VEVof
the chiral inflaton field S in the superpotential. With the
mass spectrum at our disposal, we can immediately write
down the one-loop effective potential,

V1l ¼ 1

2
V0
1lLðxÞ; V0

1l ¼ m4
F

8π2
;

x ¼
�

s
scrit

�
2

¼
�
meff

mF

�
2

¼
�
s
v

�
2

: ð31Þ

Here, the field variable x measures the distance to the
critical field value scrit in field space. The constant factor
V0
1l (which is completely determined by the SUSY-break-

ing mass parameter mF) characterizes the overall energy
scale, while the loop function L captures the actual field
dependence,

LðxÞ¼ 1

2

X
�
ðx�1Þ2

�
lnðx�1Þ−3

2

�
−x2

�
lnx−

3

2

�
: ð32Þ

The combination of Eqs. (24) and (31) provides us with
the total inflaton potential, V ¼ VF þ V1l, which sets the
stage for our slow-roll analysis in the following two
sections. However, before turning to the details of inflation,
let us comment on the issue of cosmic strings (CSs). Recall
that we assume an Abelian gauge group in the waterfall
sector, G ¼ Uð1Þ. For this reason, the spontaneous break-
ing of G during the waterfall transition is accompanied by
the production of topological defects in the form of cosmic
strings [104–108]. This poses a severe problem for super-
symmetric hybrid inflation. Cosmic strings are expected to
leave an imprint in several cosmological observables, such
as the CMB [66,109], the spectrum of stochastic gravita-
tional waves [110–112], and the diffuse gamma-ray back-
ground [113]. However, no signs of cosmic strings were
detected thus far, which allows us to severely constrain the
parameter space of supersymmetric hybrid inflation [114–
116]. The main quantity of interest in the context of cosmic
strings is the cosmic string tension μCS (i.e., the cosmic
string energy density per unit length). A robust and more or
less model-independent upper bound on the cosmic string
tension follows from the nonobservation of cosmic strings
in the CMB [117,118],

Gμmax
CS ∼ 1 × 10−7; ð33Þ

where G ¼ ð8πM2
PlÞ−1 denotes Newton’s gravitational

constant.
The bound in Eq. (33) translates into a strong constraint

on the VEV v, i.e., on the energy scale of spontaneous
symmetry breaking (SSB) during the waterfall transition.
To see this, it is convenient to rewrite the superpotential
in Eq. (19) in terms of the G Higgs multiplet H in unitary
gauge,

Φ¼ Hffiffiffi
2

p eA; Φ̄¼ Hffiffiffi
2

p e−A ⇒W ⊃
κ

2
SðH2−v2Þ; ð34Þ

where the multiplet A contains the Goldstone degrees of
freedom of spontaneous G breaking. Equation (34) illus-
trates that the complexHiggs boson contained inH acquires
a VEVhHi ¼ v. This is larger by a factor

ffiffiffi
2

p
than the

complex VEVs of the fields Φ and Φ̄ [see Eq. (23)]. In the
broken phase, the physical Higgs boson thus obtains a
mass m2

H ¼ κ2v2, while the vector boson obtains a mass
m2

V ¼ 2g2v2. Thesemasses allowus to determine the cosmic
string tension (see, e.g., Ref. [107]),

μCS ¼ 2πv2ϵCSðβÞ; β ¼
�
mH

mV

�
2

¼ κ2

2g2
: ð35Þ

Here, the factor 2 on the rhs stems from the fact that, in FHI,
there are two real waterfall fields that participate in the
process of spontaneous symmetry breaking. This factor is
absent in the case ofDHI (see Sec. IVA), and even in the case
of FHI, it is sometimes overlooked in the literature. The
factor πv2 can be derived analytically and corresponds to the
cosmic string tension in the so-calledBogomolny limit [119]
where the Higgs boson is degenerate with the vector boson,
such that β ¼ 1. For β ≠ 1, the cosmic string tension needs
to be determined numerically. This is accounted for by the
function ϵCS, which may be regarded as the cosmic string
tension in units ofπv2 per realHiggs boson. In the following,
we will approximate ϵCS by the numerical fit function
obtained in Ref. [106],

ϵCSðβÞ ≃
(
1.19=ð2=βÞ0.195; β ≳ 10−2

2.40= ln ð2=βÞ; β ≲ 10−2
; ð36Þ

which is roughly consistent with the Bogomolny limit,
ϵð1Þ ¼ 1. For definiteness, we will also fix the gauge
coupling g at a value that one obtains in typical GUT
models, g ¼ ðπ=6Þ1=2 ≃ 0.72. This is a rather largevalue that
tends to lead to small β values and hence to a more
conservative bound on the SSB scale v. In summary, we
obtain for the cosmic string tension in Planck units

GμCS¼
1

4

�
v

MPl

�
2

ϵCSðκÞ; ϵCSðκÞ¼ ϵCSðβÞjβ¼3=πκ2 : ð37Þ
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Making use of Eq. (33), this expression results in the upper
bound on the SSB scale v,

v≲ 3.6 × 1015 GeV

�
0.18
ϵCS

�
1=2

�
Gμmax

CS

10−7

�
1=2

; ð38Þ

where we anticipated that ϵCS ≃ 0.18 for v ≃ 3.6 ×
1015 GeV [see Eqs. (99) and (100) in Sec. III C].
Equation (38) represents a strong constraint on the

parameter space of FHI. In the following, we will
therefore pursue two different philosophies in parallel.
In one part of our analysis, we will adopt the notion that
the bound in Eq. (38) must, indeed, be considered as a
serious and physically relevant restriction. In this case,
we will demonstrate how the bound on the cosmic string
tension enables us to constrain the other parameters of
our model. However, in the rest of our analysis, we will
simply ignore the bound in Eq. (38) and pretend that no
cosmic strings are formed during the waterfall transition.
This is, e.g., possible if, on the one hand, the gauge
group G is already spontaneously broken in a different
sector before the end of inflation and if, on the other
hand, this breaking is somehow communicated to the
waterfall sector via marginal couplings in the super-
potential or Kähler potential (see Refs. [81,82,120] for
an explicit example in the context of DHI). From the
perspective of the waterfall fields, the gauge group G is
then explicitly broken to a certain (marginal) degree,
such that no cosmic strings can form in this sector.
Instead, cosmic strings may still form at early times,
when G is initially broken in the hidden sector. But
these cosmic strings will be diluted during the infla-
tionary expansion, so they no longer leave any observ-
able signatures in our Universe. In this case, the bound
in Eq. (38) does not apply any longer, which permits us
to simply ignore it.

B. Inflation far away from the waterfall
phase transition

We are now all set to discuss the inflationary slow-roll
dynamics. Our analysis will be split into two parts. First, we
will consider the case of a relatively large field excursion,
x ≫ 1, which is realized for larger values of the inflaton
Yukawa coupling, κ ≳Oð10−3Þ. As shown below, this
scenario only complies with the CDM isocurvature con-
straint for a very large axion decay constant, fa ∼MPl. In
Sec. III C, we will then turn to the case of a small field
excursion, x ≃ 1, which is realized for κ ≲Oð10−3Þ. In this
regime, we will find viable parameter regions for any
reasonable value of fa.
In the large-field limit, the loop function L in Eq. (32) is

well approximated by a simple logarithm,

LðxÞ ¼ ln xþOðx−2Þ: ð39Þ

The total scalar potential describing inflation in the large-
field limit thus takes the following form5:

V ≃ V0
F þ cssþ

1

24
λss4 þ

1

2
V0
1l lnðxÞ: ð40Þ

Here, we omitted the quadratic and cubic terms in Eq. (26).
The quadratic mass term can be neglected because all
viable inflationary solutions will turn out to require a small
gravitino mass, m2

3=2 ≪ H2
inf . Similarly, the cubic term can

be neglected compared to the linear tadpole term because
inflation will always take place at sub-Planckian field
values, s ≪ MPl. In Fig. 1, we plot the total scalar potential
for two representative values of the inflaton Yukawa
coupling, κ ¼ 10−1 and κ ¼ 10−3, and compare it with
the field-dependent contributions in Eqs. (40) and (80) (see
below in Sec. III C). In both cases, the linear, quartic, and
radiative terms are sufficient to describe the full shape of
the scalar potential at field values below the Planck scale.
Let us now collect a few properties of the scalar potential V
in Eq. (40). First of all, we note that the scalar potential
always exhibits an inflection point, V 00ðsflexÞ ¼ 0, the
location of which is solely determined by the coupling κ,

sflex ¼
�
2V0

1l

λs

�
1=4

≃
�

κ

2
ffiffiffi
3

p
π

�
1=2

MPl

≃ 2.3 × 1017 GeV

�
κ

0.1

�
1=2

: ð41Þ

The potential gradient at the inflection point, V 0ðsflexÞ, is
controlled by the gravitino mass,

V 0ðsflexÞ ¼ 2
ffiffiffi
2

p
ðmcrit

3=2 −m3=2Þμ2S;

mcrit
3=2 ¼

1

3μ2S
½2λsðV0

1lÞ3�1=4: ð42Þ

Here, the negative sign in front of m3=2 stems from the fact
that we are considering inflation on the negative real axis
where φ ¼ π [see the discussion below Eq. (28)]. mcrit

3=2

denotes the critical value of the gravitino mass for which the
inflection point turns into a saddle point, V 00ðsflexÞ ¼
V 0ðsflexÞ ¼ 0,

mcrit
3=2 ≃

�
κffiffiffi
3

p
π

�
3=2 μ2S

4MPl

≃ 2.6 × 108 GeV

�
κ

0.1

�
3=2

�
μS

1015 GeV

�
2

: ð43Þ

5This form of the potential explains the factor 1=2 in front of
the logarithmic term. In Eq. (31), we normalized the factor V0

1l in
such a way that the one-loop effective potential reduces to V1l ≃
V0
1l ln ðs=scritÞ in the large-field limit.
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For m3=2 > mcrit
3=2, the potential gradient at the inflection

point is negative, V 0ðsflexÞ < 0. This results in the occur-
rence of a local maximum and a local minimum in the
potential near the inflection point, smax < sflex < smin.
Conversely, for m3=2 < mcrit

3=2, the potential gradient at the
inflection point is positive, V 0ðsflexÞ > 0. In this case, the
potential is monotonically increasing without any local
extrema in the vicinity of sflex. To distinguish between these
two regimes, i.e., the hill-top regime and the inflection-
point regime, it is convenient to introduce the following
dimensionless parameter:

ζ ¼
�
mcrit

3=2

m3=2

�
2

¼
�

κffiffiffi
3

p
π

�
3
�

μ2S
4m3=2MPl

�
2

: ð44Þ

The hill-top and inflection-point regimes then correspond
to ζ < 1 and ζ ≥ 1, respectively. Both regimes are suitable
for inflation. In the hill-top regime, inflation can occur near
smax, while in the inflection-point regime, it can occur near
sflex if the potential is sufficiently flat. The parameter ζ also
allows us to write down compact expressions for smax and
smin in the hill-top regime,

smax ¼ F−ðζÞsflex; smin ¼ FþðζÞsflex; ð45Þ
where Fþ and F− are complicated functions that corre-
spond to the roots of a quartic polynomial,

F�ðζÞ¼A1=2�½ðζAÞ−1=2−A�1=2;

A¼B2þþB2
−

2BþB−
; B� ¼ ½1�ð1−ζ2Þ1=2�1=6: ð46Þ

If inflation occurs at s≲ smax, the quartic term in Eq. (40) is
typically subdominant. This allows us to expand smax in

Eq. (45) for small values of ζ. Up to corrections ofOðζ5=2Þ,
this results in

smax ≃
3

4
ζ1=2sflex ¼ −

V0
1l

cs
¼ κ2

16
ffiffiffi
2

p
π2

μ2S
m3=2

; ð47Þ

which coincides with the result that one obtains if one sets
λs → 0 in Eq. (40) from the outset.
Next, after these remarks on the potential, let us compute

the slow-roll parameters ε and η,

ε ¼ M2
Pl

2

�
V 0

V

�
2

; η ¼ M2
Pl
V 00

V
;

V 0 ¼ ∂V
∂s ; V 00 ¼ ∂2V

∂s2 : ð48Þ

For simplicity, we shall work in the λs → 0 limit from
now on, which will yield acceptable results as long as
ζ ≲Oð1Þ. In fact, we will justify the small-λs approxima-
tion a posteriori by an explicit numerical analysis that
demonstrates the validity of our analytical results. For small
λs, we obtain

ε¼1

2

�
cssþV0

1l

V0
F

�
2
�
MPl

s

�
2

; η¼−
V0
1l

V0
F

�
MPl

s

�
2

: ð49Þ

Note that ε is suppressed by a factor V0
1l=V

0
F compared

to η. As usual in supersymmetric hybrid inflation, the
duration of inflation is therefore controlled by η—slow-
roll inflation only occurs as long as η is small. To make
this statement more precise, let us impose the following
condition on η:
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FIG. 1. Total scalar potential for the real inflaton field s in F-term hybrid inflation for two representative values of the inflaton Yukawa
coupling κ. Parameter values: (left panel) κ ¼ 10−1, μS ≃ 1.1 × 1015 GeV, and m3=2 ≃ 2.7 × 108 GeV and (right panel) κ ¼ 10−3,
μS ≃ 6.3 × 1013 GeV, and m3=2 ≃ 6.0 × 103 GeV. Both parameter points are chosen such that they reproduce the measured CMB
observables, As ¼ Aobs

s and ns ¼ nobss . The left panel represents an example for inflation in the inflection-point regime, while the right
panel represents an example for inflation in the hill-top regime. In both plots, we also compare the linear, quartic, and radiative
contributions to the total scalar potential.
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jηj≲ ηmax ¼ 10−0.5: ð50Þ

The transition between slow-roll inflation and the sub-
sequent fast-roll stage is therefore reached at

sfast ¼
�
V0
1l

m2
max

�
1=2

¼ κMPl

2
ffiffiffi
2

p
πη1=2max

;

m2
max ¼ ηmax

V0
F

M2
Pl

: ð51Þ

At this field value, jηj saturates the upper bound in Eq. (50).
The mass parameter m2

max in Eq. (51) denotes the maximal
curvature of the potential, V 00, that is allowed by the upper
bound on η. Given the expression for sfast in Eq. (51), we are
now able to determine the end point of inflation. Slow-roll
inflation either ceases once the inflaton field enters the fast-
roll regime (i.e., at s ¼ sfast) or once it reaches the critical
point in field space that triggers thewaterfall transition (i.e.,
at s ¼ scrit),

send ¼ max fsfast; scritg: ð52Þ

The slow-roll parameters in Eq. (49) also allow us to
compute the inflationary CMB observables,

As ¼
1

24π2
V

εM4
Pl

; ns ¼ 1þ 2η − 6ε; ð53Þ

whereAs and ns denote the amplitude and the spectral index
of the scalar power spectrum, respectively. An important
step in our analysis will be to identify the parameter regions
that manage to reproduce the measured values of these
observables. According to the Planck 2015 data [67],

Aobs
s ≃ 2.2 × 10−9;

nobss ≃ 0.9645 ðTT;TE;EEþ lowPÞ: ð54Þ

Wewill not be interested in the tensor-to-scalar ratio r. This
observable is predicted to be unobservably small in the
entire parameter space of interest [see the discussion related
to Eq. (17)]. The expressions in Eq. (53) can be used to
compute theoretical predictions for As and ns. To this end,
the slow-roll parameters ε and η need to be evaluated at
s ¼ s�, i.e., at the inflaton field value that corresponds to the
horizon exit of the CMB pivot scale N� e-folds before the
end of inflation,

N� ≃ 47.4þ 1

3
ln

�
Hinf

109 GeV

�
þ 1

3
ln

�
Trh

109 GeV

�
; ð55Þ

where Trh denotes the reheating temperature after inflation.
If not specified otherwise, we will use Trh ≃ 109 GeV as a
benchmark in the following, which is motivated by thermal
leptogenesis [121].

The dynamics of the inflaton field are governed by the
following slow-roll equation of motion:

s0 ¼Δ
�
s0
s
−1

�
s0; s0 ¼ ds

Ne
; s0¼−

V0
1l

cs
: ð56Þ

Here, s0 stands for the derivative of the inflaton field s with
respect to the number of e-foldsNe until the end of inflation.
The reference field value s0 corresponds to the (would-be)
position of the localmaximum in the scalar potential. That is,
s0 is defined through the relation s0 ¼ −V0

1l=cs, which
coincides with smax in the hill-top regime (i.e., for ζ < 1).
The parameter Δ in Eq. (56) measures the strength of the
linear SUGRA term in the scalar potential in relation to the
radiative corrections,

Δ ¼ c2sM2
Pl

V0
1lV

0
F
¼ 1

3

�
8π

κ

�
2
�
m3=2

Hinf

�
2

: ð57Þ

Given the boundary condition that the field smust reach send
for Ne ¼ 0, Eq. (56) has a unique solution in terms of the
(principal branch of the) Lambert W function or product
logarithm W0,

sðNeÞ ¼ s0ð1þWÞ;

W ¼ W0

��
send
s0

− 1

�
exp

�
send
s0

− 1

�
e−ΔNe

�
: ð58Þ

W0 is the inverse function of the product function XeX and
thus features the following properties:

X ¼ W0ðXÞeW0ðXÞ; W0ðXeXÞ ¼ X;

W0ð0Þ ¼ 0; W0ðXÞ ≥ −1: ð59Þ

The solution in Eq. (58) can also be written as a function of
the three parameters ηmax, Ne, and Δ,

sðNeÞ ¼ s0ð1þWÞ; W ¼ W0ðXeX−ΔNeÞ;

X ¼
�

Δ
ηmax

�
1=2

− 1: ð60Þ

With the aid of Eq. (60), the slow-roll parameters ε and η
in Eq. (49) can be written as follows:

ε ¼
�

κ

4π

�
2
�

W
1þW

�
2

Δ; η ¼ −
�

1

1þW

�
2

Δ: ð61Þ

These explicit expressions illustrate once more that ε is
suppressed by a loop factor compared to η. In the
computation of the scalar spectral index ns, we can there-
fore neglect ε and simply use
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ns ≈ 1þ 2η ¼ 1 −
2Δ

ð1þWÞ2 : ð62Þ

This relation allows us to compute ns as a function of ηmax,
Ne, and Δ. Or, in other words, for given values of ηmax and
Ne, themeasured value nobss directly translates into a specific
value for Δ,

ηmax ¼ 10−0.5; N� ¼ 50; ns ¼ nobss

⇒ Δ ≃ 7.1 × 10−3: ð63Þ

This is an important result that eliminates one free parameter
from our analysis. First of all, we note that the numerical
values in Eq. (63) fix the field value s� at the time of CMB
horizon exit,

ηmax¼ 10−0.5; N� ¼ 50; Δ≃7.1×10−3

⇒W≃−0.37; s�≃0.63smax: ð64Þ

Butmore importantly, themeasured value ofΔ also fixes the
relation between m3=2 and Hinf ,

m3=2 ¼
κ

8π

ffiffiffi
3

p
Δ1=2Hinf ≃ 5.8 × 10−4Hinf

�
κ

0.1

�
: ð65Þ

Evidently, the gravitino mass needs to be several orders of
magnitude smaller than the inflationary Hubble rate in order
to explain the observed scalar spectral index, m3=2 ≪ Hinf .
This conclusion justifies our decision to neglect the quad-
raticmass term inEq. (40).Moreover, the relation in Eq. (65)
also results in a numerical expression for the parameter ζ as a
function of the coupling κ,

ζ ¼ 4κ

3
ffiffiffi
3

p
πΔ

≃ 3.5

�
κ

0.1

�
: ð66Þ

For κ ≥ 3=4
ffiffiffi
3

p
πΔ ≃ 2.9 × 10−2, inflation therefore occurs

in the inflection-point regime, while for smaller κ values, it
occurs in the hill-top regime. According to Eq. (66), we also
expect that our analysis in the small-λs approximation
should be reliable as long as κ ≲ 0.1 so that ζ ≲Oð1Þ.
In addition to nobss , we can also use the observed value of

the scalar spectral amplitude, Aobs
s , to eliminate yet another

parameter from the analysis. Making use of Eqs. (53) and
(61), we can write

As ¼
2

3κ2Δ

�
1þW
W

�
2
�

μS
MPl

�
4

: ð67Þ

The condition As ¼ Aobs
s can then be solved for the inflaton

F-term mass scale as a function of κ,

μS ¼
�
3

2
Aobs
s Δ

�
1=4

�
κjWj
1þW

�
1=2

MPl

≃ 1.3 × 1015 GeV

�
κ

0.1

�
1=2

: ð68Þ

This result immediately fixes the SSB scale of the waterfall
transition at the end of inflation,

v¼ð6Aobs
s ΔÞ1=4

� jWj
1þW

�
1=2

MPl≃5.8×1015 GeV; ð69Þ

which is remarkably close to the GUT scale in typical SUSY
GUT scenarios, ΛGUT ∼ 1016 GeV. The numerical result in
Eq. (69) therefore serves as another indication that FHI
is, indeed, well suited to be embedded into a bigger GUT
framework. Equation (69) also fixes the cosmic string tension,

GμCS ¼
�
3

8
Aobs
s Δ

�
1=2 ϵCSjWj

1þW
≃6.4×10−7

�
ϵCS
0.45

�
; ð70Þ

where we used that ϵCS ≃ 0.45 for κ ¼ 10−1 [see Eqs. (36)
and (37)]. In view of Eq. (70), we conclude that FHI in the
large-κ regime produces cosmic strings with a large tension
that is conflict with the observational bound in Eq. (33).
Therefore, if we take the bound in Eq. (33) seriously, FHI
in the large-κ regime is ruled out. Alternatively,we can simply
presume that the gauge symmetryG already becomes broken
in a different sector before the end of inflation. In this case, we
do not need to worry about the large cosmic string tension in
Eq. (70) [see the discussion below Eq. (38)].
In consequence of the two conditions ns ¼ nobss and

As ¼ Aobs
s , the viable parameter space of FHI shrinks to a

one-dimensional hypersurface that can be parametrized in
terms of the Yukawa coupling κ. The Hubble rateHinf , e.g.,
follows immediately from the expression for μS in Eq. (68),

Hinf ¼
�
1

2
Aobs
s Δ

�
1=2 κjWj

1þW
MPl≃4.0×1011 GeV

�
κ

0.1

�
:

ð71Þ
Thanks to the relation in Eq. (65), this result for Hinf
determines in turn the gravitino mass m3=2,

m3=2¼
�
3

2
Aobs
s

�
1=2 κ2

8π

ΔjWj
1þW

MPl≃2.3×108 GeV

�
κ

0.1

�
2

:

ð72Þ
At this point, we emphasize that Eq. (72) corresponds to the
solution for m3=2 on the negative real axis. As shown in
Ref. [102], more complicated trajectories in the complex
inflaton plane also lead to successful inflation; however,
keeping the value of Hinf fixed, these alternative solutions
are all associated with a larger value of m3=2. In this sense,
the expression in Eq. (72) should be regarded as a lower
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bound on the gravitino mass in FHI [see the discussion
below Eq. (28)]. Furthermore, given the κ dependence of μS
andm3=2 in Eqs. (68) and (72), we are now able to compute
the critical κ value that separates the large-κ regime (in
which x� ≫ 1) from the small-κ regime (in which x� ≃ 1),

sscrit ¼ smax⇒ κ0¼ 4

�
π2

m3=2ðκ0Þ
μSðκ0Þ

�
2=5

≃1.8×10−3: ð73Þ

As anticipated at the beginning of this section, the critical κ
value is, indeed, of Oð10−3Þ.
The expressions for Hinf and m3=2 in Eqs. (71) and (72)

mark the main technical results in this section. Based on
these results, we can now determine the implications of the
CDM isocurvature constraint on the parameters of FHI in
the large-κ regime. Confronting our explicit expression for
Hinf in Eq. (71) with the upper bound in Eq. (15), we arrive
at the following upper bound on κ:

κ ≲ 3.1 × 10−3
�

1

Fa
DM

�
1=2

�
fa
MPl

�
0.42

: ð74Þ

This is a tight constraint on the inflaton Yukawa coupling κ.
In fact, only for a very large axion decay constant, fa ∼MPl,
the bound in Eq. (74) manages to exceed the critical κ value
in Eq. (73). In view of this result, it is important to remember
that a Planck-scale axion decay constant is questionable for
both theoretical and phenomenological reasons. On the one

hand, string theory suggests that it is impossible to realize an
axion decay constant larger than the Planck scale. Values as
large as f ∼MPl are therefore only marginally feasible.
Instead, string theory rather points to axion decay constants
of the order of fa ∼ 1016…1017 GeV [122–124]. On the
other hand, spin measurements of stellar black holes
allow us to constrain fa based on the phenomenon of black
hole superradiance. At present, these measurements exclude
fa values in the range 3 × 1017 GeV≲ fa ≲ 1019 GeV
[123,125,126]. We thus conclude that FHI in the large-κ
regime is highly constrained by the CDM isocurvature
bound. A viable region in parameter space survives only
if fa ∼MPl for one reason or another. Making use of
Eq. (72), the bound in Eq. (74) can also be formulated as
an upper bound on m3=2,

m3=2 ≲ 2.2 × 105 GeV

�
1

Fa
DM

��
fa
MPl

�
0.83

: ð75Þ

Again,we stress that this is an inclusive upper bound onm3=2

that guarantees that the CDM isocurvature constraint in
Eq. (15) is satisfied, no matter which inflationary trajectory
is chosen in the complex inflaton plane. A more extensive
analysis assessing the dependence on the chosen trajectory is
much more involved and beyond the scope of this work. In
Fig. 2, we show the upper bounds on μS,m3=2, etc., for a few
representative values of fa. The plots in Fig. 2 are based on a
fully numerical analysis of slow-roll inflation in the
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FIG. 2. Parameter values for F-term hybrid inflation that reproduce the CMB data, As ¼ Aobs
s and ns ¼ nobss , in combination with the

CDM isocurvature constraint for several values of the axion decay constant and different assumptions regarding the axion DM fraction.
The stronger (weaker) bounds correspond to Fa

DM ¼ 1 (Fa
DM ¼ 0.1). (Left panel) One-dimensional hypersurface in the μS–m3=2 plane

that manages to reproduce the observed CMB data. (Right panel) Various mass scales that are relevant in the description of FHI as
functions of the Yukawa coupling κ. Both plots are based on a numerical analysis that accounts for the complete scalar potential in
Eqs. (24) and (31).
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complete scalar potential of FHI [see Eqs. (24) and (31)].
The comparison between these plots and the analytical
results derived in this section demonstrates that our ana-
lytical calculations reproduce the exact results very well.
This observation serves as a cross-check and validates the
various approximations in the above discussion.
Finally, we use the expression for Hinf in Eq. (71) to

determine the parameter region in which the PQ symmetry
actually remains intact during inflation. In this case, the
requirement Hinf > fa results in lower bounds on the
Yukawa coupling κ and the gravitino mass m3=2,

κ ≳ 2.5 × 10−3
�

fa
1010 GeV

�
;

m3=2 ≳ 1.5 × 105 GeV

�
fa

1010 GeV

�
2

: ð76Þ

Thus, for low values of the axion decay constant,
fa ∼ 1010 GeV, the PQ symmetry is only spontaneously
broken after inflation, which may result in the production of
dangerous domain walls.

C. Inflation close to the waterfall phase transition

In the previous section, we saw that FHI in the large-κ
regime is highly constrained by the nonobservation
of axion isocurvature perturbations and the upper bound
on the cosmic string tension. This situation changes in
the small-κ regime, which opens up the possibility to
lower the inflationary Hubble scale to smaller values,
Hinf ≲Oð109Þ GeV. This scenario is therefore compatible
with values of the axion decay constant significantly below
the Planck scale, fa ≪ MPl. However, it is clear from the
outset that this improvement over the large-κ regime is not
for free. The price one has to pay is an additional tuning in
the initial conditions of inflation. In the small-κ regime, the
local maximum in the scalar potential is located in the
direct vicinity of the critical field value that triggers
the waterfall transition. The initial field value sini thus
has to be tuned to lie in the small interval in between scrit
and smax to ensure that inflation proceeds in the correct
direction in field space. Otherwise, i.e., for sini > smax, the
inflaton will roll toward the false vacuum at s ¼ smin, so
inflation never ends (see the right panel of Fig. 1). On the
other hand, we stress that a fine-tuning of the initial
conditions is of a different conceptual quality than a
fine-tuning of model parameters. One may, e.g., speculate
that the evolution of the inflaton field prior to inflation is
responsible for a dynamical selection of initial field values
close to smax for one reason or another. In addition, as
shown in Ref. [102], the issue of initial conditions in FHI
becomes relaxed if one accounts for all possible trajectories
in the complex plane. In this case, it is possible that the
inflaton trajectory starts out at large field values and then
bends in just the right way to avoid the local minimum at

s ¼ smin. Finally, we point out that the small-κ regime does
not require any unnatural fine-tuning of model parameters.
In the κ → 0 limit, the waterfall fields cease to participate in
Yukawa interactions. This restores a global Uð1Þ ×Uð1Þ
symmetry in the waterfall sector that contains the local
gauge symmetry G as a subgroup. Small κ values are
therefore natural in the sense of ’t Hooft [127].
In the small-κ regime, we can no longer use the large-

field expansion of the loop function L in Eq. (39). Instead,
we now have to evaluate L in the vicinity of the critical field
value scrit,

LðxÞ¼L2ðyÞþOðy3Þ; x¼
�

s
scrit

�
2

; y¼ s
scrit

−1: ð77Þ

Here, L2 encompasses the leading contributions to L up to
second order in the new field variable y,

L2ðyÞ ¼ c0 þ c1yþ
1

2
ðc2 þ c̄2 ln yÞy2: ð78Þ

The coefficients c0, c1, c2, and c̄2 can be determined
analytically,

c0 ¼ 2 ln 2 −
3

2
; c1 ¼ 4 ln 2;

c2 ¼ 6ð2 ln 2 − 1Þ; c̄2 ¼ 4: ð79Þ
Given this expansion of the radiative one-loop corrections,
the inflaton potential now reads

V ≃ V0
F þ cssþ

1

2
V0
1lL2ðyÞ; ð80Þ

where we again neglected the quartic SUGRA term.
Correspondingly, ε and η in Eq. (49) turn into

ε ¼ 1

2

�
csscrit þ c1V0

1l=2
V0
F

�
2
�
MPl

scrit

�
2

;

η ¼ V0
1l

2V0
F

�
c2 þ

3

2
c̄2 þ c̄2 ln y

��
MPl

scrit

�
2

: ð81Þ

Also, the slow-roll equation of motion in Eq. (56) obtains a
new form. To leading order, we can write

s0 ¼
ffiffiffi
2

p
ε1=2MPl: ð82Þ

This equation can be readily integrated, resulting in the
following expression for the inflaton field s:

sðNeÞ ¼ scrit þ
ffiffiffi
2

p
ε1=2MPlNe: ð83Þ

As before, we shall now eliminate two free parameters
by making use of the conditions As ¼ Aobs

s and ns ¼ nobss .
To this end, we first solve As ¼ Aobs

s for the slow-roll
parameter ε [see Eq. (53)],
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ε ¼ 1

24π2
V0
F

Aobs
s M4

Pl

: ð84Þ

Then, we equate this result with the expression for ε in
Eq. (81) and solve for the gravitino mass,

m3=2 ¼
�
ln 2 κ5=2 −

2
ffiffiffi
2

p
πffiffiffi

3
p ðAobs

s Þ1=2
�

μS
MPl

�
3
�

μS
16π2

: ð85Þ

Next, we make use of the condition ns ¼ nobss . Again, we
approximate ns ≈ 1þ 2η, such that

ns ≈ 1þ 2 ln ð8y�Þδ: ð86Þ

Here, the dimensionless parameter δ characterizes the
curvature of V1l close to the critical field value,

δ ¼ 2V0
1l

V0
F

�
MPl

scrit

�
2

¼ κ3

8π2

�
MPl

μS

�
2

: ð87Þ

Meanwhile, y� stands for the field variable y evaluated at
the time of the CMB horizon exit,

y� ¼
s�
scrit

− 1 ¼
ffiffiffi
2

p
ε1=2N�

MPl

scrit
¼ κ2

8
ffiffiffi
3

p
π2

N�
ðAobs

s δÞ1=2 : ð88Þ

Putting everything together, we find that the scalar spectral
index can be written as follows6:

ns ¼ 1 − ln

�
3π4

κ4
Aobs
s

N2�
δ

�
δ: ð89Þ

In the next step, we explicitly solve the condition ns ¼ nobss
for the curvature parameter δ,

δ ¼ 1 − nobss

W0ðYÞ
; Y ¼ ð1 − nobss Þ 3π

4

κ4
Aobs
s

N2�
; ð90Þ

where W0 again denotes the Lambert W function [see
Eq. (59)]. The result in Eq. (90) enables us to compute δ as
a function of N� and κ. For N� ¼ 47.5 and κ ¼ 10−5, we
find, e.g., δ ≃ 0.002. The dependence of δ on the Yukawa
coupling κ is in general rather weak. For κ values in
between 10−7 and 10−3, the parameter δ varies only by
roughly an order of magnitude, 0.001≲ δ≲ 0.02.
The definition of δ in Eq. (87) can be solved for the

inflaton F-term mass scale. We, thus, obtain

μS ¼
�

κ3

8π2δ

�
1=2

MPl

≃ 1.9 × 1011 GeV
�
0.002
δ

�
1=2

�
κ

10−5

�
3=2

: ð91Þ

Again, this result immediately translates into an expression
for the SSB scale v,

v ¼ κMPl

2πδ1=2
≃ 8.7 × 1013 GeV

�
0.002
δ

�
1=2

�
κ

10−5

�
; ð92Þ

which now turns out to be parametrically suppressed
compared to the GUT scale, ΛGUT ∼ 1016 GeV. Unlike
Eq. (69), Eq. (92) results in a parameter-dependent expres-
sion for the cosmic string tension,

GμCS¼
�

κ

4π

�
2ϵCS
δ

≃3.2×10−11
�
0.002
δ

��
κ

10−5

�
2
�
ϵCS
0.10

�
;

ð93Þ

where we used that ϵCS ≃ 0.10 for κ ¼ 10−5 [see Eqs. (36)
and (37)]. Therefore, for a sufficiently small value of the
Yukawa coupling κ, there is no problem to satisfy the bound
on the cosmic string tension in Eq. (33). As mentioned
above, the only price to pay is an increased tuning in the
initial conditions for inflation. Equation (91) also results in
an expression for the inflationary Hubble rate,

Hinf ¼
κ3MPl

8
ffiffiffi
3

p
π2δ

≃9.0×103 GeV

�
0.002
δ

��
κ

10−5

�
3

; ð94Þ

which now scales more strongly with κ than in the large-κ
regime [see Eq. (71)]. Similarly, we can use the results in
Eqs. (85) and (91) to obtain an expression for m3=2 as a
function of κ,

m3=2 ¼
�
ln 2 −

κ2

8
ffiffiffi
3

p
π2ðAobs

s Þ1=2δ3=2
�

κ4MPl

32
ffiffiffi
2

p
π3δ1=2

: ð95Þ

For small κ, the ln2 term dominates the square brackets on
the rhs of this expression, such that

m3=2≈
ln2κ4MPl

32
ffiffiffi
2

p
π3δ1=2

≃2.7×10−4 GeV

�
0.002
δ

�
1=2

�
κ

10−5

�
4

:

ð96Þ

With the above results at hand, we can again use the
CDM isocurvature bound in Eq. (15) to constrain the
parameter space of FHI. However, this time, we need to
determine all bounds numerically because of the compli-
cated κ dependence of the parameter δ [see Eq. (90)]. First,
we compare our result for Hinf in Eq. (94) with Eq. (15) to
determine an upper bound on κ,

6A similar formula appears in Ref. [102]. Here, we extend the
analysis in Ref. [102] by explicitly solving ns ¼ nobss for δ.
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κ ≲ 1.0 × 10−3
�

1

Fa
DM

�
0.21

�
fa

1016 GeV

�
0.17

: ð97Þ

This constraint is consistent with the critical κ value in
Eq. (73) that separates the small-κ regime from the large-κ
regime. In particular, as we are working with small values
of κ in this section, the axion decay constant fa can now be
chosen to be significantly smaller than the Planck scale.
Combining our results in Eqs. (96) and (97), we are also
able to deduce an upper bound on m3=2,

m3=2≲9.4×103 GeV
�

1

Fa
DM

�
0.76

�
fa

1016 GeV

�
0.63

: ð98Þ

Just like the bound in Eq. (75), this bound is again an
absolute upper bound that guarantees that the CDM
isocurvature constraint is satisfied for all possible trajecto-
ries in the complex plane. The (quasi)analytical result in
Eq. (98) needs to be compared to the fully numerical result
in Fig. 2. Again, we find excellent agreement, which
confirms the validity of the above analytical discussion.
Equation (96) can also be used to translate the upper bound
on the cosmic string tension in Eq. (33) into an upper bound
on the gravitino mass. The combination of Eqs. (33), (93),
and (96) results in

GμCS < Gμmax
CS

⇒ κ ≲ 1.8 × 10−3; m3=2 ≲ 3.2 × 104 GeV: ð99Þ

where we used that ϵCS ≃ 0.18 for κ ¼ 1.8 × 10−3 [see
Eqs. (36) and (37)]. Note that the upper bound on κ
accidentally coincides with the critical κ value in Eq. (73).
By coincidence, the region in parameter space where
GμCS < Gμmax

CS therefore happens to be identical with the
small-κ regime. Thanks to Eqs. (91), (92), and (94), the
bounds in Eq. (99) also result in the following constraints:

v ≲ 3.6 × 1015 GeV; μS ≲ 1.1 × 1014 GeV;

Hinf ≲ 2.8 × 109 GeV: ð100Þ

This result is consistent with the bound on the SSB scale v
in Eq. (38).
Finally, similarly to the large-κ case, we conclude by

determining the region in parameter space where the PQ
symmetry remains intact during inflation. Combining
Eqs. (94) and (96) with the requirement that Hinf must
exceed fa, we obtain the following lower bounds on κ
and m3=2:

κ≳3.4×10−4
�

fa
108 GeV

�
0.39

;

m3=2≳1.8×102 GeV

�
fa

108 GeV

�
1.47

: ð101Þ

Thus, for small values of the axion decay constant fa,
there are also viable parameter combinations in the small-κ
regime that are compatible with the postinflationary PQSB
scenario.

IV. LOW-SCALE D-TERM HYBRID INFLATION

A. Model setup and scalar potential

In Sec. III, we discussed the slow-roll dynamics of
FHI and the compatibility with the CDM isocurvature
constraint in Eq. (15). We found an absolute upper
bound on the Yukawa coupling κ of Oð10−3Þ [see
Eq. (74)] and a corresponding bound on the gravitino mass
m3=2 of Oð105Þ GeV [see Eq. (75)]. Moreover, we con-
cluded that the large-κ regime of FHI is strongly constrained
by the nonobservation of axion isocurvature perturbations
and the upper bound on the cosmic string tension. Likewise,
we concluded that the small-κ regime of FHI manages to
avoid these constraints, however, at the price of a moderate
fine-tuning of the initial conditions of inflation. In addition,
we recall that both regimes of FHI actually need to be
described as a two-field model of inflation. As shown in
Ref. [102], this includes the possibility of inflaton trajecto-
ries in the complex plane that fail to reach the critical field
value scrit. FHI therefore requires an additional selection
mechanism among all possible trajectories, ensuring that
inflaton ends in a successful waterfall transition.
In this section, we will now show that most of the above

problems related to FHI are absent in the case of DHI. The
reason for this is twofold. First of all, DHI is a standard
single-field model of inflation. The inflaton field does not
possess an F term, and hence the rotational invariance in the
complex plane remains unbroken. Thus, there are no
problems related to the proper choice of trajectory in field
space. Second, in contrast to FHI, the dynamics of DHI are
controlled by the magnitude of the gauge coupling constant
g. This provides a larger parametric freedom that can be
used to achieve a low Hubble rate even in the large-κ
regime. In DHI, it is therefore possible to satisfy the CDM
isocurvature constraint without any fine-tuning of the initial
conditions. Only the issue of cosmic string formation
during the waterfall transitions remains more or less
unaffected. Also in DHI, the cosmic string tension can
only be successfully suppressed if the inflaton Yukawa
coupling κ is set to a small value, κ ≲Oð10−4Þ. However,
we reiterate that this constraint becomes null if cosmic
strings already form before the end of inflation [see the
discussion below Eq. (38)].
We begin by describing the setup of our model and

collecting a few important properties of the scalar potential.
Again, we will incorporate the effect of spontaneous SUSY
breaking in the form of a hidden Polonyi sector that couples
to the inflaton sector only via gravitational interactions. The
superpotential of our model thus follows from Eq. (19) after
setting the inflaton F-term mass scale to zero, μS → 0. The
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Kähler potential remains unchanged and is the same as in
FHI [see Eq. (20)],

W¼ κSΦΦ̄þμ2XXþw;

K¼ S†SþΦ†Φþ Φ̄†Φ̄þX†Xþ χ

M2
Pl

S†SX†Xþ�� � :
ð102Þ

We continue to assume that X is safely stabilized at the
origin in field space, hXi ¼ 0, such that the relations in
Eq. (21) remain valid also in the case of DHI. The crucial
difference between FHI and DHI is that, instead of an
inflaton F term in the superpotential, DHI features a
nonvanishing Fayet-Iliopoulos (FI) D term [128]. This
results in an FI parameter ξ in the D-term scalar potential,

VD ¼ g2

2
½q0ξ − qðjϕj2 − jϕ̄j2Þ�2: ð103Þ

For definiteness, we will assume ξ > 0. The gauge charge
q0 in front of ξ serves as a rescaling factor that can take
different values depending on the dynamical origin of the
FI parameter. Without loss of generality, we will simply set
q0 ¼ q ¼ 1 in the following. This is possible since the case
of general gauge charges q0 and q can always be restored
by the following reparametrization of g and ξ:

g → g0 ¼ g
q
; ξ → ξ0 ¼ q

q0
ξ: ð104Þ

The origin of the FI parameter ξ in Eq. (103) has been the
subject of a long debate in the literature. In particular, it has
been pointed out that it is not possible to consistently
embed a genuine (i.e., constant) FI parameter ξ into
SUGRA [129,130]. Therefore, ξ needs to be an effective
FI parameter that depends on the VEVs of scalar moduli.
This can, e.g., be achieved in string theory [131,132] via the
Green-Schwarz mechanism of anomaly cancellation [133]
or in strongly coupled gauge theories via the effect of
dimensional transmutation [134] (see Refs. [81,82] for an
explicit DHI model). Besides that, there have recently been
various proposals for nonstandard FI terms that can be
consistently embedded into SUGRA after all [135,136] (see
Ref. [137] for an explicit DHI model). However, in this
paper, we will not delve into the details of this issue.
Instead, we will simply assume that an appropriate ultra-
violet completion—presumably related to one of the
mechanisms listed above—results in an effective FI term
that can be treated as a constant for the purposes of
inflation. Any further speculations regarding the origin
of the FI parameter ξ are beyond the scope of this work.
The waterfall fields are again stabilized at zero during

inflation, hΦi ¼ hΦ̄i ¼ 0. However, in DHI, only one field
obtains a VEV during the waterfall transition. Given our
sign conventions,

hΦi ¼ vffiffiffi
2

p ; hΦ̄i ¼ 0; v ¼
ffiffiffiffiffi
2ξ

p
; ð105Þ

where v is again normalized such that it corresponds to the
VEV of the real Higgs scalar contained in Φ. The F-term
scalar potential of DHI simply follows from setting μS → 0
in Eq. (24),

VF ¼ ez
1 − χð3 − zÞ
2ð1þ χzÞ m2

3=2s
2; z ¼ s2

2M2
Pl

: ð106Þ

The disappearance of the inflaton F term also eliminates
the dependence on the complex inflaton phase φ. DHI is
therefore, indeed, a single-field model that preserves the
rotational invariance in the complex inflaton plane.
Moreover, the F-term scalar potential in Eq. (106) no
longer contains odd powers of the real inflaton field s.
Most notably, the linear tadpole term that is crucial for the
dynamics of FHI [see Eq. (28)] is now absent. The only
terms that survive at small field values are the quadratic
mass term and the quartic self-interaction. Analogously to
Eq. (26), we can write

VF ¼ 1

2
m2

ss2 þ
1

24
λss4 þOðs6Þ; ð107Þ

where the coefficients m2
s and λs are identical to the

expressions in Eq. (29) in the limit μS → 0,

m2
s ¼ ð1 − 3χÞm2

3=2;

λs ¼ 6ð1 − 3χ þ 3χ2Þ
�
m3=2

MPl

�
2

: ð108Þ

Evidently, the mass squared m2
s remains unchanged, while

the quartic self-coupling constant λs no longer receives a
contribution from the superpotential in the inflation sector.
DHI only manages to reproduce the correct scalar spectral
index, ns ¼ nobss , if the F-term scalar potential yields a
negative contribution to the slow-roll parameter η. For this
reason, we must require that χ > 1=3. In fact, we will
simply set χ ¼ 1 in the remainder of our analysis for
definiteness. The exact value of the quartic coupling λs will
be irrelevant in the viable region of parameter space. In this
sense, we can set χ ¼ 1 even without loss of generality,
since any alternative value of χ (larger than 1=3) would
simply correspond to a rescaling of the gravitino mass,
m3=2 → m0

3=2 ¼ ½2=ð3χ − 1Þ�1=2m3=2. The F-term scalar
potential in Eq. (106) also no longer contains a constant
SUSY-breaking contribution V0

F. Instead, the vacuum
energy density driving inflation is now provided by the
constant contribution to the D-term scalar potential along
the inflationary trajectory (where hΦi ¼ hΦ̄i ¼ 0),

V0
D ¼ 1

2
g2ξ2: ð109Þ

To good approximation, the inflationary Hubble rate Hinf
during DHI is therefore given by
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Hinf ≃
ðV0

DÞ1=2ffiffiffi
3

p
MPl

¼ gξffiffiffi
6

p
MPl

: ð110Þ

Next, let us determine the mass spectrum of the waterfall
sector in the global-SUSY limit and compute the one-loop
effective potential. For the scalars, we find masses similar
to those in Eq. (30),

m2
� ¼m2

eff �m2
D; m2

eff ¼
1

2
κ2s2; m2

D ¼ g2ξ; ð111Þ

which can also be written as m2
� ¼ κ2=2ðs2 � g2=κ2v2Þ.

From this expression, we read off the critical inflaton field
value, scrit ¼ g=κv, which now exhibits a slightly more
complicated parameter dependence than in the case of FHI
(where one simply has scrit ¼ v). In the following, we shall
restrict ourselves to parameter values that lead to sub-
Planckian values of scrit. This is motivated by the fact that,
at larger scrit, the dynamics of inflation become sensitive to
Planck-suppressed operators in the Kähler potential over
which we only have limited control. The requirement of a
sub-Planckian critical field value, scrit ≲ 10−0.5MPl, can be
used to constrain the gauge coupling g from above,

g≲κsmax
crit

v
≃7.7×10−2

�
κ

10−5

��
1014 GeV

v

��
smax
crit

10−0.5MPl

�
;

ð112Þ

which restricts part of the parameter space in the small-κ
regime. Of course, this bound can be avoided as soon as one
is willing to make additional assumptions regarding the
structure of the Kähler potential at super-Planckian field
values. Large values of scrit can, e.g., be achieved in
combination with a shift symmetry along the inflaton
direction in the Kähler potential [138,139]. In this case, a
significant amount of inflation can even occur at subcritical
field values, s < scrit, while the combined inflaton-waterfall-
field system slowly rolls toward the true vacuum (see also
Refs. [140–142]). However, in this paper, we will neglect
this possibility and simply focus on the standard scenario of
inflation prior to the waterfall transition. In addition to
the scalar mass eigenvalues in Eq. (111), we also need
to know the mass of the waterfall fermion ϕ̃. Again, ϕ̃
acquires a Dirac mass that coincides with the effective
supersymmetric mass induced by the inflaton VEV in the
superpotential, m2

ϕ̃
¼ m2

eff . The one-loop effective potential

V1l can thus be brought into (almost) the same form as in
FHI,

V1l ¼ 1

2
V0
1lLðxÞ; V0

1l ¼ m4
D

8π2
;

x ¼
�

s
scrit

�
2

¼
�
meff

mD

�
2

¼
�
κ

g

�
2
�
s
v

�
2

: ð113Þ

This result differs from the expression in Eq. (31) only in
terms of two minor details. First of all, the overall
energy scale (characterized by the constant factor V0

1l) is
now determined by the D-term-induced mass parametermD
instead of the F-term-induced mass parameter mF. Second,
the parameter dependence of the field variable x is slightly
different because of the more complicated expression for
scrit. However, the loop functionL remains unchanged and is
still given as in Eq. (32).
Finally, we comment on the production of cosmic strings

in the waterfall transition at the end of inflation. In the case
of DHI (and for our sign conventions), the chiral waterfall
field Φ plays the role of both the symmetry-breaking Higgs
multiplet H and the Goldstone multiplet A [see the
discussion around Eq. (34)]. For this reason, the mass of
the physical Higgs boson, mH, and the mass of the vector
boson,mV , automatically coincide with each other after the
waterfall transition, m2

H ¼ m2
V ¼ 2g2ξ. As a consequence,

DHI always saturates the Bogomolny limit, such that
β ¼ 1 and ϵCS ¼ 1 [see Eq. (35)]. Furthermore, there is
only one real Higgs scalar that participates in the process
of spontaneous symmetry breaking. In DHI, the cosmic
string tension is therefore simply given by the analytical
Bogomolny expression, μCS ¼ πv2. In Planck units, this
can be written as

GμCS ¼
1

8

�
v

MPl

�
2

¼ 1

4

� ffiffiffi
ξ

p
MPl

�
2

: ð114Þ

Together with Eq. (33), this expression results in the
following upper bound on the FI parameter ξ:

ffiffiffi
ξ

p ≲ 1.5 × 1015 GeV

�
Gμmax

CS

10−7

�
1=2

: ð115Þ

In the following, we will again discuss two different
interpretations of this bound. On the one hand, we will
explicitly illustrate its consequence for the other parameters
of DHI. On the other hand, we will simply ignore it and
explore all of parameter space, including the regions that
violate Eq. (115).

B. Inflation far away from the waterfall
phase transition

Let us now turn to the slow-roll dynamics of DHI.
Similarly as in Sec. III, we will split our analysis into two
parts and discuss the regimes of large and small κ values
separately. However, this time, the distinction between
large and small κ values will be less crucial than for FHI.
The dynamics of DHI are controlled by the interplay
between the Yukawa coupling κ and the gauge coupling
g. This provides us with a larger parametric freedom that
we can use to satisfy the CDM isocurvature constraint for a
broad range of axion decay constants for both large and
small κ values. In this section, we will first consider the
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large-κ regime. The small-κ regime will be discussed in
Sec. IV C.
Large-κ values result again in a large inflaton field

excursion from the critical field value. We can therefore
use Eq. (39) again to approximate the loop function L in the
one-loop effective potential by a simple logarithm. The
combination of Eqs. (107), (109), and (113) then yields the
following approximate expression for the total scalar
potential far away from the critical field value,

V ≃ V0
D þ 1

2
m2

ss2 þ
1

24
λss4 þ

1

2
V0
1l lnðxÞ: ð116Þ

In Fig. 3, we plot the full scalar potential for two represen-
tative κ values, κ ¼ 10−1 and κ ¼ 10−3, and compare it with
the field-dependent contributions in Eqs. (116) and (144)
(see below in Sec. IV C). In both cases, we conclude that the
quadratic, quartic, and radiative terms are adequate to
describe the full shape of the scalar potential at field values
below the Planck scale. We also find that the scalar potential
always features an inflection point. To see this, recall that our
choice for the χ parameter, χ ¼ 1, results in a tachyonic
inflaton mass,m2

s ¼ −2m2
3=2 < 0 [see the discussion below

Eq. (108)]. Thus, there is always a point in field space, sflex,
where the positive curvature due to the quartic self-inter-
action term is balanced by the negative curvature due to the
logarithmic one-loop term and the quadraticmass term, such
that V 00ðsflexÞ ¼ 0. For a certain critical gravitino mass, this
inflection point turns again into a saddle point. Analogously
to Eq. (43), we now have

mcrit
3=2 ¼

�
λsV0

1l

−3m2
s

�
1=2

¼ ðV0
1lÞ1=2
MPl

¼ g2

2
ffiffiffi
2

p
π

ξ

MPl

≃ 4.6 × 104 GeV

�
g

10−4

�
2
� ffiffiffi

ξ
p

1016 GeV

�
2

: ð117Þ

As in Sec. III, mcrit
3=2 allows us to distinguish between a hill-

top and an inflection-point regime. Again, we introduce a
parameter ζ that is less (greater) than unity in the hill-top
(inflection-point) regime,

ζ ¼
�
mcrit

3=2

m3=2

�
2

¼ g4

8π2

�
ξ

m3=2MPl

�
2

: ð118Þ

Making use of this definition, we derive compact expres-
sions for the location of the inflection point,

sflex ¼ ½1þ ð1þ 3ζÞ1=2�1=2MPlffiffiffi
3

p ; ð119Þ

aswell as for the positions of the local extrema, smax and smin,
in the hill-top regime (i.e., for ζ < 1),

smax ¼ ½1 − ð1 − ζÞ1=2�1=2MPl;

smin ¼ ½1þ ð1 − ζÞ1=2�1=2MPl: ð120Þ

Note that all three field values converge to the Planck scale in
the saddle-point limit, ζ → 1. In the following, we will,
however, mostly be interested in the small-ζ regime, which
is automatically realized for small values of the gauge
coupling g [see Eq. (118)]. In this regime, we can simplify
the expression for smax by expanding in small values of ζ. Up
to corrections of Oðζ3=2Þ, we obtain

smax ≃
ζ1=2ffiffiffi
2

p MPl ¼
�
V0
1l

−m2
s

�
1=2

¼ g2

4π

ξ

m3=2
: ð121Þ

This expression coincides with the result that one obtains if
one neglects the quartic self interaction in Eq. (116) from the
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FIG. 3. Total scalar potential for the real inflaton field s in D-term hybrid inflation for two representative values of the inflaton Yukawa
coupling κ. Parameter values: (left panel) κ ¼ 10−1,

ffiffiffi
ξ

p
≃ 6.9 × 1015 GeV, and m3=2 ≃ 6.9 × 107 GeV and (right panel) κ ¼ 10−3,ffiffiffi

ξ
p

≃ 3.3 × 1015 GeV, and m3=2 ≃ 1.6 × 107 GeV. In both panels, we set g ¼ 10−4, which results in a hill top in the potential. Both
parameter points are chosen such that they reproduce the measured CMB observables, As ¼ Aobs

s and ns ¼ nobss . The potential is always
bounded from below and positive at large field values. In both plots, we also compare the quadratic, quartic, and radiative contributions
to the total scalar potential.
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beginning, λs → 0. In fact, in the following, we will
exclusively consider the hill-top regime for small values
of g, such that inflation always occurs in between the critical
field value and the local maximum in the scalar potential,
s ∈ ½scrit; smax�. In this part of field/parameter space, the
quartic term can be safely neglected, which is why we will
set λs → 0 from now on.
In the next step, we compute the slow-roll parameters ε

and η. In parallel to Eq. (49), we obtain

ε¼ 1

2

�
m2

ss2þV0
1l

V0
D

�
2
�
MPl

s

�
2

; η¼Δ−
V0
1l

V0
D

�
MPl

s

�
2

:

ð122Þ

As usual in supersymmetric hybrid inflation, the slow-roll
parameter ε is suppressed by an additional factor V0

1l=V
0
D

compared to the slow-roll parameter η. The parameter Δ in
Eq. (122) accounts for the SUGRA correction to η in
consequence of the tachyonic mass term in Eq. (116) [see
also Eq. (57)],

Δ ¼ M2
Pl
m2

s

V0
D
¼ −

2

3

�
m3=2

Hinf

�
2

: ð123Þ

Slow-roll inflation ends and transitions into a fast-roll stage
as soon as η reaches ηmax [see Eq. (50)],

sfast ¼
�

V0
1l

m2
s þm2

max

�
1=2

¼ gMPl

ð4π2ηmax−2g2=ζÞ1=2 ;

m2
max ¼ ηmax

V0
D

M2
Pl

: ð124Þ

Here, m2
max denotes again the maximal curvature of

the scalar potential, V 00, that is allowed by the slow-
roll bound on the parameter η. Similarly as in Sec. III,
inflation ends as soon as the inflaton field ceases to
slowly roll in the scalar potential (i.e., at s ¼ sfast) or
once it reaches the critical point in field space that
triggers the waterfall transition (i.e., at s ¼ scrit),
send ¼ max fsfast; scritg.
In the hill-top regime, the slow-roll equation of motion

takes the following form [see also Eq. (56)]:

ðs2Þ0¼2Δðs2−s2maxÞ; ðs2Þ0¼2ss0; s2max¼−
V0
1l

m2
s
: ð125Þ

In combination with the boundary condition s ¼ send at
Ne ¼ 0, this first-order ordinary differential equation has a
unique solution that varies exponentially with the number
of e-folds Ne,

s2ðNeÞ¼s2maxð1þW̄Þ; W̄¼
��

send
smax

�
2

−1

�
e2ΔNe: ð126Þ

Here, the function W̄ plays a role similar to the Lambert
W function in Eq. (58). The solution in Eq. (126) can
also be written as a function of the three parameters
ηmax, Ne, and Δ,

s2ðNeÞ ¼ s2maxð1þ W̄Þ;

W̄ ¼ −
�
1þ Δ

ηmax þ Δ

�
e2ΔNe: ð127Þ

Together with Eq. (122), this function results in the compact
expressions for ε and η,

ε ¼
�
smax

MPl

�
2 ðW̄ΔÞ2
2ð1þ W̄Þ ; η ¼ ð2þ W̄ÞΔ

1þ W̄
; ð128Þ

fromwhich it is evident that ε is suppressed with respect to η
by a factor Δðsmax=MPlÞ2. Therefore, to compute the scalar
spectral indexns, we only need to take into account the slow-
roll parameter η,

ns ≈ 1þ 2η ¼ 1þ 2ð2þ W̄ÞΔ
1þ W̄

: ð129Þ

For given values of ηmax and Ne and requiring that DHI
in the large-κ regime must result in the correct scalar
spectral index, ns ¼ nobss , Eq. (129) can be used to
determine the parameter Δ,

ηmax ¼ 10−0.5; N� ¼ 47.5; ns ¼ nobss

⇒ Δ ≃ −4.9 × 10−3: ð130Þ

In contrast to FHI, we now obtain a negative value for Δ.
This is a direct consequence of the definition in Eq. (123)
and the negative sign of the inflaton mass squared in
Eq. (116). Thanks to Eq. (127), the numerical result in
Eq. (130) fixes the inflaton field value s� at the time of
CMB horizon exit,

ηmax ¼ 10−0.5; N� ¼ 47.5; Δ ≃ −4.9 × 10−3

⇒ W̄ ≃ −0.62; s� ≃ 0.62smax: ð131Þ

Accidentally, the ratio s�=smax obtains almost the same
value as in the case of FHI [see Eq. (64)]. Furthermore, we
can use the numerical value for Δ to fix the relation
between m3=2 and Hinf ,

m3=2 ¼
�
3

2
jΔj

�
1=2

Hinf ≃ 8.6 × 10−2Hinf : ð132Þ

This relation is analogous to Eq. (65). Now, however,
we find that the gravitino mass must only be mildly
suppressed compared to the Hubble rate. This underlines
the importance of the quadratic SUGRA term in the scalar
potential—in DHI, the soft inflaton mass term is supposed
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to result in a relative variation of the slow-roll parameter η
ofOð1Þ in order to achieve the correct value for ns. Finally,
the numerical Δ value also provides us with a numerical
expression for the parameter ζ,

ζ ¼ g2

2π2jΔj ≃ 1.0 × 10−7
�

g
10−4

�
2

: ð133Þ

Therefore, for sufficiently small values of g, we are always
deep inside the hill-top regime. Only for g ≥

ffiffiffi
2

p
πjΔj1=2≃

0.31, we enter the inflection-point regime. However,
such large values of g will be less interesting for us, as
they turn out to be incompatible with the CDM isocurvature
constraint.
Equation (132) eliminates the gravitino mass as a free

parameter from our analysis. Similarly, we can use the
observed value of the scalar spectral amplitude, Aobs

s , to
eliminate the FI parameter ξ. Combining Eqs. (53), (109),
(121), (123), and (128), we find the following compact
expression:

As ¼
1þ W̄
6jΔjW̄2

� ffiffiffi
ξ

p
MPl

�
4

: ð134Þ

The requirement As ¼ Aobs
s thus fixes

ffiffiffi
ξ

p
to a unique value

in direct proximity to the GUT scale,

ffiffiffi
ξ

p
¼
�
6Aobs

s jΔj W̄2

1þ W̄

�
1=4

MPl≃6.9×1015 GeV: ð135Þ

Remarkably enough, this result is independent of the
coupling constants κ and g. This differs from the situation
in FHI, in which the F-term mass scale μS scales like μS ∝
κ1=2 in the large-κ regime [see Eq. (68)]. Meanwhile, the
SSB scale v again obtains a constant value just like in FHI
[see Eq. (69)],

v¼
�
24Aobs

s jΔj W̄2

1þ W̄

�
1=4

MPl≃9.8×1015 GeV: ð136Þ

DHI saturates the Bogomolny limit [see Eq. (114)].
Equation (136), thus, fixes the cosmic string tension,

GμCS ¼
�
3

8
Aobs
s jΔj W̄2

1þ W̄

�
1=2

≃ 2.0 × 10−6: ð137Þ

This value violates the upper bound in Eq. (33) by an order
of magnitude. For this reason, we are again facing two
options. We can either presume that the gauge symmetry G
already becomes broken before the end of inflation or have
to resort to a different part of parameter space where the
cosmic string tension is sufficiently suppressed [see the
discussion below Eq. (38)].
An important result of our analysis is that the phenom-

enology of DHI is obviously insensitive to the precise value

of κ in the large-κ regime. The two conditions ns ¼ nobss and
As ¼ Aobs

s therefore reduce the viable parameter space
again to a one-dimensional hypersurface. However, this
time, this hypersurface is parametrized in terms of the
gauge coupling g rather than the Yukawa coupling κ.
Thanks to the numerical result in Eq. (135), we obtain,
e.g., for the inflationary Hubble rate

Hinf ¼ jW̄j
�
Aobs
s jΔj
1þ W̄

�
1=2

gMPl ≃ 8.0 × 108 GeV
�

g
10−4

�
:

ð138Þ

This expression scales linearly with g, which is a
completely free parameter for the time being. As a
consequence, it is straightforward to reduce the Hubble
scale of DHI by lowering g. At this point, recall that
the beta function of the gauge coupling g is proportional
to g itself (at one loop, β1lg ∝ g3). Thus, small g values
are stable under renormalization group running and
hence technically natural. The combination of Eqs. (132)
and (138) results in the following expression for the
gravitino mass:

m3=2 ¼ ΔW̄
�

3Aobs
s

2ð1þ W̄Þ
�
1=2

gMPl ≃ 6.9 × 107 GeV

�
g

10−4

�
:

ð139Þ

This explicit expression allows us to determine the
critical κ value κ0 that separates the large-κ regime from
the small-κ regime. As in the case of FHI, we demand
that, for κ ≲ κ0, the local maximum in the scalar potential
is located in the direct vicinity of the critical field
value scrit,

sscrit ¼ smax ⇒ κ0 ¼
4

ffiffiffi
2

p
πm3=2ðgÞ
g

ffiffiffi
ξ

p ≃ 1.8 × 10−3: ð140Þ

By accident, this value coincides with the critical κ value
in FHI [see Eq. (73)].
Equations (138) and (139) mark the main technical

results in this section. Confronting our result for Hinf with
the CDM isocurvature constraint in Eq. (15), we obtain the
following upper bound on g:

g≲ 1.6 × 10−4
�

1

Fa
DM

�
1=2

�
fa

1016 GeV

�
0.42

: ð141Þ

This bound is independent of the Yukawa coupling κ and
can hence be satisfied for any sensible value of fa without
leaving the large-κ regime. This is a characteristic advan-
tage of DHI over FHI. Moreover, we find that Planck-scale
values of fa result in an upper bound on g of Oð10−3Þ,
which is of the same order of magnitude as the upper bound
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on κ in Eq. (74). This statement remains unaffected
if one also accounts for the upper bound on fa from
black hole superradiance. Together with Eq. (139), the
upper bound in Eq. (141) can be used to obtain an upper
bound on m3=2,

m3=2 ≲ 1.1 × 108 GeV

�
1

Fa
DM

�
1=2

�
fa

1016 GeV

�
0.42

;

ð142Þ

which is weaker than the corresponding bound in Eq. (75)
by several orders of magnitude. This is easily explained by
the fact that, unlike FHI, DHI requires a large m3=2–Hinf

ratio in order to reproduce the observed value of the scalar
spectral index [see the discussion below Eq. (132)]. In
Fig. 4, we illustrate the implications of the CDM iso-
curvature constraint for the parameter space of DHI. The
plots in this figure are based on a fully numerical analysis
of slow-roll inflation in the complete scalar potential of
DHI [see Eqs. (106), (109), and (113)]. Again, we find
excellent agreement between the numerical data and the
analytical results derived in this section.
Finally, we use the expressions in Eqs. (138) and (139) to

identify the region in parameter space where the PQ
symmetry remains unbroken during inflation. In analogy
to Eq. (76), we find

g≳ 1.3 × 10−3
�

fa
1010 GeV

�
;

m3=2 ≳ 8.6 × 108 GeV

�
fa

1010 GeV

�
: ð143Þ

For small fa and large values of g and m3=2, one might
therefore encounter a domain-wall problem.

C. Inflation close to the waterfall phase transition

In the case of FHI, the CDM isocurvature constraint
forces one to venture into the small-κ regime for all but the
largest fa values. As we saw in the previous section, this is
no longer necessary in DHI, in which small g values allow
one to avoid large axion isocurvature perturbations even in
the large-κ regime. Nonetheless, we shall also study the
dynamics of DHI for small κ values. On the one hand, this
will serve the purpose of completing our systematic study
of supersymmetric hybrid inflation for large and small
Yukawa couplings. On the other hand, small κ values will
again turn out to be the means of choice to suppress the
cosmic string tension. At the same time, the small-κ regime
of DHI faces the same challenges with respect to the initial
conditions of inflation as the small-κ regime of FHI (see the
first paragraph of Sec. III C and the right panel of Fig. 3).
This means that a suppressed cosmic string tension can
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FIG. 4. Parameter values for D-term hybrid inflation that reproduce the CMB data, As ¼ Aobs
s and ns ¼ nobss , in combination with the

CDM isocurvature constraint for several values of the axion decay constant and different assumptions regarding the axion DM fraction.
The stronger (weaker) bounds correspond to Fa

DM ¼ 1 (Fa
DM ¼ 0.1). (Left panel) Two-dimensional region in the

ffiffiffi
ξ

p
–m3=2 plane that

manages to reproduce the observed CMB data. (Right panel) FI scale
ffiffiffi
ξ

p
and gravitino massm3=2 as functions of the Yukawa coupling κ

and the gauge coupling g. Both plots are based on a numerical analysis that accounts for the complete scalar potential in
Eqs. (106) and (113).
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again only be achieved at the cost of a somewhat tuned
initial field value.
To obtain the scalar potential in the small-κ regime, we

are able to proceed in the same way as in Sec. III C. That is,
we have to replace the logarithm lnðxÞ in Eq. (116) by the
function L2ðyÞ,

V ≃ V0
D þ 1

2
m2

ss2 þ
1

2
V0
1lL2ðyÞ; ð144Þ

where we again neglected the quartic SUGRA term.
Correspondingly, ε and η in Eq. (122) turn into

ε ¼ 1

2

�
m2

sscritsþ c1V0
1l=2

V0
D

�
2
�
MPl

scrit

�
2

;

η ¼ Δþ V0
1l

2V0
D

�
c2 þ

3

2
c̄2 þ c̄2 ln y

��
MPl

scrit

�
2

: ð145Þ

In contrast to FHI in the small-κ regime, the parameter ε
now receives a field-dependent contribution from the
quadratic mass term in Eq. (144). This contribution comes
with a negative sign (recall that m2

s < 0), which is respon-
sible for the presence of the local maximum at smax. In the
small-κ regime, the field value smax follows from the
requirement that ε in Eq. (145) must vanish at s ¼ smax,

smax ¼ −
c1V0

1l

2scritm2
s
¼ ln 2g3κ

8
ffiffiffi
2

p
π2

� ffiffiffi
ξ

p
m3=2

�
2 ffiffiffi

ξ
p

: ð146Þ

This expression comes in handy when writing down the
slow-roll equation of motion for the inflaton,

s0 ¼ Δðs − smaxÞ; ð147Þ

where Δ is still defined as in Eq. (123). Together with the
boundary condition s ¼ scrit at Ne ¼ 0, the differential
equation in Eq. (147) has a unique solution in terms of a
simple exponential function,

sðNeÞ ¼ smax þ ðscrit − smaxÞeΔNe: ð148Þ

This result allows us to write down explicit expressions for
ε and η as functions of ymax, Ne, and Δ,

ε¼
�

g
4π

�
2
�

ymax

1þymax

�
2

c1e2ΔNe jΔj; ð149Þ

η¼Δ−Δðymaxþ1Þ
�
c2
c1

þ3c̄2
2c1

þ c̄2
c1
lnðymaxð1−eΔNeÞÞ

�
;

where ymax ¼ smax=scrit − 1 [see also Eq. (77)]. Again, we
notice that ε is suppressed with respect to η.
Next, we use the two conditions As ¼ Aobs

s and ns ¼ nonss
to determine the two parameters ymax and Δ. First, let us
consider the amplitude of the scalar power spectrum.

Combining our results in Eqs. (53), (109), (123), (146),
and (149), a straightforward calculation provides us with

As ¼
c1
3

�
κ

4π

�
4 e−2ΔNe

ðymax þ 1Þy2maxjΔj3
≈
c1
3

�
κ

4π

�
4 e−2ΔNe

y2maxjΔj3
:

ð150Þ

Here, we made use of the fact that ymax is much smaller than
unity in the small-κ regime, ymax ≪ 1. Imposing the
condition that As must reproduce Aobs

s , we are able to
solve Eq. (150) for ymax,

ymax ¼
�

c1
3Aobs

s

�
1=2

�
κ

4π

�
2 e−ΔNe

jΔj3=2 ; ð151Þ

which is suppressed by two powers of the small factor
κ=ð4πÞ. Together with Eq. (149), this result allows us to
write down the scalar spectral index ns as a function of Ne,
Δ, and κ. As before, we will neglect the slow-roll parameter
ε and simply approximate ns by ns ≈ 1þ 2η. We thus
obtain

ns ≈ 1þ 2Δ − 2Δ
�
c2
c1

þ 3c̄2
2c1

þ c̄2
c1

ln

��
c1

3Aobs
s

�
1=2

�
κ

4π

�
2 e−ΔNe − 1

jΔj3=2
��

: ð152Þ

For a fixed value of Ne, the condition ns ¼ nobss can be
numerically solved for Δ as a function of κ,

Ne ¼ 47.5; ns ¼ nobss

⇒ Δ ≃ −1.2 × 10−3
�

κ

10−5

�
p
; p ¼ 0.14: ð153Þ

Evidently, Δ depends only very weakly on the Yukawa
coupling κ. The slight numerical uncertainty in the expo-
nent p is therefore irrelevant for all practical purposes. In
fact, we checked that the power law in Eq. (153) represents
an adequate fit to the exact numerical result for all relevant
κ values deep inside the small-κ regime, κ ≲Oð10−4Þ.
Together with Eq. (151), we now obtain for ymax

ymax ≃ 3.1 × 10−4
�

κ

10−5

�
1.79

; ð154Þ

which is, indeed, much smaller than unity as long as κ is
sufficiently small.
With the numerical expressions in Eqs. (153) and (154)

at our disposal, we are now ready to compute the mass
scales that are relevant in the description of DHI for small κ
values. As in Sec. IV B, we first consider the FI mass scaleffiffiffi
ξ

p
. Making use of Eqs. (123) and (146), we find
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ffiffiffi
ξ

p
¼

�
c1

ð1þ ymaxÞjΔj
�

1=2 κ

4π
MPl

≃ 9.2 × 1013 GeV

�
κ

10−5

�
0.93

: ð155Þ

In contrast to the value in Eq. (135), this result is suppressed
by the small Yukawa coupling κ and is hence parametri-
cally smaller than ΛGUT. The same applies to the value of
the SSB scale v,

v ¼
�

2c1
ð1þ ymaxÞjΔj

�
1=2 κ

4π
MPl

≃ 1.3 × 1014 GeV

�
κ

10−5

�
0.93

: ð156Þ

As a consequence, the cosmic string tension turns out to be
suppressed by almost two powers of κ,

GμCS ¼
c1

4ð1þ ymaxÞjΔj
�

κ

4π

�
2

≃ 3.5 × 10−10
�

κ

10−5

�
1.86

:

ð157Þ

Similarly as in FHI, it is therefore always possible to avoid
the cosmic string bound in Eq. (33) by choosing κ small
enough. This resolves the cosmic string problem of DHI at
the price of fine-tuned initial conditions. We also note that
the mass scales

ffiffiffi
ξ

p
and v are solely controlled by κ. This is

no longer the case for the Hubble rate Hinf , which depends
on both κ and g [see Eq. (110)],

Hinf ¼
c1gffiffiffi

6
p ð1þ ymaxÞjΔj

�
κ

4π

�
2

MPl

≃ 1.4 × 107 GeV

�
g

10−2

��
κ

10−5

�
1.86

: ð158Þ

This result illustrates that, at small κ values, the Hubble rate
approximately scales like Hinf ∝ gκ2. It is thus possible to
suppress Hinf by a small κ value while keeping g moder-
ately large. This is an important difference from the large-κ
regime in which Hinf can only be suppressed by small
values of g [see Eq. (138)]. The situation is similar for the
gravitino mass for which we obtain [see Eq. (132)]

m3=2 ¼
c1g

2ð1þ ymaxÞjΔj1=2
�

κ

4π

�
2

MPl

≃ 6.1 × 105 GeV
�

g
10−2

��
κ

10−5

�
1.93

: ð159Þ

For the fourth and last time, we are now able to use our
results and constrain the viable parameter space by means
of the CDM isocurvature constraint in Eq. (15). Together,
Eqs. (15) and (158) yield

g≲ 2.0 × 10−2
�
10−5

κ

�
1.86� 1

Fa
DM

�
1=2

�
fa

1012 GeV

�
0.42

:

ð160Þ

This bound is weaker than the one in Eq. (141), which
reflects the fact that, now, the Hubble rate Hinf is sup-
pressed by the small values of both κ and g. In particular,
we note that g can now even be larger than Oð10−3Þ.
However, it is important to remember that this is only
possible as long as we are in the small-κ regime, i.e., as long
as κ ≲Oð10−3Þ [see Eq. (140)]. In summary, we therefore
conclude that, also in the small-κ regime, at least one
coupling constant must not be larger than Oð10−3Þ. This
completes our analysis of the upper bounds on κ and g in
consequence of the CDM isocurvature constraint. Our main
result according to Eqs. (74), (97), (141), and (160) is that
supersymmetric hybrid inflation complies with the CDM
isocurvature constraint if an appropriate (Yukawa or gauge)
coupling constant is set to a value of Oð10−3Þ or smaller.
The upper bound in Eq. (160) can also be used to derive

an upper bound on m3=2 [see Eq. (159)],

m3=2≲1.2×106GeVð κ

10−5
Þ0.07

�
1

Fa
DM

�
1=2

�
fa

1012GeV

�
0.42

:

ð161Þ

This bound is stronger than the one in Eq. (142), which is
consistent with the fact that, in the small-κ regime, all mass
scales are subject to an additional suppression by the small
value of κ. Equation (161) completes our analysis of the
upper bounds onm3=2. Similarly as for κ and g, we are now
able to compare and summarize the bounds in Eq. (75), (98),
(142), and (161). We conclude that, for fa as large as
fa ∼MPl, the CDM isocurvature constraint translates into
absolute upper bounds on thegravitinomass ofOð105Þ GeV
in FHI and Oð109Þ GeV in DHI.
The analytical results in Eqs. (160) and (161) need to be

compared with the fully numerical result in Fig. 4. Once
again, we find excellent agreement. Furthermore, we can
use our result for GμCS in Eq. (157) to determine the range
of κ values that allows to satisfy the upper bound on the
cosmic string tension. Together with Eq. (161), we find the
following upper bounds on κ and m3=2:

GμCS<Gμmax
CS

⇒ κ≲2.1×10−4; m3=2≲2.1×108GeV

�
g

10−2

�
: ð162Þ

The upper bound on κ is slightly smaller than the critical κ
value in Eq. (140). This means that the cosmic string bound
can only be circumvented for κ values deep inside the
small-κ regime. For all other κ values, we have to assume
that no cosmic strings are produced at the end of inflation.
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Making use of Eqs. (155), (156), and (158), the constraints
in Eq. (162) can also be translated into

v ≲ 2.2 × 1015 GeV;
ffiffiffi
ξ

p ≲ 1.5 × 1015 GeV;

Hinf ≲ 4.0 × 109 GeV

�
g

10−2

�
: ð163Þ

The result is consistent with the bound on the FI mass scaleffiffiffi
ξ

p
in Eq. (115).

Finally, we use the expressions in Eqs. (158) and (159) to
identify the region in parameter space where the PQ
symmetry remains unbroken during inflation. In analogy
to Eq. (101), we find

g≳ 7.1 × 10−2
�
10−5

κ

�
1.86� fa

108 GeV

�
;

m3=2 ≳ 4.3 × 106 GeV

�
κ

10−5

�
0.07

�
fa

108 GeV

�
: ð164Þ

However, this time, we must be careful when asking for the
interpretation of these results. For values of g and m3=2 as
large as those in Eq. (164), the critical field value scrit
begins to exceed the Planck scale [see Eq. (112)]. Thus, in
this part of parameter space, inflaton occurs at super-
Planckian field values for which we have less control over
the SUGRA corrections to the scalar potential. In this
paper, we decided to restrict ourselves to regions in
parameter space where scrit ≲OðMPlÞ. For this reason,
the bounds in Eq. (164) are irrelevant for our purposes as
soon as they are in conflict with Eq. (112).

V. BENCHMARK SCENARIOS

In the two previous sections, we presented a detailed
slow-roll analysis that enabled us to assess the conse-
quences of the CDM isocurvature constraint in Eq. (15) for
supersymmetric hybrid inflation. Our main results are
summarized in Fig. 5. The four plots in this figure show
the various upper and lower bounds that we obtained
throughout our analysis in dependence of the axion decay
constant fa. For both FHI and DHI, we conclude that it
turns out to be quite easy to satisfy the requirement of small
axion isocurvature perturbations. In fact, for both types of
supersymmetric hybrid inflation, we find large regions in
parameter space that are consistent with all observational
constraints, including the measured values of the infla-
tionary CMB observables As and ns as well as the upper
bound on the cosmic string tension GμCS. To explore the
physical implications of our results a bit further, let us now
elaborate on two characteristic benchmark scenarios in the
viable part of parameter space (see the red circle in the
upper left panel of Fig. 5 as well as the green square in all
other panels of Fig. 5). This discussion will help us
illustrate in an exemplary fashion the possible conclusions
that one can draw from our numerical results in Fig. 5. For

both benchmark points, we list the defining parameter
values as well as the corresponding predictions for all
dependent quantities in Table I.

A. Benchmark point I

First, let us consider FHI for m3=2 ¼ 30 TeV,
fa ¼ 1017 GeV, and Fa

DM ¼ 1. Here, the large gravitino
mass is characteristic for models of high-scale supersym-
metry that mostly rely on gravitational effects to mediate
the spontaneous breaking of supersymmetry to the
visible sector [143–145]. A minimal example for such a
scenario is, e.g., the mediation scheme of pure gravity
mediation [146–148] (see also Ref. [149]). The large value
of the axion decay constant is inspired by string theory,
which typically predicts fa values of the order of fa ∼
1016…1017 GeV [122–124]. For fa ¼ 1017 GeV, the axion
is expected to have a tiny mass, ma ≃ 5.7 × 10−5μeV [see
Eq. (2)]. Remarkably enough, this falls into the range of
masses that might be probed by CASPEr [150], a proposed
magnetometry experiment that aims at measuring the
precession of nuclear spins induced by their interaction
with the axion DM background. At the same time, an axion
decay constant as large as fa ¼ 1017 GeV implies that the
initial misalignment angle θ̄ini must be fine-tuned to a
relatively small value, θ̄ini=π ≃ 3.5 × 10−4, in order to avoid
the overproduction of DM [see Eq. (6)].7 Such a small value
may, e.g., be the outcome of anthropic selection in a
landscape of string vacua. But irrespective of that, one
should also keep in mind that tuning θ̄ini at the level of 1 in
103 is certainly less severe than tuning the bare vacuum
angle θ̄ to a value less than 10−10 by brute force.
The two observational constraints As ¼ Aobs

s and ns ¼
nobss effectively reduce the viable parameter space of
FHI to a one-dimensional hypersurface (see Fig. 2). Our
choice of m3=2 therefore fixes all other model parameters
of FHI. For m3=2 ¼ 30 TeV, consistency with the scalar
CMB power spectrum requires an inflaton Yukawa cou-
pling κ ≃ 1.7 × 10−3 and an inflaton F-term mass scale
μS ≃ 1.1 × 1014 GeV. In view of the critical κ value in
Eq. (73), κ0 ≃ 1.8 × 10−3, this indicates that benchmark
point I is located just in the transition region in between the
large-κ regime and the small-κ regime. As a consequence,
the initial inflaton field value needs to be slightly tuned, so
as to make sure that the inflaton rolls into the correct
direction in field space (see the right panel of Fig. 1).
However, compared to the situation deep inside the small-κ

7As recently pointed out in Refs. [86,87], this conclusion can
be evaded in inflation models with an extremely small Hubble
rate, Hinf ≲ ΛQCD. However, to realize such a small Hubble rate
in the context of supersymmetric hybrid inflation, we would have
to assume tiny coupling constants [see Eqs. (94) and (158)] and
hence a strongly fine-tuned initial inflaton field value. For this
reason, we shall ignore the possibility of sub-ΛQCD inflation in
this paper.

KAI SCHMITZ and TSUTOMU T. YANAGIDA PHYS. REV. D 98, 075003 (2018)

075003-24



regime, this tuning is still comparatively mild. The required
values of κ and μS, moreover, imply a SSB scale during the
waterfall transition of v ≃ 3.6 × 1015 GeV. This value lies
within an order of magnitude of the GUT scale, ΛGUT ∼
1016 GeV, which might hint at a possible connection
between FHI and grand unification.

The required F-term mass scale μS also determines the
Hubble rate during inflation, Hinf ≃ 2.6 × 109 GeV. Given
the large value of the axion decay constant, this
result complies with the CDM isocurvature constraint in
Eq. (15). In fact, for Hinf ≃2.6×109 GeV, fa ¼ 1017 GeV,
and Fa

DM ¼ 1, we expect a primordial isocurvature fraction
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FIG. 5. Bounds on the parameter space of (upper left panel) F-term hybrid inflation for all possible κ values, (upper right panel) D-term
hybrid inflation for κ ¼ 10−1, (lower left panel) D-term hybrid inflation for κ ¼ 10−3, and (lower right panel) D-term hybrid inflation for
κ ¼ 10−5. All plots are based on a fully numerical analysis. The analytical expressions for the upper bounds on the gravitino mass can be
found in Eqs. (75), (98), (142), and (161). The lower bounds that lead to the postinflationary PQSB scenario can be found in Eqs. (76),
(101), (143), and (164). Analytical expressions for the cosmic string tension are contained in Eqs. (70), (93), (137), and (157). The
constraints on the axion decay constant from black hole superradiance, 3 × 1017 ≲ fa=GeV ≲ 1019, are taken from Refs. [123,125,126].
The red circle (in the upper left panel, at fa ¼ 1017 GeV and m3=2 ¼ 30 TeV) as well as the green square (in all other panels, at
fa ¼ 1012 GeV and m3=2 ¼ 1000 TeV) denote the two benchmark points discussed in Sec. V.
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βiso ≃ 2.5 × 10−2, which is smaller than the current
upper bound on βiso by roughly 30%. The observational
sensitivity to βiso is limited by cosmic variance and predicted
to be around βiso ≃ 10−2 (see, e.g., Ref. [46]). An ultimate
CMB experiment limited only by cosmic variance may
therefore be able to detect the primordial axion isocurvature
perturbations that contribute to the scalar CMB power
spectrum in this benchmark scenario. These are exciting
prospects that illustrate how future axion and CMB experi-
ments will help shed more light on the possible interplay of
supersymmetry breaking, inflation, and axion physics.
Finally, we comment on the issue of cosmic strings in

benchmark scenario I. For κ ¼ 1.7 × 10−3, we predict a
cosmic string tension GμCS ≃ 9.7 × 10−8, which just falls
short of the current upper bound in Eq. (33). Therefore, if
cosmic strings should, indeed, be produced during the
waterfall transition at the end of inflation, any improvement
over the current bound in the near future should provide
clues for the presence of cosmic strings. On the other hand,
we caution that a nondetection of cosmic strings would not
immediately rule out benchmark point I. In this case, the
local gauge symmetry in the waterfall sector may simply be
broken in a different sector already before the end of
inflation [see the discussion below Eq. (38)]. The same
conclusion applies if one contrasts our prediction GμCS ≃
9.7 × 10−8 with less conservative bounds onGμCS (see, e.g.,
Refs. [110–113]).

B. Benchmark point II

Next, we consider DHI for m3=2 ¼ 1000 TeV,
fa ¼ 1012 GeV, and Fa

DM ¼ 1. Again, the large value of

the gravitino mass is inspired by high-scale SUSY scenarios
such as pure gravity mediation. Now, however, we choose
m3=2 toward the upper end of the expected range of values.
Such a large gravitino mass may be instrumental in sup-
pressing the rate of dangerous flavor-changing neutral
currents [151]. Meanwhile, the chosen value of the axion
decay constant corresponds to the upper end of the classical
axion window that allows us to generate axion DM without
any fine-tuning in the initial misalignment angle [see
Eq. (4)]. Indeed, for fa ¼ 1012 GeV, we require an initial
misalignment angle θ̄ini=π ≃ 0.28 to achieve pure axion DM
(i.e., Fa

DM ¼ 1), which is a natural value. At the same time,
an axion decay constant fa ¼ 1012 GeV is a typical value
that can be easily realized in field-theoretic implementations
of the Peccei-Quinn mechanism (see, e.g., Refs. [152,153]).
An important consequence of the lower axion decay con-
stant compared to benchmark scenario I is a correspondingly
heavier axion,ma ≃ 5.7 μeV [see Eq. (2)]. AxionDM in this
mass range will be probed by ADMX [154] and CULTASK
[155], two microwave cavity experiments that aim at
detecting the resonant conversion of axions into photons
in a strong magnetic field.
To make use of the observational constraints As ¼ Aobs

s

andns ¼ nobss , we need to fix onemoremodel parameter. For
definiteness, we will take this parameter to be the Yukawa
coupling κ and compare the predictions of DHI for three
different κ values in the following: κ ¼ 10−5, 10−3, 10−1 (see
the upper right and the two lower panels of Fig. 5). These
values are chosen such that they give a characteristic
impression of the viable parameter space for small
(κ ¼ 10−5), intermediate (κ ¼ 10−3), and large κ values
(κ ¼ 10−1). Together with our choice of m3=2, the three

TABLE I. Parameter values and predictions for several observables for the two benchmark points discussed in Sec. V. Benchmark
point I is based on F-term hybrid inflation and assumes that the QCD axion has its dynamical origin in string theory (viz.,
fa ¼ 1017 GeV). Benchmark point II is, by contrast, based on D-term hybrid inflation and assumes that the QCD axion has its
dynamical origin in field theory (viz., fa ¼ 1012 GeV). Both points are also shown in Fig. 5 (see the red circle in the upper left panel of
Fig. 5 as well as the green square in all other panels of Fig. 5).

Benchmark point I Benchmark point II

Inflation model FHI DHI

Gravitino mass m3=2 (TeV) 30 1000
Axion decay constant fa (GeV) 1017 1012

Axion DM fraction Fa
DM (%) 100 100

Axion mass ma (μeV) 5.7 × 10−5 5.7
Misalignment angle θ̄ini (π) 3.5 × 10−4 0.28

Yukawa coupling κ 1.7 × 10−3 10−5 10−3 10−1

Gauge coupling g 0.72 1.7 × 10−2 6.1 × 10−6 1.4 × 10−6

SSB scale v (GeV) 3.6 × 1015 1.3 × 1014 4.7 × 1015 1.0 × 1016

F-term mass scale μS (GeV) 1.1 × 1014 � � � � � � � � �
FI mass scale

ffiffiffi
ξ

p
(GeV) � � � 9.1 × 1013 3.3 × 1015 7.0 × 1015

Hubble rate Hinf (GeV) 2.6 × 109 2.3 × 107 1.1 × 107 1.2 × 107

CS tension GμCS, if any 9.7 × 10−8 3.5 × 10−10 4.6 × 10−7 2.1 × 10−6

Isocurvature fraction βiso 2.5 × 10−2 3.5 × 10−2 8.4 × 10−3 9.6 × 10−3
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benchmark values for κ allow us to determine the gauge
coupling constant g, the SSB scale v, the FI mass scale

ffiffiffi
ξ

p
,

and the Hubble rate Hinf (see Fig. 4 and Table I). From the
numerical results in Table I, it is evident that, among the three
κ values under consideration, κ ¼ 10−1 is arguably the most
attractive one. Not only does it require the least tuning of the
initial inflaton field value (see Fig. 3), but it also results in a
SSB scale of exactly v ¼ 1.0 × 1016 GeV. Benchmark point
II in combinationwith κ ¼ 10−1 therefore suggests a possible
connection between DHI and grand unification.
The three different values of the Hubble rate in Table I

are all of the same order of magnitude,Hinf ∼ 107 GeV. By
construction, these values are small enough to comply with
the CDM isocurvature constraint in Eq. (15). Recall that,
depending on the precise value of κ, a suppressed Hubble
rate can be either achieved by a small gauge coupling g [see
Eq. (138)] or by a small Yukawa coupling κ [see Eq. (158)].
This is also reflected in the different κ and g values in Table I.
In combination with fa ¼ 1012 GeV andFa

DM ¼ 1, theHinf
values in Table I allow us to compute the primordial
isocurvature fraction βiso. For κ ¼ 10−3 and κ ¼ 10−1, we
find βiso ∼ 10−2, whichmay ormay not bewithin reach of an
ultimate CMB experiment. For κ ¼ 10−5, on the other hand,
we obtain βiso ≃ 3.5 × 10−2, which is only roughly 8%
smaller than the current upper bound. Here, the fact that we
find different predictions for βiso in dependence of κ is a
consequence of the slightly different κ dependence of Hinf
and m3=2 in Eqs. (158) and (159). From this perspective,
smaller κ values appear more favorable, as they push βiso
further into the observable range. Similarly, smaller Yukawa
couplings also help suppress the cosmic string tension (see
Table I). Indeed, only for κ ¼ 10−5, we find a cosmic string
tension in accord with the upper bound in Eq. (33). For
κ ¼ 10−3 and κ ¼ 10−1, we have to assume again that no
cosmic strings are produced during the waterfall transition.

VI. CONCLUSIONS

The PQ mechanism constitutes a well-motivated BSM
scenario that offers not only an attractive solution to the
strong CP problem but also a viable particle candidate for
DM: theQCD axion.A consistent implementation of the PQ
mechanism into inflationary cosmology can, however, be
challenging, depending on the details of the underlying
model of PQ symmetry breaking. That is, if the global PQ
symmetry is spontaneously broken only after inflation, one
encounters a domain-wall problem, unless domain walls
decay sufficiently fast for one reason or another. On the other
hand, if the global PQ symmetry is already broken during
inflation and not restored afterward, quantum fluctuations of
the axion field during inflation can result in primordial CDM
isocurvature perturbations that exceed the current upper
bound on the primordial isocurvature fraction βiso.
The main purpose of this paper was to demonstrate

that the axion isocurvature perturbations problem in the

preinflationary PQSB scenario can be easily solved in the
context of supersymmetric hybrid inflation. To this end, we
studied in detail the slow-roll dynamics of both FHI and
DHI. These models represent interesting inflationary sce-
narios that feature a rapid second-order phase transition at
the end of inflation, which can be identified with the
spontaneous breaking of a local GUT symmetry. For both
FHI and DHI, we explicitly accounted for the effect of
spontaneous SUSY breaking in a hidden Polonyi sector,
which gave us additional control over the shape of the scalar
potential. In FHI, the leading soft contribution to the scalar
potential turns out to be a linear tadpole term, while in DHI,
one obtains a quadratic mass term. The sizes of both terms
are controlled by the gravitino mass m3=2, and the signs of
both terms can be chosen so as to partially cancel various
contributions to the scalar potential. In the case of FHI, this
means that one has to consider inflation on the negative real
axis, where the coefficient of the soft tadpole term inEq. (28)
turns negative. In DHI, on the other hand, one has to assume
a higher-dimensional operator in the Kähler potential, K ⊃
χ=M2

PljSj2jXj2 with a large positive coefficient, χ > 1=3,
such that the soft inflaton mass becomes tachyonic.
Provided these extra assumptions, one is able to render
the scalar potential particularly flat by tuning the soft
SUGRA contributions against the radiative corrections in
the effective potential. At the same time, the inflaton F-term
mass scale μS (in the FHI case) as well as the FI parameterffiffiffi
ξ

p
(in the DHI case) always allow one to adjust the total

energy scale of the scalar potential and hence reproduce the
measured amplitude of the scalar power spectrum. Together,
these two features of supersymmetric hybrid inflation
represent a powerful mechanism to suppress the inflationary
Hubble rate Hinf and thus solve the axion isocurvature
perturbations problem.
Both FHI and DHI can occur for small as well as for

relatively large field excursions, depending on the inflaton
Yukawa coupling κ. In our analysis, we therefore had to
distinguish twice between a small-κ regime (in which κ ≲
10−3 and s� ≃ scrit) and a large-κ regime (in which κ ≳ 10−3

and s� ≫ scrit). In a first step,we considered FHI in the large-
κ regime. As wewere able to show, this scenario turns out to
be heavily restricted by the CDM isocurvature constraint
[see Eqs. (74) and (75)]. In fact, only axion decay constants
of the order of the Planck scale, fa ∼MPl, allow us to
sufficiently suppress the isocurvature power spectrum in this
case. The reason for this is the lack of parametric freedom in
the large-κ regime of FHI. That is, as long as one restricts
oneself to large Yukawa couplings only, the Hubble rate
automatically ends up being rather large [see Eq. (71)].
However, an axion decay constant as large as the Planck
scale is disfavored for various reasons. On the theory side,
string theory typically predicts sub-Planckian values of fa,
while from the phenomenological perspective, current
bounds from black hole superradiance seem to exclude
fa ∼MPl. These issues can be avoided in the small-κ regime
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of FHI, which offers the possibility to suppress the Hubble
rate bymeans of the small Yukawa coupling κ [see Eq. (94)].
Consequently, the small-κ regime of FHI complies with the
CDM isocurvature constraint for all reasonable values of fa
[see Eqs. (97) and (98)]. On top of that, small κ values also
suppress the tension of cosmic strings [see Eq. (93)], such
that the production of cosmic strings during the waterfall
transition no longer poses a potential threat. These virtues of
the small-κ regime, however, come at the cost of a fine-tuned
initial inflaton field value. For small Yukawa couplings, one
has to ensure that inflation begins on the correct side of a
local maximum in the scalar potential, scrit < sini < smax,
where scrit and smax lie very close together. Otherwise, the
inflaton will roll into the wrong direction in field space and
become trapped in a wrong vacuum. This situation is further
complicated by the fact that FHI is, in reality, a two-field
model of inflation [see Eq. (28)] that can result in compli-
cated trajectories in the complex inflaton plane.8

Because of these limitations of FHI, we turned to DHI in
Sec. IV. Not only is DHI a standard single-field model of
inflation, it also introduces a larger parametric freedom
through its dependence on the gauge coupling g. As we
were able to demonstrate, this extra freedom allows one to
decrease the Hubble rate to very small values even in the
large-κ regime [see Eqs. (138)]. This is a characteristic
advantage of DHI over FHI, which explains why DHI in the
large-κ regime can be made consistent with the CDM
isocurvature constraint for a large range of fa values [see
Eqs. (141) and (142)]. The only remaining issue in this
scenario is the possible presence of cosmic strings with a
large energy per unit length. It may well be that the local
gauge symmetry in the waterfall sector is already broken
during inflation for some reason or another [see the
discussion below Eq. (38)]. In this case, one does not have
toworry about the production of cosmic strings. However, if
cosmic strings should, indeed, be produced at the end of
inflation, onemust resort again to the small-κ regime, so as to
suppress the cosmic string tension by means of a small
Yukawa coupling [see Eq. (157)]. Similarly to the case of
FHI, this scenario allows for an efficient suppression of the
Hubble rate [see Eq. (158)], which is why it readily satisfies
the CDM isocurvature constraint for a broad range of fa
values [see Eqs. (160) and (161)]. The only drawback in this
case is the need for a fine-tuned initial inflaton field value.
This time, however, one does not have to deal with
complicated trajectories in field space.
For both FHI and DHI, we found that at least one

coupling constant needs to be set to a value of Oð10−3Þ or
smaller. In the case of FHI, this coupling corresponds to the
Yukawa coupling κ, while for DHI, it typically corresponds

to the gauge coupling g. In both cases, we argued that such a
small coupling constant is stable against quantum correc-
tions and is hence technically natural. Supersymmetric
hybrid inflation is therefore able to solve the axion iso-
curvature perturbations problemswithout any unnatural fine-
tuning of model parameters. In addition, we showed how the
upper bounds on κ and g translate into upper bounds on the
gravitino mass. For FHI, we obtained m3=2 ≲Oð105Þ GeV,
while for DHI, we obtained m3=2 ≲Oð109Þ GeV. These
observations helped us identify interesting benchmark points
in parameter space (see Sec. V), which will be probed by
upcoming axion and CMB experiments. Possible signatures
of our benchmark points include i) an axionmass thatmay be
detected by axion experiments such as CASPEr, ADMX, or
CULTASK; ii) a cosmic string tension just below the current
upper bound; and iii) a primordial isocurvature fraction that
could be measured by an ultimate purely cosmic-variance-
limited CMB experiment.
We also emphasize that, thanks to our analysis, a future

detection of axion DM with a decay constant fa ∼
1011…1012 GeV would provide us with important clues
regarding the expected scheme for the mediation of sponta-
neous SUSY breaking to the visible sector. If interpreted in
the context of FHI, such a valuewould point toward gravitino
masses below the electroweak scale, m3=2 ≲ 1 � � � 10 GeV,
which would suggest that SUSY breaking is communicated
to the visible sector via gauge mediation. In the context of
DHI, on the other hand, the detection of axion DM with
fa ∼ 1011…1012 GeV would provide with us a weaker
bound on the gravitino mass, m3=2 ≲ 105…106 GeV. This
would, in turn, be compatible with the idea of high-scale
SUSY breaking in combination with a mediation scheme
such as pure gravity mediation. In either case, we conclude
that the results of our analysis allow us to derive highly
nontrivial statements regarding the energy scale of soft
SUSY breaking from cosmological arguments. In this sense,
the CDM isocurvature constraint on Hinf in the QCD axion
scenario proves to be a remarkably powerful tool to constrain
possible BSM scenarios.
In this paper, we focused on the slow-roll dynamics of

supersymmetric hybrid inflation as well as on the impli-
cations of the CDM isocurvature constraint on its parameter
space. At this point, it is worth stressing that our analytical
results in Secs. III and IVare, in fact, extremely general and
thus well suited for further investigations of supersym-
metric hybrid inflation. Moreover, it is clear that we
refrained from embedding our setup into a comprehensive
cosmological scenario that coherently describes the evo-
lution of the Universe from very early to very late times.
This is, e.g., illustrated by the fact that we merely used the
gravitino mass m3=2 as a free input parameter. We did not
specify the dynamical origin ofm3=2; nor did we assume an
explicit scheme for the mediation of spontaneous SUSY
breaking to the visible sector. Similarly, we did not
speculate about the possible composition of DM, in the

8We emphasize that the parameter bounds that we derived in
Sec. III are inclusive in the sense that they are always applicable,
irrespective of the particular inflaton trajectory in field space [see
the discussion below Eq. (28)].
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case in which it should not consist exclusively of axions
(i.e., for Fa

DM < 1). Any extra assumption related to these
issues would prompt a more careful analysis regarding the
interplay of DM production, heavy particle decays, big
bang nucleosynthesis, etc. However, such a more complete
analysis is beyond the scope of this paper and left for future
work. We conclude our discussion by stressing once more
that supersymmetric hybrid inflation is a prime candidate
for a model of inflation that offers a viable solution to the
axion isocurvature perturbations problem.
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