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Abstract We review lattice results related to pion, kaon, D-meson, B-meson, and nucleon physics with the aim of making
them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of
the light-quark masses, the form factor f, (0) arising in the semileptonic K — s transition at zero momentum transfer, as
well as the decay constant ratio fg/f; and its consequences for the CKM matrix elements V,; and V4. Furthermore, we
describe the results obtained on the lattice for some of the low-energy constants of SU (2);, x SU(2)g and SU(3)r x SU(3)r
Chiral Perturbation Theory. We review the determination of the Bg parameter of neutral kaon mixing as well as the additional
four B parameters that arise in theories of physics beyond the Standard Model. For the heavy-quark sector, we provide results
for m. and my, as well as those for the decay constants, form factors, and mixing parameters of charmed and bottom mesons
and baryons. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global
CKM unitarity-triangle fit. We review the status of lattice determinations of the strong coupling constant «z. We consider
nucleon matrix elements, and review the determinations of the axial, scalar and tensor bilinears, both isovector and flavor
diagonal. Finally, in this review we have added a new section reviewing determinations of scale-setting quantities.
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1 Introduction

Flavour physics provides an important opportunity for exploring the limits of the Standard Model of particle physics and for
constraining possible extensions that go beyond it. As the LHC explores a new energy frontier and as experiments continue
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to extend the precision frontier, the importance of flavour physics will grow, both in terms of searches for signatures of
new physics through precision measurements and in terms of attempts to construct the theoretical framework behind direct
discoveries of new particles. Crucial to such searches for new physics is the ability to quantify strong-interaction effects.
Large-scale numerical simulations of lattice QCD allow for the computation of these effects from first principles. The scope
of the Flavour Lattice Averaging Group (FLAG) is to review the current status of lattice results for a variety of physical
quantities that are important for flavour physics. Set up in November 2007, it comprises experts in Lattice Field Theory,
Chiral Perturbation Theory and Standard Model phenomenology. Our aim is to provide an answer to the frequently posed
question “What is currently the best lattice value for a particular quantity?” in a way that is readily accessible to those who
are not expert in lattice methods. This is generally not an easy question to answer; different collaborations use different
lattice actions (discretizations of QCD) with a variety of lattice spacings and volumes, and with a range of masses for the
u- and d-quarks. Not only are the systematic errors different, but also the methodology used to estimate these uncertainties
varies between collaborations. In the present work, we summarize the main features of each of the calculations and provide a
framework for judging and combining the different results. Sometimes it is a single result that provides the “best” value; more
often it is a combination of results from different collaborations. Indeed, the consistency of values obtained using different
formulations adds significantly to our confidence in the results.

The first four editions of the FLAG review were made public in 2010 [1], 2013 [2], 2016 [3], and 2019 [4] (and will be
referred to as FLAG 10, FLAG 13, FLAG 16, and FLAG 19, respectively). The fourth edition reviewed results related to
both light (u-, d- and s-), and heavy (c- and b-) flavours. The quantities related to pion and kaon physics were light-quark
masses, the form factor f4 (0) arising in semileptonic K — m transitions (evaluated at zero momentum transfer), the decay
constants fx and fr, the Bg parameter from neutral kaon mixing, and the kaon mixing matrix elements of new operators
that arise in theories of physics beyond the Standard Model. Their implications for the CKM matrix elements V,; and V4
were also discussed. Furthermore, results were reported for some of the low-energy constants of SU(2);, x SU(2)g and
SU@3)L x SU3)r Chiral Perturbation Theory. The quantities related to D- and B-meson physics that were reviewed were
the masses of the charm and bottom quarks together with the decay constants, form factors, and mixing parameters of B- and
D-mesons. These are the heavy-light quantities most relevant to the determination of CKM matrix elements and the global
CKM unitarity-triangle fit. The current status of lattice results on the QCD coupling «; was reviewed. Last but not least, we
reviewed calculations of nucleon matrix elements of flavor nonsinglet and singlet bilinear operators, including the nucleon
axial charge g4 and the nucleon sigma term. These results are relevant for constraining V,,4, for searches for new physics in
neutron decays and other processes, and for dark matter searches.

In the present paper we provide updated results for all the above-mentioned quantities, but also extend the scope of the
review by adding a section on scale setting, Sect. 11. The motivation for adding this section is that uncertainties in the value of
the lattice spacing a are a major source of error for the calculation of a wide range of quantities. Thus we felt that a systematic
compilation of results, comparing the different approaches to setting the scale, and summarizing the present status, would be
a useful resource for the lattice community. An additional update is the inclusion, in Sect. 6.2, of a brief description of the
status of lattice calculations of K — s decay amplitudes. Although some aspects of these calculations are not yet at the
stage to be included in our averages, they are approaching this stage, and we felt that, given their phenomenological relevance,
a brief review was appropriate.

For the most precisely determined quantities, isospin breaking — both from the up-down quark mass difference and from
QED — must be included. A short review of methods used to include QED in lattice-QCD simulations is given in Sect. 3.1.3. An
important issue here is that, in the context of a QED+QCD theory, the separation into QED and QCD contributions to a given
physical quantity is ambiguous — there are several ways of defining such a separation. This issue is discussed from different
viewpoints in the section on quark masses — see Sect. 3.1.1 — and that on scale setting — see Sect. 11. We stress, however,
that the physical observable in QCD + QED is defined unambiguously. Any ambiguity only arises because we are trying to
separate a well-defined, physical quantity into two unphysical parts that provide useful information for phenomenology.

Our main results are collected in Tables 1, 2, 3, 4 and 5. As is clear from the tables, for most quantities there are results
from ensembles with different values for N . In most cases, there is reasonable agreement among results with Ny = 2,2+ 1,
and 2 + 1 + 1. As precision increases, we may some day be able to distinguish among the different values of Ny, in which
case, presumably 2 + 1 + 1 would be the most realistic. (If isospin violation is critical, then 1 + 1+ 1 or I + 1 + 1 4 1 might
be desired.) At present, for some quantities the errors in the Ny = 2 + 1 results are smaller than those with Ny =2+ 1+ 1
(e.g., for m), while for others the relative size of the errors is reversed. Our suggestion to those using the averages is to take
whichever of the Ny = 2+1o0r Ny = 2+ 141 results has the smaller error. We do not recommend using the Ny = 2 results,
except for studies of the N y-dependence of condensates and o, as these have an uncontrolled systematic error coming from
quenching the strange quark.
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Table 1 Summary of the main results of this review concerning quark masses, light-meson decay constants, and hadronic kaon-decay and kaon-
mixing parameters. These are grouped in terms of N y, the number of dynamical quark flavours in lattice simulations. Quark masses are given in
the MS scheme at running scale 14 = 2 GeV or as indicated. BSM bag parameters B 3,45 are given in the MS scheme at scale 1 = 3 GeV. Further
specifications of the quantities are given in the quoted sections. Results for Ny = 2 quark masses are unchanged since FLAG 16 [3], and are not
included here. For each result we list the references that enter the FLAG average or estimate, and we stress again the importance of quoting these
original works when referring to FLAG results. From the entries in this column one can also read off the number of results that enter our averages
for each quantity. We emphasize that these numbers only give a very rough indication of how thoroughly the quantity in question has been explored
on the lattice and recommend consulting the detailed tables and figures in the relevant section for more significant information and for explanations
on the source of the quoted errors

Quantity Sections  Ny=2+1+1  Refs. Ny=2+1 Refs. Ny=2 Refs.
myuq [MeV] 3.1.4 3.410(43) [6,7] 3.381(40) [8-12]

mg [MeV] 3.1.4 93.40(57) [6,7,13,14] 92.2(1.0) [8-11,15]

mg /Mg 3.15 27.23(10) [7,16,17] 27.42(12) [8-10,15,18]

m, [MeV] 3.1.6 2.14(8) [6,19] 2.27(9) [20]

mg [MeV] 3.1.6 4.70(5) [6,19] 4.67(9) [20]

my /mg 3.1.6 0.465(24) [19,21] 0.485(19) [20]

m:(3 GeV) [GeV] 322 0.988(11) [6,7,14,22,23]  0.992(5) [11,24-26]

me/mg 323 11.768(34) [6,7,14] 11.82(16) [24,27]

myp(myp) [GeV] 33 4.203(11) [6,28-31] 4.171(20) [11]

f+(0) 4.3 0.9698(17) [32,33] 0.9677(27) [34,35] 0.9560(57)(62)  [36]
Sr=/fat 43 1.1932(21) [16,37-39] 1.1917(37) [8,40—44] 1.205(18) [45]
Sfzx [MeV] 4.6 130.2(8) [8,40,41]

fx+ [MeV] 4.6 155.7(3) [17,37,38] 155.7(7) [8,40,41] 157.5(2.4) [45]
Re(Az) [GeV] 6.2 1.50(4)(14) x 1078 [46]

Im(Ay) [GeV] 62 —8.34(1.03) x 10713 [46]

Bk 6.3 0.717(18)(16) [47] 0.7625(97) [8,48-50] 0.727(22)(12) [51]
B 6.4 0.46(1)(3) [47] 0.502(14) [50,52] 0.47(2)(1) [51]
B3 6.4 0.792)(5) [47] 0.766(32) [50,52] 0.78(4)(2) [51]
By 6.4 0.78(2)(4) [47] 0.926(19) [50,52] 0.76(2)(2) [51]
Bs 6.4 0.49(3)(3) [47] 0.720(38) [50,52] 0.58(2)(2) [51]

Our plan is to continue providing FLAG updates, in the form of a peer reviewed paper, roughly on a triennial basis. This
effort is supplemented by our more frequently updated website http://flag.unibe.ch [5], where figures as well as pdf-files for
the individual sections can be downloaded. The papers reviewed in the present edition have appeared before the closing date
30 April 2021."

This review is organized as follows. In the remainder of Sect. 1 we summarize the composition and rules of FLAG and
discuss general issues that arise in modern lattice calculations. In Sect. 2, we explain our general methodology for evaluating
the robustness of lattice results. We also describe the procedures followed for combining results from different collaborations
in a single average or estimate (see Sect. 2.2 for our definition of these terms). The rest of the paper consists of sections, each
dedicated to a set of closely connected physical quantities, or, for the final section, to the determination of the lattice scale.
Each of these sections is accompanied by an Appendix with explicatory notes.?

In previous editions, we have provided, in an appendix, a glossary summarizing some standard lattice terminology and
describing the most commonly used lattice techniques and methodologies. Since no significant updates in this information
have occurred since our previous edition, we have decided, in the interests of reducing the length of this review, to omit this
glossary, and refer the reader to FLAG 19 for this information [4]. This appendix also contained, in previous versions, a
tabulation of the actions used in the papers that were reviewed. Since this information is available in the discussions in the

1 Working groups were given the option of including papers submitted to arxiv.org before the closing date but published after this date. This
flexibility allows this review to be up-to-date at the time of submission. A single paper of this type was included.

2 In some cases, in order to keep the length of this review within reasonable bounds, we have dropped these notes for older data, since they can be
found in previous FLAG reviews [1-4].
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Table 2 Summary of the main results of this review concerning heavy-light mesons and the strong coupling constant. These are grouped in terms
of N y, the number of dynamical quark flavours in lattice simulations. The quantities listed are specified in the quoted sections. For each result we
list the references that enter the FLAG average or estimate, and we stress again the importance of quoting these original works when referring to
FLAG results. From the entries in this column one can also read off the number of results that enter our averages for each quantity. We emphasize
that these numbers only give a very rough indication of how thoroughly the quantity in question has been explored on the lattice and recommend
consulting the detailed tables and figures in the relevant section for more significant information and for explanations on the source of the quoted
errors

Quantity Section Ny=2+1+1 Refs. Ny=2+1 Refs. Ny=2 Refs.
fp [MeV] 7.1 212.0(7) [16,38] 209.0(2.4) [53-55] 208(7) [56]
fp, [MeV] 7.1 249.9(5) [16,38] 248.0(1.6) [24,54,55,57] 246(4) [56,58]
% 7.1 1.1783(16) [16,38] 1.174(7) [53-55] 1.20(2) [56]
P (0) 7.2 0.612(35) [59] 0.666(29) [60]

FPX(0) 7.2 0.7385(44) [59,61] 0.747(19) [62]

fB [MeV] 8.1 190.0(1.3) [16,30,63,64] 192.0(4.3) [54,65-68] 188(7) [56,69]
fB, [MeV] 8.1 230.3(1.3) [16,30,63,64] 228.4(3.7) [54,65-68] 225.3(6.6) [56,58,69]
% 8.1 1.209(5) [16,30,63,64] 1.201(16) [54,65-68,70] 1.206(23) [56,69]
fBar/ By, [MeV] 8.2 210.6(5.5) [71] 22509) [67,72,73] 216(10) [56]
fB,/ B, [MeV] 8.2 256.1(5.7) [71] 274(8) [67,72,73] 262(10) [56]
Bp, 8.2 1.222(61) [71] 1.30(10) [67,72,73] 1.30(6) [56]
Bg, 8.2 1.232(53) [71] 1.35(6) [67,72,73] 1.32(5) [56]

& 8.2 1.216(16) [71] 1.206(17) [67,73] 1.225(31) [56]
Bp, /B, 8.2 1.008(25) [71] 1.032(38) [67,73] 1.007(21) [56]
Quantity Section Nfy=2+land Ny =2+1+1 Refs.

a%(Mz) 9.11 0.1184(8) [11,14,74-79]

A% [MeV] 9.11 214(10) [11,14,74-79]

A% [MeV] 9.11 297(12) [11,14,74-79]

A% [MeV] 9.11 339(12) [11,14,74-79]

separate sections, and is time-consuming to collect from the sections, we have dropped these tables. We have, however, kept a
short appendix, Appendix B.1, describing the parameterizations of semileptonic form factors that are used in Sect. 8. Moreover,
in Appendix A, we have added a summary and explanations of acronyms introduced in the manuscript. Collaborations referred
to by an acronym can be identified through the corresponding bibliographic reference.

1.1 FLAG composition, guidelines and rules

FLAG strives to be representative of the lattice community, both in terms of the geographical location of its members and the
lattice collaborations to which they belong. We aspire to provide the nuclear- and particle-physics communities with a single
source of reliable information on lattice results.

In order to work reliably and efficiently, we have adopted a formal structure and a set of rules by which all FLAG members
abide. The collaboration presently consists of an Advisory Board (AB), an Editorial Board (EB), and nine Working Groups
(WG). The rdle of the Advisory Board is to provide oversight of the content, procedures, schedule and membership of FLAG,
to help resolve disputes, to serve as a source of advice to the EB and to FLAG as a whole, and to provide a critical assessment
of drafts. They also give their approval of the final version of the preprint before it is rendered public. The Editorial Board
coordinates the activities of FLAG, sets priorities and intermediate deadlines, organizes votes on FLAG procedures, writes
the introductory sections, and takes care of the editorial work needed to amalgamate the sections written by the individual
working groups into a uniform and coherent review. The working groups concentrate on writing the review of the physical
quantities for which they are responsible, which is subsequently circulated to the whole collaboration for critical evaluation.
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Table 3 Summary of the main results of this review concerning LECs, grouped in terms of N , the number of dynamical quark flavours in lattice
simulations. The quantities listed are specified in the quoted sections. For each result we list the references that enter the FLAG average or estimate,
and we stress again the importance of quoting these original works when referring to FLAG results. From the entries in this column one can also
read off the number of results that enter our averages for each quantity. We emphasize that these numbers only give a very rough indication of how
thoroughly the quantity in question has been explored on the lattice and recommend consulting the detailed tables and figures in the relevant section
for more significant information and for explanations on the source of the quoted errors

Quantity Section Np=2+1+1 Refs. Np=2+1 Refs. Ny=2 Refs.

T3 [MeV] 524 286(23) (80,811  272(5) [12,82-86] 266(10) [80,87-89]
Fr/F 524 1.077(3) [90] 1.062(7) [41,82-84,91]  1.073(15) [87-89,92]
A 524 3.53(26) [90] 3.07(64) [41,82-84,91]  3.41(82) [87,88,92]
o 524 4.73(10) [90] 4.02(45) [41,82-84,91]  4.40(28) [87,88,92,93]
ls 5.2.4 15.1(1.2) [88,92]
aiM, 524 —0.0441(4) [94] —0.04385(47)  [95]

57 MeV] 535 245(8) [15]

/%0 535 1.48(16) [15]

Fo [MeV] 535 80.3(6.0) [41]

F/F 535 1.104(41) [15]

B/By 535 1.21(7) [15]

Ls 535 +0.09(34) x 1073 [37] —0.02(56) x 1073 [41]

Ls 535 +1.1925) x 1073 [37] +0.95(41) x 1073 [41]

Le 535 40.16(20) x 1073 [37] +0.01(34) x 1073 [41]

Ls 535 4+0.55(15) x 1073 [37] +0.43(28) x 1073 [41]

ay 535 0.127(2) [96]

a 535 ~0.0463(17) [96]

alMg 535 —0.388(20) [97]

Table 4 Summary of the main results of this review concerning nuclear matrix elements, grouped in terms of N ¢, the number of dynamical quark
flavours in lattice simulations. The quantities listed are specified in the quoted sections. For each result we list the references that enter the FLAG
average or estimate, and we stress again the importance of quoting these original works when referring to FLAG results. From the entries in this
column one can also read off the number of results that enter our averages for each quantity. We emphasize that these numbers only give a very
rough indication of how thoroughly the quantity in question has been explored on the lattice and recommend consulting the detailed tables and
figures in the relevant section for more significant information and for explanations on the source of the quoted errors

Quantity Section Np=2+1+1 Refs. Ny=2+1 Refs. Ny=2 Refs.
g{'f‘_d 10.3.1 1.246(28) [98-100] 1.248(23) [101,102]

gg_d 10.3.2 1.02(10) [98] 1.13(14) [102]

g%ﬁd 10.3.3 0.989(34) [98] 0.965(61) [102]

g4 10.4.1 0.777(25)(30) [103] 0.847(18)(32) [101]

gﬁ 10.4.1 —0.438(18)(30) [103] —0.407(16)(18) [101]

g% 10.4.1 —0.053(8) [103] —0.035(6)(7) [101]

oxn [MeV] 10.4.4 64.9(1.5)(13.2) [22] 39.7(3.6) [104-106] 37(8)(6) [107]
o5 [MeV] 10.4.4 41.0(8.8) [108] 52.9(7.0) [104-106,108,109]

gr 10.4.5 0.784(28)(10) [110]

g‘Tl 10.4.5 —0.204(11)(10) [110]

gr 10.4.5 —0.0027(16) [110]

The current list of FLAG members and their Working Group assignments is:

e Advisory Board (AB): G. Colangelo, M. Golterman, P. Hernandez, T. Onogi,
and R. Van de Water
e Editorial Board (EB): S. Gottlieb, A. Jiittner, S. Hashimoto, S.R. Sharpe,

and U. Wenger
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Table 5 Summary of the main results of this review concerning setting of the lattice scale, grouped in terms of N y, the number of dynamical
quark flavours in lattice simulations. The quantities listed are specified in the quoted sections. For each result we list the references that enter the
FLAG average or estimate, and we stress again the importance of quoting these original works when referring to FLAG results. From the entries
in this column one can also read off the number of results that enter our averages for each quantity. We emphasize that these numbers only give a
very rough indication of how thoroughly the quantity in question has been explored on the lattice and recommend consulting the detailed tables
and figures in the relevant section for more significant information and for explanations on the source of the quoted errors

Quantity ~ Section Ny=1+1 Refs. Ny=2+4+1+4+1 Refs. Ny=2+1 Refs. Ny >2+1 Refs.
+1+1
Jio [fm]  11.5.2 0.14186(88) [37,111,112] 0.14464(87) [8,113,114]
wo [fm] 11.52  0.17236(70) [115] 0.17128(107) [37,111,112]  0.17355(92) [8,114,116] 0.17177(67) [37,111,112,115]
ro [fm] 11.5.2 0.474(14) [7] 0.4701(36) [24,116-119]
r1 [fm] 11.5.2 0.3112(30) [37] 0.3127(30) [41,117-120]

e Working Groups (coordinator listed first):

— Quark masses T. Blum, A. Portelli, and A. Ramos
— Vs, Vua T. Kaneko, J. N. Simone, S. Simula, and N. Tantalo
— LEC S. Diirr, H. Fukaya, and U.M. Heller
- By P. Dimopoulos, X. Feng, and G. Herdoiza
- fB(S), fD<S), Bp Y. Aoki, M. Della Morte, and C. Monahan
— b and ¢ semileptonic and radiative decays E. Lunghi, S. Meinel, and C. Pena
- O S. Sint, R. Horsley, and P. Petreczky
— NME R. Gupta, S. Collins, A. Nicholson, and H. Wittig
— Scale setting R. Sommer, N. Tantalo, and U. Wenger

The most important FLAG guidelines and rules are the following:

e the composition of the AB reflects the main geographical areas in which lattice collaborations are active, with members
from America, Asia/Oceania, and Europe;

e the mandate of regular members is not limited in time, but we expect that a certain turnover will occur naturally;

whenever a replacement becomes necessary this has to keep, and possibly improve, the balance in FLAG, so that different

collaborations, from different geographical areas are represented;

in all working groups the members must belong to different lattice collaborations;

a paper is in general not reviewed (nor colour-coded, as described in the next section) by any of its authors;

lattice collaborations will be consulted on the colour coding of their calculation;

there are also internal rules regulating our work, such as voting procedures.

As for FLAG 19, for this review we sought the advice of external reviewers once a complete draft of the review was
available. For each review section, we have asked one lattice expert (who could be a FLAG alumnus/alumna) and one
nonlattice phenomenologist for a critical assessment. The one exception is the scale-setting section, where only a lattice
expert has been asked to provide input. This is similar to the procedure followed by the Particle Data Group in the creation
of the Review of Particle Physics. The reviewers provide comments and feedback on scientific and stylistic matters. They are
not anonymous, and enter into a discussion with the authors of the WG. Our aim with this additional step is to make sure that
a wider array of viewpoints enter into the discussions, so as to make this review more useful for its intended audience.

1.2 Citation policy

We draw attention to this particularly important point. As stated above, our aim is to make lattice-QCD results easily accessible
to those without lattice expertise, and we are well aware that it is likely that some readers will only consult the present paper
and not the original lattice literature. It is very important that this paper not be the only one cited when our results are quoted.
We strongly suggest that readers also cite the original sources. In order to facilitate this, in Tables 1, 2, 3, 4, and 5, besides
summarizing the main results of the present review, we also cite the original references from which they have been obtained.
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In addition, for each figure we make a bibtex file available on our webpage [5] which contains the bibtex entries of all the
calculations contributing to the FLAG average or estimate. The bibliography at the end of this paper should also make it easy
to cite additional papers. Indeed, we hope that the bibliography will be one of the most widely used elements of the whole

paper.
1.3 General issues

Several general issues concerning the present review are thoroughly discussed in Sec. 1.1 of our initial 2010 paper [1], and we
encourage the reader to consult the relevant pages. In the remainder of the present subsection, we focus on a few important
points. Though the discussion has been duly updated, it is similar to that of Sec. 1.2 in the previous three reviews [2—4].

The present review aims to achieve two distinct goals: first, to provide a description of the relevant work done on the
lattice; and, second, to draw conclusions on the basis of that work, summarizing the results obtained for the various quantities
of physical interest.

The core of the information about the work done on the lattice is presented in the form of tables, which not only list the
various results, but also describe the quality of the data that underlie them. We consider it important that this part of the review
represents a generally accepted description of the work done. For this reason, we explicitly specify the quality requirements
used and provide sufficient details in appendices so that the reader can verify the information given in the tables.

On the other hand, the conclusions drawn on the basis of the available lattice results are the responsibility of FLAG alone.
Preferring to err on the side of caution, in several cases we draw conclusions that are more conservative than those resulting
from a plain weighted average of the available lattice results. This cautious approach is usually adopted when the average is
dominated by a single lattice result, or when only one lattice result is available for a given quantity. In such cases, one does
not have the same degree of confidence in results and errors as when there is agreement among several different calculations
using different approaches. The reader should keep in mind that the degree of confidence cannot be quantified, and it is not
reflected in the quoted errors.

Each discretization has its merits, but also its shortcomings. For most topics covered in this review we have an increasingly
broad database, and for most quantities lattice calculations based on totally different discretizations are now available. This is
illustrated by the dense population of the tables and figures in most parts of this review. Those calculations that do satisfy our
quality criteria indeed lead, in almost all cases, to consistent results, confirming universality within the accuracy reached. The
consistency between independent lattice results, obtained with different discretizations, methods, and simulation parameters,
is an important test of lattice QCD, and observing such consistency also provides further evidence that systematic errors are
fully under control.

In the sections dealing with heavy quarks and with o, the situation is not the same. Since the b-quark mass can barely be
resolved with current lattice spacings, most lattice methods for treating b quarks use effective field theory at some level. This
introduces additional complications not present in the light-quark sector. An overview of the issues specific to heavy-quark
quantities is given in the introduction of Sect. 8. For B- and D-meson leptonic decay constants, there already exists a good
number of different independent calculations that use different heavy-quark methods, but there are only a few independent
calculations of semileptonic B, A, and D form factors and of B — B mixing parameters. For «g, most lattice methods involve
a range of scales that need to be resolved and controlling the systematic error over a large range of scales is more demanding.
The issues specific to determinations of the strong coupling are summarized in Sect. 9.

Number of sea quarks in lattice simulations

Lattice-QCD simulations currently involve two, three or four flavours of dynamical quarks. Most simulations set the masses
of the two lightest quarks to be equal, while the strange and charm quarks, if present, are heavier (and tuned to lie close to their
respective physical values). Our notation for these simulations indicates which quarks are nondegenerate, e.g., N y = 2 + 1
ifmy =mg <mgand Ny =2+1+1ifm, =my < my; < m,. Calculations with N y = 2, i.e., two degenerate dynamical
flavours, often include strange valence quarks interacting with gluons, so that bound states with the quantum numbers of the
kaons can be studied, albeit neglecting strange sea-quark fluctuations. The quenched approximation (N = 0), in which all
sea-quark contributions are omitted, has uncontrolled systematic errors and is no longer used in modern lattice simulations
with relevance to phenomenology. Accordingly, we will review results obtained with Ny =2, Ny = 2+1,and Ny = 2+1+1,
but omit earlier results with Ny = 0. The only exception concerns the QCD coupling constant ;. Since this observable does
not require valence light quarks, it is theoretically well defined also in the Ny = 0 theory, which is simply pure gluodynamics.

G« 2

3 We also use terms like “quality criteria”, “rating”, “colour coding”, etc., when referring to the classification of results, as described in Sect. 2.
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The Ng-dependence of oy, or more precisely of the related quantity ro Agjg, is a theoretical issue of considerable interest;
here ry is a quantity with the dimension of length that sets the physical scale, as discussed in Sect. 11. We stress, however,
that only results with Ny > 3 are used to determine the physical value of oy at a high scale.

Lattice actions, simulation parameters, and scale setting

The remarkable progress in the precision of lattice calculations is due to improved algorithms, better computing resources,
and, last but not least, conceptual developments. Examples of the latter are improved actions that reduce lattice artifacts and
actions that preserve chiral symmetry to very good approximation. A concise characterization of the various discretizations
that underlie the results reported in the present review is given in Appendix A.1 of FLAG 19.

Physical quantities are computed in lattice simulations in units of the lattice spacing so that they are dimensionless. For
example, the pion decay constant that is obtained from a simulation is f;a, where a is the spacing between two neighboring
lattice sites. (All simulations with results quoted in this review use hypercubic lattices, i.e., with the same spacing in all
four Euclidean directions.) To convert these results to physical units requires knowledge of the lattice spacing a at the fixed
values of the bare QCD parameters (quark masses and gauge coupling) used in the simulation. This is achieved by requiring
agreement between the lattice calculation and experimental measurement of a known quantity, which thus “sets the scale” of
a given simulation. Given the central importance of this procedure, we include in this edition of FLAG a dedicated section,
Sect. 11, discussing the issues and results.

Renormalization and scheme dependence

Several of the results covered by this review, such as quark masses, the gauge coupling, and B-parameters, are for quantities
defined in a given renormalization scheme and at a specific renormalization scale. The schemes employed (e.g., regularization-
independent MOM schemes) are often chosen because of their specific merits when combined with the lattice regularization.
For a brief discussion of their properties, see Appendix A.3 of FLAG 19. The conversion of the results obtained in these
so-called intermediate schemes to more familiar regularization schemes, such as the MS-scheme, is done with the aid of
perturbation theory. It must be stressed that the renormalization scales accessible in simulations are limited, because of
the presence of an ultraviolet (UV) cutoff of ~ 7/a. To safely match to MS, a scheme defined in perturbation theory,
Renormalization Group (RG) running to higher scales is performed, either perturbatively or nonperturbatively (the latter
using finite-size scaling techniques).

Extrapolations

Because of limited computing resources, lattice simulations are often performed at unphysically heavy pion masses, although
results at the physical point have become increasingly common. Further, numerical simulations must be done at nonzero lattice
spacing, and in a finite (four-dimensional) volume. In order to obtain physical results, lattice data are obtained at a sequence
of pion masses and a sequence of lattice spacings, and then extrapolated to the physical pion mass and to the continuum limit.
In principle, an extrapolation to infinite volume is also required. However, for most quantities discussed in this review, finite-
volume effects are exponentially small in the linear extent of the lattice in units of the pion mass, and, in practice, one often
verifies volume independence by comparing results obtained on a few different physical volumes, holding other parameters
fixed. To control the associated systematic uncertainties, these extrapolations are guided by effective theories. For light-quark
actions, the lattice-spacing dependence is described by Symanzik’s effective theory [121,122]; for heavy quarks, this can be
extended and/or supplemented by other effective theories such as Heavy-Quark Effective Theory (HQET). The pion-mass
dependence can be parameterized with Chiral Perturbation Theory (xPT), which takes into account the Nambu—Goldstone
nature of the lowest excitations that occur in the presence of light quarks. Similarly, one can use Heavy-Light Meson Chiral
Perturbation Theory (HM x PT) to extrapolate quantities involving mesons composed of one heavy (b or ¢) and one light
quark. One can combine Symanzik’s effective theory with xPT to simultaneously extrapolate to the physical pion mass and
the continuum; in this case, the form of the effective theory depends on the discretization. See Appendix A.4 of FLAG 19 for
a brief description of the different variants in use and some useful references. Finally, x PT can also be used to estimate the
size of finite-volume effects measured in units of the inverse pion mass, thus providing information on the systematic error
due to finite-volume effects in addition to that obtained by comparing simulations at different volumes.

Excited-state contamination

In all the hadronic matrix elements discussed in this review, the hadron in question is the lightest state with the chosen
quantum numbers. This implies that it dominates the required correlation functions as their extent in Euclidean time is
increased. Excited-state contributions are suppressed by e"2£47 where AE is the gap between the ground and excited
states, and At the relevant separation in Euclidean time. The size of A E depends on the hadron in question, and in general
is a multiple of the pion mass. In practice, as discussed at length in Sect. 10, the contamination of signals due to excited-state
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contributions is a much more challenging problem for baryons than for the other particles discussed here. This is in part due
to the fact that the signal-to-noise ratio drops exponentially for baryons, which reduces the values of At that can be used.

Critical slowing down

The lattice spacings reached in recent simulations go down to 0.05 fm or even smaller. In this regime, long autocorrelation times
slow down the sampling of the configurations [123—132]. Many groups check for autocorrelations in a number of observables,
including the topological charge, for which a rapid growth of the autocorrelation time is observed with decreasing lattice
spacing. This is often referred to as topological freezing. A solution to the problem consists in using open boundary conditions
in time [133], instead of the more common antiperiodic ones. More recently, two other approaches have been proposed, one
based on a multiscale thermalization algorithm [134,135] and another based on defining QCD on a nonorientable manifold
[136]. The problem is also touched upon in Sect. 9.2.1, where it is stressed that attention must be paid to this issue. While
large scale simulations with open boundary conditions are already far advanced [137], few results reviewed here have been
obtained with any of the above methods. It is usually assumed that the continuum limit can be reached by extrapolation
from the existing simulations, and that potential systematic errors due to the long autocorrelation times have been adequately
controlled. Partially or completely frozen topology would produce a mixture of different 6 vacua, and the difference from
the desired & = 0 result may be estimated in some cases using chiral perturbation theory, which gives predictions for the
0-dependence of the physical quantity of interest [138,139]. These ideas have been systematically and successfully tested in
various models in [140,141], and a numerical test on MILC ensembles indicates that the topology dependence for some of
the physical quantities reviewed here is small, consistent with theoretical expectations [142].

Simulation algorithms and numerical errors

Most of the modern lattice-QCD simulations use exact algorithms such as those of Refs. [143, 144], which do not produce any
systematic errors when exact arithmetic is available. In reality, one uses numerical calculations at double (or in some cases
even single) precision, and some errors are unavoidable. More importantly, the inversion of the Dirac operator is carried out
iteratively and it is truncated once some accuracy is reached, which is another source of potential systematic error. In most
cases, these errors have been confirmed to be much less than the statistical errors. In the following we assume that this source
of error is negligible. Some of the most recent simulations use an inexact algorithm in order to speed up the computation,
though it may produce systematic effects. Currently available tests indicate that errors from the use of inexact algorithms are
under control [145].

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem of rating and averaging lattice quantities have been outlined in
our first publication [1]. Our aim is to help the reader assess the reliability of a particular lattice result without necessarily
studying the original article in depth. This is a delicate issue, since the ratings may make things appear simpler than they
are. Nevertheless, it safeguards against the possibility of using lattice results, and drawing physics conclusions from them,
without a critical assessment of the quality of the various calculations. We believe that, despite the risks, it is important to
provide some compact information about the quality of a calculation. We stress, however, the importance of the accompanying
detailed discussion of the results presented in the various sections of the present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most lattice calculations. These include, as discussed in detail below,
the chiral, continuum, and infinite-volume extrapolations. To each such source of error for which systematic improvement is
possible we assign one of three coloured symbols: green star, unfilled green circle (which replaced in Ref. [2] the amber disk
used in the original FLAG review [1]) or red square. These correspond to the following ratings:

J the parameter values and ranges used to generate the data sets allow for a satisfactory control of the systematic uncertainties;

o the parameter values and ranges used to generate the data sets allow for a reasonable attempt at estimating systematic
uncertainties, which however could be improved;

m the parameter values and ranges used to generate the data sets are unlikely to allow for a reasonable control of systematic
uncertainties.
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The appearance of a red tag, even in a single source of systematic error of a given lattice result, disqualifies it from inclusion
in the global average.

Note that in the first two editions [1,2], FLAG used the three symbols in order to rate the reliability of the systematic errors
attributed to a given result by the paper’s authors. Starting with FLAG 16 [3] the meaning of the symbols has changed slightly
— they now rate the quality of a particular simulation, based on the values and range of the chosen parameters, and its aptness
to obtain well-controlled systematic uncertainties. They do not rate the quality of the analysis performed by the authors of the
publication. The latter question is deferred to the relevant sections of the present review, which contain detailed discussions
of the results contributing (or not) to each FLAG average or estimate.

For most quantities the colour-coding system refers to the following sources of systematic errors: (i) chiral extrapolation; (ii)
continuum extrapolation; (iii) finite volume. As we will see below, renormalization is another source of systematic uncertainties
in several quantities. This we also classify using the three coloured symbols listed above, but now with a different rationale:
they express how reliably these quantities are renormalized, from a field-theoretic point of view (namely, nonperturbatively,
or with 2-loop or 1-loop perturbation theory).

Given the sophisticated status that the field has attained, several aspects, besides those rated by the coloured symbols, need
to be evaluated before one can conclude whether a particular analysis leads to results that should be included in an average or
estimate. Some of these aspects are not so easily expressible in terms of an adjustable parameter such as the lattice spacing,
the pion mass or the volume. As a result of such considerations, it sometimes occurs, albeit rarely, that a given result does not
contribute to the FLAG average or estimate, despite not carrying any red tags. This happens, for instance, whenever aspects
of the analysis appear to be incomplete (e.g., an incomplete error budget), so that the presence of inadequately controlled
systematic effects cannot be excluded. This mostly refers to results with a statistical error only, or results in which the quoted
error budget obviously fails to account for an important contribution.

Of course, any colour coding has to be treated with caution; we emphasize that the criteria are subjective and evolving.
Sometimes, a single source of systematic error dominates the systematic uncertainty and it is more important to reduce this
uncertainty than to aim for green stars for other sources of error. In spite of these caveats, we hope that our attempt to introduce
quality measures for lattice simulations will prove to be a useful guide. In addition, we would like to stress that the agreement
of lattice results obtained using different actions and procedures provides further validation.

2.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are unavoidably time-dependent; as lattice calculations become
more accurate, the standards against which they are measured become tighter. For this reason FLAG reassesses criteria with
each edition and as a result some of the quality criteria (the one on chiral extrapolation for instance) have been tightened up
over time [1-4].

In the following, we present the rating criteria used in the current report. While these criteria apply to most quantities
without modification there are cases where they need to be amended or additional criteria need to be defined. For instance,
when discussing results obtained in the e-regime of chiral perturbation theory in Sect. 5 the finite volume criterion listed below
for the p-regime is no longer appropriate.* Similarly, the discussion of the strong coupling constant in Sect. 9 requires tailored
criteria for renormalization, perturbative behaviour, and continuum extrapolation. Finally, in the section on nuclear matrix
elements, Sect. 10, the chiral extrapolation criterion is made slightly stronger, and a new criterion is adopted for excited-state
contributions. In such cases, the modified criteria are discussed in the respective sections. Apart from only a few exceptions
the following colour code applies in the tables:

e Chiral extrapolation:

Y Mz min < 200 MeV, with three or more pion masses used in the extrapolation
or two values of M, with one lying within 10 MeV of 135 MeV (the physical neutral pion mass) and the other one
below 200 MeV
o 200 MeV < My min < 400 MeV, with three or more pion masses used in the extrapolation
or two values of My with Mz min < 200 MeV
or a single value of M, lying within 10 MeV of 135 MeV (the physical neutral pion mass)
m otherwise

4 We refer to Sect. 5.1 for an explanation of the various regimes of chiral perturbation theory.
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This criterion is unchanged from FLAG 19. In Sect. 10 the upper end of the range for M nmin in the green circle criterion
is lowered to 300 MeV, as in FLAG 19.
e Continuum extrapolation:

J at least three lattice spacings and at least two points below 0.1 fm and a range of lattice spacings satisfying
[amax/amin]2 >2

o atleast two lattice spacings and at least one point below 0.1 fm and a range of lattice spacings satisfying [@max /@min]> >
1.4

m otherwise

It is assumed that the lattice action is O(a)-improved (i.e., the discretization errors vanish quadratically with the lattice
spacing); otherwise this will be explicitly mentioned. For unimproved actions an additional lattice spacing is required.
This condition is unchanged from FLAG 19.

e Finite-volume effects:
The finite-volume colour code used for a result is chosen to be the worse of the QCD and the QED codes, as described
below. If only QCD is used the QED colour code is ignored.
— For QCD:

* [1‘/[7r,min/1‘/[7r,ﬁd]2 exp{4 — Mn,min[L(Mn,min)]max} < 1, or at least three volumes
(@) [Mn,min/Mn,ﬁd]2 exp{3 — Mﬂ,min[L(Mn,min)]max} < 1, or at least two volumes
m otherwise

where we have introduced [L(My min)]lmax, Which is the maximum box size used in the simulations performed at the
smallest pion mass My min, as well as a fiducial pion mass M 54, which we set to 200 MeV (the cutoff value for a green
star in the chiral extrapolation). It is assumed here that calculations are in the p-regime of chiral perturbation theory,
and that all volumes used exceed 2 fm. The rationale for this condition is as follows. Finite volume effects contain the
universal factor exp{—L M}, and if this were the only contribution a criterion based on the values of My minL would
be appropriate. However, as pion masses decrease, one must also account for the weakening of the pion couplings. In
particular, 1-loop chiral perturbation theory [146] reveals a behaviour proportional to M72, exp{—L My}. Our condition
includes this weakening of the coupling, and ensures, for example, that simulations with Mz min = 135 MeV and
L My min = 3.2 are rated equivalently to those with M7 min = 200 MeV and L My nin = 4.

— For QED (where applicable):

o 1/ ([IM5 min L (M5 min) Imax)"™" < 0.02, or at least four volumes
0 1/(IMz min L (M min)Imax)"™» < 0.04, or at least three volumes
m otherwise

Because of the infrared-singular structure of QED, electromagnetic finite-volume effects decay only like a power of the
inverse spatial extent. In several cases like mass splittings [147,148] or leptonic decays [149], the leading corrections
are known to be universal, i.e., independent of the structure of the involved hadrons. In such cases, the leading universal
effects can be directly subtracted exactly from the lattice data. We denote np;i, the smallest power of % at which such
a subtraction cannot be done. In the widely used finite-volume formulation QED; , one always has npi, < 3 due to the
nonlocality of the theory [150]. The QED criteria are used here only in Sect. 3. Both QCD and QED criteria are unchanged
from FLAG 19.
e Isospin breaking effects (where applicable):

s all leading isospin breaking effects are included in the lattice calculation
o isospin breaking effects are included using the electro-quenched approximation
m otherwise

This criterion is used for quantities which are breaking isospin symmetry or which can be determined at the sub-percent
accuracy where isospin breaking effects, if not included, are expected to be the dominant source of uncertainty. In the
current edition, this criterion is only used for the up- and down-quark masses, and related quantities (¢, 02 and R?). The
criteria for isospin breaking effects are unchanged from FLAG 19.
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e Renormalization (where applicable):

Y nonperturbative
o 1-loop perturbation theory or higher with a reasonable estimate of truncation errors
m otherwise

In Ref. [1], we assigned a red square to all results which were renormalized at 1-loop in perturbation theory. In FLAG
13 [2], we decided that this was too restrictive, since the error arising from renormalization constants, calculated in
perturbation theory at 1-loop, is often estimated conservatively and reliably. These criteria have remained unchanged
since then.

e Renormalization Group (RG) running (where applicable):

For scale-dependent quantities, such as quark masses or By, it is essential that contact with continuum perturbation
theory can be established. Various different methods are used for this purpose (cf. Appendix A.3 in FLAG 19 [4]):
Regularization-independent Momentum Subtraction (RI/MOM), the Schrédinger functional, and direct comparison with
(resummed) perturbation theory. Irrespective of the particular method used, the uncertainty associated with the choice
of intermediate renormalization scales in the construction of physical observables must be brought under control. This
is best achieved by performing comparisons between nonperturbative and perturbative running over a reasonably broad
range of scales. These comparisons were initially only made in the Schrodinger functional approach, but are now also
being performed in RI/MOM schemes. We mark the data for which information about nonperturbative running checks is
available and give some details, but do not attempt to translate this into a colour code.

The pion mass plays an important role in the criteria relevant for chiral extrapolation and finite volume. For some of
the regularizations used, however, it is not a trivial matter to identify this mass. In the case of twisted-mass fermions,
discretization effects give rise to a mass difference between charged and neutral pions even when the up- and down-quark
masses are equal: the charged pion is found to be the heavier of the two for twisted-mass Wilson fermions (cf. Ref. [151]). In
early works, typically referring to Ny = 2 simulations (e.g., Refs. [151] and [87]), chiral extrapolations are based on chiral
perturbation theory formulae which do not take these regularization effects into account. After the importance of accounting
for isospin breaking when doing chiral fits was shown in Ref. [152], later works, typically referring to Ny = 2 + 1 + 1
simulations, have taken these effects into account [7]. We use M+ for My min in the chiral-extrapolation rating criterion.
On the other hand, we identify My min With the root mean square (RMS) of M+, M- and Mo in the finite-volume rating
criterion.

In the case of staggered fermions, discretization effects give rise to several light states with the quantum numbers of the
pion.> The mass splitting among these “taste” partners represents a discretization effect of O (a?), which can be significant
at large lattice spacings but shrinks as the spacing is reduced. In the discussion of the results obtained with staggered quarks
given in the following sections, we assume that these artifacts are under control. We conservatively identify My min with
the root mean square (RMS) average of the masses of all the taste partners, both for chiral-extrapolation and finite-volume
criteria.

In some of the simulations, the fermion formulations employed for the valence quarks are different from those used for
the sea quarks. Even when the fermion formulations are the same, there are cases where the sea and valence quark masses
differ. In such cases, we use the smaller of the valence-valence and valence-sea M, ., values in the finite-volume criteria,
since either of these channels may give the leading contribution depending on the quantity of interest at the one-loop level of
chiral perturbation theory. For the chiral-extrapolation criteria, on the other hand, we use the unitary point, where the sea and
valence quark masses are the same, to define M, .

The strong coupling o is computed in lattice QCD with methods differing substantially from those used in the calculations
of the other quantities discussed in this review. Therefore, we have established separate criteria for o results, which will be
discussed in Sect. 9.2.1.

In the section on nuclear matrix elements, Sect. 10, an additional criterion is used. This concerns the level of control over
contamination from excited states, which is a more challenging issue for nucleons than for mesons. In response to an improved
understanding of the impact of this contamination, the excited-state contamination criterion has been made more stringent
compared to that in FLAG 19.

5 We refer the interested reader to a number of reviews on the subject [153—157].
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2.1.2 Heavy-quark actions

For the b quark, the discretization of the heavy-quark action follows a very different approach from that used for light flavours.
There are several different methods for treating heavy quarks on the lattice, each with its own issues and considerations. Most
of these methods use Effective Field Theory (EFT) at some point in the computation, either via direct simulation of the EFT,
or by using EFT as a tool to estimate the size of cutoff errors, or by using EFT to extrapolate from the simulated lattice quark
masses up to the physical b-quark mass. Because of the use of an EFT, truncation errors must be considered together with
discretization errors.

The charm quark lies at an intermediate point between the heavy and light quarks. In our earlier reviews, the calculations
involving charm quarks often treated it using one of the approaches adopted for the b quark. Since FLAG 16 [3], however, most
calculations simulate the charm quark using light-quark actions. This has become possible thanks to the increasing availability
of dynamical gauge field ensembles with fine lattice spacings. But clearly, when charm quarks are treated relativistically,
discretization errors are more severe than those of the corresponding light-quark quantities.

In order to address these complications, the heavy-quark section adds an additional, bipartite, treatment category to the
rating system. The purpose of this criterion is to provide a guideline for the level of action and operator improvement needed
in each approach to make reliable calculations possible, in principle.

A description of the different approaches to treating heavy quarks on the lattice can be found in Appendix A.1.3 of FLAG
19 [4]. For truncation errors we use HQET power counting throughout, since this review is focused on heavy-quark quantities
involving B and D mesons rather than bottomonium or charmonium quantities. Here we describe the criteria for how each
approach must be implemented in order to receive an acceptable rating (") for both the heavy-quark actions and the weak
operators. Heavy-quark implementations without the level of improvement described below are rated not acceptable (m). The
matching is evaluated together with renormalization, using the renormalization criteria described in Sect. 2.1.1. We emphasize
that the heavy-quark implementations rated as acceptable and described below have been validated in a variety of ways, such
as via phenomenological agreement with experimental measurements, consistency between independent lattice calculations,
and numerical studies of truncation errors. These tests are summarized in Sect. 8.

Relativistic heavy-quark actions

v atleast tree-level O(a) improved action and weak operators

This is similar to the requirements for light-quark actions. All current implementations of relativistic heavy-quark actions
satisfy this criterion.

NRQCD

/ tree-level matched through O(1/m;) and improved through O(a?)

The current implementations of NRQCD satisfy this criterion, and also include tree-level corrections of O(1/ mi) in the
action.

HQET

v tree-level matched through O(1/m),) with discretization errors starting at O(az)

The current implementation of HQET by the ALPHA collaboration satisfies this criterion, since both action and weak operators
are matched nonperturbatively through O(1/my). Calculations that exclusively use a static-limit action do not satisty this
criterion, since the static-limit action, by definition, does not include 1/m, terms. We therefore include static computations
in our final estimates only if truncation errors (in 1/my,) are discussed and included in the systematic uncertainties.

Light-quark actions for heavy quarks

v/~ discretization errors starting at O(a?) or higher

This applies to calculations that use the twisted-mass Wilson action, a nonperturbatively improved Wilson action, domain
wall fermions or the HISQ action for charm-quark quantities. It also applies to calculations that use these light quark actions
in the charm region and above together with either the static limit or with an HQET-inspired extrapolation to obtain results at
the physical b-quark mass. In these cases, the continuum-extrapolation criteria described earlier must be applied to the entire
range of heavy-quark masses used in the calculation.

2.1.3 Conventions for the figures

For a coherent assessment of the present situation, the quality of the data plays a key role, but the colour coding cannot be
carried over to the figures. On the other hand, simply showing all data on equal footing might give the misleading impression
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that the overall consistency of the information available on the lattice is questionable. Therefore, in the figures we indicate
the quality of the data in a rudimentary way, using the following symbols:

B corresponds to results included in the average or estimate (i.e., results that contribute to the black square below);
[ corresponds to results that are not included in the average but pass all quality criteria;

L] corresponds to all other results;

B corresponds to FLAG averages or estimates; they are also highlighted by a gray vertical band.

The reason for not including a given result in the average is not always the same: the result may fail one of the quality criteria;
the paper may be unpublished; it may be superseded by newer results; or it may not offer a complete error budget.
Symbols other than squares are used to distinguish results with specific properties and are always explained in the caption.®
Often, nonlattice data are also shown in the figures for comparison. For these we use the following symbols:

e corresponds to nonlattice results;
A corresponds to Particle Data Group (PDG) results.

2.2 Averages and estimates

FLAG results of a given quantity are denoted either as averages or as estimates. Here we clarify this distinction. To start with,
both averages and estimates are based on results without any red tags in their colour coding. For many observables there are
enough independent lattice calculations of good quality, with all sources of error (not merely those related to the colour-coded
criteria), as analyzed in the original papers, appearing to be under control. In such cases, it makes sense to average these results
and propose such an average as the best current lattice number. The averaging procedure applied to this data and the way the
error is obtained is explained in detail in Sect. 2.3. In those cases where only a sole result passes our rating criteria (colour
coding), we refer to it as our FLAG average, provided it also displays adequate control of all other sources of systematic
uncertainty.

On the other hand, there are some cases in which this procedure leads to a result that, in our opinion, does not cover
all uncertainties. Systematic errors are by their nature often subjective and difficult to estimate, and may thus end up being
underestimated in one or more results that receive green symbols for all explicitly tabulated criteria. Adopting a conservative
policy, in these cases we opt for an estimate (or a range), which we consider as a fair assessment of the knowledge acquired on
the lattice at present. This estimate is not obtained with a prescribed mathematical procedure, but reflects what we consider
the best possible analysis of the available information. The hope is that this will encourage more detailed investigations by
the lattice community.

There are two other important criteria that also play a role in this respect, but that cannot be colour coded, because
a systematic improvement is not possible. These are: (i) the publication status, and (ii) the number of sea-quark flavours
N 7. As far as the former criterion is concerned, we adopt the following policy: we average only results that have been
published in peer-reviewed journals, i.e., they have been endorsed by referee(s). The only exception to this rule consists in
straightforward updates of previously published results, typically presented in conference proceedings. Such updates, which
supersede the corresponding results in the published papers, are included in the averages. Note that updates of earlier results
rely, at least partially, on the same gauge-field-configuration ensembles. For this reason, we do not average updates with
earlier results. Nevertheless, all results are listed in the tables,’” and their publication status is identified by the following
symbols:

e Publication status:
A published or plain update of published results
P preprint
C conference contribution

© For example, for quark-mass results we distinguish between perturbative and nonperturbative renormalization, for low-energy constants we
distinguish between the p- and e-regimes, and for heavy-flavour results we distinguish between those from leptonic and semi-leptonic decays.

7 Whenever figures turn out to be overcrowded, older, superseded results are omitted. However, all the most recent results from each collaboration
are displayed.
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In the present edition, the publication status on the 30th of April 2021 is relevant. If the paper appeared in print after that
date, this is accounted for in the bibliography, but does not affect the averages.®

As noted above, in this review we present results from simulations with Ny =2, Ny =2+ 1and Ny =2+ 1+ 1 (except
for ro A where we also give the Ny = O result). We are not aware of an a priori way to quantitatively estimate the difference
between results produced in simulations with a different number of dynamical quarks. We therefore average results at fixed
N  separately; averages of calculations with different N ; are not provided.

To date, no significant differences between results with different values of Ny have been observed in the quantities listed in
Tables 1,2, 3,4, and 5. In particular, differences between results from simulations with N y = 2and N y = 2+ 1 would reflect
Zweig-rule violations related to strange-quark loops. Although not of direct phenomenological relevance, the size of such
violations is an interesting theoretical issue per se, and one that can be quantitatively addressed only with lattice calculations.
It remains to be seen whether the status presented here will change in the future, since this will require dedicated Ny = 2 and
Ny =2+ 1 calculations, which are not a priority of present lattice work.

The question of differences between results with N y =2+ 1and N y = 2+ 1 + 1 is more subtle. The dominant effect of
including the charm sea quark is to shift the lattice scale, an effect that is accounted for by fixing this scale nonperturbatively
using physical quantities. For most of the quantities discussed in this review, it is expected that residual effects are small in the
continuum limit, suppressed by o (m.) and powers of A%/ mg Here A is a hadronic scale that can only be roughly estimated
and depends on the process under consideration. Note that the A? /mf effects have been addressed in Refs. [158-162], and
found to be small for the quantities considered. Assuming that such effects are generically small, it might be reasonable to
average the results from Ny =2+ 1 and N y = 2 + 1 + 1 simulations, although we do not do so here.

2.3 Averaging procedure and error analysis

In the present report, we repeatedly average results obtained by different collaborations, and estimate the error on the resulting
averages. Here we provide details on how averages are obtained.

2.3.1 Averaging — generic case

We follow the procedure of the previous two editions [2,3], which we describe here in full detail.

One of the problems arising when forming averages is that not all of the data sets are independent. In particular, the same
gauge-field configurations, produced with a given fermion discretization, are often used by different research teams with
different valence-quark lattice actions, obtaining results that are not really independent. Our averaging procedure takes such
correlations into account.

Consider a given measurable quantity O, measured by M distinct, not necessarily uncorrelated, numerical experiments
(simulations). The result of each of these measurement is expressed as

Qi=x; £ al.(]) + ai(z) +... % al.(E), )]

where x; is the value obtained by the ith experiment (( = 1, ..., M) and al.(a) (fora = 1, ..., E) are the various errors.

Typically oi(l) stands for the statistical error and o*i(a) (o > 2) are the different systematic errors from various sources. For
each individual result, we estimate the total error o; by adding statistical and systematic errors in quadrature:

Qi =x; £ o,

£ 2
> [o]" 2)

a=l1

Oi

With the weight factor of each total error estimated in standard fashion,

S T )
2i=19;

8 As noted above in footnote 1, one exception to this deadline was made, Ref. [61].
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the central value of the average over all simulations is given by

M
Xay = )X 0. €

i=1

The above central value corresponds to a Xr%lin weighted average, evaluated by adding statistical and systematic errors in
quadrature. If the fit is not of good quality ( leﬁn /dof > 1), the statistical and systematic error bars are stretched by a factor
S = /x2/dof.

Next, we examine error budgets for individual calculations and look for potentially correlated uncertainties. Specific
problems encountered in connection with correlations between different data sets are described in the text that accompanies
the averaging. If there is reason to believe that a source of error is correlated between two calculations, a 100% correla-
tion is assumed. The correlation matrix C;; for the set of correlated lattice results is estimated by a prescription due to
Schmelling [163]. This consists in defining

ori= |2 [T )

o
with fo running only over those errors of x; that are correlated with the corresponding errors of the measurement x ;. This
expresses the part of the uncertainty in x; that is correlated with the uncertainty in x;. If no such correlations are known to
exist, then we take o;;; = 0. The diagonal and off-diagonal elements of the correlation matrix are then taken to be

Ci; = o (i=1,...,M),

L

Cij =0y, 0} (i #J). ©)

Finally, the error of the average is estimated by

M M
Gazvzzzwia)j Cij, (7)

i=1 j=1

and the FLAG average is
Qav = Xay £ Ouy. ®)

2.3.2 Nested averaging

We have encountered one case where the correlations between results are more involved, and a nested averaging scheme is
required. This concerns the B-meson bag parameters discussed in Sect. 8.2. In the following, we describe the details of the
nested averaging scheme. This is an updated version of the section added in the web update of the FLAG 16 report.

The issue arises for a quantity Q that is given by a ratio, Q = Y /Z. In most simulations, both Y and Z are calculated, and
the error in Q can be obtained in each simulation in the standard way. However, in other simulations only Y is calculated,
with Z taken from a global average of some type. The issue to be addressed is that this average value Z has errors that are
correlated with those in Q.

In the example that arises in Sect. 8.2, Q = Bp, Y = Bp f g and Z = flg. In one of the simulations that contribute to the
average, Z is replaced by Z, the PDG average for f é [164] (obtained with an averaging procedure similar to that used by
FLAG). This simulation is labeled with i = 1, so that

=

01 = ©))

? .
The other simulations have results labeled Q ;, with j > 2. In this set up, the issue is that Z is correlated with the Qj,j= 29

9 There is also a small correlation between Y; and Z, but we follow the original Ref. [73] and do not take this into account. Thus, the error in Q1
is obtained by simple error propagation from those in ¥ and Z. Ignoring this correlation is conservative, because, as in the calculation of Bk, the
correlations between Bp fl% and f é tend to lead to a cancellation of errors. By ignoring this effect we are making a small overestimate of the error

in Q.

@ Springer



Eur. Phys. J. C (2022) 82:869 Page 21 of 296 869

We begin by decomposing the error in Q1 in the same schematic form as above,

(1) (2 (E)
o o of Yio7
Q]ZX]:té 4:& 4:|: 1_22. (10)
Z Z Z Vi

Here the last term represents the error propagating from that in Z, while the others arise from errors in Y;. For the remaining
Q; (j = 2) the decomposition is as in Eq. (1). The total error of Q1 then reads

(M 2 @)\ 2 (E)\ 2 2
o o o Y
o= ) () +<_—12> o2, (11)
Z Z Z 7
while that for the Q; (j > 2)is ) ) )
2 _ () ©) (E)
Uj_<aj ) +(aj ) +~-~+(aj ) . (12)

Correlations between Q; and Oy (j, k > 2) are taken care of by Schmelling’s prescription, as explained above. What is new
here is how the correlations between Q and Q; (j > 2) are taken into account.
To proceed, we recall from Eq. (7) that o7 is given by

M/
o%: Z wl[Zywl[Z];C[Z]y ). (13)
i, j'=1

Here the indices i’ and j’ run over the M’ simulations that contribute to Z, which, in general, are different from those
contributing to the results for Q. The weights w[Z] and correlation matrix C[Z] are given an explicit argument Z to emphasize
that they refer to the calculation of this quantity and not to that of Q. C[Z] is calculated using the Schmelling prescription
[Egs. (5)—(7)] in terms of the errors, o[Z ]E?), taking into account the correlations between the different calculations of Z.

We now generalize Schmelling’s prescription for o;; j, Eq. (5), to that for oy, (k > 2), i.e., the part of the error in Q; that
is correlated with Q. We take

/

1 2 2 I
== 2 [o] + =5 D elZ1el 21 Clzly . (14)
() <k i

The first term under the square root sums those sources of error in Y| that are correlated with Q. Here we are using a more
explicit notation from that in Eq. (5), with («) <> k indicating that the sum is restricted to the values of o for which the error
al(,‘lx) is correlated with Q. The second term accounts for the correlations within Z with Qg, and is the nested part of the
present scheme. The new matrix C[Z];/ jr is a restriction of the full correlation matrix C[Z], and is defined as follows. Its

diagonal elements are given by

ClZiirok = (@[ Z]iro1)* (i'=1,...,M", (15)
©@[Zlror)® = Y (01Z1)2, (16)
(a)<k

where the summation Z/(a)ek over () is restricted to those G[Z]gfx) that are correlated with Q. The off-diagonal elements
are

ClZlijrok = 0lZ)i jrek ol Z] i 5k (i #J", (17)
/
olZljor = | Y (@IZI2, (18)
()« 'k

where the summation Z/(a)e ik over (@) is restricted to U[Z]ff‘) that are correlated with both Z ;» and Q.
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The last quantity that we need to define is o.1.

(19)

where the summation Z/(a) o 1s restricted to those ok(a) that are correlated with one of the terms in Eq. (11).

In summary, we construct the correlation matrix C;; using Eq. (6), as in the generic case, except the expressions for
o1k and oy, are now given by Egs. (14) and (19), respectively. All other o;;; are given by the original Schmelling pre-
scription, Eq. (5). In this way we extend the philosophy of Schmelling’s approach while accounting for the more involved
correlations.

3 Quark masses

Authors: T. Blum, A. Portelli, A. Ramos

Quark masses are fundamental parameters of the Standard Model. An accurate determination of these parameters is important
for both phenomenological and theoretical applications. The bottom- and charm-quark masses, for instance, are important
sources of parametric uncertainties in several Higgs decay modes. The up-, down- and strange-quark masses govern the
amount of explicit chiral symmetry breaking in QCD. From a theoretical point of view, the values of quark masses provide
information about the flavour structure of physics beyond the Standard Model. The Review of Particle Physics of the Particle
Data Group contains a review of quark masses [165], which covers light as well as heavy flavours. Here we also consider
light- and heavy-quark masses, but focus on lattice results and discuss them in more detail. We do not discuss the top quark,
however, because it decays weakly before it can hadronize, and the nonperturbative QCD dynamics described by present day
lattice simulations is not relevant. The lattice determination of light- (up, down, strange), charm- and bottom-quark masses is
considered below in Sects. 3.1, 3.2, and 3.3, respectively.

Quark masses cannot be measured directly in experiment because quarks cannot be isolated, as they are confined inside
hadrons. From a theoretical point of view, in QCD with N flavours, a precise definition of quark masses requires one to
choose a particular renormalization scheme. This renormalization procedure introduces a renormalization scale p, and quark
masses depend on this renormalization scale according to the Renormalization Group (RG) equations. In mass-independent
renormalization schemes the RG equations read

drm; ()
du

= mi(WT(), (20)

where the function 7(g) is the anomalous dimension, which depends only on the value of the strong coupling a; = g2/ (47).
Note that in QCD 7 (g) is the same for all quark flavours. The anomalous dimension is scheme dependent, but its perturbative
expansion

-, 8—>0 -
1@ - @ (do+ g+ ) @

has aleading coefficientdy = 8/ (47)2, which is scheme independent.l0 Equation (20), being a first order differential equation,
can be solved exactly by using Eq. (21) as the boundary condition. The formal solution of the RG equation reads

g(n)
M; = i (11)[2b0 3% ()]~ @00 exp | — / i [@ - ﬁ} : 22)
0 B(x)  box

where by = (11 — 2Ny7/3)/ (47)? is the universal leading perturbative coefficient in the expansion of the S-function,
B(g) = dg?/dlog u?, which governs the running of the strong coupling constant near the scale j¢. The renormalization group
invariant (RGI) quark masses M; are formally integration constants of the RG Eq. (20). They are scale independent, and
due to the universality of the coefficient dy, they are also scheme independent. Moreover, they are nonperturbatively defined

10 We follow the conventions of Gasser and Leutwyler [166].
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by Eq. (22). They only depend on the number of flavours Ny, making them a natural candidate to quote quark masses and
compare determinations from different lattice collaborations. Nevertheless, it is customary in the phenomenology community
to use the MS scheme at a scale & = 2 GeV to compare different results for light-quark masses, and use a scale equal to its
own mass for the charm and bottom quarks. In this review, we will quote the final averages of both quantities.

Results for quark masses are always quoted in the four-flavour theory. Ny = 2 + 1 results have to be converted to the four-
flavour theory. Fortunately, the charm quark is heavy (Aqcp/ m¢)? < 1, and this conversion can be performed in perturbation
theory with negligible (~ 0.2%) perturbative uncertainties. Nonperturbative corrections in this matching are more difficult
to estimate. Since these effects are suppressed by a factor of 1/N., and a factor of the strong coupling at the scale of the
charm mass, naive power counting arguments would suggest that the effects are ~ 1%. In practice, numerical nonperturbative
studies [158,160,167] have found this power counting argument to be an overestimate by one order of magnitude in the
determination of simple hadronic quantities or the A-parameter. Moreover, lattice determinations do not show any significant
deviation between the Ny = 2+ 1 and Ny = 2 + 1 + 1 simulations. For example, the difference in the final averages for the
mass of the strange quark m; between Ny =2+ 1 and Ny = 2 + 1 + 1 determinations is about 1.3%, or about one standard
deviation.

We quote all final averages at 2 GeV in the MS scheme and also the RGI values (in the four-flavour theory). We use the
exact RG Eq. (22). Note that to use this equation we need the value of the strong coupling in the MS scheme at a scale
w = 2 GeV. All our results are obtained from the RG equation in the MS scheme and the 5-loop beta function together with
the value of the A-parameter in the four-flavour theory Al(\% = 294(12) MeV obtained in this review (see Sect. 9). In the
uncertainties of the RGI masses we separate the contributions from the determination of the quark masses and the propagation
of the uncertainty of A%. These are identified with the subscripts m and A, respectively.

Conceptually, all lattice determinations of quark masses contain three basic ingredients:

1. Tuning the lattice bare-quark masses to match the experimental values of some quantities. Pseudo-scalar meson masses
provide the most common choice, since they have a strong dependence on the values of quark masses. In pure QCD
with Ny quark flavours these values are not known, since the electromagnetic interactions affect the experimental values
of meson masses. Therefore, pure QCD determinations use model/lattice information to determine the location of the
physical point. This is discussed at length in Sect. 3.1.1.

2. Renormalization of the bare-quark masses. Bare-quark masses determined with the above-mentioned criteria have to be
renormalized. Many of the latest determinations use some nonperturbatively defined scheme. One can also use perturbation
theory to connect directly the values of the bare-quark masses to the values in the MS scheme at 2 GeV. Experience shows
that 1-loop calculations are unreliable for the renormalization of quark masses: usually at least two loops are required to
have trustworthy results.

3. If quark masses have been nonperturbatively renormalized, for example, to some MOM/SF scheme, the values in this
scheme must be converted to the phenomenologically useful values in the MS scheme (or to the scheme/scale independent
RGI masses). Either option requires the use of perturbation theory. The larger the energy scale of this matching with
perturbation theory, the better, and many recent computations in MOM schemes do a nonperturbative running up to 3—
4 GeV. Computations in the SF scheme allow us to perform this running nonperturbatively over large energy scales and
match with perturbation theory directly at the electro-weak scale ~ 100 GeV.

Note that many lattice determinations of quark masses make use of perturbation theory at a scale of a few GeV.

We mention that lattice-QCD calculations of the b-quark mass have an additional complication which is not present in
the case of the charm and light quarks. At the lattice spacings currently used in numerical simulations the direct treatment of
the b quark with the fermionic actions commonly used for light quarks is very challenging. Only two determinations of the
b-quark mass use this approach, reaching the physical b-quark mass region at two lattice spacings with aM ~ 1. There are
a few widely used approaches to treat the b quark on the lattice, which have been already discussed in the FLAG 13 review
(see Sec. 8 of Ref. [2]). Those relevant for the determination of the h-quark mass will be briefly described in Sect. 3.3.

3.1 Masses of the light quarks
Light-quark masses are particularly difficult to determine because they are very small (for the up and down quarks) or small

(for the strange quark) compared to typical hadronic scales. Thus, their impact on typical hadronic observables is minute, and
it is difficult to isolate their contribution accurately.
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Fortunately, the spontaneous breaking of SU (3); x SU (3) g chiral symmetry provides observables which are particularly
sensitive to the light-quark masses: the masses of the resulting Nambu—Goldstone bosons (NGB), i.e., pions, kaons, and eta.
Indeed, the Gell-Mann—Oakes—Renner relation [168] predicts that the squared mass of a NGB is directly proportional to the
sum of the masses of the quark and antiquark which compose it, up to higher-order mass corrections. Moreover, because these
NGBs are light, and are composed of only two valence particles, their masses have a particularly clean statistical signal in
lattice-QCD calculations. In addition, the experimental uncertainties on these meson masses are negligible. Thus, in lattice
calculations, light-quark masses are typically obtained by renormalizing the input quark mass and tuning them to reproduce
NGB masses, as described above.

3.1.1 The physical point and isospin symmetry

Asmentioned in Sect. 2.1, the present review relies on the hypothesis that, at low energies, the Lagrangian L, + Lo describes
nature to a high degree of precision. However, most of the results presented below are obtained in pure QCD calculations,
which do not include QED. Quite generally, when comparing QCD calculations with experiment, radiative corrections need
to be applied. In pure QCD simulations, where the parameters are fixed in terms of the masses of some of the hadrons, the
electromagnetic contributions to these masses must be discussed. How the matching is done is generally ambiguous because
it relies on the unphysical separation of QCD and QED contributions. In this section, and in the following, we discuss this
issue in detail. A related discussion, in the context of scale setting, is given in Sect. 11.3. Of course, once QED is included in
lattice calculations, the subtraction of electromagnetic contributions is no longer necessary.

Let us start from the unambiguous case of QCD+QED. As explained in the introduction of this section, the physical
quark masses are the parameters of the Lagrangian such that a given set of experimentally measured, dimensionful hadronic
quantities are reproduced by the theory. Many choices are possible for these quantities, but in practice many lattice groups use
pseudoscalar meson masses, as they are easily and precisely obtained both by experiment, and through lattice simulations.
For example, in the four-flavour case, one can solve the system

Mo+ (my, mg, mg, me, ) = M., (23)
M+ (my, mg, mg, me, ) = Mgt (24)
Myo(my, ma, mg, me, o) = My, (25)
Mpo(my, mg, mg, me, o) = M?Op' , (26)

where we assumed that

e all the equations are in the continuum and infinite-volume limits;

e the overall scale has been set to its physical value, generally through some lattice-scale setting procedure involving a fifth
dimensionful input (see the discussion in Sect. 11.3);

o the quark masses m, are assumed to be renormalized from the bare, lattice ones in some given continuum renormalization
scheme;

e o = % is the fine-structure constant expressed as function of the positron charge e, generally set to the Thomson limit
o = 0.007297352 ... [165];

e the mass M, (m,, mg, mg, me, o) of the meson £ is a function of the quark masses and «. The functional dependence is
generally obtained by choosing an appropriate parameterization and performing a global fit to the lattice data;

e the superscript exp. indicates that the mass is an experimental input, lattice groups use in general the values in the Particle
Data Group review [165].

However, ambiguities arise with simulations of QCD only. In that case, there is no experimentally measurable quantity
that emerges from the strong interaction only. The missing QED contribution is tightly related to isospin-symmetry breaking
effects. Isospin symmetry is explicitly broken by the differences between the up- and down-quark masses ém = m, — my,
and electric charges §Q = Q, — Q. These effects are, respectively, of order O(6m/Aqcp) and O(w), and are expected to
be O(1%) of a typical isospin-symmetric hadronic quantity. Strong and electromagnetic isospin-breaking effects are of the
same order and therefore cannot, in principle, be evaluated separately without introducing strong ambiguities. Because these
effects are small, they can be treated as a perturbation,
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X (my, ma, mg, me, &) = X(mya, mg, me) + SmAx (mya, mg, me) + aBx (myq, mg, me) , 27

for a given hadronic quantity X, where m,q = %(m u +mg) is the average light-quark mass. There are several things to notice
here. Firstly, the neglected higher-order O (8m?, adm, a*) corrections are expected to be O(10~#) relatively to X, which at the
moment is way beyond the relative statistical accuracy that can be delivered by a lattice calculation. Secondly, this is not strictly
speaking an expansion around the isospin-symmetric point, the electromagnetic interaction has also symmetric contributions.
From this last expression the previous statements about ambiguities become clearer. Indeed, the only unambiguous prediction
one can perform is to solve Egs. (23)—(26) and use the resulting parameters to obtain a prediction for X, which is represented
by the left-hand side of Eq. (27). This prediction will be the sum of the QCD isospin-symmetric part X, the strong isospin-
breaking effects X5U®) = §mAy, and the electromagnetic effects X = a By. Obtaining any of these terms individually
requires extra, unphysical conditions to perform the separation. To be consistent with previous editions of FLAG, we also
define X = X + X5U@ o be the & — 0 limit of X.

With pure QCD simulations, one typically solves Eqs. (23)—(26) by equating the QCD isospin-symmetric part of a hadron
mass Mh, result of the simulations, with its experimental value MZXp'. This will result in an O(8m, o) mis-tuning of the
theory parameters which will propagate as an error on predicted quantities. Because of this, in general, one cannot predict
hadronic quantities with a relative accuracy higher than O(1%) from pure QCD simulations, independently on how the target
X is sensitive to isospin-breaking effects. If one performs a complete lattice prediction of the physical value of X, it can
be of phenomenological interest to define in some way X, X5Y® and X?. If we keep m,q, mg and m, at their physical
values in physical units, for a given renormalization scheme and scale, then these three quantities can be extracted by setting
successively and simultaneously « and §m to 0. This is where the ambiguity lies: in general the m = 0 point will depend on
the renormalization scheme used for the quark masses. In the next section, we give more details on that particular aspect and
discuss the order of scheme ambiguities.

3.1.2 Ambiguities in the separation of isospin-breaking contributions

In this section, we discuss the ambiguities that arise in the individual determination of the QED contribution X? and the strong-
isospin correction XSY? defined in the previous section. Throughout this section, we assume that the isospin-symmetric
quark masses m,4, mg and m. are always kept fixed in physical units to the values they take at the QCD+QED physical point
in some given renormalization scheme. Let us assume that both up and down masses have been renormalized in an identical
mass-independent scheme which depends on some energy scale ;. We also assume that the renormalization procedure respects
chiral symmetry so that quark masses renormalize multiplicatively. The renormalization constants of the quark masses are
identical for o = 0 and therefore the renormalized mass of a quark has the general form

mg (1) = Zn (W1 + @03 83" (1) + @ Qo 085 (1) + @ Q255 (1)lmg 0 . (28)

up to O(a?) corrections, where mg.o is the bare-quark mass, Q. and Qtzot_ are the sum of all quark charges and squared
charges, respectively, and Q, is the quark charge, all in units of in units of the positron charge e. Throughout this section, a
subscript ud generally denotes the average between up and down quantities and § the difference between the up and the down
quantities. The source of the ambiguities described in the previous section is the mixing of the isospin-symmetric mass m,4
and the difference §m through renormalization. Using Eq. (28) one can make this mixing explicit at leading order in «:

Mug(W)\ PN ) ) @ Myd,0
<5m(m> =Zm(WIl +a Qi 8, (W) +aM*’(n) + oM ()] < Smio ) (29)
with the mixing matrices
) M Qua %5Q ) ) 0?2, i5 0?
M () =38, (1) Oor. 50  Ous and  M™¥(n) =48, (w 8QM2 02 ) (30)
u ud

where Q,q = %(Q,, + Qg) and 6Q = Q, — Qg are the average and difference of the up and down charges, and similarly
Qi i = %(Qﬁ + Qé) and § Q2 = Qﬁ — Qﬁ for the squared charges. Now let us assume that for the purpose of determining the
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different components in Eq. (27), one starts by tuning the bare masses to obtain equal up and down masses, for some small
coupling o at some scale wg, i.e., sm(up) = 0. At this specific point, one can extract the pure QCD, and the QED corrections
to a given quantity X by studying the slope of « in Eq. (27). From these quantities the strong-isospin contribution can then
readily be extracted using a nonzero value of §m (11p). However, if now the procedure is repeated at another coupling o and
scale u with the same bare masses, it appears from Eq. (29) that m () # 0. More explicitly,

_ Zm (M)
() = mua (o) Sz () = a0Az(uo)l, 31)
with
Az() = Q808 (1) + 8025 (), (32)

up to higher-order corrections in « and «0g. In other words, the definitions of X, XSU®? and X7 depend on the renormalization
scale at which the separation was made. This dependence, of course, has to cancel in the physical sum X. One can notice
that at no point did we mention the renormalization of « itself, which, in principle, introduces similar ambiguities. However,
the corrections coming from the running of « are O(az) relatively to X, which, as justified above, can be safely neglected.
Finally, important information is provided by Eq. (31): the scale ambiguities are O(am,q). For physical quark masses, one
generally has m, ;s >~ ém. So by using this approximation in the first-order expansion Eq. (27), it is actually possible to define
unambiguously the components of X up to second-order isospin-breaking corrections. Therefore, in the rest of this review,
we will not keep track of the ambiguities in determining pure QCD or QED quantities. However, in the context of lattice
simulations, it is crucial to notice that m,; >~ ém is only accurate at the physical point. In simulations at larger-than-physical
pion masses, scheme ambiguities in the separation of QCD and QED contributions are generally large. Once more, the
argument made here assumes that the isospin-symmetric quark masses m, g, ms, and m. are kept fixed to their physical value
in a given scheme while varying «. Outside of this assumption there is an additional isospin-symmetric O(am,) ambiguity
between X and X7 .

Such separation in lattice QCD+QED simulation results appeared for the first time in RBC 07 [169] and Blum 10 [170],
where the scheme was implicitly defined around the x PT expansion. In that setup, the §m(ug) = O point is defined in pure
QCD, i.e., ¢g = 0 in the previous discussion. The QCD part of the kaon-mass splitting from the first FLAG review [1] is used
as an input in RM123 11 [171], which focuses on QCD isospin corrections only. It therefore inherits from the convention that
was chosen there, which is also to set §m (o) = 0 at zero QED coupling. The same convention was used in the follow-up
works RM123 13 [172] and RM123 17 [19]. The BMW collaboration was the first to introduce a purely hadronic scheme
in its electro-quenched study of the baryon octet mass splittings [173]. In this work, the quark mass difference 6m(n) is
swapped with the mass splitting AM? between the connected iu and dd pseudoscalar masses. Although unphysical, this
quantity is proportional [174] to §m(w) up to O(am,y) chiral corrections. In this scheme, the quark masses are assumed
to be equal at AM 2 = 0, and the O(am,y) corrections to this statement are analogous to the scale ambiguities mentioned
previously. The same scheme was used for the determination of light-quark masses in BMW 16 [20] and in the recent BMW
prediction of the leading hadronic contribution to the muon magnetic moment [115]. The BMW collaboration used a different
hadronic scheme for its determination of the nucleon-mass splitting in BMW 14 [147] using full QCD+QED simulations.
In this work, the §m = 0 point was fixed by imposing the baryon splitting My+ — Mx- to cancel. This scheme is quite
different from the other ones presented here, in the sense that its intrinsic ambiguity is not O(am,,). What motivates this
choice here is that My+ — My~ = 0 in the limit where these baryons are point particles, so the scheme ambiguity is
suppressed by the compositeness of the ¥ baryons. This may sound like a more difficult ambiguity to quantify, but this
scheme has the advantage of being defined purely by measurable quantities. Moreover, it has been demonstrated numerically
in BMW 14 [147] that, within the uncertainties of this study, the My+ — My = 0 scheme is equivalent to the AM? = 0
one, explicitly My+ — My- = —0.18(12)(6) MeV at AM? = 0. The calculation QCDSF/UKQCD 15 [175] uses a “Dashen
scheme,” where quark masses are tuned such that flavour-diagonal mesons have equal masses in QCD and QCD+QED.
Although not explicitly mentioned by the authors of the paper, this scheme is simply a reformulation of the AM? = 0 scheme
mentioned previously. Finally, MILC 18 [21] also used the AM? = 0 scheme and noticed its connection to the “Dashen
scheme” from QCDSF/UKQCD 15.

Before the previous edition of this review, the contributions X, XSU@  and X7 were given for pion and kaon masses
based on phenomenological information. Considerable progress has been achieved by the lattice community to include
isospin-breaking effects in calculations, and it is now possible to determine these quantities precisely directly from a lattice
calculation. However, these quantities generally appear as intermediate products of a lattice analysis, and are rarely directly
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communicated in publications. These quantities, although unphysical, have a phenomenological interest, and we encourage
the authors of future calculations to quote them explicitly.

3.1.3 Inclusion of electromagnetic effects in lattice-QCD simulations

Electromagnetism on a lattice can be formulated using a naive discretization of the Maxwell action S[A,] =
% f d*x > M’V[BMAv(x) — A, (x)]?. Even in its noncompact form, the action remains gauge invariant. This is not the
case for non-Abelian theories for which one uses the traditional compact Wilson gauge action (or an improved version of
it). Compact actions for QED feature spurious photon-photon interactions which vanish only in the continuum limit. This is
one of the main reason why the noncompact action is the most popular so far. It was used in all the calculations presented
in this review. Gauge-fixing is necessary for noncompact actions because of the usual infinite measure of equivalent gauge
orbits which contribute to the path integral. It was shown [176,177] that gauge-fixing is not necessary with compact actions,
including in the construction of interpolating operators for charged states.

Although discretization is straightforward, simulating QED in a finite volume is more challenging. Indeed, the long range
nature of the interaction suggests that important finite-size effects have to be expected. In the case of periodic boundary
conditions, the situation is even more critical: a naive implementation of the theory features an isolated zero-mode singularity
in the photon propagator. It was first proposed in [178] to fix the global zero-mode of the photon field A, (x) in order to remove
it from the dynamics. This modified theory is generally named QEDy . Although this procedure regularizes the theory and
has the right classical infinite-volume limit, it is nonlocal because of the zero-mode fixing. As first discussed in [147], the
nonlocality in time of QEDry, prevents the existence of a transfer matrix, and therefore a quantum-mechanical interpretation
of the theory. Another prescription named QEDy , proposed in [179], is to remove the zero-mode of A, (x) independently
for each time slice. This theory, although still nonlocal in space, is local in time and has a well-defined transfer matrix.
Whether these nonlocalities constitute an issue to extract infinite-volume physics from lattice-QCD+QED; simulations is, at
the time of this review, still an open question. However, it is known through analytical calculations of electromagnetic finite-
size effects at O () in hadron masses [147,148,150,172,179-181], meson leptonic decays [181], and the hadronic vacuum
polarization [182] that QED;, does not suffer from a problematic (e.g., UV divergent) coupling of short- and long-distance
physics due to its nonlocality. Another strategy, first proposed in [183] and used by the QCDSF collaboration, is to bound the
zero-mode fluctuations to a finite range. Although more minimal, it is still a nonlocal modification of the theory and so far
finite-size effects for this scheme have not been investigated. More recently, two proposals for local formulations of finite-
volume QED emerged. The first one described in [184] proposes to use massive photons to regulate zero-mode singularities,
at the price of (softly) breaking gauge invariance. The second one presented in [177], based on earlier works [185, 186], avoids
the zero-mode issue by using anti-periodic boundary conditions for A, (x). In this approach, gauge invariance requires the
fermion field to undergo a charge conjugation transformation over a period, breaking electric charge conservation. These local
approaches have the potential to constitute cleaner approaches to finite-volume QED. All the calculations presented in this
review used QED or QEDy , with the exception of QCDSF.

Once a finite-volume theory for QED is specified, there are various ways to compute QED effects themselves on a
given hadronic quantity. The most direct approach, first used in [178], is to include QED directly in the lattice simulations
and assemble correlation functions from charged quark propagators. Another approach proposed in [172], is to exploit the
perturbative nature of QED, and compute the leading-order corrections directly in pure QCD as matrix elements of the
electromagnetic current. Both approaches have their advantages and disadvantages and as shown in [19], are not mutually
exclusive. A critical comparative study can be found in [187].

Finally, most of the calculations presented here made the choice of computing electromagnetic corrections in the electro-
quenched approximation. In this limit, one assumes that only valence quarks are charged, which is equivalent to neglecting QED
corrections to the fermionic determinant. This approximation reduces dramatically the cost of lattice-QCD+QED calculations
since it allows the reuse of previously generated QCD configurations. If QED is introduced perturbatively through current
insertions, the electro-quenched approximation avoids computing disconnected contributions coming from the electromagnetic
current in the vacuum, which are generally challenging to determine precisely. The electromagnetic contributions from sea
quarks to hadron-mass splittings are known to be flavour-SU (3) and large- N, suppressed, thus electro-quenched simulations
are expected to have an O(10%) accuracy for the leading electromagnetic effects. This suppression is in principle rather weak
and results obtained from electro-quenched simulations might feature uncontrolled systematic errors. For this reason, the use
of the electro-quenched approximation constitutes the difference between % and o in the FLAG criterion for the inclusion of
isospin-breaking effects.
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3.1.4 Lattice determination of ms and mq

We now turn to a review of the lattice calculations of the light-quark masses and begin with m, the isospin-averaged up- and
down-quark mass m,4, and their ratio. Most groups quote only m,,4, not the individual up- and down-quark masses. We then
discuss the ratio m, /mg and the individual determinations of m, and mg.

Quark masses have been calculated on the lattice since the mid-nineties. However, early calculations were performed in the
quenched approximation, leading to unquantifiable systematics. Thus, in the following, we only review modern, unquenched
calculations, which include the effects of light sea quarks.

Tables 6 and 7 list the results of N y = 2+1and N y = 2+ 1+ 1 lattice calculations of m and m,,4. These results are given
in the MS scheme at 2 GeV, which is standard nowadays, though some groups are starting to quote results at higher scales
(e.g., Ref. [188]). The tables also show the colour coding of the calculations leading to these results. As indicated earlier in
this review, we treat calculations with different numbers, N7, of dynamical quarks separately.

Ny =2+ 1 lattice calculations

We turn now to N y = 2 + 1 calculations. These and the corresponding results for m,4 and mg are summarized in Table 6.
Given the very high precision of a number of the results, with total errors on the order of 1%, it is important to consider the
effects neglected in these calculations. Isospin-breaking and electromagnetic effects are small on m,4 and m;, and have been
approximately accounted for in the calculations that will be retained for our averages. We have already commented that the
effect of the omission of the charm quark in the sea is expected to be small, below our current precision, and we do not add
any additional uncertainty due to these effects in the final averages.

The only new computation since the previous FLAG edition is the determination of light-quark masses by the ALPHA col-
laboration [18]. This work uses nonperturbatively O(a) improved Wilson fermions (a subset of the CLS ensembles [137]). The
renormalization is performed nonperturbatively in the SF scheme from 200 MeV up to the electroweak scale ~ 100 GeV [203].
This nonperturbative running over such large energy scales avoids any use of perturbation theory at low energy scales, but
adds a cost in terms of uncertainty: the running alone propagates to =~ 1% of the error in quark masses. This turns out to
be one of the dominant pieces of uncertainty for the case of m;. On the other hand, for the case of m,q, the uncertainty is
dominated by the chiral extrapolations. The ensembles used include four values of the lattice spacing below 0.09 fm, which
qualifies for a J in the continuum extrapolation, and pion masses down to 200 MeV. This value lies just at the boundary of
the s rating, but since the chiral extrapolation is a substantial source of systematic uncertainty, we opted to rate the work with
a 0. In any case, this work enters in the average and their results show a reasonable agreement with the FLAG average.

We now comment in some detail on previous works that also contribute to the averages.

RBC/UKQCD 14 [8] significantly improves on their RBC/UKQCD 12B [188] work by adding three new domain wall
fermion simulations to three used previously. Two of the new simulations are performed at essentially physical pion masses
(M, ~ 139 MeV) on lattices of about 5.4 fm in size and with lattice spacings of 0.114 fm and 0.084 fm. It is complemented
by a third simulation with M, ~ 371 MeV, a ~ 0.063 fm and a rather small L >~ 2.0 fm. Altogether, this gives them six
simulations with six unitary (mgea = mya) My ’s in the range of 139 to 371 MeV, and effectively three lattice spacings from
0.063 to 0.114 fm. They perform a combined global continuum and chiral fit to all of their results for the 7 and K masses and
decay constants, the €2 baryon mass and two Wilson-flow parameters. Quark masses in these fits are renormalized and run
nonperturbatively in the RI-SMOM scheme. This is done by computing the relevant renormalization constant for a reference
ensemble, and determining those for other simulations relative to it by adding appropriate parameters in the global fit. This
calculation passes all of our selection criteria.

Ny = 2+ 1 MILC results for light-quark masses go back to 2004 [197,198]. They use rooted staggered fermions. By
2009 their simulations covered an impressive range of parameter space, with lattice spacings going down to 0.045 fm, and
valence-pion masses down to approximately 180 MeV [15]. The most recent MILC N y = 2+ 1 results, i.e., MILC 10A [12]
and MILC 09A [15], feature large statistics and 2-loop renormalization. Since these data sets subsume those of their previous
calculations, these latest results are the only ones that need to be kept in any world average.

The BMW 10A, 10B [9,10] calculation still satisfies our stricter selection criteria. They reach the physical up- and down-
quark mass by interpolation instead of by extrapolation. Moreover, their calculation was performed at five lattice spacings
ranging from 0.054 to 0.116 fm, with full nonperturbative renormalization and running and in volumes of up to (6 fm)3,
guaranteeing that the continuum limit, renormalization, and infinite-volume extrapolation are controlled. It does neglect,
however, isospin-breaking effects, which are small on the scale of their error bars.

Finally, we come to another calculation which satisfies our selection criteria, HPQCD 10 [11]. It updates the staggered-
fermions calculation of HPQCD 09A [27]. In these papers, the renormalized mass of the strange quark is obtained by
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Table 6 N y =2 + 1 lattice results for the masses m, 4 and m; (MeV)

.‘QOQ
S $
s 5 & s
& S oy ) &
< §, 2 I (\?-
g & IS4 N 3
s & § £ ¥ S0
N N S £ &
5 T ' & S )
3 & N & & §
Collaboration Refs. Ry O O & & 5 Mud my
ALPHA 19 (18] A o * * * e 3.54(12)(9) 95.7(2.5)(2.4)
Maezawa 16 [189] A n * * * d - 92.0(1.7)
RBC/UKQCD 14B® (8] A * * * * d 331&4)@) 90.3(0.9)(1.0)
RBC/UKQCD 128 [188] A * o * * d 3.3709)(T(1)(2)  92.3(1.9)(0.9)(0.4)(0.8)
PACS-CS 12* [190] A * ] ] * b 3.12(24)(8) 83.60(0.58)(2.23)
Laiho 11 [49] C o * * o - 33107 94.2(1.4)(3.2)4.7)
BMW 10A, 10B* 9,100 A * * * * ¢ 3.469(47)48)  95.5(1.1)(1.5)
PACS-CS 10 [191] A * n L] * b 2.7827) 86.7(2.3)
MILC 10A [12] C o * * o - 3.9 G5)16) -
HPQCD 10** [11] A o * * - - 3.396) 92.2(1.3)
RBC/UKQCD 10A [117] A o) o * * a 3.59(13)(14)(8)  96.2(1.6)(0.2)(2.1)
Blum 107 [170] A o ] o) * - 3.44(12)22) 97.6(2.9)(5.5)
PACS-CS 09 [192] A * n L] * b 29728)(3) 92.75(58)(95)
HPQCD 09A® [27] A o * * - — 34007 92.4(1.5)
MILC 09A [15] C o * * o —325(DM16)(0) 89.0(0.2)(1.6)(4.5)(0.1)
MILC 09 [157] A o) * * o - 3.200(MH@)O)  88(0)(3)(4)(0)
PACS-CS 08 (193] A * n L] n - 2.52747) 72.72(78)
RBC/UKQCD 08 [194] A o " * * - 3.72(16)(33)(18)  107.3(4.4)(9.7)(4.9)
CP-PACS/JLQCD 07 [195] A L] * * L] — 355095 90.1@3) )
HPQCD 05 [196] A o o} o o - 320002))0)F  87(0)(#)(4)(0)*
MILC 04, HPQCD/ [197,198] A o) o o u - 280)(MHBG)O)  76(0)3)(7)(0)
MILC/UKQCD 04

©The results are given in the MS scheme at 3 instead of 2 GeV. We run them down to 2 GeV using numerically integrated 4-loop running [199,200] with
Ny = 3 and with the values of ag(Mz), mp, and m, taken from Ref. [201]. The running factor is 1.106. At three loops it is only 0.2% smaller, indicating
that perturbative running uncertainties are small. We neglect them here

*The calculation includes electromagnetic and m, # mg effects through reweighting

TThe fermion action used is tree-level improved

**my is obtained by combining m,. and HPQCD 09A’s m./m; = 11.85(16) [27]. Finally, m,,4 is determined from m with the MILC 09 result for m /my 4.
Since m./my is renormalization group invariant in QCD, the renormalization and running of the quark masses enter indirectly through that of m, (see
below)

"The calculation includes quenched electromagnetic effects

®What is calculated is m./m; = 11.85(16). my is then obtained by combining this result with the determination m(m.) = 1.268(9) GeV from Ref. [202].
Finally, m,4 is determined from m; with the MILC 09 result for mg/m,q

#The bare numbers are those of MILC 04. The masses are simply rescaled, using the ratio of the 2-loop to 1-loop renormalization factors

a The masses are renormalized nonperturbatively at a scale of 2 GeV in a couple of Ny = 3 RI-SMOM schemes. A careful study of perturbative matching
uncertainties has been performed by comparing results in the two schemes in the region of 2 GeV to 3 GeV [117]

b The masses are renormalized and run nonperturbatively up to a scale of 40 GeV in the Ny = 3 SF scheme. In this scheme, nonperturbative and NLO
running for the quark masses are shown to agree well from 40 GeV all the way down to 3 GeV [191]

¢ The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Ny = 3 RI-MOM scheme. In this scheme, nonperturbative and
N3LO running for the quark masses are shown to agree from 6 GeV down to 3 GeV to better than 1% [10]

d All required running is performed nonperturbatively

e Running is performed nonperturbatively from 200 MeV to the electroweak scale ~ 100 GeV

combining the result of a precise calculation of the renormalized charm-quark mass, m., with the result of a calculation
of the quark-mass ratio, m./mg. As described in Ref. [202] and in Sect. 3.2, HPQCD determines m by fitting Euclidean-
time moments of the cc pseudoscalar density two-point functions, obtained numerically in lattice QCD, to fourth-order,
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Table7 Ny =2+ 1+ 1 lattice results for the masses m, 4 and m; (MeV)
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Collaboration Refs. < O O & & < Mmyq mg
ETM 21A [204] P * * “ * - 3.636(66)(T%)  98.72.4)(*39)
HPQCD 187 (131 A * % = 3 - 94.49(96)
FNAL/MILC/TUMQCD 18 [6] A * % 3 * - 3.404(14)21)  92.52(40)(56)
HPQCD 14A © [14] A * * * - - 93.7(8)
ETM 14 71 A o * * * - 370(13)(11)  99.6(3.6)(2.3)

fBare-quark masses are renormalized nonperturbatively in the RI-SMOM scheme at scales u ~ 2—5 GeV for different lattice spacings and
translated to the MS scheme. Perturbative running is then used to run all results to a reference scale i = 3 GeV

@ As explained in the text, m; is obtained by combining the results m.(5 GeV; Ny =4) =0.8905(56) GeV and (m./ms)(Ny = 4) = 11.652(65),
determined on the same data set. A subsequent scale and scheme conversion, performed by the authors, leads to the value 93.6(8). In the table, we
have converted this to ms(2 GeV; Ny = 4), which makes a very small change

continuum perturbative expressions. These moments are normalized and chosen so as to require no renormalization with
staggered fermions. Since m./m; requires no renormalization either, HPQCD’s approach displaces the problem of lattice
renormalization in the computation of mg to one of computing continuum perturbative expressions for the moments. To
calculate m,; HPQCD 10 [11] use the MILC 09 determination of the quark-mass ratio mg/m,q [157].

HPQCD 09A [27] obtains m./ms = 11.85(16) [27] fully nonperturbatively, with a precision slightly larger than 1%.
HPQCD 10’s determination of the charm-quark mass, m.(m.) = 1.268(6),'! is even more precise, achieving an accuracy
better than 0.5%.

This discussion leaves us with five results for our final average for m;: ALPHA 19 [18], MILC 09A [15], BMW 10A,
10B [9,10], HPQCD 10 [11] and RBC/UKQCD 14 [8]. Assuming that the result from HPQCD 10 is 100% correlated with that
of MILC 09A, as it is based on a subset of the MILC 09A configurations, we find my = 92.2(1.1) MeV with a x?%/dof = 1.65.

For the light-quark mass m,q, the results satisfying our criteria are ALPHA 19, RBC/UKQCD 14B, BMW 10A, 10B,
HPQCD 10, and MILC 10A. For the error, we include the same 100% correlation between statistical errors for the latter two
as for the strange case, resulting in the following (at scale 2 GeV in the MS scheme, and x2/dof = 1.4),

Muq = 3.381(40) MeV Refs. [8-12,18],
Np=2+1: (33)
: ms = 92.2(1.0) MeV Refs. [8-11,15,18],
and the RGI values
No—2il: MRS = 4.605(56),,(54) A MeV Refs. [8-12,18], 34
r= ' MRO! = 128.1(1.4),,(1.5)5 MeV Refs. [8-11,15,18].

Ny =2+ 1+ 1 lattice calculations

Since the previous review a new computation of mg, m,4 has appeared, ETM 21A [204]. Using twisted-mass fermions with
an added clover-term to suppress O(a?) effects between the neutral and charged pions, this work represents a significant
improvement over ETM 14 [7]. Renormalization is performed nonperturbatively in the RI-MOM scheme. Their ensembles
comprise three lattice spacings (0.095, 0.082, and 0.069 fm), two volumes for the finest lattice spacings with pion masses
reaching down to the physical point in the two finest lattices allowing a controlled chiral extrapolation. Their volumes are

1 To obtain this number, we have used the conversion from n =3 GeV to m, given in Ref. [202].
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large, with m L between four and five. These characteristics of their ensembles pass the most stringent FLAG criteria in all
categories. This work extracts quark masses from two different quantities, one based on the meson spectrum and the other
based on the baryon spectrum. Results obtained with these two methods agree within errors. The latter agrees well with the
FLAG average while the former is high in comparison (there is good agreement with their previous results, ETM 14 [7]).
Since ETM 21A was not published by the FLAG deadline, it is not included in the averages.

There are three other works that enter in light-quark mass averages: FNAL/MILC/TUMQCD 18 [6] (which contributes
both to the average of m,4 and my), and the m, 4 determinations in HPQCD 18 [13] and HPQCD 14A [14].

While the results of HPQCD 14A and HPQCD 18 agree well (using different methods), there are several tensions in the
determination of mg. The most significant discrepancy is between ETM 21A and the FLAG average. But also two recent
and very precise determinations (HPQCD 18 and FNAL/MILC/TUMQCD 18) show a tension. Overall there is a rough
agreement between the different determinations with x2/dof = 1.7 (that we apply to our average according to the standard
FLAG averaging procedure). In the case of m,; on the other hand only two works contribute to the average: ETM 14 and
FNAL/MILC/TUMQCD 18. They disagree, with the FNAL/MILC/TUMQCD 18 value basically matching the Ny =2 + 1
result. The large x2/dof ~ 1.7 increases significantly the error of the average. These large values of the x2 are difficult to
understand in terms of a statistical fluctuation. On the other hand the Ny =2+ 1and Ny = 2+ 1 + 1 averages show a good
agreement, which increases our confidence in the averages quoted below.

The N y = 2+ 1+ 1 results are summarized in Table 7. Note that the results of Ref. [14] are reported as m (2 GeV; Ny = 3)
and those of Ref. [7] as m,q(;)(2GeV; Ny = 4). We convert the former to Ny = 4 and obtain m;(2GeV; Ny = 4) =
93.7(8)MeV. The average of FNAL/MILC/TUMQCD 18, HPQCD 18, ETM 14 and HPQCD 14A is 93.43(70)MeV with
x?%/dof = 1.7. For the light-quark average we use ETM 14 and FNAL/MILC/TUMQCD 18 with an average 3.410(43)MeV
and a x2/dof = 1.7. We note these x? values are large. For the case of the light-quark masses this is mostly due to ETM
14 masses lying significantly above the rest, but in the case of m; there is also some tension between the recent and very
precise results of HPQCD 18 and FNAL/MILC/TUMQCD 18. Also note that the 2+1-flavour values are consistent with the
four-flavour ones, so in all cases we have decided to simply quote averages according to FLAG rules, including stretching
factors for the errors based on x2 values of our fits:

Myq = 3.410(43) MeV Refs. [6,7],
Nr=2+1+1: 35
fE2TL my = 93.40(57) MeV Refs. [6,7,13,14], (35)
and the RGI values
MRS = 4.736(60),,(55) , MeV Refs. [6,7],
Np=241+1: ud (60),, (55)A Me efs. [6,7] (36)
MRC! = 129.7(0.8),,(1.5) s MeV Refs. [6,7,13,14].

In Figs. 1 and 2 the lattice results listed in Tables 6 and 7 and the FLAG averages obtained at each value of Ny are presented
and compared with various phenomenological results.

3.1.5 Lattice determinations of mg/myq

The lattice results for mg/m,, are summarized in Table 8. In the ratio m/m,4, one of the sources of systematic error — the
uncertainties in the renormalization factors — drops out. Also other systematic effects (like the effect of the scale setting)
are reduced in these ratios. This might explain that despite the discrepancies that are present in the individual quark mass
determinations, the ratios show an overall very good agreement.

Ny =2 + 1 lattice calculations

ALPHA 19 [18], discussed already, is the only new result for this section. The other works contributing to this average
are RBC/UKQCD 14B, which replaces RBC/UKQCD 12 (see Sect. 3.1.4), and the results of MILC 09A and BMW 10A,
10B.

The results show very good agreement with a x2/dof = 0.14. The final uncertainty (& 0.5%) is smaller than the ones of
the quark masses themselves. At this level of precision, the uncertainties in the electromagnetic and strong isospin-breaking
corrections might not be completely negligible. Nevertheless, we decided not to add any uncertainty associated with this
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Fig. 1 MS mass of the strange quark (at 2 GeV scale) in MeV. The upper two panels show the lattice results listed in Tables 6 and 7, while the
bottom panel collects sum rule results [205-209]. Diamonds and squares represent results based on perturbative and nonperturbative renormalization,
respectively. The black squares and the grey bands represent our averages (33) and (35). The significance of the colours is explained in Sect. 2
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Fig. 2 Mean mass of the two lightest quarks, m,q = %(mu + mg). The bottom panel shows results based on sum rules [205,208,210] (for more

details see Fig. 1)

effect. The main reason is that most recent determinations try to estimate this uncertainty themselves and found an effect
smaller than naive power counting estimates (see N y = 2 + 1 + 1 section),

Nf=2—|-1:

Ny =2+ 1+1 lattice calculations

my /mug = 27.42 (12)

Refs. [8-10,15,18].

(37)

For Ny =2+ 1 + 1 there are three results, MILC 17 [16], ETM 14 [7] and FNAL/MILC 14A [17], all of which satisfy our

selection criteria.
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Table 8 Lattice results for the ratio m /myq
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Collaboration Refs. Ny oy O O < mg/myq
ETM 21A [204] 2+1+41 P * * * 27.17(32)38
MILC 17 ¥ [16] 24141 A * * * 27.178(47) 58
FNAL/MILC 14A [17] 24141 A * * * 27.35(5) 10
ETM 14 (7] 24141 A o * o 26.66(32)(2)
ALPHA 19 [18] 2+1 A 0 * * 27.0(1.0)(0.4)
RBC/UKQCD 14B 8] 2+1 A * * * 27.34(21)
RBC/UKQCD 129 [188] 2+1 A * o * 27.36(39)(31)(22)
PACS-CS 12* [190] 2+1 A * n " 26.8(2.0)
Laiho 11 [49] 2+1 C 0 * * 28.4(0.5)(1.3)
BMW 10A, 10B*+ [9,10] 2+1 A * * * 27.53(20)(8)
RBC/UKQCD 10A (117 2+1 A o o * 26.8(0.8)(1.1)
Blum 10 [170] 2+1 A o n o 28.31(0.29)(1.77)
PACS-CS 09 [192] 2+1 A * n " 31.2(2.7)
MILC 09A [15] 2+1 C o * * 27.41(5)(22)(0)(4)
MILC 09 [157] 2+1 A 0 * * 27.2(1)(3)(0)(0)
PACS-CS 08 [193] 2+1 A * n " 28.8(4)
RBC/UKQCD 08 [194] 2+1 A o n * 28.8(0.4)(1.6)
MILC 04, HPQCD/MILC/UKQCD 04 [197,198]  2+1 A 0 o o 27.4(1)(4)(0)(1)

#The calculation includes electromagnetic effects

©The errors are statistical, chiral and finite volume

*The calculation includes electromagnetic and m,, # my effects through reweighting
*The fermion action used is tree-level improved

TThe calculation includes quenched electromagnetic effects

All these works have been discussed in the previous FLAG edition [4], except the new result ETM 21A, that we have already
examined (and anyway does not appear in the average because it was unpublished at the deadline). The fit has x 2 /dof ~ 2.5,
and the result shows reasonable agreement with the Ny = 2 + 1 result.

Nf=241+41:  mg/mug=2723(10) Refs.[7,16,17], (38)

which corresponds to an overall uncertainty equal to 0.4%. It is worth noting that [ 16] estimates the EM effects in this quantity
to be ~ 0.18% (or 0.049 which is less than the quoted error above).

All the lattice results listed in Table 8 as well as the FLAG averages for each value of Ny are reported in Fig. 3 and
compared with x PT and sum rules.

3.1.6 Lattice determination of m, and mg

In addition to reviewing computations of individual m,, and m, quark masses, we will also determine FLAG averages for the
parameter € related to the violations of Dashen’s theorem

2 2
__ (AMj — MY
AM?2

, (39)

@ Springer



869 Page 34 of 296 Eur. Phys. J. C (2022) 82:869

FIAG2021 ms/Myqg

FLAG average for Ny=2+1+1

ETM 21A
MILC 17

Ne=2+1+1
i

ETM 14
FNAL/MILC 14A

FLAG average for Ny=2+1

ALPHA 19
RBC/UKQCD 14B
RBC/UKQCD 12
PACS-CS 12
Laiho 11
BMW 10A, 10B
RBC/UKQCD 10A
Blum 10
—{t— PACS-CS 09
MILC 09A
MILC 09
HH PACS-CS 08
RBC/UKQCD 08
MILC 04, HPQCD/MILC/UKQCD 04

Ne=2+1

—e— Oller 07
o . Narison 06
S —— Kaiser 98
s —— Leutwyler 96
[ ] Weinberg 77

22 24 26 28 30 32 34
Fig. 3 Results for the ratio mg/m,q. The upper part indicates the lattice results listed in Table 8 together with the FLAG averages for each value
of Ny. The lower part shows results obtained from x PT and sum rules [208,211-215]

where AM% = M§+ - M72z0 and AM,z< = Mlz(Jr - Méo are the pion and kaon squared rpass splittings, respectively. The
superscript y, here and in the following, denotes corrections that arise from electromagnetic effects only. This parameter is
often a crucial intermediate quantity in the extraction of the individual light-quark masses. Indeed, it can be shown, using the
G-parity symmetry of the pion triplet, that AMJ% does not receive O(8m) isospin-breaking corrections. In other words

(AM%)Y
€ = ———— —

AM2 = (AM?)”  and NTE
T

1, (40)

at leading-order in the isospin-breaking expansion. The difference (A M%)S U2 was estimated in previous editions of FLAG
through the €, parameter. However, consistent with our leading-order truncation of the isospin-breaking expansion, it is
simpler to ignore this term. Once known, € allows one to consistently subtract the electromagnetic part of the kaon-mass
splitting to obtain the QCD splitting (AM 12<)S U@ In contrast with the pion, the kaon QCD splitting is sensitive to 8, and,
in particular, proportional to it at leading order in y PT. Therefore, the knowledge of ¢ allows for the determination of §m
from a chiral fit to lattice-QCD data. Originally introduced in another form in [216], € vanishes in the SU (3) chiral limit, a
result known as Dashen’s theorem. However, in the 1990s numerous phenomenological papers pointed out that € might be
an O(1) number, indicating a significant failure of SU(3) xPT in the description of electromagnetic effects on light-meson
masses. However, the phenomenological determinations of € feature some level of controversy, leading to the rather imprecise
estimate € = (.7(5) given in the first edition of FLAG. Starting with the FLAG 19 edition of the review, we quote more
precise averages for €, directly obtained from lattice-QCD+QED simulations. We refer the reader to earlier editions of FLAG
and to the review [217] for discussions of the phenomenological determinations of €.

The quality criteria regarding finite-volume effects for calculations including QED are presented in Sect. 2.1.1. Due to the
long-distance nature of the electromagnetic interaction, these effects are dominated by a power law in the lattice spatial size.
The coefficients of this expansion depend on the chosen finite-volume formulation of QED. For QED , these effects on the
squared mass M of a charged meson are given by [147,148,150]

) 2] 2ci 1
ApvM* = aM {ML+(ML)2+O[(ML)3“, (41)

with ¢; >~ —2.83730. It has been shown in [147] that the two first orders in this expansion are exactly known for hadrons,
and are equal to the pointlike case. However, the O[1/(M L)?] term and higher orders depend on the structure of the hadron.
The universal corrections for QEDpy. can also be found in [147]. In all this part, for all computations using such universal
formulae, the QED finite-volume quality criterion has been applied with ny;, = 3, otherwise npi, = 1 was used.

Since FLAG 19, six new results have been reported for nondegenerate light-quark masses. In the Ny = 2 + 1 + 1 sector,
MILC 18 [21] computed € using Ny = 2 + 1 asqtad electro-quenched QCD+QEDry simulations and extracted the ratio
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my /mg from a new set of Ny = 2 + 1 + 1 HISQ QCD simulations. Although € comes from Ny = 2 + 1 simulations,
(AM%()SU @) which is about three times larger than (AMIZ()V, has been determined in the Ny = 2 + 1 + 1 theory. We
therefore chose to classify this result as a four-flavour one. This result is explicitly described by the authors as an update
of MILC 17 [16]. In MILC 17 [16], m,/mg is determined as a side-product of a global analysis of heavy-meson decay
constants, using a preliminary version of € from MILC 18 [21]. In FNAL/MILC/TUMQCD 18 [6] the ratio m, /m4 from
MILC 17 [16] is used to determine the individual masses m,, and m, from a new calculation of m1,,;. The work RM123 17 [19]
is the continuation of the Ny = 2 work named RM123 13 [172] in the previous edition of FLAG. This group now uses
Ny =241+ 1ensembles from ETM 10 [218], however, still with a rather large minimum pion mass of 270 MeV, leading
to the o rating for chiral extrapolations. In the Ny = 2 + 1 sector, BMW 16 [20] reuses the data set produced from their
determination of the light-baryon octet-mass splittings [173] using electro-quenched QCD+QEDyy smeared clover fermion
simulations. Finally, MILC 16 [219], which is a preliminary result for the value of € published in MILC 18 [21], also provides
a Ny =2+ 1 computation of the ratio m,, /m,.

MILC 09A [15] uses the mass difference between K and K+, from which they subtract electromagnetic effects using
Dashen’s theorem with corrections, as discussed in the introduction of this section. The up and down sea quarks remain
degenerate in their calculation, fixed to the value of m,4 obtained from M 0. To determine m, /mys, BMW 10A, 10B [9,10]
follow a slightly different strategy. They obtain this ratio from their result for m/m,4; combined with a phenomenological
determination of the isospin-breaking quark-mass ratio Q = 22.3(8), from n — 3w decays [220] (the decay n — 37 is
very sensitive to QCD isospin breaking, but fairly insensitive to QED isospin breaking). Instead of subtracting electromag-
netic effects using phenomenology, RBC 07 [169] and Blum 10 [170] actually include a quenched electromagnetic field
in their calculation. This means that their results include corrections to Dashen’s theorem, albeit only in the presence of
quenched electromagnetism. Since the up and down quarks in the sea are treated as degenerate, very small isospin cor-
rections are neglected, as in MILC’s calculation. PACS-CS 12 [190] takes the inclusion of isospin-breaking effects one
step further. Using reweighting techniques, it also includes electromagnetic and m, — my effects in the sea. However,
they do not correct for the large finite-volume effects coming from electromagnetism in their M, L ~ 2 simulations, but
provide rough estimates for their size, based on Ref. [179]. QCDSF/UKQCD 15 [221] uses QCD+QED dynamical simu-
lations performed at the SU (3)-flavour-symmetric point, but at a single lattice spacing, so they do not enter our average.
The smallest partially quenched (mga 7# myq) pion mass is greater than 200 MeV, so our chiral-extrapolation criteria
require a o rating. Concerning finite-volume effects, this work uses three spatial extents L of 1.6 fm, 2.2 fm, and 3.3 fm.
QCDSF/UKQCD 15 claims that the volume dependence is not visible on the two largest volumes, leading them to assume
that finite-size effects are under control. As a consequence of that, the final result for quark masses does not feature a
finite-volume extrapolation or an estimation of the finite-volume uncertainty. However, in their work on the QED corrections
to the hadron spectrum [221] based on the same ensembles, a volume study shows some level of compatibility with the
QED_ finite-volume effects derived in [148]. We see two issues here. Firstly, the analytical result quoted from [148] predicts
large, O(10%) finite-size effects from QED on the meson masses at the values of M, L considered in QCDSF/UKQCD 15,
which is inconsistent with the statement made in the paper. Secondly, it is not known that the zero-mode regularization
scheme used here has the same volume scaling as QED; . We therefore chose to assign the m rating for finite volume to
QCDSF/UKQCD 15. Finally, for Ny = 2+ 1+ 1, ETM 14 [7] uses simulations in pure QCD, but determines m,, — my from
the slope 8M12( /0m,4 and the physical value for the QCD kaon-mass splitting taken from the phenomenological estimate in
FLAG 13.

Lattice results for m,,, my and m, /my4 are summarized in Table 9. The colour coding is specified in detail in Sect. 2.1.
Considering the important progress in the last years on including isospin-breaking effects in lattice simulations, we are now
in a position where averages for m, and my can be made without the need of phenomenological inputs. Therefore, lattice
calculations of the individual quark masses using phenomenological inputs for isospin-breaking effects will be coded m.

We start by recalling the Ny = 2 FLAG average for the light-quark masses, entirely coming from RM123 13 [172],

my, = 2.40(23) MeV Ref. [172],
Ny=2: mg = 4.80(23) MeV Ref. [172], 42)
my/mg = 0.50(4) Ref. [172],

with errors of roughly 10%, 5% and 8%, respectively. In these results, the errors are obtained by combining the lattice statistical
and systematic errors in quadrature. For N y = 2+ 1, the only result, which qualifies for entering the FLAG average for quark
masses, is BMW 16 [20],
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my = 2.27(9) MeV Ref. [20],
Np=2+41: my = 4.67(9) MeV Ref. [20], (43)
my/mg = 0.485(19) Ref. [20],

with errors of roughly 4%, 2% and 4%, respectively. This estimate is slightly more precise than in the previous edition of
FLAG. More importantly, it now comes entirely from a lattice-QCD+QED calculation, whereas phenomenological input was
used in previous editions. These numbers result in the following RGI averages

MRC! = 3.15(12),,(4), MeV Ref. [20],
Np=2+4+1: MRC = 6.49(12),,(7) » MeV Ref. [20]. (44)

Finally, for Ny =2+ 1+ 1, RM123 17 [19] and FNAL/MILC/TUMQCD 18 [6] enter the average for the individual m,,
and mg masses, and RM123 17 [19] and MILC 18 [21] enter the average for the ratio m, /mg, giving

my = 2.14(8) MeV Refs. [6,19],
Np=2+1+1: my = 4.70(5) MeV Refs. [6,19], (45)
my/ma = 0.465(24) Refs. [19,21]

with errors of roughly 4%, 1% and 5%, respectively. One can observe some marginal discrepancies between results coming
from the MILC collaboration and RM123 17 [19]. More specifically, adding all sources of uncertainties in quadrature,
one obtains a 1.70 discrepancy between RM123 17 [19] and MILC 18 [21] for m, /m4, and a 2.2¢ discrepancy between
RM123 17 [19] and FNAL/MILC/TUMQCD 18 [6] for m,. However, the values of m, and € are in very good agreement
between the two groups. These discrepancies are presently too weak to constitute evidence for concern, and will be monitored
as more lattice groups provide results for these quantities. The RGI averages for m,, and m, are

MR =2.97(11),,(3) A MeV Refs. [6,19],
Nfp=2+1+1: MRS = 6.53(7),,(8) 5 MeV Refs. [6,19] . (46)

Every result for m, and mg4 used here to produce the FLAG averages relies on electro-quenched calculations, so there
is some interest to comment on the size of quenching effects. Considering phenomenology and the lattice results presented
here, it is reasonable for a rough estimate to use the value (AM 12()” ~ 2000 MeV? for the QED part of the kaon-mass
splitting. Using the arguments presented in Sect. 3.1.3, one can assume that the QED sea contribution represents O(10%)
of (AM ,2()7/. Using SU (3) PQxPT+QED [174,223] gives a ~ 5% effect. Keeping the more conservative 10% estimate and
using the experimental value of the kaon-mass splitting, one finds that the QCD kaon-mass splitting (A M 12<)S U@ suffers from
a reduced 3% quenching uncertainty. Considering that this splitting is proportional to m, — mg at leading order in SU (3)
xPT, we can estimate that a similar error will propagate to the quark masses. So the individual up and down masses look
mildly affected by QED quenching. However, one notices that ~ 3% is the level of error in the new FLAG averages, and
increasing significantly this accuracy will require using fully unquenched calculations.

In view of the fact that a massless up quark would solve the strong CP problem, many authors have considered this an
attractive possibility, but the results presented above exclude this possibility: the value of m,, in Eq. (43) differs from zero by
26 standard deviations. We conclude that nature solves the strong CP problem differently.

Finally, we conclude this section by giving the FLAG averages for € defined in Eq. (39). For N y = 2+ 1+ 1, we average
the results of RM123 17 [19] and MILC 18 [21] with the value of (AM,%)V from BMW 14 [147] combined with Eq. (40),
giving

Np=2+1+1: € = 0.79(6) Refs. [19,21,147]. (47)

Although BMW 14 [147] focuses on hadron masses and did not extract the light-quark masses, they are the only fully
unquenched QCD+QED calculation to date that qualifies to enter a FLAG average. With the exception of renormalization,
which is not discussed in the paper, this work has a s rating for every FLAG criterion considered for the m,, and m4 quark
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masses. For N y = 2 + 1 we use the results from BMW 16 [20],
Ny=2+1: € =0.73(17) Ref. [20]. (48)

It is important to notice that the € uncertainties from BMW 16 and RM123 17 are dominated by estimates of the QED
quenching effects. Indeed, in contrast with the quark masses, € is expected to be rather sensitive to the sea-quark QED
contributions. Using the arguments presented in Sect. 3.1.3, if one conservatively assumes that the QED sea contributions
represent O(10%) of (AM%)V, then Eq. (40) implies that € will have a quenching error of ~ 0.15 for (AM%)V ~ 2000 MeV?,
representing a large ~ 20% relative error. It is interesting to observe that such a discrepancy does not appear between BMW 15
and RM123 17, although the ~ 10% accuracy of both results might not be sufficient to resolve these effects. On the other
hand, in the context of SU (3) chiral perturbation theory, Bijnens and Danielsson [174] show that the QED quenching effects
on € do not depend on unknown LECs at NLO and are therefore computable at that order. In that approach, MILC 18 finds
the effect at NLO to be only 5%. To conclude, although the controversy around the value of € has been significantly reduced
by lattice-QCD+QED determinations, computing this at few-percent accuracy requires simulations with charged sea quarks.

3.1.7 Estimates for R and Q

The quark-mass ratios

2 2
— m; —m
R=T M gng 2= T (49)
mq — nmy my —m?
compare SU (3) breaking with isospin breaking. Both numbers only depend on the ratios mg/m,q and m, /my,
1 [ my 14 2 1 [ my
R=- —1 4 and Q*=- 1)R. 50
2<mud )1—ﬂ =3 mud+ 0

mq

The quantity Q is of particular interest because of a low-energy theorem [224], which relates it to a ratio of meson masses,

M2 M2 — M2 . 1 . . . 1 . .
2 K K T 2 2 2 2 2 2
03} = —A% —Alz(o v . M:= E(Mﬂ+ + M%), Mg = E(MK+ +M2Z,). (51)

(We remind the reader that the " denotes a quantity evaluated in the « — 0 limit.) Chiral symmetry implies that the expansion
of Q%w in powers of the quark masses (i) starts with Q2 and (ii) does not receive any contributions at NLO:

NLO

O =0. (52)
We recall here the Ny = 2 estimates for Q and R from FLAG 16,
R =40.7(3.7)(2.2), 0 =24.3(1.4)(0.6), (53)

where the second error comes from the phenomenological inputs that were used. For N y = 2 + 1, we use Eqgs. (37) and (43)
and obtain
R =38.1(1.5), Q =23.3(0.5), (54)

where now only lattice results have been used. For N y = 2 + 1 + 1 we obtain
R =1359(1.7), 0 =22.5(0.5), (55)

which are quite compatible with two- and three-flavour results. It is interesting to notice that the most recent phenomenological
determination of R and Q from n — 3m decay [225] gives the values R = 34.4(2.1) and Q = 22.1(7), which are marginally
discrepant with some of the averages presented here. The authors of [225,226] point out that this discrepancy is likely due to
surprisingly large corrections to the approximation in Eq. (52) used in the phenomenological analysis.

Our final results for the masses m,,, mg, m,q, ms and the mass ratios m, /mg, ms/myq, R, Q are collected in Tables 10
and 11.
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Table 10 Our estimates for the strange-quark and the average up-down-quark masses in the MS scheme at running scale ; = 2 GeV. Mass values
are given in MeV. In the results presented here, the error is the one which we obtain by applying the averaging procedure of Sect. 2.3 to the relevant
lattice results.

Ny Muyd mg ms/myq
2+1+1 3.410(43) 93.44(68) 27.23(10)
2+1 3.364(41) 92.03(88) 27.42(12)

Table 11 Our estimates for the masses of the two lightest quarks and related, strong isospin-breaking ratios. Again, the masses refer to the MS
scheme at running scale i = 2 GeV. Mass values are given in MeV

Ny my mq my /mq R Q
2+1+1 2.14(8) 4.70(5) 0.465(24) 35.9(1.7) 22.5(0.5)
2+1 2.27(9) 4.67(9) 0.485(19) 38.1(1.5) 23.3(0.5)

3.2 Charm-quark mass

In the following, we collect and discuss the lattice determinations of the MS charm-quark mass 77z... Most of the results have been
obtained by analyzing the lattice-QCD simulations of two-point heavy-light- or heavy-heavy-meson correlation functions,
using as input the experimental values of the D, Dy, and charmonium mesons. Some groups use the moments method. The
latter is based on the lattice calculation of the Euclidean time moments of pseudoscalar-pseudoscalar correlators for heavy-
quark currents followed by an OPE expansion dominated by perturbative QCD effects, which provides the determination of
both the heavy-quark mass and the strong-coupling constant .

The heavy-quark actions adopted by various lattice collaborations have been discussed in previous FLAG reviews [2—4],
and their descriptions can be found in Sec. A.1.3 of FLAG 19 [4]. While the charm mass determined with the moments method
does not need any lattice evaluation of the mass-renormalization constant Z,,, the extraction of 7, from two-point heavy-
meson correlators does require the nonperturbative calculation of Z,,. The lattice scale at which Z,, is obtained is usually at
least of the order 2-3 GeV, and therefore it is natural in this review to provide the values of m (i) at the renormalization
scale © = 3 GeV. Since the choice of a renormalization scale equal to . is still commonly adopted (as by the PDG [165]),
we have collected in Table 12 the lattice results for both 7. () and m.(3 GeV), obtained for Ny =2+ 1and 2+ 1+ 1.
For Ny = 2, interested readers are referred to previous reviews [2,3].

When not directly available in the published work, we apply a conversion factor using perturbative QCD evolution at five
loops to run down from . = 3 GeV to the scales u = m, and 2 GeV of 0.7739(60) and 0.9026(23), respectively, where the
error comes from the uncertainty in Agcp. We use Agep = 297(12) MeV for Ny = 4 (see Sect. 9). Perturbation theory
uncertainties, estimated as the difference between results that use 4- and 5-loop running, are significantly smaller than the
parametric uncertainty coming from Aqcp. For . = 7., the former is about about 2.5 times smaller. Given the high precision
of many of these results, future works should take the uncertainties in Agcp and perturbation theory seriously.

In the next subsections we review separately the results for m, with three or four flavours of quarks in the sea.

3.2.1 Ny =2+ 1results

Since the last review [4], there are two new results, Petreczky 19 [26] and ALPHA 21 [227], the latter of which was not
published at the FLAG deadline. Petreczky 19 employs the HISQ action on ten ensembles with ten lattice spacings down
to 0.025 fm, physical strange-quark mass, and two light-quark masses, the lightest corresponding to 161 MeV pions. Their
study incorporates lattices with 11 different sizes, ranging from 1.6 to 5.4 fm. The masses are computed from moments of
pseudoscalar quarkonium correlation functions, and MS masses are extracted with 4-loop continuum perturbation theory.
Thus this work easily rates green stars in all categories. ALPHA 21 uses the O(a)-improved Wilson-clover action with five
lattice spacings from 0.087 to 0.039 fm, produced by the CLS collaboration. For each lattice spacing, several light sea-quark
masses are used in a global chiral-continuum extrapolation (the lightest pion mass for one ensemble is 198 MeV). The authors
also use nonperturbative renormalization and running through application of step-scaling and the Schrodinger functional
scheme. Finite-volume effects are investigated at one lattice spacing and only for ~ 400 MeV pions on the smallest two
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Table 12 Lattice results for the MS charm-quark mass 7, (7.) and 72.(3 GeV) in GeV, together with the colour coding of the calculations used
to obtain them

$§
> :§° @Qa
S & S s &
S & § S &
Collaboration Refs. Ny < o of QS iS4 me(mc) m¢(3 GeV)
ETM 21A [204] 2+1+1 P * * * * 1.33922)(F 10" 1.036(17)(TgY)
HPQCD 20A 23] 2+1+1 A * * * * 1.2719(78) 0.9841(51)
HPQCD 18 [13] 2+1+1 A * * * * 1.2757(84) 0.9896(61)
FNAL/MILC/  [6] 2+1+1 A * * * - 1.273(4)(1)(10) 0.9837(43)(14)(33)(5)
TUMQCD 18
HPQCD 14A [14] 2+1+1 A * * * - 1.2715(95) 0.9851(63)
ETM 14A 22] 2+1+1 A o * o * 1.3478(27)(195) 1.0557(22)(153)*
ETM 14 [71  2+1+1 A o * o * 1.348(46) 1.058(35)*
ALPHA 21 [227] 2+1 A" S * * * 1.296(19) 1.007(16)
Petreczky 19 26] 2+1 A P * * * 1.265(10) 1.001(16)
Maezawa 16 [189] 2+1 A [ ] * * * 1.267(12)
JLQCD 16 251 2+1 A o * * - 1.2871(123) 1.0033(96)
xQCD 14 241 2+1 A o o) o) * 1.304(5)(20) 1.006(5)(22)
HPQCD 10 [11] 2+1 A o * o - 1.273(6) 0.986(6)
HPQCD 08B [202] 2+1 A o * o - 1.268(9) 0.986(10)
PDG [165] 1.272)

TWe applied the running factor 0.7739(60) for ; = 3 GeV to ... The errors are statistical, systematic, and the uncertainty in the running factor
* A running factor equal to 0.900 between the scales © = 2 GeV and = 3 GeV was applied by us
TPublished after the FLAG deadline

volumes where results are compatible within statistical errors. ALPHA 21 satisfies the FLAG criteria for green-star ratings
in all of the categories listed in Table 12, but because it is a new result that was unpublished at the deadline, does not enter
the average in this review.

Descriptions of the other works in this section can be found in the last review [4].

According to our rules on the publication status, the FLAG average for the charm-quark mass at Ny = 2 + 1 is obtained
by combining the results HPQCD 10, x QCD 14, JLQCD 16, and Petreczky 19,

m.(m,) = 1.275(5) GeV Refs. [11,24-26], (56)

Ny = 2+1: o
m.(3 GeV) = 0.992(5) GeV Refs. [11,24-26], 57

where the error on 77z, (77i.) includes a stretching factor 1/ x 2/dof 2~ 1.16 as discussed in Sect. 2.2. This result corresponds to
the following RGI average

MRO! = 1.526(9),,(14) 5 GeV Refs. [11,24-26]. (58)
3.2.2 Ny =2+ 1+ 1 results
For a discussion of older results, see the previous FLAG reviews. Since FLAG 19 two groups have produced updated values
with charm quarks in the sea.

HPQCD 20A [23] is an update of HPQCD 18, including a new finer ensemble (a &~ 0.045 fm) and EM corrections computed
in the quenched approximation of QED for the first time. Besides these new items, the analysis is largely unchanged from
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HPQCD 18 except for an added ozf.’ correction to the SMOM-to-MS conversion factor and tuning the bare charm mass via
the J /v mass rather than the .. Their new value in pure QCD is m.(3 GeV) = 0.9858(51) GeV which is quite consistent
with HPQCD 18 and the FLAG 19 average. The effects of quenched QED in both the bare charm-quark mass and the
renormalization constant are small. Both effects are precisely determined, and the overall effect shifts the mass down slightly
to m.(3 GeV) = 0.9841(51) where the uncertainty due to QED is invisible in the final error. The shift from their pure QCD
value due to quenched QED is about —0.2%.

ETM 21A [204] is a new work that follows a similar methodology as ETM 14, but with significant improvements. Notably, a
clover-term is added to the twisted mass fermion action which suppresses O(a?) effects between the neutral and charged pions.
Additional improvements include new ensembles lying very close to the physical mass point, better control of nonperturbative
renormalization systematics, and use of both meson and baryon correlation functions to determine the quark mass. They use
the RI-MOM scheme for nonperturbative renormalization. The analysis comprises ten ensembles in total with three lattice
spacings (0.095, 0.082, and 0.069 fm), two volumes for the finest lattice spacings and four for the other two, and pion masses
down to 134 MeV for the finest ensemble. The values of m L range mostly from almost four to greater than five. According
to the FLAG criteria, green stars are earned in all categories. The authors find m.(3 GeV) = 1.036(17) (fés ) GeV. In Table 12
we have applied a factor of 0.7739(60) to run from 3 GeV to m.. As in FLAG 19, the new value is consistent with ETM
14 and ETM 14A, but is still high compared to the FLAG average. The authors plan future improvements, including a finer
lattice spacing for better control of the continuum limit and a new renormalization scheme, like RI-SMOM. This result has
not been published by the deadline, so it does not yet appear in the average.

Five results enter the FLAG average for Ny = 2 + 1 + 1 quark flavours: ETM 14, ETM 14A, HPQCD 14A,
FNAL/MILC/TUMQCD 18, and HPQCD 20A. We note that while the determinations of m, by ETM 14 and 14A agree
well with each other, they are incompatible with HPQCD 14A, FNAL/MILC/TUMQCD 18, and HPQCD 20A by several
standard deviations. While the latter use the same configurations, the analyses are quite different and independent. As men-
tioned earlier, m, 4 and m, values by ETM are also systematically high compared to their respective averages. Combining all
four results yields

e (m,) = 1.278(13) GeV Refs. [6,7,14,22,23], (59)

Np=2+1+1:
fEatlA 7.(3 GeV) = 0.988(11) GeV Refs. [6,7,14,22,23] (60)

where the errors include large stretching factors / x2/dof &~ 2.0 and 2.5, respectively. We have assumed 100% correlation
for statistical errors between ETM results and the same for HPQCD 14A, HPQCD 20A, and FNAL/MILC/TUMQCD 18.

These are obviously poor x? values, and the stretching factors are quite large. While it may be prudent in such a case to
quote a range of values covering the central values of all results that pass the quality criteria, we believe in this case that
would obscure rather than clarify the situation. From Fig. 5 we note that not only do ETM 21A, ETM 14A, and ETM 14 lie
well above the other 2+1+1 results, but also above all of the 2+1 flavour results. A similar trend is apparent for the light-quark
masses (see Figs. 1 and 2) while for mass ratios there is better agreement (Figs. 3, 4 and 6). The latter suggests there may be
underestimated systematic uncertainties associated with scale setting and/or renormalization which have not been detected.
Finally we note the ETM results are significantly higher than the PDG average. For these reasons, which admittedly are not
entirely satisfactory, we continue to quote an average with a stretching factor as in previous reviews.

The RGI average reads as follows,

MR = 1.520(17),,(14) A GeV Refs. [6,7,14,22,23]. (61)

Figure 5 presents the values of . (m.) given in Table 12 along with the FLAG averages obtained for2 + 1 and 2 4+ 1+ 1
flavours.

3.2.3 Lattice determinations of the ratio m./m;

Because some of the results for quark masses given in this review are obtained via the quark-mass ratio m./mg, we review
these lattice calculations, which are listed in Table 13, as well.

The Ny = 2 + 1 results from x QCD 14 and HPQCD 09A [27] are from the same calculations that were described for the
charm-quark mass in the previous review. Maezawa 16 does not pass our chiral-limit test (see the previous review), though
we note that it is quite consistent with the other values. Combining x QCD 14 and HPQCD 09A, we obtain the same result
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MILC 16
H— QCDSF/UKQCD 15
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Fig. 4 Lattice results and FLAG averages at Ny = 2+ 1 and 2 4 1 + 1 for the up-down-quark masses ratio m, /mg, together with the current
PDG estimate

FIAG2021 m.(me)

FLAG average for N¢=2+1+1

——{—EFM 21A
HPQCD 20A
HPQCD 18
FNAL/MILC/TUMQCD 18
HPQCD 14A
—— ETM 14A
— ETM 14
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N¢
-

FLAG average for N¢=2+1

ALPHA 21
Petreczky 19
Maezawa 16
JLQCD 16
—— xQCD 14
HPQCD 10
HPQCD 08B

Ne=2+1

—A— PDG

125 130 135  1.40 GeV

Fig. 5 The charm-quark mass for 2 + 1 and 2 + 1 + 1 flavours. For the latter a large stretching factor is used for the FLAG average due to poor
2
x~ from our fit

reported in FLAG 19,
Ny=2+1: me/ms = 11.82(16) Refs. [24,27], (62)

with a x2/dof ~ 0.85.

Turning to Ny = 2 + 1 + 1, there is a new result from ETM 21A. The errors have actually increased compared to ETM
14, due to larger uncertainties in the baryon sector which enter their average with the meson sector. Again, ETM 21A does
not yet enter the average since it was not published by the deadline for the review. See the earlier reviews for a discussion of
previous results.

We note that some tension exists between the HPQCD 14A and FNAL/MILC/TUMQCD results. Combining these with
ETM 14 yields

Np=2+1+1: m./my=1176834) Refs.[6,7,14], (63)

where the error includes the stretching factor /2 /dof =~ 1.5. We have assumed a 100% correlation of statistical errors for
FNAL/MILC/TUMQCD 18 and HPQCD 14A.
Results for m./my are shown in Fig. 6 together with the FLAG averages for Ny =2+ 1 and 2 + 1 + 1 flavours.
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Table 13 Lattice results for the quark-mass ratio m./mg, together with the colour coding of the calculations used to obtain them

e
§
S N
§ S &
S N S
3 S S 3
< fl$' ) s
S S § 3
i~y v $ S
$ @ $ S
§ g § ¢
) S < >
. 3 & 8 IS
Collaboration Refs. Ny < ) O B9 me/my
ETM 21A [204]  2+1+1 P * * * 11.48(12)("3)
FNAL/MILC/TUMQCD 18 [6] 2+1+1 A * * * 11.784(11)(17)(00)(08)
HPQCD 14A [14] 24141 A > * = 11.652(35)(55)
FNAL/MILC 14A [17] 24141 A * * * 11.747(19)(H2)
ETM 14 [7] 2+1+1 A (0] * (0] 11.62(16)
Maezawa 16 [189] 2+1 A [ ] * * 11.877(91)
xQCD 14 [24] 241 A 0 o o 11.1(8)
HPQCD 09A [27] 2+1 A (0] * * 11.85(16)
FIAG2021 mc/mg
FLAG average for Ne=2+1+1
T
% 00— ETM 21A
Z FNAL/MILC/TUMQCD 18
HilkH HPQCD 14A
— ETM 14
- FLAG average for Ny=2+1
T
(\1 L H Maezawa 16
z
I —— E— xQCD 14
—&— HPQCD 09A
11.0 1]:.5 12‘.0 12‘.5

Fig. 6 Lattice results for the ratio m./my listed in Table 13 and the FLAG averages corresponding to 2 4+ 1 and 2 + 1 + 1 quark flavours. The
latter average includes a large stretching factor on the error due a poor x? from our fit

3.3 Bottom-quark mass
Now we review the lattice results for the MS bottom-quark mass 777;,. Related heavy-quark actions and observables have been
discussed in previous FLAG reviews [2—4], and descriptions can be found in Sec. A.1.3 of FLAG 19 [4]. In Table 14 we

collect results for my (mp) obtained with Ny =2 + 1 and 2 + 1 + 1 sea-quark flavours. Available results for the quark-mass
ratio my /m. are also reported. After discussing the new results we evaluate the corresponding FLAG averages.

331 Np=2+1
There is one new three-flavour result since the last review, Petreczky 19, which was described already in the charm-quark
section. The new result rates green stars, so our new average with HPQCD 10 is (both works quote values in the Ny = 5

theory, so we simply use those values),

Np=2+1: it (7)) = 4.171(20) GeV Refs. [11,26]. (64)
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Table 14 Lattice results for the MS bottom-quark mass 7, (71,) in GeV, together with the systematic error ratings for each. Available results for
the quark-mass ratio mj/m. are also reported

i~g
e ~
> S
S o &
S N S IS e
S & & S I~
g 3 & & §F ¥
& Q NI AN S &
$ > § 9 & S
S § & & 5 &
Collaboration Refs. Ny < @) O & 7 g 7 (7)) mp/me
HPQCD 21 [28] 2+1+1 A e * * - v 420921+ 4.586(12)*
FNAL/MILC/TUM 18 [6] 2+1+1 A * o * - v 4.201(12)(1)(8)(1) 4.578(5)(6)(0)(1)
Gambino 17 [31] 2+1+1 A o * o * v 4.26(18)
ETM 16B [30] 2+1+1 A o * o * v 4.26(3)(10)* 4.42(3)(8)
HPQCD 14B [29] 2+1+1 A S * * * v 4.196(0)(23)
ETM 14B [228] 2+1+1 C o * o * v 4.26(7)(14) 4.40(6)(5)
HPQCD 14A [14] 2+1+1 A S * * - v 4.162(48) 4.528(14)(52)
Petreczky19 26] 2+¢1 A e * * * v 4.188(37) 4.586(43)
Maezawa 16 [189]2+1 A n e * * v 4.184(89) 4.528(57)
HPQCD 13B [229]2+1 A n o - - v 4.166(43)
HPQCD 10 [11] 241 A e * * - v 4.164(23)* 451(4)
ETM 13B [56] 2 A o * o * v 4.31(9)(8)
ALPHA 13C [230] 2 A * * * * v 421(11)
ETM 11A [231]2 A o * o * v 4.29(14)
PDG [165] 4187063

++We quote the four-flavour result. For N = 5, value is 4.202(21)

**The ratio is quoted in the MS scheme for 1 = 3 GeV because of the different charges of the bottom and charm quarks
TThe lattice spacing used in ETM 14B has been updated here

TOnly two pion points are used for chiral extrapolation

*The number that is given is m; (10 GeV, Ny = 5) = 3.617(25) GeV

The corresponding four-flavour RGI average is
Ny=2+1: MRS = 6.881(33),,(54) 5 GeV Refs. [11,26]. (65)

332 Ny=2+1+1

HPQCD 21 [28] is an update of HPQCD 14A (and replaces it in our average), including EM corrections for the first time for
the b-quark mass. Four flavours of HISQ quarks are used on MILC ensembles with lattice spacings from about 0.09-0.03 fm.
Ensembles with physical and unphysical mass sea-quarks are used. Quenched QED is used to obtain the dominant O(«)
effect. The ratio of bottom- to charm-quark masses is computed in a completely nonperturbative formulation, and the b-quark
mass is extracted using the value of m1.(3 GeV) from HPQCD 20A. Since EM effects are included, the QED renormalization
scale enters the ratio which is quoted for 3 GeV and Ny = 4. The total error on the new result is more than two times smaller
than for HPQCD 14A, but is only slightly smaller compared to the NRQCD result reported in HPQCD 14B. The inclusion of
QED shifts the ratio mj/m, up slightly from the pure QCD value by about one standard deviation, and the value of m1j, (mp)
is consistent, within errors, to the other pure QCD results entering our average. Therefore we quote a single average.

HPQCD 14B employs the NRQCD action [29] to treat the b quark. The b-quark mass is computed with the moments
method, that is, from Euclidean-time moments of two-point, heavy-heavy-meson correlation functions (see also Sect. 9.8 for
a description of the method).
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In HPQCD 14B the b-quark mass is computed from ratios of the moments R,, of heavy current-current correlation functions,
namely,

(66)

|:Rnrn—2 :| 12 Mkin _ MY,IH,
Rp—arn 2mp  2mp(p)
where r,, are the perturbative moments calculated at N3LO, M\, is the spin-averaged kinetic mass of the heavy-heavy vector
and pseudoscalar mesons and M ,n, 1 the experimental spin average of the Y and 1, masses. The average kinetic mass Min
is chosen since in the lattice calculation the splitting of the Y and n,, states is inverted. In Eq. (66), the bare mass m, appearing
on the left-hand side is tuned so that the spin-averaged mass agrees with experiment, while the mass 1, at the fixed scale
n = 4.18 GeV is extrapolated to the continuum limit using three HISQ (MILC) ensembles witha & 0.15,0.12 and 0.09 fm and
two pion masses, one of which is the physical one. Their final result is m; (u = 4.18 GeV) = 4.207(26) GeV, where the error
is from adding systematic uncertainties in quadrature only (statistical errors are smaller than 0.1% and ignored). The errors
arise from renormalization, perturbation theory, lattice spacing, and NRQCD systematics. The finite-volume uncertainty is
not estimated, but at the lowest pion mass they have m, L ~ 4, which leads to the tag +# .

The next four-flavour result [30] is from the ETM collaboration and updates their preliminary result appearing in a
conference proceedings [228]. The calculation is performed on a set of configurations generated with twisted-Wilson fermions
with three lattice spacings in the range 0.06 — 0.09 fm and with pion masses in the range 210-440 MeV. The b-quark mass is
determined from a ratio of heavy-light pseudoscalar meson masses designed to yield the quark pole mass in the static limit.
The pole mass is related to the MS mass through perturbation theory at N°LO. The key idea is that by taking ratios of ratios,
the b-quark mass is accessible through fits to heavy-light(strange)-meson correlation functions computed on the lattice in
the range ~ 1-2 x m, and the static limit, the latter being exactly 1. By simulating below 1, taking the continuum limit
is easier. They find m, (m)) = 4.26(3)(10) GeV, where the first error is statistical and the second systematic. The dominant
errors come from setting the lattice scale and fit systematics.

Gambino et al. [31] use twisted-mass-fermion ensembles from the ETM collaboration and the ETM ratio method as in
ETM 16. Three values of the lattice spacing are used, ranging from 0.062 to 0.089 fm. Several volumes are also used. The
light-quark masses produce pions with masses from 210 to 450 MeV. The main difference with ETM 16 is that the authors
use the kinetic mass defined in the heavy-quark expansion (HQE) to extract the b-quark mass instead of the pole mass.

The final b-quark mass result is FNAL/MILC/TUM 18 [6]. The mass is extracted from the same fit and analysis done for
the charm quark mass. Note that relativistic HISQ valence masses reach the physical b mass on the two finest lattice spacings
(a = 0.042 fm, 0.03 fm) at physical and 0.2 m; light-quark mass, respectively. In lattice units the heavy valence masses
correspond to aMRCG! > 0.90, making the continuum extrapolation challenging, but the authors investigated the effect of
leaving out the heaviest points from the fit, and the result did not noticeably change. Their results are also consistent with an
analysis dropping the finest lattice from the fit. Since the b-quark mass region is only reached with two lattice spacings, we
rate this work with a green circle for the continuum extrapolation. Note however that for other values of the quark masses
they use up to five values of the lattice spacing (cf. their charm-quark mass determination).

All of the above results enter our average. We note that here the ETM 16 result is consistent with the average and a stretching
factor on the error is not used. The average and error is dominated by the very precise FNAL/MILC/TUM 18 value,

Np=241+1: i (7m)) = 4.203(11) GeV Refs. [6,14,28-31]. (67)

We have included a 100% correlation on the statistical errors of ETM 16 and Gambino 17, since the same ensembles are used
in both. While FNAL/MILC/TUM 18 and HPQCD 21 also use the same MILC HISQ ensembles, the statistical error in the
HPQCD 21 analysis is negligible, so we do not include a correlation between them. The average has x2/dof = 0.02.

The above translates to the RGI average

Np=241+1: MRO! = 6.934(18),,(55) 5 GeV Refs. [6,14,28-31]. (68)

All the results for my(mj) discussed above are shown in Fig. 7 together with the FLAG averages corresponding to
Ny =2+1and2+ 1+ 1 quark flavours.
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Fig. 7 The b-quark mass for Ny =2 + 1 and 2 + 1 + 1 flavours. The updated PDG value from Ref. [165] is reported for comparison

4 Leptonic and semileptonic kaon and pion decay and | V4| and | V]|

Authors: T. Kaneko, J. N. Simone, S. Simula, N. Tantalo

This section summarizes state-of-the-art lattice calculations of the leptonic kaon and pion decay constants and the kaon
semileptonic-decay form factor and provides an analysis in view of the Standard Model. With respect to the previous edition
of the FLAG review [4] the data in this section has been updated. As in Ref. [4], when combining lattice data with experimental
results, we take into account the strong SU (2) isospin correction, either obtained in lattice calculations or estimated by using
chiral perturbation theory (x PT), both for the kaon leptonic decay constant fg=+ and for the ratio fg=/f;=.

4.1 Experimental information concerning | V4|, | Vus|, f+(0) and fx+/ fr+

The following review relies on the fact that precision experimental data on kaon decays very accurately determine the product
[Vius| f+(0) [232] and the ratio |V,s/ Vial fx+/fr= [165,232]:

Vs
Vud

Sfr+
St

|Vius| f+(0) = 0.2165(4) , =0.2760(4) . (69)

Here and in the following, fx+ and f,+ are the isospin-broken decay constants, respectively, in QCD. We will refer to
the decay constants in the SU (2) isospin-symmetric limit as fx and f; (the latter at leading order in the mass difference
(m, — mg) coincides with f,+). The parameters |V,4| and |V,| are elements of the Cabibbo—Kobayashi-Maskawa matrix
and f (¢?) represents one of the form factors relevant for the semileptonic decay K — 7~ ¢ v, which depends on the
momentum transfer ¢ between the two mesons. What matters here is the value at g> = 0: f(0) = f On~ 0) = fOK 0n™ 0) =

q“(71*(p/)|§yuu|I(O(p))/(MIZ< — M%)|42_>o‘ The pion and kaon decay constants are defined by'?

(Ol dy,ysulme™(p)) =i pufr (Ol 5y ysul K™ (p)) =i pufx~+-

2

In this normalization, f,+ >~ 130 MeV, fx+ >~ 155 MeV.

12 The pion decay constant represents a QCD matrix element — in the full Standard Model, the one-pion state is not a meaningful notion: the
correlation function of the charged axial current does not have a pole at p> = M§+, but a branch cut extending from M§+ to co. The analytic
properties of the correlation function and the problems encountered in the determination of f; are thoroughly discussed in Ref. [233]. The
“experimental” value of fr depends on the convention used when splitting the sum Locp + Loep into two parts. The lattice determinations of fi
do not yet reach the accuracy where this is of significance, but at the precision claimed by the Particle Data Group [201,234], the numerical value
does depend on the convention used [233,235-237].
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In Eq. (69), the electromagnetic effects have already been subtracted in the experimental analysis using y PT. Recently, a
new method [238] has been proposed for calculating the leptonic decay rates of hadrons including both QCD and QED on
the lattice, and successfully applied to the case of the ratio of the leptonic decay rates of kaons and pions [239,240]. The
correction to the tree-level K2 /m,> decay rate, including both electromagnetic and strong isospin-breaking effects, is found
to be equal to —1.26(14)%"3 to be compared to the estimate —1.12(21)% based on xPT [164,241]. Using the experimental
values of the K> and 7,5 decay rates the result of Ref. [240] implies

fx

= 0.27683 (29)exp (20)ih [35] . (70)

12
Vud

where the last error in brackets is the sum in quadrature of the experimental and theoretical uncertainties, and the ratio of
the decay constants is the one corresponding to isosymmetric QCD. A large part of the theoretical uncertainty comes from
the statistics and continuum and chiral extrapolation of lattice data, which can be systematically reduced by a more realistic
simulation with high statistics. We also note that an independent study of the electromagnetic effects is in progress [242].
Therefore, it is feasible to more precisely determine |V,s/ V, 4| using only lattice-QCD+QED for fx=/f,+ and the ratio of
the experimental values of the K, and > decay rates.

At present, the superallowed nuclear g transitions provide the most precise determination of |V,4|. Its accuracy has
been limited by hadronic uncertainties in the universal electroweak radiative correction AX. A recent analysis in terms of a
dispersion relation [243,244] found AX larger than the previous estimate [245]. A more straightforward update of Ref. [245]
also reported larger AX [246]. In the PDG review, the fourteen precisely measured transitions [247] with the dispersive
estimate of AK yield [165]

[Via| = 0.97370(14), (71)

which differs by ~ 30 from the previous estimate [247]. However, it is not a trivial matter to properly take account of the
nuclear corrections at this precision [243,247-255]. For example, the dispersive approach has been applied in a recent update
of the so-called inner radiative correction due to quenching of the axial-vector and isoscalar spin-magnetic-moment couplings
in nuclei [243], and in a recent estimate of a novel correction due to the distortion of the emitted electron energy spectrum by
nuclear polarizabilities [255]. A recent reanalysis of twenty-three 8 decays [256] obtained

|Vua| = 0.97373(31), (72)

where the two nuclear corrections tend to cancel with each other and, hence, leave the central value basically unchanged.
Their uncertainties, however, doubles that of |V,4|. In Sects. 4.4 and 4.5, we mainly use the PDG value (71) but also test
Eq. (72) as an alternative input.

The matrix element |V,| can be determined from semi-inclusive t decays [257-260]. By separating the inclusive decay
T — hadrons + v into nonstrange and strange final states, e.g., HFLAV 18 [261] obtains

[Vus| = 0.2195(19), (73)

and both Maltman et al. [259,262,263] and Gamiz et al. [264,265] arrived at very similar values. Inclusive hadronic 7 decay
offers an interesting way to measure |V,|, but the above value of |V,| differs from the result one obtains from the kaon
decays by about three standard deviations (see Sect. 4.5). This apparent tension has been recently solved in Ref. [266] thanks
to the use of a different experimental input and to a new treatment of higher orders in the operator product expansion and of
violations of quark-hadron duality. A larger value of | V,| is obtained, namely, |V,s| = 0.2231(27), which is in much better
agreement with the results from the kaon decays. This result is also stable against the choice of the upper limit and weight
function of the experimental spectral integrals. '

Recently, Ref. [268] proposed a new method to determine |V,s| from inclusive strange t decays. Through generalized
dispersion relations, this method evaluates the spectral integral from lattice-QCD data of the hadronic vacuum polarization

13 This has been updated in Ref. [240] after the previous edition of this review. See also the extended discussion concerning the isospin correction
in Sect. 11 on the scale setting.

14 A recent update can be found in Ref. [267].
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function at Euclidean momentum squared in the few-to-several 0.1 GeV? region. This method, therefore, does not rely on the
operator product expansion, and obtained |V,s| consistent with that from the kaon decays. A later analysis yields [267]

|Vus| = 0.2240(18), (74)

by taking account of updates on experimental strange T branching fractions in 2018. We quote Eqs. (73) and (74) as |V,
from the inclusive hadronic t decays in Sect. 4.5.

The experimental results in Eq. (69) are for the semileptonic decay of a neutral kaon into a negatively charged pion and
the charged pion and kaon leptonic decays, respectively, in QCD. In the case of the semileptonic decays the corrections
for strong and electromagnetic isospin breaking in xPT at NLO have allowed for averaging the different experimentally
measured isospin channels [269]. This is quite a convenient procedure as long as lattice-QCD simulations do not include

strong or QED isospin-breaking effects. Several lattice results for fx /fr are quoted for QCD with (squared) pion and kaon

masses of M% = Mio and M2 = % (Mlz(i + MIZ(O — Mf[i + Mi(,) for which the leading strong and electromagnetic isospin

violations cancel. For these results, contact with experimental results is made by correcting leading SU (2) isospin breaking
guided either by x PT or by lattice calculations. We note, however, that the modern trend for the leptonic decays is to include
strong and electromagnetic isospin breaking in the lattice simulations (e.g., Refs. [171,172,193,217,238,239,270-272]).
After the previous edition, this trend has been extended to the semileptonic decays. Reference [273] discusses an extension of
the method in Refs. [239,240], which led to Eq. (70), for the semileptonic decays. References [274-276] pursue an effective
field theory setup supplemented by nonperturbative lattice-QCD inputs to estimate the radiative corrections.

4.2 Lattice results for f1 (0) and fx=+/fr+

The traditional way of determining |V,| relies on using estimates for the value of f, (0), invoking the Ademollo—Gatto
theorem [277]. Since this theorem only holds to leading order of the expansion in powers of m,, mg, and my, theoretical
models are used to estimate the corrections. Lattice methods have now reached the stage where quantities like f4(0) or
fx /fx can be determined to good accuracy. As a consequence, the uncertainties inherent in the theoretical estimates for the
higher order effects in the value of f (0) do not represent a limiting factor any more and we shall therefore not invoke those
estimates. Also, we will use the experimental results based on nuclear 8 decay and inclusive hadronic t decay exclusively
for comparison — the main aim of the present review is to assess the information gathered with lattice methods and to use it
for testing the consistency of the SM and its potential to provide constraints for its extensions.

The database underlying the present review of the semileptonic form factor and the ratio of decay constants is listed in
Tables 15 and 16. The properties of the lattice data play a crucial role for the conclusions to be drawn from these results: range
of M, size of LM, continuum extrapolation, extrapolation in the quark masses, finite-size effects, etc. The key features
of the various data sets are characterized by means of the colour code specified in Sect. 2.1. More detailed information on
individual computations are compiled in Appendix C.2, which in this edition is limited to new results and to those entering
the FLAG averages. For other calculations the reader should refer to the Appendix B.2 of Ref. [3].

The quantity f(0) represents a matrix element of a strangeness-changing null-plane charge, f1(0) = (K|Q"|r) (see
Ref. [278]). The vector charges obey the commutation relations of the Lie algebra of SU (3), in particular [Q‘_‘s, Q§”] =
Q"=55_ This relation implies the sum rule " [(K|Q"* |n)|> — Y, [(K|Q%*|n)|> = 1. Since the contribution from the one-
pion intermediate state to the first sum is given by f, (0)?, the relation amounts to an exact representation for this quantity
[279]:

[0 =1 [KIQ™ImI*+ > [(K|Q™|m)I*. (75)
n#mw n

While the first sum on the right extends over nonstrange intermediate states, the second runs over exotic states with strangeness
£2 and is expected to be small compared to the first.

The expansion of f4(0) in SU(3) xPT in powers of m,,, m4, and my starts with 4 (0) = 1+ fo+ fa+--- [280]. Since all
of the low-energy constants occurring in f> can be expressed in terms of M, Mg, My and f [278], the NLO correction is
known. In the language of the sum rule (75), f> stems from nonstrange intermediate states with three mesons. Like all other
nonexotic intermediate states, it lowers the value of f1(0): f» = —0.023 when using the experimental value of f;; as input.
The corresponding expressions have also been derived in quenched or partially quenched (staggered) xPT [34,281]. At the
same order in the SU (2) expansion [282], f(0) is parameterized in terms of M, and two a priori unknown parameters. The
latter can be determined from the dependence of the lattice results on the masses of the quarks. Note that any calculation that
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Table 15 Colour code for the data on f. (0). In this and previous editions [4], old results with two red tags have been dropped

§¢
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& S ey @
< 113 L) s'
s S S $
N A S S
& 2 N N
§ ¥ § g
S $ § ¥
. S N S S
Collaboration Refs. Ny < O C < S+
FNAL/MILC 18 [33] 2+1+1 A * * * 0.9696(15)(12)
ETM 16 [32] 2+1+1 A 0 * o 0.9709(45)(9)
FNAL/MILC 13E [293] 2+1+1 A * * * 0.9704(24)(22)
PACS 19 [294] 2+1 A o [ | * 0.9603(16)(*39)
JLQCD 17 [289] 2+1 A 0 [ | 0 0.9636(36)(*3])
RBC/UKQCD 15A [35] 2+1 A * 0 0 0.9685(34)(14)
RBC/UKQCD 13 [295] 2+1 A * o o 0.9670(20)(*}%)
FNAL/MILC 121 [34] 2+1 A o 0 * 0.9667(23)(33)
JLQCD 12 [296] 2+1 C o | * 0.959(6)(5)
JLQCD 11 [297] 2+1 C o | * 0.964(6)
RBC/UKQCD 10 [298] 2+1 A o | * 0.9599(34)(*31)(14)
RBC/UKQCD 07 [299] 2+1 A o | * 0.9644(33)(34)(14)
ETM 10D [300] 2 C o * o 0.9544(68)s7ar
ETM 09A [36] 2 A 0o o o 0.9560(57)(62)

relies on the x PT formula for f; is subject to the uncertainties inherent in NLO results: instead of using the physical value
of the pion decay constant f;;, one may, for instance, work with the constant f that occurs in the effective Lagrangian and
represents the value of f;; in the chiral limit. Although trading f; for fj in the expression for the NLO term affects the result
only at NNLO, it may make a significant numerical difference in calculations where the latter are not explicitly accounted
for. (Lattice results concerning the value of the ratio f; /fy are reviewed in Sect. 5.3.)

The lattice results shown in Fig. 8 indicate that the higher order contributions Af = f4(0) — 1 — f> are negative and
thus amplify the effect generated by f>. This confirms the expectation that the exotic contributions are small. The entries in
the lower part of the left panel represent various model estimates for f4. In Ref. [283], the symmetry-breaking effects are
estimated in the framework of the quark model. The more recent calculations are more sophisticated, as they make use of the
known explicit expression for the K,3 form factors to NNLO in xPT [284,285]. The corresponding formula for f4 accounts
for the chiral logarithms occurring at NNLO and is not subject to the ambiguity mentioned above.!> The numerical result,
however, depends on the model used to estimate the low-energy constants occurring in fs [285-288]. The figure indicates
that the most recent numbers obtained in this way correspond to a positive or an almost vanishing rather than a negative value
for Af. We note that FNAL/MILC 121 [34], JLQCD 17 [289], FNAL/MILC 18 [33], and Ref. [290] have made an attempt
at determining a combination of some of the low-energy constants appearing in fs from lattice data.

4.3 Direct determination of f (0) and fg=+/f+

Many lattice results for the form factor f(0) and for the ratio of decay constants, which we summarize here in Tables 15
and 16, respectively, have been computed in isospin-symmetric QCD. The reason for this unphysical parameter choice is that
there are only a few simulations of isospin-breaking effects in lattice QCD, which is ultimately the cleanest way for predicting
these effects [170-172,178,217,238,239,272,291,292]. In the meantime, one relies either on yPT [197,280] to estimate
the correction to the isospin limit or one calculates the breaking at leading order in (m, — mg) in the valence quark sector
by extrapolating the lattice data for the charged kaons to the physical value of the up(down)-quark mass (the result for the

15 Fortran programs for the numerical evaluation of the form factor representation in Ref. [285] are available on request from Johan Bijnens.
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Table 16 Colour code for the data on the ratio of decay constants: fx /f5 is the pure QCD SU (2)-symmetric ratio, while fg=+/f,+ is in pure QCD
including the SU (2) isospin-breaking correction. In this and previous editions [4], old results with two red tags have been dropped

N &
s S S &
N & & 3
& I & &
§ § $§ S
g & s L
XS S n
. ¥ § 5
Collaboration Refs. Ny < O B9 fx/fx Frx )/t
ETM 21 [305] 2+1+1 1.1995(44)(7)  1.1957(44)(7)
CalLat 20 [39] 2+1+1 1.1964(32)(30)  1.1942(32)(31)
FNAL/MILC 17 [16] 2+1+1 1.1980(12)(F35)  1.1950(15)(*S,)
ETM 14E [38] 2+1+1 1.188(11)(11)  1.184(12)(11)
FNAL/MILC 14A  [17] 2+1+1 1.1956(10)(139)
ETM 13F [306] 2+1+1 1.193(13)(10)  1.183(14)(10)
HPQCD 13A [37] 2+1+1 1.1948(15)(18)  1.1916(15)(16)
MILC 13A [307] 2+1+1 1.1947(26)(37)
MILC 11 [308] 2+1+1 1.187242)! .
ETM 10E [309] 2+1+1 1.224(13)gtat
QCDSF/UKQCD 16  [44] 2+1 1.192(10)(13)  1.190(10)(13)
BMW 16 [43,310] 2+1 1.182(10)(26)  1.178(10)(26)
RBC/UKQCD 14B  [8] 2+1 1.1945(45)
RBC/UKQCD 12 [188] 2+1 1.199(12)(14)
Laiho 11 [49] 2+1 1.202(11)(9)(2)(5)tF
MILC 10 [41] 2+1 1.197(2)(H3)

% % H|(O O MO > % % O H» » O %% |0 O % O % % % % » »

> OO0 2> 0> 0P >00002>>2>>00%>>0 > > >0
O OO % %|0O OO OO O %0O0OO O X% O|O O %0 O % » »* ()51.
7oy

% O O % O[O O % O % % %% %% O %% %0[00 % %0 % 0 % % %

JLQCD/TWQCD 10 [311] 2+1 1.230(19)
RBC/UKQCD 10A  [117] 2+1 1.204(7)(25)

BMW 10 [42] 2+1 1.192(7)(6)

MILC 09A [15] 2+1 1.198(2)(*9)
MILC 09 [157] 2+1 1.1973)( %)
Aubin 08 [312] 2+1 1.191(16)(17)
RBC/UKQCD 08 [194] 2+1 1.205(18)(62)

HPQCD/UKQCD 07  [40] 2+1 1.189(2)(7)

MILC 04 [197] 2+1 1.210(4)(13)
ETM 14D [313] 2 1.203(5)stat

ALPHA 13A [314] 2 1.1874(57)(30)

ETM 10D [300] 2 1.190(8)stat

ETM 09 [45] 2 1.210(6)(15)(9)
QCDSF/UKQCD 07  [315] 2 C o 1.21(3)

TResult with statistical error only from polynomial interpolation to the physical point
T This work is the continuation of Aubin 08

pion decay constant is always extrapolated to the value of the average light-quark mass /). This defines the prediction for
e/ fx.

Since the majority of results that qualify for inclusion into the FLAG average include the strong SU (2) isospin-breaking
correction, we confirm the choice made in the previous edition of the FLAG review [4] and we provide in Fig. 9 the overview of
the world data of fx=/f,+. For all the results of Table 16 provided only in the isospin-symmetric limit we apply individually
an isospin correction that will be described later on (see Eqgs. (79)—(80)).
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Fig. 8 Comparison of lattice FAG2021 f 4 (O)
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The plots in Figs. 8 and 9 illustrate our compilation of data for f (0) and fg+/f,=. The lattice data for the latter quantity
is largely consistent even when comparing simulations with different N ¢, while in the case of f (0) a slight tendency to get
higher values when increasing Ny seems to be visible, even if it does not exceed one standard deviation. We now proceed
to form the corresponding averages, separately for the data with Ny =2+ 1+ 1, Ny =2+ 1, and Ny = 2 dynamical
flavours, and in the following we will refer to these averages as the “direct” determinations.

4.3.1 Results for f1(0)

For f4(0) there are currently two computational strategies: FNAL/MILC uses the Ward identity to relate the K — x
form factor at zero momentum transfer to the matrix element (7 |S|K) of the flavour-changing scalar current S = su.
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Peculiarities of the staggered fermion discretization used by FNAL/MILC (see Ref. [34]) makes this the favoured choice. The
other collaborations are instead computing the vector current matrix element (r|sy,u|K). Apart from FNAL/MILC 13E,
RBC/UKQCD 15A, and FNAL/MILC 18, all simulations in Table 15 involve unphysically heavy quarks and, therefore, the
lattice data needs to be extrapolated to the physical pion and kaon masses corresponding to the K — 7~ channel. We note
also that the recent computations of f; (0) obtained by the FNAL/MILC and RBC/UKQCD collaborations make use of the
partially-twisted boundary conditions to determine the form-factor results directly at the relevant kinematical point g = 0
[301,302], avoiding in this way any uncertainty due to the momentum dependence of the vector and/or scalar form factors.
The ETM collaboration uses partially-twisted boundary conditions to compare the momentum dependence of the scalar and
vector form factors with the one of the experimental data [32,300], while keeping at the same time the advantage of the
high-precision determination of the scalar form factor at the kinematical end-point q,% w = (Mg — M)? [36,303] for the
interpolation at ¢> = 0.

According to the colour codes reported in Table 15 and to the FLAG rules of Sect. 2.2, only the result ETM 09A with
N ; = 2, the results FNAL/MILC 121 and RBC/UKQCD 15A with N y = 2+ 1, and the results ETM 16 and FNAL/MILC 18
with N y =2+ 1 + 1 dynamical flavours of fermions, respectively, can enter the FLAG averages. We note that the new entry
in this edition is FNAL/MILC 18 for Ny = 2 + 1 + 1, which did not enter the previous FLAG average due to its publication
status [4].

At N y =2+ 1+ 1 the result from the FNAL/MILC collaboration, f(0) = 0.9704(24)(22) (FNAL/MILC 13E), is based
on the use of the Highly Improved Staggered Quark (HISQ) action (for both valence and sea quarks), which has been tailored to
reduce staggered taste-breaking effects, and includes simulations with three lattice spacings and physical light-quark masses.
These features allow to keep the uncertainties due to the chiral extrapolation and to the discretization artifacts well below the
statistical error. The remaining largest systematic uncertainty comes from finite-size effects, which have been investigated
in Ref. [304] using one-loop xPT (with and without taste-violating effects). In Ref. [33], the FNAL/MILC collaboration
presented a more precise determination of f4 (0), fi(0) = 0.9696(15)(11) (FNAL/MILC 18). In this update, their analysis
is extended to two smaller lattice spacings a = 0.06 and 0.042 fm. The physical light-quark mass is simulated at four lattice
spacings. They also added a simulation at a small volume to study the finite-size effects. The improvement of the precision
with respect to FNAL/MILC 13E is obtained mainly by an estimate of finite-size effects, which is claimed to be controlled at
the level of ~ 0.05 % by comparing two analyses with and without the one-loop correction. The total uncertainty is largely
reduced to ~ 0.2%. An independent calculation of such high precision would be highly welcome to solidify the lattice
prediction of f5 (0), which currently suggests a tension with CKM unitarity with the updated value of | V4| (see Sect. 4.4).

The result from the ETM collaboration, f4(0) = 0.9709(45)(9) (ETM 16), makes use of the twisted-mass discretization
adopting three values of the lattice spacing in the range 0.06—0.09 fm and pion masses simulated in the range 210-450 MeV.
The chiral and continuum extrapolations are performed in a combined fit together with the momentum dependence, using
both a SU(2)-xPT inspired ansatz (following Ref. [300]) and a modified z-expansion fit. The uncertainties coming from
the chiral extrapolation, the continuum extrapolation and the finite-volume effects turn out to be well below the dominant
statistical error, which includes also the error due to the fitting procedure. A set of synthetic data points, representing both
the vector and the scalar semileptonic form factors at the physical point for several selected values of g2, is provided together
with the corresponding correlation matrix.

The PACS collaboration obtained a new result for Ny = 2 + 1, f4(0) = 0.9603(16) (fig), by creating an ensemble with

the physical light-quark mass on a large lattice volume of (10.9 fm)* [294]. Such a large lattice enables them to interpolate
f+(g?) to zero momentum transfer and study the momentum-transfer dependence of the form factors without using partially-
twisted boundary conditions. Their result, however, does not enter the FLAG average, because they only use a single lattice
spacing, which is the source of the largest uncertainty in their calculation.

For Ny = 2 + 1, the two results eligible to enter the FLAG average are the one from RBC/UKQCD 15A, f1(0) =
0.9685(34)(14) [35], and the one from FNAL/MILC 121, f4(0) = 0.9667(23)(33) [34]. These results, based on different
fermion discretizations (staggered fermions in the case of FNAL/MILC and domain wall fermions in the case of RBC/UKQCD)
are in nice agreement. Moreover, in the case of FNAL/MILC the form factor has been determined from the scalar current
matrix element, while in the case of RBC/UKQCD it has been determined including also the matrix element of the vector
current. To a certain extent both simulations are expected to be affected by different systematic effects.

RBC/UKQCD 15A has analyzed results on ensembles with pion masses down to 140 MeV, mapping out the complete
range from the SU (3)-symmetric limit to the physical point. No significant cut-off effects (results for two lattice spacings)
were observed in the simulation results. Ensembles with unphysical light-quark masses are weighted to work as a guide for
small corrections toward the physical point, reducing in this way the model dependence in the fitting ansatz. The systematic
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uncertainty turns out to be dominated by finite-volume effects, for which an estimate based on effective theory arguments is
provided.

The result FNAL/MILC 121 is from simulations reaching down to a lightest RMS pion mass of about 380 MeV (the lightest
valence pion mass for one of their ensembles is about 260 MeV). Their combined chiral and continuum extrapolation (results
for two lattice spacings) is based on NLO staggered x PT supplemented by the continuum NNLO expression [285] and a
phenomenological parameterization of the breaking of the Ademollo—Gatto theorem at finite lattice spacing inherent in their
approach. The p* low-energy constants entering the NNLO expression have been fixed in terms of external input [226].

The ETM collaboration uses the twisted-mass discretization and provides at N y = 2 a comprehensive study of the
systematics [36,300], by presenting results for four lattice spacings and by simulating at light pion masses (down to M,; =
260 MeV). This makes it possible to constrain the chiral extrapolation, using both SU(3) [278] and SU (2) [282] xPT.
Moreover, a rough estimate for the size of the effects due to quenching the strange quark is given, based on the comparison
of the result for N y = 2 dynamical quark flavours [45] with the one in the quenched approximation, obtained earlier by the
SPQcdR collaboration [303].

We now compute the Ny = 2 + 1 + 1 FLAG average for f (0) using the FNAL/MILC 18 and ETM 16 (uncorrelated)
results, the Ny = 2+ 1 FLAG average based on FNAL/MILC 12I and RBC/UKQCD 15A, which we consider uncorrelated,
while for Ny = 2 we consider directly the ETM 09A result, respectively:

direct, Ny =24 141 £4(0) = 0.9698(17) Refs. [32,33], (76)
direct, Ny =2+ 1 £1(0) = 0.9677(27) Refs. [34,35], (77)
direct, Nj =2 £4(0) = 0.9560(57)(62) Ref. [36], (78)

where the parentheses in the third line indicate the statistical and systematic errors, respectively. We stress that the results
(76) and (77), corresponding to Ny = 2+ 1+ 1 and Ny = 2 + 1, respectively, include already simulations with physical
light-quark masses.

4.3.2 Results for fg=+/fr+

In the case of the ratio of decay constants the data sets that meet the criteria formulated in the introduction are HPQCD 13A [37],
ETM 14E [38], FNAL/MILC 17 [16] (which updates FNAL/MILC 14A [17]) and CalLat 20 [39] with Ny =2+ 1+ 1,
HPQCD/UKQCD 07 [40], MILC 10 [41], BMW 10 [42], RBC/UKQCD 14B [8], BMW 16 [43,310], and QCDSF/UKQCD
16 [44] with N y = 2 + 1 and ETM 09 [45] with N y = 2 dynamical flavours. Note that only CalLat 20 for Ny =2+ 141
is the new entry for the FLAG average in this edition.

CalLat 20 employs a mixed action setup with the Mobius domain-wall valence quarks on gradient-flowed HISQ ensembles
at four lattice spacings @ = 0.06-0.15 fm. The valence pion mass reaches the physical point at three lattice spacings, and
the smallest valence-sea and sea pion masses are below 200 MeV. Finite-volume corrections are studied on three lattice
volumes at a = 0.12 fm and M, ~ 220 MeV. Their extrapolation to the continuum limit and the physical point is based on
NNLO xPT [316]. A comprehensive study of systematic uncertainties is performed by exploring several options including
the use of the mixed-action effective theory expression, and the inclusion of N3LO counter terms. They obtain fx=«/f,+ =
1.1942(32) 512 (12)  (20) .2 (1) v (12) s (7) 1 B, where the errors are statistical, due to the extrapolation in pion and kaon masses,
extrapolation in a2, finite-size effects, choice of the fitting form and isospin breaking corrections.

ETM 14E uses the twisted-mass discretization and provides a comprehensive study of the systematics by presenting results
for three lattice spacings in the range 0.06-0.09 fm and for pion masses in the range 210-450 MeV. This makes it possible
to constrain the chiral extrapolation, using both SU(2) [282] xPT and polynomial fits. The ETM collaboration includes
the spread in the central values obtained from different ansitze into the systematic errors. The final result of their analysis
1S fx=/frt = 1.184(12)stat+6t (3)chira (9) 2 (1) z, 3) Fv (3) 1 B Where the errors are (statistical + the error due to the fitting
procedure), due to the chiral extrapolation, the continuum extrapolation, the mass-renormalization constant, the finite-volume
and (strong) isospin-breaking effects.

In ETM 21 [305], the ETM collaboration presented an independent estimate of fg /f; in isosymmetric QCD with 2+1+1
dynamical flavours of the twisted-mass quarks. Their new set of gauge ensembles reaches the physical pion mass. The
quark action includes the Sheikoleslami—Wohlert term for a better control of discretization effects. The finite-volume effects
are examined by simulating three spatial volumes, and are corrected by SU(2) xPT formulae [146]. Their new estimate
Sx /fx = 1.1995(44)stac1-it (7)sys is consistent with ETM 14E with the total uncertainty reduced by a factor of ~ 3.5. While
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ETM 21 satisfies all criteria on simulation parameters, it does not enter the FLAG average in this edition due to the publication
status.

FNAL/MILC 17 has determined the ratio of the decay constants from a comprehensive set of HISQ ensembles with
Ny = 2+ 1+ 1 dynamical flavours. They have generated 24 ensembles for six values of the lattice spacing (0.03-
0.15 fm, scale set with f,+) and with both physical and unphysical values of the light sea-quark masses, controlling in
this way the systematic uncertainties due to chiral and continuum extrapolations. With respect to FNAL/MILC 14A they
have increased the statistics and added three ensembles at very fine lattice spacings, a ~ 0.03 and 0.042 fm, includ-
ing for the latter case also a simulation at the physical value of the light-quark mass. The final result of their analysis
is fxx/fnt = 1.1950(14)Stal(f(1>7)az (2)FV(3)fn,pD(;(3)EM(2)Qz, where the errors are statistical, due to the continuum
extrapolation, finite-volume, pion decay constant from PDG, electromagnetic effects and sampling of the topological charge
distribution.'®

HPQCD 13A has analyzed ensembles generated by MILC and therefore its study of fx=+/f,+ is based on the same set
of ensembles bar the ones at the finest lattice spacings (namely, only a = 0.09—0.15 fm, scale set with f,+ and relative
scale set with the Wilson flow [114,317]) supplemented by some simulation points with heavier quark masses. HPQCD
employs a global fit based on continuum NLO SU (3) xPT for the decay constants supplemented by a model for higher-
order terms including discretization and finite-volume effects (61 parameters for 39 data points supplemented by Bayesian
priors). Their final resultis fx+/f;+ = 1.1916(15)stat (12),2 (1) pv (10), where the errors are statistical, due to the continuum
extrapolation, due to finite-volume effects and the last error contains the combined uncertainties from the chiral extrapolation,
the scale-setting uncertainty, the experimental input in terms of f;;+ and from the uncertainty in m, /mg.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensembles, we assume a 100 % correlation
among their statistical errors. A 100 % correlation on the total systematic uncertainty is also assumed between FNAL/MILC
17 and HPQCD 13A with the HISQ valence quarks.

For Ny = 2 + 1 the results BMW 16 and QCDSF/UKQCD 16 are eligible to enter the FLAG average. BMW 16 has
analyzed the decay constants evaluated for 47 gauge ensembles generated using tree-level clover-improved fermions with two
HEX-smearings and the tree-level Symanzik-improved gauge action. The ensembles correspond to five values of the lattice
spacing (0.05-0.12 fm, scale set by 2 mass), to pion masses in the range 130—680 MeV and to values of the lattice size from
1.7 to 5.6 fm, obtaining a good control over the interpolation to the physical mass point and the extrapolation to the continuum
and infinite volume limits.

QCDSF/UKQCD 16 has used the nonperturbatively O(a)-improved clover action for the fermions (mildly stout-smeared)
and the tree-level Symanzik action for the gluons. Four values of the lattice spacing (0.06-0.08 fm) have been simulated with
pion masses down to ~ 220 MeV and values of the lattice size in the range 2.0-2.8 fm. The decay constants are evaluated
using an expansion around the symmetric SU (3) point m,, = mg = mg = (m, +mg + m‘;)phyS/S’.

Note that for Ny = 2 4+ 1 MILC 10 and HPQCD/UKQCD 07 are based on staggered fermions, BMW 10, BMW 16
and QCDSF/UKQCD 16 have used improved Wilson fermions and RBC/UKQCD 14B’s result is based on the domain-wall
formulation. In contrast to RBC/UKQCD 14B and BMW 16, the other simulations are for unphysical values of the light-quark
masses (corresponding to smallest pion masses in the range 220 —260 MeV in the case of MILC 10, HPQCD/UKQCD 07, and
QCDSF/UKQCD 16) and therefore slightly more sophisticated extrapolations needed to be controlled. Various ansétze for
the mass and cutoff dependence comprising SU (2) and SU (3) xPT or simply polynomials were used and compared in order
to estimate the model dependence. While BMW 10, RBC/UKQCD 14B, and QCDSF/UKQCD 16 are entirely independent
computations, subsets of the MILC gauge ensembles used by MILC 10 and HPQCD/UKQCD 07 are the same. MILC 10 is
certainly based on a larger and more advanced set of gauge configurations than HPQCD/UKQCD 07. This allows them for a
more reliable estimation of systematic effects. In this situation we consider both statistical and systematic uncertainties to be
correlated.

For Ny = 2 no new result enters the corresponding FLAG average with respect to the previous edition of the FLAG review
[4], which therefore remains the ETM 09 result, which has simulated twisted-mass fermions down to (charged) pion masses
equal to 260 MeV.

We note that the overall uncertainties quoted by ETM 14E at Ny = 2 + 1 + 1 and by BMW 16 and QCDSF/UKQCD
16 at N y = 2 + 1 are much larger than the overall uncertainties obtained with staggered (HPQCD 13A, FNAL/MILC 17 at
Ny =2+1+1, and MILC 10, HPQCD/UKQCD 07 at N y = 2 + 1) and domain-wall fermions (RBC/UKQCD 14B at
Nj=2+1).

16 To form the average in Eq. (81), we have symmetrized the asymmetric systematic error and shifted the central value by half the difference as
will be done throughout this section.
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Table 17 Values of the SU (2) isospin-breaking correction dsy (2) applied to the lattice data for fx /f5, entering the FLAG averageat Ny =2 +1,
for obtaining the corrected charged ratio fx=/f,+. The last error in the last column is due to a 100 % uncertainty assumed for 85y (2) from SU(3)
xPT

Sk /fx Ssu@ Srx/fat
HPQCD/UKQCD 07 1.189(2)(7) —0.0040(7) 1.187(2)(7)(2)
BMW 10 1.192(7)(6) —0.0041(7) 1.190(7)(6)(2)
RBC/UKQCD 14B 1.1945(45) —0.0043(9) 1.1919(45)(26)

Before determining the average for fx+/f,+, which should be used for applications to Standard Model phenomenology,
we apply the strong-isospin correction individually to all those results that have been published only in the isospin-symmetric
limit, i.e., BMW 10, HPQCD/UKQCD 07 and RBC/UKQCD 14B at Ny =2+ 1 and ETM 09 at Ny = 2. To this end, as in
the previous editions of the FLAG reviews [2—4], we make use of NLO SU (3) xPT [241,280], which predicts

];KI = fC—K V1+dsu) , (79)

where [241]
MZ
Ssu@ ~ V3esuw) |:—% (fk/f= =D+ —3(4712)2].02 (M,z( — M2 —M21n —M’é)} . (80)

We use as input €5y (2) = \/§/(4R) with the FLAG result for R of Eq. (54), Fy = fo/\/z = 80 (20) MeV, M, = 135 MeV
and Mg = 495 MeV (we decided to choose a conservative uncertainty on fy in order to reflect the magnitude of potential
higher-order corrections). The results are reported in Table 17, where in the last column the last error is due to the isospin
correction (the remaining errors are quoted in the same order as in the original data).

For Ny = 2 and Ny = 2+ 1 + 1 dedicated studies of the strong-isospin correction in lattice QCD do exist. The
updated Ny = 2 result of the RM123 collaboration [172] amounts to dsy ) = —0.0080(4) and we use this result for the
isospin correction of the ETM 09 result. Note that the above RM 123 value for the strong-isospin correction is incompatible
with the results based on SU(3) xPT, dsy2) = —0.004(1) (see Table 17). Moreover, for Ny = 2 + 1+ 1 HPQCD [37],
FNAL/MILC [16] and ETM [318] estimate a value for 85y (2) equal to —0.0054(14), —0.0052(9) and —0.0073(6), respectively.
Note that the RM 123 and ETM results are obtained using the insertion of the isovector scalar current according to the expansion
method of Ref. [171], while the HPQCD and FNAL/MILC results correspond to the difference between the values of the
decay constant ratio extrapolated to the physical #-quark mass m,, and to the average (m, + mg)/2 light-quark mass.

One would not expect the strange and heavier sea-quark contributions to be responsible for such a large effect. Whether
higher-order effects in xPT or other sources are responsible still needs to be understood. More lattice-QCD simulations
of SU(2) isospin-breaking effects are therefore required. To remain on the conservative side we add a 100% error to the
correction based on SU (3) xPT. For further analyses we add (in quadrature) such an uncertainty to the systematic error.

Using the results of Table 17 for Ny = 2 + 1 we obtain

direct, Ny =241+1: frt/frt = 1.1932(21) Refs. [16,37-39], (81)
direct, Ny =241 frt/far = 1.1917(37) Refs. [8,40-44], (82)
direct, Ny =2 frt/frt = 1.205(18) Ref. [45], (83)

for QCD with broken isospin.

The averages obtained for f1 (0) and fx+/f;+at Ny =2+1and Ny =2+ 1+1 [see Egs. (76-77) and (81-82)] exhibit
a precision better than ~ 0.3%. At such a level of precision QED effects cannot be ignored and a consistent lattice treatment
of both QED and QCD effects in leptonic and semileptonic decays becomes mandatory.

4.3.3 Extraction of |Vyq| and | V|
It is instructive to convert the averages for f4 (0) and fx+/f,+ into a corresponding range for the CKM matrix elements

[Vual and | V5], using the relations (69). Consider first the results for N y = 2 + 1 + 1. The average for f(0) in Eq. (76) is
mapped into the interval |V,s| = 0.2232(6), depicted as a horizontal red band in Fig. 10. The one for fx+/f,+ in Eq. (81)
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Fig. 10 The plot compares the information for |V;¢/, | V5| obtained on the lattice for Ny =2+ 1and Ny = 2 + 1 + 1 with |V,4| extracted from
nuclear f§ transitions Eqgs. (71) and (72). The dotted line indicates the correlation between |V,,4| and | V| that follows if the CKM-matrix is unitary.
For the Ny = 2 results see the 2016 edition [3]

and | Vs / Vual(fx=/ fz=) in Eq. (69) is converted into | V,s|/|V,a| = 0.2313(5), shown as a tilted red band. The red ellipse
is the intersection of these two bands and represents the 68% likelihood contour,!” obtained by treating the above two results
as independent measurements. Repeating the exercise for N y = 2 + 1 leads to the green ellipse. The vertical light and dark
blue bands show |V, 4| from nuclear B decay, Eqs. (71) and (72), respectively. The PDG value (71) indicates a tension with
boththe Ny =2+ 1+ 1 and Ny = 2 + 1 results from lattice QCD.

As wementioned, QED radiative corrections are becoming relevant for the extraction of the CKM elements at the current pre-
cision of lattice QCD inputs. We obtain a slightly larger value of |V,5|/|Vyq| = 0.2320(5) by inputting |V,.s/ Vua|(fx=/ frt)
in Eq. (70) with the QED corrections on the lattice. Figure 11 suggests that the kaon (semi)leptonic decays favour a slightly
smaller value of | V4| than the nuclear transitions.

4.4 Tests of the Standard Model
In the Standard Model, the CKM matrix is unitary. In particular, the elements of the first row obey
Val? = 1Vaa > + [Vas ) + V> = 1. (84)

The tiny contribution from |V,,;| is known much better than needed in the present context: | V| = 3.82(24) - 1073 [165]. In
the following, we test the first row unitarity Eq. (84) by calculating |V, |> and by analyzing the lattice data within the Standard
Model.

In Fig. 10, the correlation between |V,4| and |V,s| imposed by the unitarity of the CKM matrix is indicated by a dotted
line (more precisely, in view of the uncertainty in |V, |, the correlation corresponds to a band of finite width, but the effect is
too small to be seen here). The plot shows that there is a tension with unitarity in the data for Ny = 2 + 1 + 1: Numerically,
the outcome for the sum of the squares of the first row of the CKM matrix reads |V, |*> = 0.9813(66), which deviates from
unity at the level of >~ 2.8 standard deviations. Still, it is fair to say that at this level the Standard Model passes a nontrivial
test that exclusively involves lattice data and well-established kaon decay branching ratios.

The test sharpens considerably by combining the lattice results for f(0) with the 8 decay value of |V,4|: f1+(0) in
Eq. (76) and the PDG estimate of |V,4| in Eq. (71) lead to |V, |2 = 0.99794(37), which highlights a >~ 5.6 ¢ deviation with
unitarity. A lower tension at the three-o level is suggested either from fg+/ f,+ in Eq. (81) (]V, 12 = 0.99883(37)) or | Vyal
in Eq. (72) with the updated nuclear corrections (|V,, 12 = 0.99800(65)). Unitarity is fulfilled with fx+/f,+ and |V,4| (72)
(|V|* = 0.99890(68)). Note that, when the PDG value of |V,g| (71) is employed, the uncertainties on |V, |2 coming from
the errors of |V,,4| and | V| are of similar magnitude with each other.

17 Note that the ellipses shown in Fig. 5 of both Ref. [1] and Ref. [2] correspond instead to the 39% likelihood contours. Note also that in Ref. [2]
the likelihood was erroneously stated to be 68% rather than 39%.
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Fig. 11 Same as Fig. 10 but with |V,4|/|V,q| through Eq. (70)

The situation is similar for N y = 2 + 1: with the lattice data alone one has |VM|2 = 0.9832(89), which deviates from
unity at the level of >~ 1.9 standard deviations. The lattice results for f4(0) in Eq. (77) with the PDG value of |V, 4] (71)
lead to |V,,|?> = 0.99816(43), implying a ~ 4.3 o deviation from unitarity, whereas the deviation is reduced to 2.3-2.6 o with
fi+/ frt in Eq. (82) (|V,,|> = 0.99896(45)) and |V,4| in Eq. (72) (|V,,|* = 0.99822(69)).

For the analysis corresponding to Ny = 2 the reader should refer to the 2016 edition [3].

4.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is unitary. The precise experimental constraints quoted in Eq. (69) and the
unitarity condition Eq. (84) then reduce the four quantities |V,4|, |Vus|, f+(0), fx+/ fx= to a single unknown: any one of
these determines the other three within narrow uncertainties.

As Fig. 12 shows, the results obtained for |V,;| and |V, 4| from the data on fg=+/f,+ (squares) are consistent with the
determinations via f. (0) (triangles), while there is a tendency that |V,s| (|V,,4|) from f (0) is systematically smaller (larger)
than that from fx+/ f,+. In order to calculate the corresponding average values, we restrict ourselves to those determinations
that enter the FLAG average in Sect. 4.3. The corresponding results for | V5| are listed in Table 18 (the error in the experimental
numbers used to convert the values of f (0) and fg=/ f,=+ into values for |V,]| is included in the statistical error).

For N y =2+ 1 + 1 we consider the data both for f(0) and fx=+/ f;=, treating ETM 16 and ETM 14E on the one hand
and FNAL/MILC 18, CalLat 20, FNAL/MILC 17, and HPQCD 13A on the other hand, as statistically correlated according
to the prescription of Sect. 2.3. As shown in Table 19, we obtain |V,s| = 0.2248(7), where the error is stretched by a factor
V/x2/dof ~ +/2.6. This result is indicated on the left hand side of Fig. 12 by the narrow vertical band. In the case Ny = 2+1
we consider MILC 10, FNAL/MILC 121 and HPQCD/UKQCD 07 on the one hand and RBC/UKQCD 14B and RBC/UKQCD
15A on the other hand, as mutually statistically correlated, since the analysis in the two cases starts from partly the same set
of gauge ensembles. In this way we arrive at |V,s| = 0.2249(5) with x2/dof ~ 0.8. For N £ = 2 we consider ETM 09A
and ETM 09 as statistically correlated, obtaining |V,| = 0.2256(19) with x?/dof ~ 0.7. The figure shows that the results
obtained for the datawith N y =2, Ny =2+1,and N y = 2+ 1+ 1 are consistent with each other. However, the larger error
for N f =2+ 1+ 1 due to the stretch factor / x2/dof suggests a slight tension between the estimates from the semileptonic
and leptonic decays.

Alternatively, we can solve the relations for |V,4| instead of | V,s|. Again, the result |V, 4| = 0.97440(17), which follows
from the lattice data with N y = 2+1+1, is perfectly consistent with the values | V4| = 0.97438(12) and | V,,4| = 0.97423(44)
obtained from the data with N y = 2+1and N ; = 2, respectively. We observe the difference of about 3 o from Eq. (71) from
the superallowed nuclear transitions. It is, however, reduced to < 2 o with Eq. (72) based on the updated nuclear corrections.

As mentioned in Sect. 4.1, the HFLAV value of | V| from the inclusive hadronic t decays differs from those obtained
from the kaon decays by about three standard deviations. Assuming the first row unitarity (84) leads to a larger value of | V4|
than those from the kaon and nuclear decays. Such a tension does not appear with |V,s| in Eq. (74) from strange hadronic ©
decay data and lattice QCD data of the hadronic vacuum polarization function (Table 19).
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Fig. 12 Results for |V,5| and
|Viua| that follow from the lattice
data for f4 (0) (triangles) and
fx=/ fr+ (squares), on the basis
of the assumption that the CKM
matrix is unitary. The black
squares and the grey bands
represent our averages, obtained
by combining these two
different ways of measuring
|Vius| and | V,,4] on a lattice. For
comparison, the figure also
indicates the results obtained if
the data on nuclear § decay and
inclusive hadronic 7 decay is
analyzed within the Standard
Model

Table 18 Values of |V,| and

| V4| obtained from the lattice
determinations of either f (0)
or fx+/ fr+ assuming CKM
unitarity. The first number in
brackets represents the statistical
error including the experimental
uncertainty, whereas the second
is the systematic one

FiAG2021 |1V sl 1V 4l
FLAG average for Nj=2+1+1
ETM 21
‘-T— A gﬁkﬁ/ﬁfc 18 LA
— FNAL/MILC 17
+ ETM 16
~ ETM 14E
n FALMLC 144
i ETM 13F
HPQCD 13A
HH m:tg EA(stat. err. only) HH
{1 ETM 10E (stat. err. only) {1
FLAG average for Ne=2+1
QCDSF/UKQCD 16
BMW 16
RBC/UKQCD 15A
RBC/UKQCD 14B
— RBC/UKQCD 13
+ RBC/UKQCD 12
o~ FNAL/MILC 121
1l Laiho 11
u MILC 10
z RBC/UKQCD 10A
MW 10
MILC 09A
MILC 09
— Aubin 08 —
HPQCD/UKQCD 07
|_| |_ MILC 04 D
FLAG average for Ni=2
H ALPHA 13A H, _El ‘
o~ H ETM 10D (stat. err. only) H
I H ETM 10D (stat. err. only) —
P — ETM 09A H
z ETM 09
— QCDSF/UKQCD 07 H
o o Maltman 19 rdetay  [2oq] —o— ¢
& Forey 20 macear paccny Do 18
0.22 0.23 0.973 0.975
Collaboration Refs. Ny From [Vis | [Vial
FNAL/MILC 18 [33] 24141 £4(0) 0.2233(5)(3) 0.97474(12)(6)
ETM 16 [32] 2+1+1 f+(0) 0.2230(11)(2) 0.97481(25)(5)
CalLat 20 [39] 24141 frs/for  0.2252(7)(6) 0.97431(15)(13)
FENAL/MILC 17 [16] 24141 fre/for  02251(4)2) 0.97432(9)(5)
ETM 14E [38] 24141 fre/fer  0227022)20)  0.97388(51)(47)
HPQCD 13A [37] 24141 frs/for  0.2256(4)(3) 0.97420(10)(7)
RBC/UKQCD 15A [35] 2+1 () 0.2235(9)(3) 0.97469(20)(7)
FNAL/MILC 121 [34] 241 () 0.2240(7)(8) 0.97459(16)(18)
QCDSF/UKQCD 16 [44] 2+1 et/ for  02259(18)(23)  0.97413(42)(54)
BMW 16 [43,310] 241 Jr=/fot 0.2281(19)(48) 0.97363(44)(112)
RBC/UKQCD 14B [8] 2+1 Jr=/frnt 0.2256(3)(9) 0.97421(7)(22)
MILC 10 [41] 241 Jr=/ [t 0.2250(5)(9) 0.97434(11)(21)
BMW 10 [42] 2+1 Jr=/frnt 0.2259(13)(11) 0.97413(30)(25)
HPQCD/UKQCD 07 [40] 2+1 Srt/ fat 0.2265(6)(13) 0.97401(14)(29)
ETM 09A [36] 2 f+(0) 0.2265(14)(15) 0.97401(33)(34)
ETM 09 [45] 2 Frs/far 0.2233(11)(30)  0.97475(25)(69)

4.6 Direct determination of fx+ and f,+

It is useful for flavour-physics studies to provide not only the lattice average of fx=+/f,+, but also the average of the decay
constant fx=. The case of the decay constant f,+ is different, since the the PDG value [234] of this quantity, based on the use
of the value of |V, 4| obtained from superallowed nuclear  decays [247], is often used for setting the scale in lattice QCD (see
Sect. 11 on the scale setting). However, the physical scale can be set in different ways, namely, by using as input the mass of
the 2 baryon(mg) or the Y -meson spectrum (A M~ ), which are less sensitive to the uncertainties of the chiral extrapolation
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Table 19 The upper half of the table shows our final results for | V|, |Viql, f+(0) and fx=/ f,+ that are obtained by analysing the lattice data
within the Standard Model (see text). For comparison, the lower half lists the values that follow if the lattice results are replaced by the experimental
results on nuclear 8 decay and inclusive hadronic t decay, respectively

Refs. [Vis| [Vial
Nr=2+1+1 0.2248(7) 0.97440(17)
Nf=2+1 0.2249(5) 0.97438(12)
Np=2 0.2256(19) 0.97423(44)
Nuclear g decay [165] 0.2278(6) 0.97370(14)
Nuclear g decay [256] 0.2277(13) 0.97373(31)
Inclusive T decay [261] 0.2195(19) 0.97561(43)
Inclusive T decay [267] 0.2240(18) 0.97458(40)

in the light-quark mass with respect to f;=. In such cases the value of the decay constant f,+ becomes a direct prediction
of the lattice-QCD simulations. It is therefore interesting to provide also the average of the decay constant f,+, obtained
when the physical scale is set through another hadron observable, in order to check the consistency of different scale-setting
procedures.

Our compilation of the values of f,+ and fx=+ with the corresponding colour code is presented in Table 20 and it is
unchanged from the corresponding one in the previous FLAG review [4].

In comparison to the case of fx+/f,+ we have added two columns indicating which quantity is used to set the physical
scale and the possible use of a renormalization constant for the axial current. For several lattice formulations the use of the
nonsinglet axial-vector Ward identity allows to avoid the use of any renormalization constant.

One can see that the determinations of f,+ and fx+ suffer from larger uncertainties with respect to the ones of the
ratio fx+/fr+, which is less sensitive to various systematic effects (including the uncertainty of a possible renormalization
constant) and, moreover, is not exposed to the uncertainties of the procedure used to set the physical scale.

According to the FLAG rules, for Ny = 2 + 1 + 1 three data sets can form the average of fx+ only: ETM 14E [38],
FNAL/MILC 14A [17], and HPQCD 13A [37]. Following the same procedure already adopted in Sect. 4.3 for the ratio of
the decay constants, we assume 100 % statistical and systematic correlation between FNAL/MILC 14A and HPQCD 13A.
For Ny = 2 + 1 three data sets can form the average of f;+ and fx= : RBC/UKQCD 14B [8] (update of RBC/UKQCD 12),
HPQCD/UKQCD 07 [40], and MILC 10 [41], which is the latest update of the MILC program. We consider HPQCD/UKQCD
07 and MILC 10 as statistically correlated and use the prescription of Sect. 2.3 to form an average. For Ny = 2 the average
cannot be formed for f,;+, and only one data set (ETM 09) satisfies the FLAG rules for fg=.

Thus, our averages read

Np=2+1: fot = 130.2 (0.8) MeV Refs. [8,40,41], (85)
Nf=2+1+1: fx+ = 155.7 (0.3) MeV Refs. [17,37,38],

Np=2+1: fi+ = 155.7 (0.7) MeV Refs. [8,40,41], (86)
Np=2: fit = 157.5 (2.4) MeV Ref. [45].

The lattice results of Table 20 and our averages (85-86) are reported in Fig. 13. Note that the FLAG averages of fx= for
Ny =2and Ny =2+ 1+ 1 are based on calculations in which f+ is used to set the lattice scale, while the Ny =2 + 1
average does not rely on that.
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Table 20 Colour code for the lattice data on f,+ and fx+ together with information on the way the lattice spacing was converted to physical units
and on whether or not an isospin-breaking correction has been applied to the quoted result (see Sect. 4.3). The numerical values are listed in MeV
units. In this and previous editions [4], old results with two red tags have been dropped

&
S &°
c_}%\\} Sl ﬁv‘&Q o & & &%
3 D & ¥ Vi Nl
i ’1;6 0\3& O > {bc’ ‘0@%
o S & & 55 & @
Collaboration Refs. Ny % (o) o <% ¥ < St fr+
ETM 14E [38] 24141 A o) * 0 na fr - 154.4(1.5)(1.3)
FNAL/MILC 14A [17] 24141 A * * * na fr - 155.92(13)(3%)
HPQCD 13A 1371 24141 A * o) * na fa - 155.37(20)(27)
MILC 13A [307] 24141 A * o) * na fr - 155.80(34)(54)
ETM 10E [309] 24141 C e o) o) na f v - 159.6(2.0)
JLQCD 15C [319] 2+1 c 0 * * NPR fo 125.7(7 4)gea
RBC/UKQCD 14B  [8] 2+1 A * * * NPR mo v 130.19(89) 155.18(89)
RBC/UKQCD 12 [188] 2+1 A * o) * NPR mo v 127.12. 2.7  152.1(3.0)(1.7)
Laiho 11 [49] 2+1 C e} * o) na T 130.53(87)(2.10)  156.8(1.0)(1.7)
MILC 10 [41] 2+1 C 0 % * na 1 129.2(4)(1.4) -
MILC 10 [41] 2+1 C 0 % * na fa - 156.1(4)(*5)
JLQCD/TWQCD 10 [311] 2+1 C o [ ] * na me v 118.5(3.6)gta 145.7Q2.)gtat
RBC/UKQCD 10A  [117] 2+1 A o o) * NPR me v 124(2)(5) 148.8(2.0)(3.0)
MILC 09A [15] 2+1 C 0 * * na AMy 128.000.3)2.9)  153.8(0.3)(3.9)
MILC 09A [15] 2+1 c o) * * na fr - 156.2(0.3)(1.1)
MILC 09 [157] 2+1 A e} * * na AMy 128300538 15430.4(75)
MILC 09 [157] 2+1 A o) * * na fx 156.5(0.4)(739)
Aubin 08 312] 2+1 C 0 o) ) na AMy 129.1(1.9)(4.0) 153.9(1.7)(4.4)
RBC/UKQCD 08 [194] 2+1 A 0 [ | * NPR mo v 124.1(3.6)(6.9) 149.4(3.6)(6.3)
HPQCD/UKQCD 07  [40] 2+1 A o o) 0 na AMy v 132(2) 156.7(0.7)(1.9)
MILC 04 [197] 2+1 A e o) o) na AMy 129.500.9)(3.5)  156.6(1.0)(3.6)
ETM 14D [313] 2 c 2 [ ] o) na fr v - 153.3(7.5)stat
ETM 09 [45] 2 A o) * 0 na fr v - 157.5(0.8)(2.0)(1. 1)1

The label ‘na’ indicates the lattice calculations that do not require the use of any renormalization constant for the axial current, while the label ‘NPR’ (‘11p’) signals the use of a
renormalization constant calculated nonperturbatively (at 1-loop order in perturbation theory)

The ratios of lattice spacings within the ensembles were determined using the quantity r1. The conversion to physical units was made on the basis of Ref. [120] and we note that
such a determination depends on the PDG value [234] of the pion decay constant

"t Errors are (stat-+chiral)(a = 0)(finite size)
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Fig. 13 Values of f; and fx. The black squares and grey bands indicate our averages (85) and (86)
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5 Low-energy constants

Authors: S. Diirr, H. Fukaya, U. M. Heller

5.1 Chiral perturbation theory and lattice QCD

In the study of the quark-mass dependence of QCD observables calculated on the lattice, it is beneficial to use chiral perturbation
theory (xPT). This framework predicts the nonanalytic quark-mass dependence of hadron masses and matrix elements, and
it provides symmetry relations among such observables. These predictions invoke a set of linearly independent and universal
(i.e., process-independent) low-energy constants (LECs), defined as coefficients of the polynomial terms (in m, or Mg) of
different observables.

xPT is an effective field theory approach to the low-energy properties of QCD based on the spontaneous breaking of
chiral symmetry, SU(N )L x SU(N f)g — SU(N ¢)v, and its soft explicit breaking by quark-mass terms. In its original
implementation (i.e., in infinite volume) it is an expansion in powers of m, and p? with the counting rule MJ% ~mg ~ P

If one expands around the SU (2) chiral limit, two LECs appear at order p? in the chiral effective Lagrangian,

b))
F=F; and B= - where X = —(uu) , 87)
my,mg—0 F my,mqg—0
and seven more at order p4, called Zi withi =1, ..., 7. In the analysis of the SU (3) chiral limit there are again18 two LECs
at order p?,
b -
Fo=Fy and By= — » Where %o = —(uu) , (88)
my,mg,ng—>0 FO my,mq,ms—>0
but ten more at order p*, indicated by the symbols L; (1) withi = 1, ..., 10. These “constants” are independent of the quark

masses,'? but they become scale dependent after renormalization (sometimes a superscript 7 is used). The SU (2) constants ¢;
are pu-independent, since they are defined at scale u = M};hys (as indicated by the bar). The SU (3) constants L; (i) are usually
quoted at the renormalization scale © = 770 MeV. For the precise definition of these constants and their scale dependence
we refer the reader to Refs. [280,320].

In the previous four versions of the FLAG review, we summarized the x PT formulae for the quark-mass dependence of the
pion and kaon mass and decay constant, as well as the scalar and vector pion charge radius. We briefly discussed the different
regimes of x PT, touched on partially quenched and mixed action formulations, collected and colour-coded the available lattice
results for the LECs considered, and formed FLAG estimates or averages, where possible.

Since the fourth edition in 2019 [4] (referred to as FLAG 19 below) only a handful of papers appeared with results on the
set of LECs covered in our report, but none that qualifies to be included in an average. We therefore decided to shorten the
section on LECs considerably, referring the reader to the 2019 FLAG review for the x PT formulae, description of the results
covered there, and the details and explanation of the FLAG estimates and averages. In this edition, we will concentrate on
the description of the new results and, for the convenience of our readers, list the FLAG estimates and averages, asking the
reader to consult FLAG 19 [4] for the details.

In the 2019 edition, we introduced a section on mw scattering in the context of SU(2) xPT and collected results, from
finite-volume lattice calculations, of the isospin I = 0 and I = 2 scattering lengths. In this edition, we will keep this section
and describe the new results that appeared since the 2019 FLAG review. We will, further, add a section on 7 K and K K
scattering in the context of SU (3) xPT and collect the available results for the scattering lengths from finite-volume lattice
calculations.

18 Here and in the following, we stick to the notation used in the papers where the x PT formulae were established, i.e., we work with Fi; = f5 /+/2 =
92.2(1)MeV and Fx = fx/+/2. The occurrence of different normalization conventions is not convenient, but avoiding it by reformulating the
formulae in terms of fz, fx is not a good way out. Since we are using different symbols, confusion cannot arise.

19 More precisely, they are independent of the 2 or 3 light-quark masses that are explicitly considered in the respective framework. However, all
low-energy constants depend on the masses of the remaining quarks s, ¢, b, t or ¢, b, t in the SU (2) and SU (3) framework, respectively, although
the dependence on the masses of the ¢, b, ¢ quarks is expected to be small [280,320].
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5.1.1 mm scattering

The scattering of pseudoscalar octet mesons off each other (mostly w7 and 7 K scattering) is a useful approach to determine
xPT low-energy constants [321-325]. This statement holds true both in experiment and on the lattice. We would like to
point out the main difference between these two approaches is not so much the discretization of space-time, but rather the
Minkowskian versus Euclidean setup.

In infinite-volume Minkowski space-time, 4-point Green’s functions can be evaluated (e.g., in experiment) for a continuous
range of (on-shell) momenta, as captured, for instance, by the Mandelstam variable s. For a given isospin channel I = 0
or I = 2 the 7 scattering phase shift 87 (s) can be determined for a variety of s values, and by matching to xPT some
low-energy constants can be determined (see below). In infinite-volume Euclidean space-time, such 4-point Green’s functions
can only be evaluated at kinematic thresholds; this is the content of the so-called Maiani—Testa theorem [326]. However, in
the Euclidean case, the finite volume comes to our rescue, as first pointed out by Liischer [327-330]. By comparing the energy
of the (interacting) two-pion system in a box with finite spatial extent L to twice the energy of a pion (with identical bare
parameters) in infinite volume information on the scattering length can be obtained. In particular, in the (somewhat idealized)
situation where one can “scan” through a narrowly spaced set of box-sizes L such information can be reconstructed in an
efficient way.

We begin with a brief summary of the relevant formulae in SU (2) xPT terminology. In the x-expansion the formulae for
al with ¢ = 0 and I = 0, 2 are found in Ref. [320]

Y —— i I i [Z 420 — i +21]+O(2) (89)
W = T3 gar2pzl ' T T 0 T g Sk
M? M? 3
2 2
M, = — - [z 20 ] o 90
aog Mz 167TF2{ 127T2F2 1+ 2+ + (x )} ( )

where x = M? /(47 F)? with M? = (m, +mq) %/ F? is one possible expansion parameter of x PT. Throughout this report we
deviate from the y PT habit of absorbing a factor — M, into the scattering length (relative to the convention used in quantum
mechanics); we include just a minus sign but not the factor M, . Hence, our aé have the dimension of a length so that all
quark- or pion-mass dependence is explicit (as is most convenient for the lattice community). But the sign convention is the
one of the chiral community (where aé M, > 0 means attraction and al{ M < 0 indicates repulsion).

An important difference between the two S-wave scattering lengths is evident already at tree-level. The isospin-0 scattering
length (89) is large and positive at this order, while the isospin-2 counterpart (90) is by a factor ~ 3.5 smaller (in absolute magni-
tude) and negative. Hence, in the channel with / = 0 the interaction is attractive, while in the channel with I = 2 the interaction
is repulsive and significantly weaker. In this convention, experimental results, evaluated with the unitarity constraint germane
to any local quantum field theory, read ag My = 0.2198(46)stat (16)syst (64)theo and a(%Mﬂ = —0.0445(11)gtat (4)syst (8) theo
[324,331-333]. The ratio between the two (absolute) central values is about 4.9, i.e., a bit larger than 3.5. This, in turn,
suggests that NLO contributions to ag and ag are sizeable, but the expansion seems well behaved.

Equations (89, 90) may be recast in the £-expansion, with & = M% /(47 Fy)?, as

oM, = 7”2 1+§1£ +&2¢0. +s[ 27 4+ 9, _18; +5]+O($2) 1)
doMn =+50 F2 23 4 T2 217372 :
M2 1- 4. 8. 1
2 2
M 1 U3+ 8204 —E| -0+ 20+~ |+0O , 92
apMn = =7 F2{ +$23+§ 4 5[31+32+2]+ (S)} 92)

where M2/(471 F)? = M%/(47T Fo)*{1 + %553 + 2&04 + O(£%)} has been used. Finally, this expression can be summarized
as

TM? 9M?2 (192
0 T T 0
M, = In 3
QoM +3an3{ 3272 F2 +0¢ )} ©3)
M? 3M?2 (r )2
2 T T 0
My 1— In 4
“ 167tF7${ 32r2F2 M2 +0O¢ )} ©4)
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with the abbreviations

91 (ro)” ZOE +4OZ SE +2¢ +5 (95)
_n — —_—— _’
2 M2 20 0T T g T AT,
7,phys
3. ) 4 8- 1. - 1
-1 =04 —ly — =03 — 204 + —, 96
2nM2 31—i-32 563 4+2 (96)
7,phys

where AI with £ = 0 and I = 0, 2 are scales like the A; in ¢; ln(A2 /M phys) fori € {1,2, 3,4} (albeit they are not
mphys = 1HO@) andthus § In(MZ /M7 ) = O(E?).
In the absence of any knowledge on the ¢;, one would assume Xg o~ X%, and with this input Eqgs. (93, 94) suggest that the
NLO contribution to |a8 | is by a factor ~ 10.5 larger than the NLO contribution to |a§|. The experimental numbers quoted
before clearly support this view.

Given that all of this sounds like a complete success story for the determination of the scattering lengths ag and a%, one may
wonder whether lattice QCD is helpful at all. It is, because the “experimental” evaluation of these scattering lengths builds
on a constraint between these two quantities that, in turn, is based on a (rather nontrivial) dispersive evaluation of scattering
phase shifts [324,331-333]. Hence, to overcome this possible loophole, an independent lattice determination of a8 and/or a(z)
is highly welcome.

On the lattice a(z) is much easier to determine than a8, since the former quantity does not involve quark-line disconnected
contributions. The main upshot (to be reviewed below) is that the lattice determination of a%Mﬂ at the physical mass point is
in perfect agreement with the experimental numbers quoted before, thus supporting the view that the scalar condensate is — at
least in the SU (2) case — the dominant order parameter, and the original estimate £3 = 2.9 & 2.4 is correct (see below). Still,
from a lattice perspective it is natural to see a determination of ag M, and/or a%Mn as a means to access the specific linear
combinations of ¢; with i € {1, 2, 3, 4} defined in Egs. (95, 96).

In passing, we note that an alternative version of Egs. (93, 94) is used in the literature, too. For instance, Refs. [94,95,334—
336] give their results in the form

independent from the latter). Here, we made use of the fact that M /M

e =+t i Mo o s o 23] o), ©7)
32 F2 3272 F2 2F}?
2 2 2
2 - _ b3 1=2 _ b 2
oMz = 1671FJ%{1 or2 P2 [z =3I ]+O@ )}’ ©8)

where the quantities (used to quote the results of the lattice calculation)

40- 80 - 5 M,
05 = 370+ 370 = 565+ 40+ 9In % oot (99)
nphys
8- 16 - M
7= 30+ 56— 640 +3h % Cohys (100)
nphys

amount to linear combinations of the £;°" (") that, due to the explicit logarithms in Egs. (99, 100), are effectively renormalized
at the scale fren = ,];hys = \/EF,fhyS = 130.41(20) MeV [201]. Note that in these equations the dependence on the physical
pion mass in the logarithms cancels the one that comes from the £;, so that the right-hand-sides bear no knowledge of MY phys
This alternative form is slightly different from Eqs. (93, 94) Exact equality would be reached upon substituting F7 2 Fi phys
in the logarithms of Egs. (97, 98). Upon expanding F2 / 7, phys and subsequently the logarithm, one realizes that this difference
amounts to a term O(£) within the square bracket. It thus makes up for a difference at the NNLO, which is beyond the scope
of these formulae.

We close by mentioning a few works that elaborate on specific issues in 77 7 scattering relevant to the lattice. Reference [337]
does mixed action x PT for 2 and 2+1 flavours of staggered sea quarks and Ginsparg—Wilson valence quarks, Refs. [338,339]
work out scattering formulae in Wilson fermion xPT, and Ref. [340] lists connected and disconnected contractions in 7
scattering.
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5.1.2 nK and KK scattering

The discussion of w7 scattering in the previous subsection carries over, without material changes, to the case of w K and
K K scattering. The one (tiny) difference is that results, if contact with x PT is desired, must be matched against the SU (3)
version of this framework. In other words, for w7 scattering there is a choice between SU (2) and SU (3), while for 7 K and
K K scattering matching to the SU (3) version of xPT is mandatory.?’

For completeness we also include, below, the SU(3) xPT result for / = 2 mw scattering. Since, as in the FLAG 19
review, we tabulate the S-wave scattering length with combined isospin / in the dimensionless variable aé M, where the
physical pion mass is meant, the result can be converted into specific linear combinations of NLO x PT coefficients in either
the SU(2) or SU(3) xPT framework. In this conversion, an extra piece to the systematic error is to be included, to account
for higher-order terms in the chiral expansion.

Below, we continue this tradition by summarizing results in the dimensionless variable aé urk for mK scattering and
aé Mk for KK scattering. Throughout this report, u, x = M, Mg /(My + M) is the reduced mass of the kaon-pion system
at the physical mass point. Again, these results can be converted into linear combinations of the L;, with proper adjustment
of the systematic uncertainty, due to the chiral expansion. In doing so, one should keep in mind that the SU (3) framework
does not converge as swiftly as the SU (2) framework, since m, g < m.

We basically follow Ref. [344], but we adopt, for masses and decay constants, the conventions of the LEC section in the
FLAG 19 report. We consider the xPT formulae at O(p*) in the chiral expansion, as given in Refs. [280,345-349]. The
scattering lengths of the nw (Il =2), KK(I =1),7nK(I = %) and K (I = %) systems can be written as

M? 16 2
2 2 2
ay gx Mz = 16”}3{ -1+ ﬁ[Mancat(M) — THLS(M) + Xnn(l/«)]}, (101)
| My — i { 1+16[M ) - M5 150y 4 4] ()]} (102)
a = — ,
0, KK MK 167‘[F12( FK K Lgear (1 > s5(u XKk M
2 2 2
3/2 Mk 16 [ My + My 32 ]
= m o) ! MMk L - - : 103
Ay kUK 87 F, Fx { + FoFx 7 Mk Lycat (14) 2 s() + X7k () (103)
2 2 2
1/2 _ Mok 16 M +MK 172
A rxHrK = SNI;T”FK {2 + FoFx [MnMKLscat(M) + ZHTLS(H) + X,TK(M)] . (104)

These formulae are written in terms of O(p*) values of the masses and decay constants (M, Mg, F; and Fg) of the
Nambu—Goldstone bosons (which, in turn, depend on the quark masses). We recall that the “Bernese” normalization for the
pion decay constant at the physical point is adopted (cf. footnote 18). The constants L5(x) and

1
Lgcar(n) = 2L1() + 2La () + L3(p) — 2La(p) — ELS(M) +2Le(n) + Lg(p) (105)

are the SU (3) low-energy constants (LECs) at the renormalization scale . The objects XI(D% (w) are known functions with
chiral logarithmic terms and dependence on the scale w. In terms of these objects the functions x {) Q(y,) in Egs. (101)-(104)
read?!

20 Note that this could be circumvented if one used a heavy-meson extended version of x PT, in particular SU(2) x PT with an extra (heavy) strange

quark [341-343]. However, we have the original Gasser—Leutwyler versions of SU(2) and SU (3) xPT in mind.

10M%
9

in the arXiv:2111.09849v1 version of this report. The correct expression with the last term K agrees with Eq. (32) in [348] which, to the best

21 There is a typo in the original version of Ref. [344] which made us mistakenly give the la%t term in the square bracket of Eq. (107) as

of our knowledge, is the earliest reference for this quantity. Moreover, in the SU (3) limit (167r)2X7m (n) — —fM 2 log(—z) + éM 2 while the
M +e

Gell-Mann-Oakes-Renner relation and the substitution M3 = M2 + € yield (167)%x} - (1) — w log(Xx 3 ) — (M2 +e) log( )+

(M2+€)(—20M2 —20e+11M2 M2 +4e/3 M?2 +4€/3
36¢

) 1o 2( )+ 5 (M2 + €). In this expression the terms O (e~1) cancel, and with log(—=—+) = log( i ) +3

obtains (16:7)2)(11{1((;1) — 7—M2 log( 27 )+ 3 M2 in the limit € — 0. Hence xm (n) = XKK(/L) in the SU (3) 11m1t. We are indebted to André
Walker-Loud and Kiyoshi Sasakl for pomtmg thls out to us and for clarifying details, respectively.

2 one
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1 3M2 M? M? M? 4M>

2 f14 14 f14 n 14
W =——|- 1 —Z ) - == — |+ , 106
Koer (1) (167)2 |: 2 % < u? ) Tt < u? 9 (106)

1 M2 M2 M2 M2

1 7K g 2 K
k() = log| — ) — Mzlog| —
Xk (1) (16m)2 |:4(M2K — Mj%) g(/ﬂ) K g( 2

4 272 2 2
—20Mj + LIMEME My N TMi (107)
2 _ a2 2 ’
36(M% — M2) I 9
320,) 1 22M73TMK+11M72TM12<—5M§1 (M,%)
= (V) Y
Kok = ey 8 (M2 — M2) e
N IMY — 134M; My + 16M3 Mg — 55M2 M2 log Mg
36(M2 — M2) ?
| 3OMi +48Mx My — 10MIMy + LIMIME — M7 (M
oo [ 221
72(M2 — M2) #\
43M, Mg 8My Mg
o~ g n(Mx, MK)} : (108)
12 1 UMMy — 1IM2M2 + 5M2 M?
Xax (W) = 3 3 3 log | —-
(167) 4M2% — M2) 1
N —9M}y — 67M; M3, +8M3 My + 55M3 My, o Mg
18(M% — M2) ?
. —36M% + 24M3 My, — 5SMg M2 — 11M% M2 + 9M? N M3
36(M% — M2) *\ w2
A3M, Mg 4My Mg 12M, Mg
+ g + ”9 1 (M, M) — T” 12 (M, MK):| : (109)

where t1 (M, Mg), to(M,, Mg) can be written as

M M) 2Mg — M. 2(Mg — M. M M
t](MT[,M[() — \/( K+ n)( K 71) arctan ( K n) K + Mz ’ (110)
Mg — M Mg +2M,; \ 2Mg — M,

Mg — MM M 2(M M Mg — M
tZ(Mn,MK) — \/( K n)( K+ 71) arctan ( K+ n) K b1g ) (111)
Mg + My Mg —2M,; \| 2Mg + M,
In short, these formulae show that — in the SU (3) framework — the four scattering lengths aé M, ag Mg, ag/ 2 UrK, aé/ 2 UrK

determine three linear combinations of Ls(u) and Lgcac (). Recall that Eq. (105) shows that the latter object is itself a
linear combination of the L;(w). Interestingly, wr and K K scattering determine the same linear combination Lgca (1) —
%L5 (n), while ag/ 2 Urk and a(l) Urk determine two more (mg/m, -dependent) linear combinations. In the last few lines,
we established the habit of omitting the particle subscript in aé) -k and aé‘ x i » Since the value of I together with the factor My,
Uz or Mg already tells the particles involved in the scattering process. The remaining zero subscript is meant to indicate
the S-wave component.
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5.2 Extraction of SU(2) low-energy constants
5.2.1 New results for individual LO SU(2) LECs

We are aware of four new papers with results on individual SU(2) LECs plus an additional one which we overlooked in
FLAG 19 [4]. They all give results on the LO LECs, B and/or F, where B is frequently traded for the condensate ¥ = B F?
(both B and ¥ are renormalized at the scale u© = 2 GeV). We start by briefly mentioning their details.

The paper ETM 20A [350] presents an N y = 2 calculation with twisted mass fermions, using three pion masses down to
the physical value at a single lattice spacing a = 0.0914(15) fm. They report a value of F as given in Table 22 and a value of
24 discussed in Sect. 5.2.2 below. The publication status changed from “preprint” to “accepted” after our closing date (as did
the quoted uncertainty). In practical terms this change is insignificant, since the quoted number (due to a red tag) would not
contribute to the N y = 2 average.

The paper x QCD 21 [351] employs N y = 2 + 1 QCD with domain wall fermions and RI/MOM renormalization. They
have two ensembles with physical pion mass (139 MeV) at lattice spacings a = 0.114fm and a = 0.084fm, one ensemble
with M, = 234MeV at a = 0.071fm, and one with M, = 371 MeV at a = 0.063fm that is only used to test the lattice
spacing dependence of the scalar renormalization factor. They report the value of % !/3 as listed in Table 21.

The paper ETM 21 [305] uses N y = 2 + 1 + 1 flavours of twisted mass fermions, ten ensembles, three lattice spacings
(a = 0.092, 0.080, 0.068fm), up to four pion masses M, € [135MeV, 346 MeV], up to two volumes, and L(Mz min) =
5.55 fm. The scale is set by f;?hys = «/EFJEhyS = 130.4(2) MeV [201]. They analyze the quark mass dependence of both F,
and the (chiral and finite-volume) log-free quantity X, = (Fy Mf;)l/ 5 [352], to determine F and £4 in two different ways.
The two fitting procedures yield nearly identical results for F. The two central values agree exactly, as do the two systematic
uncertainties; only the combined statistical plus fitting uncertainty differs a bit among the two approaches. Since the paper
does not give preference to one of the fitting procedures, we take the liberty to condense them, assuming 100% correlation,
into the single result F' = 87.7(6)(5) MeV as listed in Table 22. They also report a value of 24 to be mentioned in Sect. 5.2.2
below.

The paper ETM 21A [204] is again based on N y = 2 + 1 + 1 flavours of twisted mass fermions, ten ensembles, three
lattice spacings, a = 0.095, 0.082, 0.069fm, up to four pion masses M, € [134 MeV, 346 MeV], up to two volumes, and
L(Mz min) = 5.52fm. The scale is set by fﬂphyS = ﬁF}?hys = 130.4(2) MeV [201], and cross-checked with the nucleon
mass. From the analysis of the pion sector they determine values of F and %!/3 as listed in Tables 22 and 21, respectively.

Finally, we should mention Ref. [353] which, regrettably, escaped our attention when preparing the last FLAG report [4].
The authors extract the quark condensate from an OPE analysis of the Landau-gauge quark propagator. They use overlap
valence quarks on three ensembles with (2+1)-flavor domain-wall fermions with a~! = 1.75GeV and sea pion masses of
331, 419 and 557MeV from the RBC/UKQCD collaboration. Their eight valence pion masses range from 220 to 600 MeV.
Their result for £!/3 is listed in Table 21. With only a single lattice spacing, their result does not contribute to the FLAG
average.

Perhaps it is worth comparing the results for f = +/2F in Refs. [204,305]. Carrying all errors along, one finds Af[MeV] =
124.0(0.9)(0.7) — 122.82(32)(65) = 1.18(1.35), which is less than one standard deviation. Given that the two studies were
carried out on largely the same ensemble basis, it is perhaps reasonable to assume the statistical error is ~ 100% correlated.
In this case, the difference would be Af [MeV] = 124.0(0.7) — 122.82(65) = 1.18(0.96), which is 1.24¢ and thus perfectly
acceptable. The chiral analysis in the two papers is treated somewhat differently, which would lead to differences in the
neglected NNLO terms, and thus reflects a systematic effect.

The new results for ©!/3 and F, /F, together with the previous ones, are shown in Figs. 14 and 15, respectively.

5.2.2 New results for individual NLO SU(2) LECs

Two of the aforementioned papers contain new results on £y, i.e., a specific LEC at NLO of the SU(2) framework. ETM
20A [350] quotes £4 = 4.31(4)(2)(11)(5) for N y = 2, while ETM 21 [305] finds £4 = 3.44(28)(36) for Np=2+1+1.
These results are listed in Table 23.

If one were to ignore N , the two new results would appear inconsistent. While an implicit dependence on the strange-
(and highly suppressed) charm-quark mass in the sea is a logical possibility, it seems to us these results should be considered
in conjunction with the FLAG 19 averages for the quantity £4. The FLAG 19 average for N r = 2, based on four papers,
was 4.40(28), the average for Ny = 2 + 1, based on five papers, was 4.02(45), and the estimate for Ny = 2 + 1 + 1,
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Table 21 Cubic root of the SU(2) quark condensate ¥ = —limy,, n,—o0(du) in MeV units, in the MS-scheme, at the renormalization scale
n = 2GeV. All ETM values that were available only in ¢ units were converted on the basis of ro = 0.48(2) fm [116,367,368], with this error
being added in quadrature to any existing systematic error

§ 5?5 S s
§ $ & & 5
$ § & s §
'é; &D iév @A o'§
S $ § § 5
Collaboration Refs. Ny < o o ‘Cs %0 Zl/ 3
ETM 21A [204] 2+141 P * o) * * 267.6(1.8)(1.1)
ETM 17E [81] 24141 A o * o) * 318(21)(21)
ETM 13 [80] 24141 A o * * * 280(8)(15)
xQCD 21 3511  2+1 P * * * * 260.3(0.7)(1.7)
JLQCD 17A [86] 2+1 A o * * * 274(13)(29)
Wang 16 [353]  2+1 A o n m * 305(15)(21)
JLQCD 16B [85] 2+1 A o * * * 270.0(1.3)(4.8)
RBC/UKQCD 15E [84] 2+1 A * * * * 274.2(2.8)(4.0)
RBC/UKQCD 14B 18] 2+1 A * * * * 275.9(1.9)(1.0)
BMW 13 [83] 2+1 A * * * * 271(4)(1)
Borsanyi 12 [82] 2+1 A (o) (0] * * 272.3(1.2)(1.4)
JLQCD/TWQCD 10A [354] 2+l A * n m * 234(4)(17)
MILC 10A 21 2+1 C o * * o 281.5(3.4)(*29)(4.0)
RBC/UKQCD 10A [117]  2+1 A o o [ * 256(5)(2)(2)
JLQCD 09 [355]  2+1 A * n n * 2024)(*19)
MILC 09A, SU (3)-fit [15] 2+1 C o * * o} 279(1)(2)(4)
MILC 09A, SU (2)-fit [15]  2+1 C o * * o 280(2)(T4) @)
MILC 09 [157]  2+1 A o * * o 278(1)(F3)(5)
TWQCD 08 [356]  2+1 A n n m * 259(6)(9)
PACS-CS 08, SU@3)-fit ~ [193]  2+1 A * n m n 312(10)
PACS-CS 08, SU(2)-fit  [193]  2+1 A * n m m 309(7)
RBC/UKQCD 08 [194]  2+1 A o m o) * 255(8)(8)(13)
Engel 14 [89] 2 A * * * * 263(3)(4)
Brandt 13 [88] 2 A e} * o} * 261(13)(1)
ETM 13 [80] 2 A o * o) * 283(7)(17)
ETM 12 3571 2 A o * o) * 299(26)(29)
Bernardoni 11 [358] 2 C o n m * 306(11)
TWQCD 11 [359] 2 A o m m * 230(4)(6)
TWQCD 11A [360] 2 A o n m * 259(6)(7)
JLQCD/TWQCD 10A [354] 2 A * n m * 242(5)(20)
Bernardoni 10 B61] 2 A o u n * 262(*3) (1)
ETM 09C 871 2 A o * o * 2705)(*))
ETM 08 [92] 2 A o o o) * 264(3)(5)
CERN 08 [3621 2 A ) [ o * 276(3)(4)(5)
Hasenfratz 08 [363] 2 A o) [] o) * 248(6)
JLQCD/TWQCD 08A [364] 2 A o n m * 235.7(5.0)2.0) ("))
JLQCD/TWQCD 07 [365] 2 A o n m * 239.8(4.0)
JLQCD/TWQCD 07A [366] 2 A * n n * 252(5)(10)
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Table 22 Results for the SU (2) low-energy constant F' (in MeV) and for the ratio F, /F. All ETM values that were available only in r( units were
converted on the basis of ro = 0.48(2) fm [116,367,368], with this error being added in quadrature to any existing systematic error. Numbers in
slanted fonts have been calculated by us, based on ﬁF,};hys = 130.41(20) MeV [201], with this error being added in quadrature to any existing
systematic error (otherwise to the statistical error). The systematic error in ETM 11 has been carried over from ETM 10

s § $
S s ¢
S § & S
S & g S
& $ § §
Collaboration Refs. Ny < & o4 Qs F Fr/F
ETM 21A [204] 2+1+1 P * o * 86.85(23)(46) 1.062(3)(6)
ETM 21 [305] 2+l+1 P * o * 87.7(6)(5) 1.051(7)(6)
ETM 11 [90]  2+l+1 C o * o 85.60(4)(13) 1.077(2)(2)
ETM 10 218] 2+l+1 A o " * 85.66(6)(13) 1.076(2)(2)
RBC/UKQCD 15E 84 241 A * * * 85.8(1.1)(1.5) 1.0641(21)(49)
RBC/UKQCD 14B B 241 A * * * 86.63(12)(13) 1.0645(15)(0)
BMW 13 831 241 A * * * 88.0(1.3)(0.3) 1.055(7)(2)
Borsanyi 12 821 2+1 A o o * 86.78(05)(25) 1.0627(06)(27)
NPLQCD 11 911  2+41 A o o o 86.8(2.1)(*37) 1.062(26)(*52)
MILC 10 411  2¢1  C o * * 87.0(4)(5) 1.060(5)(6)
MILC 10A 21 2+¢1 C o * * 87.5(1.0)(*37) 1.054(12)(*3)
MILC 09A, SU3)-fit ~ [15]  2+1  C o * * 86.8(2)(4) 1.062(1)(3)
MILC 09A, SU2)-fit ~ [15]  2+1 C o * * 87.4(0.6)(*7) 1.0547)(*13)
MILC 09 [157] 2+ A o * * 87.66(17)(*33) 1.052(2)(*9)
PACS-CS 08, SU(3)-fit  [193] 2+1 A * " " 90.3(3.6) 1.062(8)
PACS-CS 08, SU(2)-fit  [193] 2+1 A * " " 89.4(3.3) 1.060(7)
RBC/UKQCD 08 [194] 241 A o " o 81.2(2.9)(5.7) 1.080(8)
ETM 20A [350] 2 A * " o 86.46(0.06)(2.40)  1.067(1)(30)
ETM 15A [368] 2 A * " o 86.3(2.8) 1.069(35)
Engel 14 891 2 A * * * 85.8(0.7)(2.0) 1.075(09)(25)
Brandt 13 88] 2 A o * o 84(8)(2) 1.080(16)(6)
QCDSF 13 [369] 2 A * o o 86(1) 1.07(1)
TWQCD 11 [359] 2 A o " " 83.39(35)(38) 1.106(5)(5)
ETM 09C 871 2 A o * o 85.91(07)(*73) 1.0755(6)(*93)
ETM 08 921 2 A o o o 86.6(7)(7) 1.067(9)(9)
Hasenfratz 08 [363] 2 A (0] ] o) 90(4) 1.02(5)
JLQCD/TWQCD 08A  [364] 2 A o n n 79.02.50.7(Y58)  1.16737)(10)(T%)
JLQCD/TWQCD 07 [365] 2 A o " " 87.3(5.6) 1.06(7)
Colangelo 03 [370] 86.2(5) 1.0719(52)

based on a single paper, was 4.73(10). In terms of standard deviations the difference “old average minus new result” is
4.40(28) —4.31(13) = 0.09(31) or 0.30 for N y = 2, while itis 4.73(10) —3.44(46) = 1.29(47) or2.70 for Ny = 2+1+1.
Hence, the new N y = 2 result of ETM 20A [350] is in perfect agreement with the corresponding FLAG 19 average. On the
other hand, the new N y = 2+ 1+ 1 result of ETM 21 [305] is largely inconsistent with the corresponding FLAG 19 estimate,
which was taken from Ref. [90]. Perhaps one should take a step back at this point, and consider the option that the implicit
N r-dependence (through a dynamical strange and charm quark) is smaller than some unaccounted-for systematic effects in
at least one of the works considered. On the practical side neither one of the new results qualifies for a FLAG average (ETM
20A [350] has a red tag, ETM 21 [305] is still unpublished). In summary, the time is not ripe to give an update on the ¢4
average given in FLAG 19.
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Fig. 15 Comparison of the results for the ratio of the physical pion decay constant F; and the leading-order SU (2) low-energy constant F'. Square
symbols indicate determinations from correlators in the p-regime, and diamonds from the pion form factor

The two new results on £4 in Table 23 are displayed in Fig. 16, along with all previous determinations with systematic
error bars. Since there is no new entry in the first column of the table, there is no analogous figure for £3.

There is also new information on £. It appears in three new papers on the slope of the vector form factor at > = 0 (“charge
radius”) of the pion. We follow our tradition of quoting and comparing results in terms of (rz)’{/ rather than £¢. As mentioned
before, we start with a brief discussion of the particulars of these papers.

The paper Feng 19 [377] is based on N y = 2 + 1 flavours of domain-wall valence quarks on domain-wall sea. This
collaboration uses four ensembles essentially at the physical mass point>? and another one at M, = 341 MeV. At the physical
mass point they have three lattice spacings in the range a~' = 1.015—1.73 GeV, i.e., none of them satisfies a < 0.1fm. The
respective box sizes are L = [6.22, 4.58, 5.48]fm, hence L (M min) = 6.22fm.

22 This earns them a green box on “chiral extrapolation”, but the criterion was crafted with the idea of a global fit which takes all available
information into account. In the setup of Feng 19 [377] it is barely possible to disentangle a small M, dependence in the vicinity of M,};hys from
cut-off effects.
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Table 23 Results for the SU(2) NLO low-energy constants 23 and £4. For comparison, the last two lines show results from phenomenological
analyses. The systematic error in ETM 11 has been carried over from ETM 10

Q
.\o@ @O \;i:v . OA
‘ K &$ § g _ _
Collaboration Refs. Ny < o O <& 03 Uy
ETM 21 [305] 2+1+1 P * 0o * 3.44(28)(36)
ETM 11 [90]  2+1+1 C o * 0 3.53(5)(26) 4.73(2)(10)
ETM 10 [218] 2+1+1 A o = * 3.70(7)(26) 4.67(3)(10)
RBC/UKQCD 15E 84] 241 A * * * 2.81(19)(45) 4.02(8)(24)
RBC/UKQCD 14B 8] 2+1 A * * * 2.73(13)(0) 4.113(59)(0)
BMW 13 83]  2+1 A * * * 2.5(5)(4) 3.8(4)(2)
RBC/UKQCD 12 [188]  2+1 A * o * 2.91(23)(07) 3.99(16)(09)
Borsanyi 12 [82] 2+1 A (@) (@) * 3.16(10)(29) 4.03(03)(16)
NPLQCD 11 O1]  2+41 A o o o 4.04(40) (1) 430651 (")
MILC 10 [41] 241 C o * * 3.18(50)(89) 4.29(21)(82)
MILC 10A [12] 2+l C o * * 2.8581)(*3) 3.98(32)(*34)
RBC/UKQCD 10A [117]  2+1 A o 0 " 2.57(18) 3.83(9)
MILC 09A, SU3)-fit ~ [15]  2+1 C o * * 3.32(64)(45) 4.03(16)(17)
MILC 09A, SU2)-fit ~ [15]  2+1 C o * * 3.06)(*9) 3.92)3)
PACS-CS 08, SU(3)-fit ~ [193]  2+1 A * = " 3.47(11) 421(11)
PACS-CS 08, SU(2)-fit  [193]  2+1 A * = " 3.14(23) 4.04(19)
RBC/UKQCD 08 [194]  2+1 A o = 0 3.13(33)(24) 4.43(14)(77)
ETM 20A [350] 2 A * [ o 4.31H)A1)5)
ETM 15A [368] 2 A * n o 3.3(4)
Giilpers 15 93] 2 A * * * 4.54(30)(0)
Giilpers 13 3711 2 A o n 0 4.76(13)
Brandt 13 88] 2 A o * o 3.0(7)(5) 47(4)(1)
QCDSF 13 [369] 2 A * o o 42(1)
Bernardoni 11 [358] 2 C o u n 4.46(30)(14) 4.56(10)(4)
TWQCD 11 3591 2 A o u n 4.149(35)(14) 4.582(17)(20)
ETM 09C 871 2 A o * o 3.50(9)(*%) 4.66(4)("%)
JLQCD/TWQCD 09 3721 2 A o n " 4.09(50)(52)
ETM 08 921 2 A o o o) 3.2(8)(2) 442)(D)
JLQCD/TWQCD 08A  [364] 2 A o n n 33840)24)(T)  4.12(35)30)(15))
CERN-TOV 06 [373] 2 A o n n 3.0(5)(1)
Colangelo 01 [324] 4.4(2)
Gasser 84 [320] 2.9(2.4) 4.3(9)

The paper x QCD 20 [376] employs overlap valence quarkson N y = 2+1 ensembles with domain-wall sea quarks. They use
atotal of seven ensembles, with three of them being at the physical point. They cover five lattice spacings a = 0.083—0.195fm,
of which only one is below 0.1fm. The relevant box size is 6.24fm at the physical point, where they have ML = 4.45.
Renormalization is done nonperturbatively.

The paper Gao 21 [375] is based on Ny = 2 + 1 HISQ (staggered) ensembles on which they invert clover valence
quarks. They have Mz ea = Mz yval = 140MeV at a = 0.076fm in a 643 x 64 volume. In addition, they have My sea =
160MeV, My yai = 300MeV at a = 0.06fm (in a 483 x 64 box), and essentially the same sea-valence mass combination
at a = 0.04fm (in a 643 x 64 box). The vector form factor is renormalized nonperturbatively. Unfortunately, no continuum
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Fig. 16 Effective coupling constant £4. Squares indicate determinations from correlators in the p-regime, diamonds refer to determinations from
the pion form factor

Table 24 Vector form factor of the pion: Lattice results for the charge radius (rz)"’/ and the chiral coupling constant £ are compared with the

experimental value, as obtained by NA7, and some phenomenological estimates. The publication status of x QCD 20 [376] changed from “preprint”
to “accepted” after our closing date

:§Q
5 S
§ NI &
F S & J
&) (,3 Q @
s & $§ S
N 2 N £
§ N s ¢
$ § § & :
Collaboration Refs. Ny < O O & (r3)% [fm?] le
HPQCD 15B [374]  2+1+1 A * o) * 0.403(18)(6)
Gao 21 [375]  2+1 P o) [ * 0.42(2) 0t
xQCD 20 [376]  2+1 A * o) * 0.430(5)(13) 17.1(1.4)
Feng 19 [377]  2+1 A * n * 0.434(20)(13)
JLQCD 15A, SUQ)-fit  [378]  2+1 A o) m o 0.395(26)(32) 13.49(89)(82)
JLQCD 14 [379]  2+1 A * n n 0.49(4)(4) 7.5(1.3)(1.5)
PACS-CS 11A [380]  2+1 A o n o 0.441(46)
RBC/UKQCD 08A (3811  2+1 A n n o 0.418(31) 12.2(9)
LHP 04 [382]  2+1 A n n n 0.310(46)
ETM 17F [383] 2 A * n * 0.443(21)(20) 16.21(76)(70)
Brandt 13 [88] 2 A o * o 0.481(33)(13) 15.5(1.7)(1.3)
JLQCD/TWQCD 09 3721 2 A o n n 0.409(23)(37) 11.9(0.7)(1.0)
ETM 08 [92] 2 A o) o) o) 0.456(30)(24) 14.9(1.2)(0.7)
QCDSF/UKQCD 06A (384] 2 A o) * [ 0.441(19)(63)
Bijnens 98 [385] 0.437(16) 16.0(0.5)(0.7)
NA7 86 [386] 0.439(8)
Gasser 84 [320] 16.5(1.1)

extrapolation is performed; they quote the result from the ¢ ~ 0.076fm physical pion mass ensemble as listed in Table 24.
The error quoted is a total error, comprising systematic uncertainties unrelated to cut-off effects.

The available information on (r

2)

do not achieve the precision of the experimental result (NA 7) yet.

7 is summarized in Fig. 17. It is obvious that the lattice computations for this quantity
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Fig. 17 Summary of the pion form factor (rz)}f,. The publication status of x QCD 20 [376] changed from “preprint” to “accepted” after our closing
date

5.2.3 New results for an SU(2) linear combination linked to mm scattering

We are aware of four new papers on 7 scattering (in the isospin / = 2 and/or I = 0 state). As before, we begin with a brief
description of their specifics.

Reference [387] by Horz and Hanlon uses one CLS ensemble of N = 2 + 1 nonperturbatively improved Wilson (clover)
fermions. Since it is away from the physical mass point and no extrapolation to the latter is attempted, we refrain from
applying the FLAG criteria, and there will be no listing in tables and/or plots. We add that this procedure is in strict analogy
to our treatment of Ref. [388] in FLAG 19. A sequel publication, based on the same data, is Ref. [389]. They find that the
mr (I = 2) spectrum is fit well by an S-wave phase shift that incorporates the expected Adler zero. Obviously, the same
comment regarding the applicability of the FLAG criteria applies.

The paper Culver 19 [390] uses Ny = 2 flavours of nHYP clover fermions at a = 0.12fm, M, = 315MeV on
48 x 24% x {24,30,48} and M, = 226MeV on 64 x 24> x {24, 28, 32}. With a conventional analysis technique they
find a(%Mﬂ = —0.0455(16), after extrapolation to physical pion mass. From an inverse amplitude method, they obtain
a(%Mn = —0.0436(1‘8:888), again at the physical pion mass. Since the paper does not give preference to one of the analysis
methods, we take the liberty to condense the two numbers into the result agM,, = —0.0445(14)(19), as shown in Table 25.
Here, the systematic error reflects the full difference between the two central values given in the paper.

The paper Mai 19 [391] employs N y = 2 nHYP clover fermions at a single lattice spacing (¢ = 0.12fm), with M; =
315 MeV on 48 x 242 x {24, 30, 48} lattices and M, = 224 MeV on 64 x 242 x {24, 28, 32} lattices. They quote, extrapolated
to the physical pion mass, a) M = 0.2132(*00000) and a3 M, = —0.0433 £0.0002 for / = 0 and / = 2, respectively. With
statistical error only, these results go into Table 25, but not into a plot.

The paper ETM 20B [392] is based on Ny = 2 QCD with twisted mass fermions at a = 0.0914(15)fm, and with
csw = 1.57551. They have three pion masses (M, = 340 MeV on 323 x 64 and M, = 242 MeV and M,; = 134 MeV on
483 x 96). They find, for I = 2, at the pion masses considered, a(%M7r = —0.2061(49), —0.156(15), —0.0481(86), with the
last being at physical pion mass, but finite a. Accordingly, we take ag M, = —0.0481(86) with unknown systematic error.
With statistical error only, this result goes into Table 25, but not into a plot.

These four works, when combined with the information listed in FLAG 19, represent the information from the lattice on
the mr scattering lengths ag and a% in the isospin channels I = 0 and I = 2, respectively. As can be seen from Egs. (93, 95),
the I = 0 scattering length carries information about %E 1+ %22 — 15—4573 + 224. And from Eqgs. (94, 96) it follows that the
I = 2 counterpart carries information about the linear combination %E 1+ %572 — %53 — 244. Still, we prefer quoting the
dimensionless products a(’) M, (at the physical mass point) over the aforementioned linear combinations to ease comparison
with phenomenology.

The updated Table 25 summarizes the present lattice information on aé:OMn and aézZMn at the physical mass point,
and the results are displayed in Fig. 18. We remind the reader that a lattice computation of aéZOMn involves quark-loop
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Table 25 Summary of w7 scattering data in the / = 0 (top) and / = 2 (bottom) channels. Some of the results have been adapted to our sign
convention. The results of Refs. [324,333] allow for a cross-check with phenomenology

Q>
S S $ ¢
IS} F & §
$ & & £
¥ § § &
Collaboration Refs. Ny < o O < alMy o
Fu 17 [393] 2+1 A [ ] @) * 0.217(9)(5) 45.6(7.6)(3.8)
Fu 13 [335] 2+1 A [ ] * 0.214(4)(7) 43.2(3.5)(5.6)
Full [394] 2+1 A [ ] * 0.186(2) 18.7(1.2)
Mai 19 [391] 2 P [ ] [ ] (0] 0.2132(9)
ETM 16C [336] 2 A * [ * 0.198(9)(6) 30(8)(6)
Caprini 11 [333] 0.2198(46)(16)(64)
Colangelo 01 [324] 0.220(5) ot
$ IS
§ § S
& S é’ 2
. & ISy g
g & & N
5 J & £
Y > : @
N o~ I N
. S N S i 2 2
Collaboration Refs. Ny < ) O & agMy 0,
ETM 15E [94] 24141 A o * * —0.0442(2)(3) 3.790.61)(*47])
PACS-CS 13 [344] 2+1 A * ] ] —0.04243(22)(43)
Fu 13 [335] 241 A m n * —0.04430(25) (40) 3.27(0.77)(1.12)
Full [394] 2+l A " n * —0.0416(2) 11.6(9)
NPLQCD 1A [395]  2+1 A n n * —0.0417(07)(02)(16)
NPLQCD 07 [334] 2+1 A [ ] [ ] [ ] —0.04330(42) 0t
NPLQCD 05 [396] 2+l A " " " —0.0426(06)(03)(18)
ETM 20B [392] 2 A (0] [ ] (0] —0.0481(86)
Mai 19 [391] 2 P [ ] [ ] (0] —0.0433(2)
Culver 19 [390] 2 P [ ] [ ] (0] —0.0445(14)(19)
Yagi 11 [397] 2 P (0] [ ] [ ] —0.04410(69)(18)
ETM 09G [95] 2 A (0] (@) (6] —0.04385(28)(38) 4.65(0.85)(1.07)
CP-PACS 04 [398] 2 A ] [ ] * —0.0413(29)
Caprini 11 [333] —0.0445(11)(4)(8)
Colangelo 01 [324] —0.0444(10) 0t

disconnected contributions, which tend to be very noisy and thus require large statistics. Compared to the situation in FLAG
19 the number of computations has increased from three to five, but still none of them is free of red tags. The situation
is somewhat better for aé =2M, which is computed from quark-line connected contributions only. In this case there is one
computation at N y = 2 and one at N y = 2+ 1+ 1 that qualifies for a FLAG average. We quote these numbers in Sect. 5.2.4
below.

The available information on aézOMﬂ and aézzMﬂ is summarized in Fig. 18. It is obvious that the former quantity (due
to quark-loop disconnected contributions) is much harder to calculate on the lattice than the latter one. Nonetheless, the good
news is that in both cases the lattice determinations are in reasonable agreement with EFT results.

5.2.4 LO and NLO SU(2) estimates and averages

As promised in an earlier section, here we list our FLAG 19 estimates and averages [4] that all remain unchanged. We refer
the reader to that review for details and explanations.
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Fig. 18 Summary of the w7 scattering lengths agM,, (top) and a(%Mn (bottom). Results in Table 25 with statistical error only are not shown

For the SU(2) LEC %, in the MS scheme, at the renormalization scale . = 2GeV, we obtained the averages and/or
estimate

Np=2+1+1: =13 = 286(23) MeV Refs. [80,81],
Np=2+1: =13 =272(5) MeV Refs. [12,82-86], (112)
Ny=2: 13 =266(10) MeV Refs. [80,87-89],

where the errors include both statistical and systematic uncertainties.
For the ratio of the pion decay constant at the physical point, Fy, to its value in the SU(2) chiral limit (zero up- and
down-quark mass but physical strange-quark mass), F', we obtained the averages and/or estimate

Np=2+41+1: Fy/F = 1.077(3) Ref. [90],
Nfp=2+1: Fr/F = 1.062(7) Refs. [41,82-84,91], (113)
Nyp=2: Fr/F = 1.073(15) Refs. [87-89,92].

For SU(2) NLO LECs we obtained the averages and/or estimates
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Np=2+1+1: 03 = 3.53(26) Ref. [90],

Np=2+1: 03 = 3.07(64) Refs. [41,82-84,91], (114)
Np=2: 03 = 3.41(82) Refs. [87,88,92],

Np=2+4+1+1: 04 = 4.73(10) Ref. [90],

Np=2+1: L4 = 4.02(45) Refs. [41,82-84,91], (115)
Ny=2: Oy = 4.40(28) Refs. [87,88,92,93],

as well as the estimate
Nf=2: {=151(1.2)  Refs.[88,92]. (116)
For the scattering length extracted from w7 scattering in the / = 2 channel we quote

Ny=2+1+1: aéM,, = —0.0441(4) Ref. [94],

) 117)
Np=2: ayM; = —0.04385(47) Ref. [95],
where the errors include both statistical and systematic uncertainties. We remark that our preprocessing procedure®? sym-
metrizes the asymmetric errors with a slight adjustment of the central value.
In all cases the references shown are the papers with the contributing results, and we ask the readers to cite those papers
when quoting these averages.

5.3 Extraction of SU(3) low-energy constants
5.3.1 New results for individual LO SU(3) LECs

We are unaware of any new paper that determines a large number of LECs in the SU (3) framework (as was done, in the past,
by the MILC collaboration). However, there is one paper, x QCD 21 [351], with a new result on two SU (3) LECs at LO. They
find Fyp = 67.8(1.2)(3.2) and £y = 232.6(0.9)(2.7) in the 3-flavour chiral limit.2* They also quote ¥/ %o = 1.40(2)(2)
which we consider interesting for reasons detailed in Sect. 5.3.4.

These values are listed, together with those of FLAG 19, in Table 26. The paper has been discussed and color coded in
Sect. 5.2. As they are not published yet, there is no update to the FLAG averages/estimates here.

5.3.2 New results for individual NLO SU(3) LECs

There are a number of new results on L5, for instance in Refs. [349,399,400] to be discussed below in the context of 7 K
scattering. This is not so surprising, since Eqs. (101, 102, 103, 104) indicate that the observables a%Mﬂ, aé Mg, aS/ 2pcn K

a(])/ 2 Ik jointly determine the combination L, and L5 (both of which are conventionally quoted at the scale u = 770 MeV).
Determining any of these two LECs is afflicted with an extra uncertainty, compared to the four scattering lengths, due to the
convergence of the SU (3) chiral series.”> Therefore we give preference to reviewing the scattering lengths and converting,
once they exist, the pertinent FLAG averages into numerical values of L, and Ls, over collecting values of Ly, and Ls as
converted by the individual collaborations.

23 There are two naive procedures to symmetrize an asymmetric systematic error: (i) keep the central value untouched and enlarge the smaller
error, (ii) shift the central value by half of the difference between the two original errors and enlarge/shrink both errors by the same amount. Our
procedure (iii) is to average the results of (i) and (ii). In other words a result c(s) (t’Z) with ¢ > u is changed into ¢ + (u — ¢) /4 with statistical error
s and a symmetric systematic error (# + 3¢)/4. The case ¢ < u is handled accordingly.

2 We use © = limy,, my—s0 LMy, mq, mg, me, ...), Bo = liMy, my m—0 LMy, mq, mg, me, ...), and likewise for B, By, F and Fy. The
quantities X, Xo, B, By are renormalized at the scale = 2 GeV.

25 One of the issues is whether the convergence in the LECs pertinent to a(l) Mk, i.e., with two strange quarks involved, is visibly slower than for

/

3/2 dal’? h 1 N K
ay'“prxk and ay’~juz g, where only one strange quark appears.
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Table 26 Lattice results for the low-energy constants Fy, Byg and ¥y = FO2 By, which specify the effective SU(3) Lagrangian at leading order.
The ratios F/Fy, B/Bo, ¥/ %0, which compare these with their SU (2) counterparts, indicate the strength of the Zweig-rule violations in these
quantities (in the large- N, limit, they tend to unity). Numbers in slanted fonts are calculated by us, from the information given in the references

<
§ S
& S N ©
g K Iy §
S $ & $
s 3 & £
"\'S) ¥ e i
S § § S
Collaboration Refs. N; < O O L Fy [MeV] F/Fy B/ By
JLQCD/TWQCD 10A  [354] 3 A m n n 71(3)(8)
xQCD 21 [351] 2+1 P * * * 67.8(1.2)(3.2)
MILC 10 411 2+1 C o * * 80.3(2.5)(5.4)
MILC 09A [15] 2+1 C o * * 783(1.4)(2.9) 1104341  1.21(4)(*H)
MILC 09 [157] 241 A o * * L15G) () 1.15(16)(13))
PACS-CS 08 [193] 2+1 A s m m 83.8(6.4) 1.078(44) 1.089(15)
RBC/UKQCD 08 [194] 2+1 A o n o 66.1(5.2) 1.229(59) 1.03(05)
g
) S g
& é§ 5 ° S
g & Iy § §
S 5 & s S
¥ 3 A S &
"év % \4@ & ()
S S § 4 & 13
Collaboration Refs. N; < O O & & 5o* MeV] /%0
JLQCD/TWQCD 10A  [354] 3 A n n m * 214(6)(24) 1.31(13)(52)
xQCD 21 [351] 2+41 P * * * * 232.6(0.9)2.7)  1.40(2)(2)
MILC 09A [15] 241 C o) * * o) 245(5)(4)(4) 1.48(9)(8)(10)
MILC 09 (1571 2+1 A 0 * * o 220 (TH)@  15207)(HE)
PACS-CS 08 [193] 2+41 A * n n m 290(15) 1.245(10)
RBC/UKQCD 08 [194] 241 A o n o * 1.5521)

On the other hand, there is no new result on those LECs at the NLO in the SU (3) expansion which were covered in previous
editions of FLAG (L4, L¢, Lo, L1g).

5.3.3 Results for SU(3) linear combinations linked to t K, K K scattering

Since m K, K K scattering were not covered in previous editions of the FLAG report, we list here all works which include
such results. Following the example of the section on 7 scattering, where all results were given in the dimensionless variable
aé M., we give the results on 7 K scattering in the form aé Uk, Where g is the pertinent reduced mass, and the results on
K K scattering are given in the form aé Mg . We start with a brief mentioning of all papers we are aware of.

The paper NPLQCD 06B [349] uses asqtad (staggered) sea quarks with N y = 2+ 1 ata single lattice spacing (@ = 0.125fm
with L ~ 2.5fm) with M, = [290, 350, 490, 600] MeV. The domain-wall valence fermions come with quark masses such
that the resulting pion masses match the aforementioned Nambu—Goldstone boson masses. After chiral extrapolation they
find ay* pax = 0.1346(13)( 3 and ay/* prx = —0.0448(12) (L), with Ls pinned down at a value extracted from the
analysis of the quark mass dependence of fk /fr. The color coding in Table 27 is based on My min(RMS) = 488 MeV.

The paper NPLQCD 07B [401] uses asqtad (staggered) sea quarks with N y = 2 + 1 in conjunction with domain-wall
valence quarks. They have two lattice spacings (@ = 0.125 fm, 0.09 fm) with somewhat unequal span in quark masses. At
a = 0.125 fm they cover M, =~ 290, 350, 490, 590 MeV with L >~ 2.5fm. At a = 0.09 fm they do not quote M, [MeV], but
from a M, = 0.1453 in Tab. I and @ ~ 0.09 fm one would conclude M, =~ 320 MeV. After chiral extrapolation, they find
aé Mg = —0.352(16)1ot. The color coding in Table 27 is based on My min(RMS) = 413 MeV.

The paper Fu 11A [399] employs one ensemble of N y = 2 + 1 asqtad (staggered) quarks at a >~ 0.15fm, m;/mg = 0.2,

phys

ms >~ myg ° with L = 2.5 fm. It uses six valence pion masses M, = 334 — 466 MeV to study S-wave scattering. It quotes,
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Table 27 Summary of 7 K scattering data in the / = % % channels, and of K K scattering with / = 1. Some of the results have been adapted to

our sign convention

§ I
X o) '0\ (4]
N S S §
$ £ & s
N [3 ¥ N
R4 N ¢ o
§ F EE
Collaboration ~ Refs. N s < O (@) e a(l)/ Slnk aS/ Uk alMg
ETM 18B [96] 2+1+1 A o * o 0.127(2)o1 ~0.0463(17)10¢
ETM 17G 971 2+1+1 A o * o —0.385(16)( )
PACS-CS 13 [344] 241 A * n n 0.150(16)(37)  —0.047727)(20)  —0.312(17)(31)
Fu l1A [399] 241 A n " * 0.1425(29) —0.0394(15)
NPLQCD 07B  [401] 2+1 A n o o ~0.352(16)10¢
NPLQCD 06B [349] 2+1 A n " * 0.1346(13)( ")) —0.0448(12)(*)2)

after chiral extrapolation, aé/ 2uﬂ x = 0.1425(29) and aS/ zun k = —0.0394(15). The color coding in Table 27 is based on
Mz min(RMS) = 590 MeV.

We are also aware of Ref. [402] which is based on a single ensemble of N y = 2 clover quarks. Since it is away from the
physical mass point and no extrapolation to the latter is attempted, we feel it would be unfair (or misleading) to quote its
results in Table 27.

Reference PACS-CS 13 [344] uses five ensembles of N = 2 + 1 nonperturbative clover fermions with a = 0.09fm,
L =2.9fm,and M, = 166,297, 414, 575, 707 MeV. They quote, after extrapolation with y PT: a%Mﬂ = —0.04243(22)(43)

(see Table 25), al Mg = —0.312(17)31), ay/*jir k. = —0.0477(27)(20) and a/* 11k = 0.150(16)(37) (listed in Table 27).
These figures reflect the final numbers quoted in the Erratum of Ref. [344]. The reason for the change is the mishap reported in
footnote 21; fortunately it turns out that it affected the final analysis only very mildly. We thank the collaboration for keeping
us up-to-date with all aspects of the revision. Since there are no FLAG averages for scattering lengths for N y = 2 + 1, these
small changes have no impact on the quoted FLAG averages.

The paper HS 14A [403] is based on N y = 2 + 1 anisotropic clover fermions at ¢, ~ 0.12fm, a; ~ 0.035 fm, with
M, =391 MeV in {163, 20°, 243} x 128 boxes, i.e. with L = 1.9, 2.4, 2.9 fm. These parameters yield Mx = 549 MeV thus

Urx = 228 MeV. They quote various resonance parameters and, in the S-wave I = 3/2 channel, ag/ zMn = —0.278(15)

/2 urx = —0.161(9) at the given M. Since this work does not extrapolate to Mghys, we stay away

which we convert to aS
from color coding.

The paper ETM 17G [97] uses N y = 2+ 1+ 1 twisted mass fermions at three lattice spacings, a = 0.089, 0.082, 0.062 fm,
with up to five M; = 230—450MeV, and L(My min) =~ 2.8fm. In the I = 1 channel they find aéMK =
—0.385( 16)(:02) (J_rg) (4). We take the liberty to combine the various non-statistical errors in quadrature, using a) Mg =

—0.385(16)(*,) as quoted in Table 27.

Reference [404] by Brett et al. uses one ensemble of Ny = 2 + 1 anisotropic clover fermions with a; = 0.115fm,
M, = 233MeV, in a 323 x 256 box, hence L = 3.7fm. These parameters yield Mx = 494 MeV and thus u,x = 158 MeV.
Their result for I = 1/2 S-wave scattering reads aé/zMﬂ = —0.353(25), or aé/z,unk = —0.240(17) in our notation. Since
this work does not extrapolate to Mﬁhys, we stay away from color coding.

The paper ETM 18B [96] uses N y = 2+ 141 twisted mass fermions at three lattice spacings, a = 0.089, 0.082, 0.062 fm,
with up to five pion masses M; = 230—450MeV and up to two volumes. From the tables, one finds My min =
276,302, 311 MeV at the three lattice spacings. They find, after chiral extrapolation, aé/ 2 Urkx = 0.127(2)or and ag/ 2 UrK =
—0.0463(17)0 as quoted in Table 27.

An overview of all scattering lengths with at least one kaon involved is shown in Fig. 19. As usual we refrain from displaying
data with statistical error only.

In passing, we note that there is an additional paper by Z. Fu, Ref. [400], which deals with K K scattering. It employs one
ensemble of Ny = 2 + 1 asqtad (staggered) quarks at a ~ 0.15fm, m;/m; = 0.2, my =~ m?hys with L = 2.5 fm together
with six valence pion masses M, = 334 — 466 MeV. Extrapolating to the physical point, the result for K K scattering in
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Fig. 19 Summary of the 7 K scattering lengths a(l) 2 Uk (top), ag/ 2un k (middle) and of the K K scattering length a(l) My (bottom). Results in

Table 27 with statistical error only are not shown

the I = 1 state is aé My = 0.211(33). Hence the interaction for K K in the S-wave I = 1 state is found to be attractive, in
agreement with LO xPT.

In summary, for the quantities a(l)/ Zun K> ag/ 2/1,, x and aé Mg Refs. [96,97] are the only sources without red tags. Since
they appeared in refereed journals and no other works qualify, we take the results quoted in the top two lines of Table 27 as
the current FLAG averages. For the reader’s convenience we list them at the end of Sect. 5.3.5.

Last but not least we like to remind the reader that K K scattering might be outside the validity of SU (3) xPT, since it
involves a scale around 2M g =~ 1 GeV. However, our review focuses on the scattering length aé M , where this issue does not
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feature prominently. But it is a key topic in the subsequent conversion of such a scattering length to the low-energy constants
L;. We hope that forthcoming high-quality data will allow a future edition of FLAG to address this topic.

5.3.4 Implication on Zweig rule violations

Let us spend a minute to explain why we consider the result on £ /% of x QCD 21 [351] particularly interesting. The reason
is linked to the question of how close real-world QCD with N, = 3 is to the large-N, limit of "t Hooft (see also Ref. [405]).
In the large- N, limit the Zweig rule becomes exact, and the NLO LECs L4 and L tend to zero. As discussed in FLAG 19,
the available lattice data are consistent with the view that these two couplings approximately satisfy the Zweig rule. Also the
ratios F/Fy, B/By and X/ % (note that they are linearly dependent, since ¥ = BF? and ¥o = By FOZ) test the validity of
this rule.

The available data seem to confirm the paramagnetic inequalities of Ref. [406], which require /%9 > 1 and F/Fy > 1.
There is much less information concerning B/ By, and this is the point where the new result of x QCD 21 [351] comes in handy.
Let us assume, for the sake of an argument, F//Fy = 1.15(5)(5). Together with X /¥y = 1.40(2)(2) [351], this would imply
B/By = 1.06(9)(9). This numerical example illustrates how much precision is lost in forming the ratio (X/X¢)/(F/ Fo)?:
with these numbers it would not be clear whether B/By > 1. Therefore we plead with all collaborations to calculate the
numbers F/Fy, B/Bg and X /% in their analysis framework to take advantage of correlations.

5.3.5 LO and NLO SU (3) estimates

For each of the SU (3) LO and NLO LECs discussed in the 2019 FLAG review [4] exactly one paper contributed and hence
constituted the FLAG average. The present status is that this situation is unchanged. For the convenience of the reader, we
list the results here but refer to the 2019 FLAG review for the details and explanations.

The LO LECs in the SU (3) chiral limit (m,,, mg, mg — 0) are denoted by a subscript O to distinguish them from their
SU (2) chiral limit counterparts. The parameters X, By are in the MS scheme at the renormalization scale ;& = 2 GeV. We
quote

Nf=2+1: 5, = 245(8) MeV Ref. [15], (118)
Nfp=2+1: ¥/ = 1.48(16) Ref. [15], (119)
Nf=2+1: Fo = 80.3(6.0) MeV Ref. [41], (120)
Np=2+41: F/Fy = 1.104(41) Ref. [15], (121)
Nfp=2+1: B/By = 1.21(7) Ref. [15], (122)

where the errors include both statistical and systematic uncertainties. The references shown are the papers from which the
results are taken.
For SU (3) NLO LECs we display the results for individual low-energy constants

Np=2+1+1: Ly = +0.09(34) x 1073 Ref. [37], 123)
Np=2+1: Ly = —0.02(56) x 1073 Ref. [41],
Np=2+1+1: Ls = +1.19(25) x 1073 Ref. [37], (124
Nyp=2+1: Ls = +0.95(41) x 1073 Ref. [41],
Nyp=2+1+1: Le¢ = +0.16(20) x 1073 Ref. [37], 125)
Nyp=241: L¢ = +0.01(34) x 1073 Ref. [41],
Ny=2+1+1: Lg = +0.55(15) x 107 Ref. [37], 126
Nyp=2+1: Lg = +0.43(28) x 1073 Ref. [41],

atthe chiral scale © = 770 MeV, where again all errors quoted are total errors. For details of the symmetrization of asymmetric
error bars see footnote 23.
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For the scattering lengths involving at least one kaon

1/2

Np=2+141: ay“prk = 0.127(2) Ref. [96], (127)
Np=2+41+1: ay* prk = —0.0463(17) Ref. [96], (128)
Np=2+1+1: alMyg = —0.388(20) Ref. [97], (129)

represent the FLAG estimates with all errors added in quadrature. For details of the symmetrization of asymmetric error bars
see footnote 23. Throughout we ask the reader to cite the original references when using these values.

6 Kaon mixing

Authors: P. Dimopoulos, X. Feng, G. Herdoiza

The mixing of neutral pseudoscalar mesons plays an important role in the understanding of the physics of quark-flavour
mixing and CP violation. In this section we discuss K” — K oscillations, which probe the physics of indirect CP violation.
Extensive reviews on this subject can be found in Refs. [407-412]. With respect to the FLAG 19 report, in the new Sect. 6.2
of the present edition the reader will find an updated discussion regarding the lattice determination of the K — mm decay
amplitudes and related quantities. Discussions concerning the kaon mixing within the Standard Model (SM) and Beyond the
Standard Model (BSM) are presented in Sects. 6.3 and 6.4, respectively. We note that FLAG averages for SM and BSM bag
parameters have not changed with respect to the FLAG 19 report.

6.1 Indirect CP violation and €g in the SM

Indirect CP violation arises in K; — m transitions through the decay of the CP = +1 component of K into two pions
(which are also in a CP = 41 state). Its measure is defined as

_ A[K; — () =0]
AlKs — (mm)1=0]’

€K (130)

with the final state having total isospin zero. The parameter € ¢ may also be expressed in terms of K — K© oscillations. In the
Standard Model, eg receives contributions from: (i) short-distance (SD) physics given by AS = 2 “box diagrams” involving
W bosons and u, ¢ and ¢ quarks; (i) the long-distance (LD) physics from light hadrons contributing to the imaginary part
of the dispersive amplitude M, used in the two component description of K? — K9 mixing; (iii) the imaginary part of the
absorptive amplitude I'1; from K 0_ Ko mixing; and (iv) Im(Ag)/Re(Ap), where Ag is the K — (r7) ;=9 decay amplitude.
The various factors in this decomposition can vary with phase conventions. In terms of the AS = 2 effective Hamiltonian,
Hé‘ffs =2_ it is common to represent contribution (i) by

1 - _
Im(MP) = MIm[(KOIHeAfE_leO)], (131)

and contribution (ii) by Im(M{‘ZD). Contribution (iii) can be related to Im(Ap)/Re(Ap) since (wm);—¢ states provide the
dominant contribution to absorptive part of the integral in I'15. Collecting the various pieces yields the following expression
for the e factor [411,413-416]

. Im(M7P)  Im(M[P)  Im(Ao)
= j , 132
€k = exp(i¢e) sin(¢pe) [ Ay + Ay Re(Ag) (132)
where the phase of €k is given by
¢ = arctan K . (133)
ATk /2

@ Springer



Eur. Phys. J. C (2022) 82:869 Page 81 0of 296 869

The quantities AMg and AT are the mass and decay width differences between long- and short-lived neutral kaons. The
experimentally known values of the above quantities read [165]:

lex| = 2.228(11) x 1073, (134)
de = 43.52(5)°, (135)
AMg = Mg, — Mg, = 3.484(6) x 1072 MeV, (136)
ATk =Tk, — g, =7.3382(33) x 1072 MeV, (137)

where the latter three measurements have been obtained by imposing CPT symmetry.

We will start by discussing the short-distance effects (i) since they provide the dominant contribution to € g . To lowest order
in the electroweak theory, the contribution to K 0 _ KO oscillations arises from the so-called box diagrams, in which two W
bosons and two “up-type” quarks (i.e., up, charm, top) are exchanged between the constituent down and strange quarks of the
K mesons. The loop integration of the box diagrams can be performed exactly. In the limit of vanishing external momenta
and external quark masses, the result can be identified with an effective four-fermion interaction, expressed in terms of the
effective Hamiltonian

2 aq2
HAS:Z _ GFMW
eff 167'[2

Fo0o25=2 4 he. (138)
In this expression, G r is the Fermi coupling, Mw the W-boson mass, and

04572 =[5y, (1 — y5)d] [5vu(1 — y5)d] = Ovv4aa — Ovatav. (139)

is a dimension-six, four-fermion operator. The subscripts V and A denote vector (5y,d) and axial-vector (5y,, ysd) bilinears,
respectively. The function F° is given by

FO =2280(xe) + A2So(xs) + 2hesSo(xe, Xo), (140)

where A, = V V44, and a = c, t denotes a flavour index. The quantities So(x.), So(x;) and So(x¢, x;) with x, = m% /M. 2
Xy = ml2 / M\z,v are the Inami-Lim functions [417], which express the basic electroweak loop contributions without QCD
corrections. The contribution of the up quark, which is taken to be massless in this approach, has been taken into account by
imposing the unitarity constraint A, + A, + A, = 0.

When strong interactions are included, AS = 2 transitions can no longer be discussed at the quark level. Instead, the
effective Hamiltonian must be considered between mesonic initial and final states. Since the strong coupling is large at typical
hadronic scales, the resulting weak matrix element cannot be calculated in perturbation theory. The operator product expansion
(OPE) does, however, factorize long- and short- distance effects. For energy scales below the charm threshold, the K 0_ ko
transition amplitude of the effective Hamiltonian can be expressed as

2

. _ GiEM
(ROHAS 1K) = LN [22S0(xm + A So(xnz + 2hcksSoCxe. x)ns

g(ﬂ)z) /20 { /g( : (7/(8) Yo >} =0 HAS=2 0
d + K K”) +h.c., 141
X ( exp A 8 ,3( ) ,30 ( |QR (M)| > C ( )

where g(u) and Qﬁszz (w) are the renormalized gauge coupling and four-fermion operator in some renormalization scheme.
The factors 71, 2 and n3 depend on the renormalized coupling g, evaluated at the various flavour thresholds m;, mp, m,
and Mw, as required by the OPE and Renormalization Group (RG) running procedure that separate high- and low-energy
contributions. Explicit expressions can be found in Ref. [410] and references therein, except that i1 and 13 have been calculated
to NNLO in Refs. [418] and [419], respectively. We follow the same conventions for the RG equations as in Ref. [410]. Thus
the Callan—Symanzik function and the anomalous dimension y (g) of Q*5=2 are defined by

dg dQR5=2

— a5 AYR o HAS=2
dlnu_ﬂ(g)’ dinpg y(8) OrR" ™", (142)

@ Springer



869 Page 82 of 296 Eur. Phys. J. C (2022) 82:869

with perturbative expansions

3 5
—_— g JR— g —_ e e
g2 g!
V(g)ZVOW‘FVlW‘F"'- (143)

We stress that o, 81 and y are universal, i.e., scheme independent. As for K — K© mixing, this is usually considered in the
naive dimensional regularization (NDR) scheme of MS, and below we specify the perturbative coefficient y; in that scheme:

IB_IIN 2 ﬂ_34N2 N (B3]
°=13 30 =173 "\ 3 N[

6N - 1) N—l{ 57 19 4 }

(144)

21+ ———N+ =N
Y0 N +N +

3 3

| = ——

2N

’

Note that for QCD the above expressions must be evaluated for N = 3 colours, while N s denotes the number of active
quark flavours. As already stated, Eq. (141) is valid at scales below the charm threshold, after all heavier flavours have been
integrated out, i.e., N y = 3.

In Eq. (141), the terms proportional to 71, 1, and 53, multiplied by the contributions containing g(x)?, correspond to the
Wilson coefficient of the OPE, computed in perturbation theory. Its dependence on the renormalization scheme and scale u is
canceled by that of the weak matrix element (K°| Q}%S=2 (1)|K?). The latter corresponds to the long-distance effects of the
effective Hamiltonian and must be computed nonperturbatively. For historical, as well as technical reasons, it is convenient
to express it in terms of the B-parameter Bk, defined as

(K 0*=G0| K

Bk (n) = 37
3fgmx

(145)

The four-quark operator Q23 =2(u) is renormalized at scale 1 in some regularization scheme, for instance, NDR-MS. Assum-
ing that Bg (i) and the anomalous dimension y (g) are both known in that scheme, the renormalization group independent
(RGI) B-parameter By is related to Bg (i) by the exact formula

= —v/(2Bo) z(1)
5 g(u)2> " {/“ (y(g) Yo )}
Bx = exp dg| =—= + — | Bk (w). (146)
K ( 4 0 B&)  Pog :
At NLO in perturbation theory the above reduces to
= —v/(2Po) — N2
s (8w g’ | Bivo — oy
B = 1 B . 147
K ( yp > + an)? 28 k(W) (147)

To this order, this is the scale-independent product of all n-dependent quantities in Eq. (141).

Lattice-QCD calculations provide results for Bg (t). However, these results are usually obtained in intermediate schemes
other than the continuum MS scheme used to calculate the Wilson coefficients appearing in Eq. (141). Examples of intermediate
schemes are the RI/MOM scheme [420] (also dubbed the “Rome—Southampton method”) and the Schrodinger functional
(SF) scheme [421]. These schemes are used as they allow a nonperturbative renormalization of the four-fermion operator,
using an auxiliary lattice simulation. This allows Bk (1) to be calculated with percent-level accuracy, as described below.

In order to make contact with phenomenology, however, and in particular to use the results presented above, one must
convert from the intermediate scheme to the MS scheme or to the RGI quantity By This conversion relies on 1- or 2-loop
perturbative matching calculations, the truncation errors in which are, for many recent calculations, the dominant source of
error in EK (see, for instance, Refs. [8,49,50,188,422]). While this scheme-conversion error is not, strictly speaking, an
error of the lattice calculation itself, it must be included in results for the quantities of phenomenological interest, namely,
Bx(MS, 2GeV) and B k - Incidentally, we remark that this truncation error is estimated in different ways and that its relative
contribution to the total error can considerably differ among the various lattice calculations. We note that this error can be
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minimized by matching between the intermediate scheme and MS at as large a scale 1 as possible (so that the coupling which
determines the rate of convergence is minimized). Recent calculations have pushed the matching w up to the range 3-3.5 GeV.
This is possible because of the use of nonperturbative RG running determined on the lattice [8,48,188]. The Schrodinger
functional offers the possibility to run nonperturbatively to scales i ~ My where the truncation error can be safely neglected.
However, so far this has been applied only for two flavours for Bg in Ref. [423] and for the case of the BSM bag parameters
in Ref. [424], see more details in Sect. 6.4.

Perturbative truncation errors in Eq. (141) also affect the Wilson coefficients 11, 2 and n3. It turns out that the largest
uncertainty arises from the charm quark contribution n; = 1.87(76) [418]. Although it is now calculated at NNLO, the series
shows poor convergence. The net effect from the uncertainty on 7 on the amplitude in Eq. (141) is larger than that of present
lattice calculations of Bk . Exploiting an idea presented in Ref. [425], it has been recently shown in Ref. [426] that, by using
the u — ¢ instead of the usual ¢ — ¢ unitarity in the ex computation, the perturbative uncertainties associated with residual
short-distance quark contributions can be reduced.

We will now proceed to discuss the remaining contributions to €x in Eq. (132). An analytical estimate of the leading
contribution from Im(M {“ZD ) based on xPT, shows that it is approximately proportional to & = Im(Ag)/Re(Ap) so that
Eq. (132) can be written as follows [415,416]

o [mw% }
€k = exp(ige) sin(¢e) | ————— +p& |, (148)
AMgk

where the deviation of p from one parameterizes the long-distance effects in Im(M7»).

In order to facilitate the subsequent discussions about the status of the lattice studies of K — s and of the current
estimates of &, we proceed by providing a brief account of the parameter €’ that describes direct CP-violation in the kaon
sector. The definition of €’ is given by:

m
Il

, 1 AlKs = (mm)1=2] (-A[KL — (wm)=2]  AlKL — (7T7T)1=0]> (149)

V2 AIKs — (m)1=0] \AIKs - (xm)1=2]  AlKs — (770)1=0]
By selecting appropriate phase conventions for the mixing parameters between K © and K CP-eigenstates (see e.g. Ref. [408]

for further details), the expression of €’ can be expressed in terms of the real and imaginary parts of the isospin amplitudes,
as follows

€ =

i e'327%0) Mm(A
iwe |:m( s) i|’ (150)

V2 Re(A2)

where w = Re(Ajz)/Re(Ap), Az denotes the Al = 3/2 K — mmr decay amplitude, and §; denotes the strong scattering phase
shifts in the corresponding, I = 0,2, K — () decays. Given that the phase, ¢, = 8, — o + /2 = 42.3(1.5)° [165] is
nearly equal to ¢, in Eq. (135), the ratio of parameters characterizing the direct and indirect CP-violation in the kaon sector
can be approximated in the following way,

¢'Je ~ Re(e'fe) = —2 [Im(Az) — s] (151)
V2lex| LRe(A2) ’

where on the left hand side we have set € = €. The experimentally measured value reads [165],
Re(€'/e) = 16.6(2.3) x 1074, (152)

We remark that isospin breaking and electromagnetic effects (see Refs. [427,428], and the discussion in Ref. [409]) introduce
additional correction terms into Eq. (151).

6.2 Lattice-QCD studies of the K — (7 7); decay amplitudes, & and €’ /¢

As a preamble to this section, it should be noted that the study of K — w7 decay amplitudes requires the development of
computational strategies that are at the forefront of lattice QCD techniques. These studies represent a significant advance in
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Table 28 Results for the real and imaginary parts of the K — 77 decay amplitude A from lattice-QCD computations with N y = 2+ 1 dynamical
flavours. Information about the renormalization, running and matching to the MS scheme is indicated in the column “running/matching”, with
details given at the bottom of the table. We refer to the text for further details about the main differences between the lattice computations in
Refs. [429] and [430]

$§
N IS
3 S &
5 & $ s F
s ¢ 3 s & 8
$ $ § s § &
N S 3 L ¥ &
F $ N N §
5 S & @ S S
. N § § "é\' S 5 § 7 11
Collaboration Refs. Ny R O O < - R Re(Ap) [10~7 GeV] Im(Ap) [107"" GeV]
RBC/UKQCD 20 [429] 2+1 A | (@) (6] * a 2.99(0.32)(0.59) —6.98(0.62)(1.44)
RBC/UKQCD 15G [430] 2+1 A | (@) (6] * b 4.66(1.00)(1.26) —1.90(1.23)(1.08)

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53GeV and running to 4.01 GeV employing a nonperturbatively
determined step-scaling function. Conversion to MS at 1-loop order L
b Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53 GeV. Conversion to MS at 1-loop order

the study of kaon physics. However, at present, they have not yet reached the same level of maturity of most of the quantities
analyzed in the FLAG report, where, for instance, independent results by various lattice collaborations are being compared and
averaged. In the present version of this section we will therefore review the current status of K — mm lattice computations,
but we will provide a FLAG average only for the case of the decay amplitude A».

We start by reviewing the determination of the parameter § = Im(Ap)/ Re(Ap). An estimate of & has been obtained from
a direct evaluation of the ratio of amplitudes Im(Ag)/ Re(Ag) where Im(Ag) is determined from a lattice-QCD computation
by RBC/UKQCD 20 [429] employing Ny = 2+ 1 Mobius domain wall fermions at a single value of the lattice spacing while
Re(Ag) =~ |Ao| and the value |Ag| = 3.320(2) x 1077 GeV are used based on the relevant experimental input [165] from
the decay to two pions. This leads to a result for £ with a rather large relative error,

£=-21(5-107% (153)

Following a similar procedure, an estimate of £ was obtained through the use of a previous lattice QCD determination of
Im(Ap) by RBC/UKQCD 15G [430]. We refer to Table 28 for further details about these computations of Im(Ag). The
comparison of the estimates of & based on lattice QCD input are collected in Table 30.

Another estimate for £ can be obtained through a lattice-QCD computation of the ratio of amplitudes Im(Az)/Re(A3)
by RBC/UKQCD 15F [46] where the continuum-limit result is based on computations at two values of the lattice spacing
employing Ny = 2 + 1 Mo6bius domain wall fermions. Further details about the lattice computations of A, are collected in
Table 29. To obtain the value of &, the expression in Eq. (151) together with the experimental values of Re(e’/¢), |ex | and w
are used. In this case we obtain & = —1.6(2) - 10~*. The use of the updated value of Im(A,) = —8.34(1.03) x 10~ 13 Gev
from Ref. [429],2° in combination with the experimental value of Re(A;) = 1.479(4) x 108 GeV, introduces a small change
with respect to the above result. The value for & reads®’

£=—172) 107* (154)

A phenomenological estimate can also be obtained from the relationship of & to Re(e’/¢), using the experimental value of the
latter and further assumptions concerning the estimate of hadronic contributions. The corresponding value of & reads [415,416]

26 The update in Im(A5) is due to a change in the value of the imaginary part of the ratio of CKM matrix elements, T = — ViEVia/ Vi Vua, as given
in Ref. [431]. The lattice QCD input is therefore the one reported in Ref. [46].

27 The current estimates for the corrections owing to isospin breaking and electromagnetic effects [428] imply a relative change on the theoretical
value for €’/e by about -20% with respect to the determination based on Eq. (151). The size of these isospin breaking and electromagnetic corrections
is related to the enhancement of the decay amplitudes between the / = 0 and the / = 2 channels. As a consequence, one obtains a similar reduction
on &, leading to a value that is close to the result of Eq. (153).
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Table 29 Results for the real and the imaginary parts of the K — 77 decay amplitude A; from lattice-QCD computations with N y = 2 + 1
dynamical flavours. Information about the renormalization and matching to the MS scheme is indicated in the column “running/matching”, with
details given at the bottom of the table

S i
S S %
é? 4‘& i~ S
§ $ Sy 3 § ;o&
N g & IS A &
$ § 5 s 5 N
§ $ & s 0§ @
9} S N ) Q i~
S X i < Q S
Q S N IS S S
. S ) S S 2 > _8 —13
Collaboration Refs. Ns R O O < 7 & Re(A2) [107° GeV] Im(A2) [107° GeV]
RBC/UKQCD 15F [46] 2+1 A o O * * a 1.50(0.04)(0.14) —8.34(1.03)°

a Nonperturbative renormalization with the R/SMOM scheme at a scale of 3 GeV. Conversion to MS at 1-loop order
© This value of Im(A») is an update reported in Ref. [429] which is based on the lattice QCD computation in Ref. [46] but where a change in the
value of the imaginary part of the ratio of CKM matrix elements t = — Vi V;4/ V% V,,q reported in Ref. [431] has been applied

Table 30 Results for the parameter § = Im(Ap)/ Re(Ap) obtained through the combination of lattice-QCD determinations of K — wm decay
amplitudes with N y = 2 + 1 dynamical flavours and experimental inputs

Collaboration Refs. Ny &

RBC/UKQCD 20 [429] 2+1 —2.1(5)-1074
RBC/UKQCD 15G° [430] 2+1 —0.6(5)-10~*
RBC/UKQCD 15F* [46] 2+1 -1.7(2) - 1074

TEstimate for £ obtained from a direct evaluation of the ratio of amplitudes Im(Ap)/ Re(Ag) where Im(Ay) is determined from the lattice-QCD
computation of Ref. [429] while for Re(Ap) =~ |Ap| is taken from the experimental value for |Ag|

®Estimate for & obtained from a direct evaluation of the ratio of amplitudes Im(Ag)/Re(Ag) where Im(Ap) is determined from the lattice-QCD
computation of Ref. [430] while for Re(Ap) =~ |Ao| is taken from the experimental value for |Ag|

*Estimate for & based on the use of Eq. (151). The new value of Im(A») reported in Ref. [429] — based on the lattice-QCD computation of Ref. [46]
following an update of a nonlattice input — is used in combination with the experimental values for Re(A,), Re(€’/€), |ex| and w

£ =—6.0(1.5) - 1072v/2 |ex| = —1.9(5) - 107*. (155)

We note that the use of the experimental value for Re(e’/€) is based on the assumption that it is free from New Physics con-
tributions. The value of £ can then be combined with a x PT-based estimate for the long-range contribution, p = 0.6(3) [416].
Overall, the combination p& appearing in Eq. (148) leads to a suppression of the SM prediction of |ex| by about 3(2)%
relative to the experimental measurement of |ex| given in Eq. (134), regardless of whether the phenomenological estimate
of £ [see Eq. (155)] or the most precise lattice result [see Eq. (153)] are used. The uncertainty in the suppression factor is
dominated by the error on p. Although this is a small correction, we note that its contribution to the error of € is larger than
that arising from the value of Bk reported below.

Efforts are under way to compute the long-distance contributions to €x [432] and to the K; — Kg mass difference in lattice
QCD [425,433-435]. However, the results are not yet precise enough to improve the accuracy in the determination of the
parameter p.

The lattice-QCD study of K — mm decays provides crucial input to the SM prediction of €x. We now proceed to describe
the current status of these computations. In recent years, the RBC/UKQCD collaboration has undertaken a series of lattice-QCD
calculations of K — mm decay amplitudes [46,429,430]. In 2015, the first calculation of the K — (v 7) ;-0 decay amplitude
Ao was performed using physical kinematics on a 32° x 64 lattice with an inverse lattice spacing of a~! = 1.3784(68)
GeV [430,436]. The main features of the RBC/UKQCD 15G calculation included, fixing the / = 0 m energy very close
to the kaon mass by imposing G-parity boundary conditions, a continuum-like operator mixing pattern through the use of a
domain wall fermion action with accurate chiral symmetry, and the construction of the complete set of correlation functions
by computing seventy-five distinct diagrams. Results for the real and the imaginary parts of the decay amplitude Ay from the
RBC/UKQCD 15G computation are collected in Table 28, where the first error is statistical and the second one is systematic.

The latest 2020 calculation RBC/UKQCD 20 [429] using the same lattice setup has improved the 2015 calculation
RBC/UKQCD 15G [430] in three important aspects: (i) an increase by a factor of 3.4 in statistics; (ii) the inclusion of a
scalar two-quark operator and the addition of another pion-pion operator to isolate the ground state, and (iii) the use of step
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scaling techniques to raise the renormalization scale from 1.53 to 4.01 GeV. The updated determinations of the real and the
imaginary parts of Ag in Ref. [429] are shown in Table 28.

As previously discussed, the determination of Im(Ag) from Ref. [429] has been used to obtain the value of the parameter
& in Eq. (153). A first-principles computation of Re(Ag) is essential to address the so-called Al = 1/2 puzzle associated
to the enhancement of Al = 1/2 over Al = 3/2 transitions owing, crucially, to long distance effects. Indeed, short-
distance enhancements in the Wilson coefficients are not large enough to explain the A/ = 1/2 rule [437,438]. Lattice-QCD
calculations do provide a method to study such a long-distance enhancement. The combination of the result for A in Table 28
with the earlier lattice calculation of A; in Ref. [46] leads to the ratio, Re(Ag)/ Re(A2) = 19.9(5.0), which agrees with the
experimentally measured value, Re(Ag)/ Re(A2) = 22.45(6). In Ref. [429], the lattice determination of relative size of direct
CP violation was updated as follows,

Re(€'/e) = 21.7(2.6)(6.2)(5.0) x 1074, (156)

where the first two errors are statistical and systematic, respectively. The third error arises from the omitted strong and
electromagnetic isospin breaking effects. The value of Re(e’/€) in Eq. (156) uses the experimental values of Re(Ag) and
Re(A»). The lattice determination of Re(e’ /€) is in good agreement with the experimental result in Eq. (152). However, while
the result in Eq. (156) represents a significant step forward, it is important to keep in mind that the calculation of A is currently
based on a single value of the lattice spacing. It is expected that future work with additional values of the lattice spacing will
contribute to improve the precision. For a description of the computation of the w7 scattering phase shifts entering in the
determination of Re(¢’/¢) in Eq. (156), we refer to Ref. [439].

The real and imaginary values of the amplitude A3 have been determined by RBC/UKQCD 15F [46] employing Ny = 241
Mobius domain wall fermions at two values of the lattice spacing, namely a = 0.114fm and 0.083fm, and performing
simulations at the physical pion mass with M, L ~ 3.8.

A compilation of lattice results for the real and imaginary parts of the K — mmw decay amplitudes, Ag and A,, with
Ny = 2 + 1 flavours of dynamical quarks is shown in Tables 28 and 29. In Appendix C.4.1 we collect the corresponding
information about the lattice QCD simulations, including the values of some of the most relevant parameters. The results for
the parameter &, determined through the combined use of K — mm amplitudes computed on the lattice and experimental
inputs, are presented in Table 30. As previously discussed, we remark that the total uncertainty on the reported values of &
depends on the specific way in which the lattice and experimental inputs are selected.

The determination of the real and imaginary parts of A, by RBC/UKQCD 15F shown in Table 29 is free of red tags. We
therefore quote the following FLAG averages:

Re(Az) = 1.50(0.04)(0.14) x 1078 GeV,

3 Ref. [46]. (157)
Im(Az) = —8.34(1.03) x 107"~ GeV,

Nf=2+1:

Besides the RBC/UKQCD collaboration programme [46,429,430] using domain-wall fermions, an approach based on
improved Wilson fermions [440,441] has presented a determination of the K — mm decay amplitudes, Ag and A, at
unphysical quark masses. For an analysis of the scaling with the number of colours of K — mx decay amplitudes using
lattice-QCD computations, we refer to Refs. [442,443].

Recent proposals aiming at the inclusion of electromagnetism in lattice-QCD calculations of K — w7 decays are being
explored [444,445] in order to reduce the uncertainties associated with isospin breaking effects.

Finally, we notice that ex receives a contribution from | V,;| through the A; parameter in Eq. (140). The present uncertainty
on | V| has a significant impact on the error of €x (see, e.g., Refs. [446,447] and the recent update in Ref. [448]).

6.3 Lattice computation of Bg

Lattice calculations of Bk are affected by the same type of systematic effects discussed in previous sections of this review.
However, the issue of renormalization merits special attention. The reason is that the multiplicative renormalizability of the
relevant operator Q5=2 is lost once the regularized QCD action ceases to be invariant under chiral transformations. As a
result, the renormalization pattern of Bx depends on the specific choice of the fermionic discretization.

In the case of Wilson fermions, QAS:2 mixes with four additional dimension-six operators, which belong to different
representations of the chiral group, with mixing coefficients that are finite functions of the gauge coupling. This complicated
renormalization pattern was identified as the main source of systematic error in earlier, mostly quenched calculations of Bx

@ Springer



Eur. Phys. J. C (2022) 82:869 Page 87 0of 296 869

with Wilson quarks. It can be bypassed via the implementation of specifically designed methods, which are either based on
Ward identities [449] or on a modification of the Wilson quark action, known as twisted-mass QCD [450-452].

An advantage of staggered fermions is the presence of a remnant U (1) chiral symmetry. However, at nonvanishing lattice
spacing, the symmetry among the extra unphysical degrees of freedom (tastes) is broken. As a result, mixing with other
dimension-six operators cannot be avoided in the staggered formulation, which complicates the determination of the B-
parameter. In general, taste conserving mixings are implemented directly in the lattice computation of the matrix element.
The effects of the broken taste symmetry are usually treated through an effective field theory, staggered Chiral Perturbation
Theory (S xPT) [453,454], parameterizing the quark-mass and lattice-spacing dependences.

Fermionic lattice actions based on the Ginsparg—Wilson relation [455] are invariant under the chiral group, and hence
four-quark operators such as Q25=2 renormalize multiplicatively. However, depending on the particular formulation of
Ginsparg—Wilson fermions, residual chiral symmetry breaking effects may be present in actual calculations. For instance,
in the case of domain-wall fermions, the finiteness of the extra 5th dimension implies that the decoupling of modes with
different chirality is not exact, which produces a residual nonzero quark mass in the chiral limit. The mixing with dimension-
six operators of different chirality is expected to be an O(mfes) suppressed effect [456,457] that should be investigated on a
case-by-case basis.

Before proceeding to the description and compilation of the results of Bx, we would like to reiterate a discussion presented
in the previous FLAG report about an issue related to the computation of the kaon bag parameters through lattice-QCD
simulations with N y = 2+ 1+ 1 dynamical quarks. In practice, this only concerns the calculations of the kaon B-parameters
including dynamical charm-quark effects in Ref. [47], that were examined in the FLAG 16 report. As described in Sect. 6.1,
the effective Hamiltonian in Eq. (138) depends solely on the operator Q5=2 in Eq. (139) — which appears in the definition
of Bk in Eq. (145) — at energy scales below the charm threshold where charm-quark contributions are absent. As a result,
a computation of Bg based on Ny = 2 + 1 + 1 dynamical simulations will include an extra sea-quark contribution from
charm-quark loop effects for which there is at present no direct evaluation in the literature.

When the matrix element of Q5= is evaluated in a theory that contains a dynamical charm quark, the resulting estimate
for Bx must then be matched to the three-flavour theory that underlies the effective four-quark interaction.?® In general,
the matching of 2 4 1-flavour QCD with the theory containing 2 4+ 1 + 1 flavours of sea quarks is performed around the
charm threshold. It is usually accomplished by requiring that the coupling and quark masses are equal in the two theories at a
renormalization scale p around m.. In addition, Bx should be renormalized and run, in the four-flavour theory, to the value
of w at which the two theories are matched, as described in Sect. 6.1. The corrections associated with this matching are of
order (E/m.)?, where E is a typical energy in the process under study, since the subleading operators have dimension eight
[458].

When the kaon-mixing amplitude is considered, the matching also involves the relation between the relevant box diagrams
and the effective four-quark operator. In this case, corrections of order (E/m.)? arise not only from the charm quarks in
the sea, but also from the valence sector, since the charm quark propagates in the box diagrams. We note that the original
derivation of the effective four-quark interaction is valid up to corrections of order (E/m.)>. The kaon-mixing amplitudes
evaluated inthe N y = 2+ 1 and 2+ 1 + 1 theories are thus subject to corrections of the same order in £ /m, as the derivation
of the conventional four-quark interaction.

Regarding perturbative QCD corrections at the scale of the charm-quark mass on the amplitude in Eq. (141), the uncertainty
on 71 and 13 factors is of O (e (m)>) [418,419], while that on 15 is of O(ay (m.)?) [459].2° On the other hand, the corrections
of order (E /m.)? due to dynamical charm-quark effects in the matching of the amplitudes are further suppressed by powers
of az(m,) and by a factor of 1/N,, given that they arise from quark-loop diagrams. In order to make progress in resolving
this so far uncontrolled systematic uncertainty, it is essential that any future calculation of Bx with N y =2+ 1+ 1 flavours
properly addresses the size of these residual dynamical charm effects in a quantitative way.

Another issue in this context is how the lattice scale and the physical values of the quark masses are determined in the 2+ 1
and 2 4+ 1 4 1 flavour theories. Here it is important to consider in which way the quantities used to fix the bare parameters are
affected by a dynamical charm quark.

A recent study [167] using three degenerate light quarks, together with a charm quark, indicates that the deviations between
the Ny = 3 + 1 and the Ny = 3 theories are considerably below the 1% level in dimensionless quantities constructed

28 We thank Martin Liischer for an interesting discussion on this issue.

29 The recent results [426] based on the use of u — unitarity for the two corresponding perturbative factors, also have an uncertainty of O(a (me)?)
and O (e (m,)>). The estimates for the missing higher-order contributions are, however, expected to be reduced with respect to the more traditional
case where ¢ — 7 unitarity is used.

@ Springer



869 Page 88 of 296 Eur. Phys. J. C (2022) 82:869

Table 31 Results for the kaon B-parameter in QCD with Ny =2+ 1+ 1 and Ny = 2 + 1 dynamical flavours, together with a summary of
systematic errors. Information about nonperturbative running is indicated in the column “running”, with details given at the bottom of the table

_ro
$ § S
§ & S ¢ §F
$ § & s 0§ .
¥ § S S 5 N
Collaboration Refs. N, < o] o & NS & Br(MS,2GeV) Bx
ETM 15 [47] 2+1+1 A * o) 0 * a 0.524(13)(12) 0.717(18)(16)!
RBC/UKQCD 16  [52] 2+1 A o) o) e * b 0.543(9)(13)? 0.744(13)(18)3
SWME 15A [50] 2+1 A * o) * o* - 0.537(4)(26) 0.735(5)(36)*
RBC/UKQCD 14B [8] 2+l A * * * * b 0.5478(18)(110)2  0.7499(24)(150)
SWME 14 [422] 241 A * o) * oF - 0.5388(34)(266)  0.7379(47)(365)
SWME 13A [461] 241 A * o) * of - 0.537(7)(24) 0.735(10)(33)
SWME 13 [462] 241 C * o * oF - 0.539(3)(25) 0.738(5)(34)
RBC/UKQCD 12A [188] 2+1 A o) * 0 * b 0.554(8)(14)> 0.758(11)(19)
Laiho 11 [49] 241 C * o) o * — 0.5572(28)(150)  0.7628(38)(205)*
SWME 11A [463] 241 A * o o of - 0.531(3)(27) 0.727(4)(38)
BMW 11 48] 2+1 A * * * * c 0.5644(59)(58)  0.7727(81)(84)
RBC/UKQCD 10B [464] 2+1 A o) o) * * d 0.549(5)(26) 0.749(7)(26)
SWME 10 [465] 2+1 A * o) o o) - 0.529(9)(32) 0.724(12)(43)
Aubin 09 [466] 2+1 A o) o) o * - 0.527(6)(21) 0.724(8)(29)

#The renormalization is performed using perturbation theory at 1-loop, with a conservative estimate of the uncertainty

a Bk is renormalized nonperturbatively at scales 1/a ~ 2.2—3.3GeV inthe N y = 4 RI/MOM scheme using two different lattice momentum scale
intervals, the first around 1/a while the second around 3.5 GeV. The impact of the two ways to the final result is taken into account in the error
budget. Conversion to MS is at 1-loop at 3 GeV

b Bk isrenormalized nonperturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for N y = 3, and then run to 3 GeV using a nonperturbatively
determined step-scaling function. Conversion to MS is at 1-loop order at 3 GeV

¢ Bk is renormalized and run nonperturbatively to a scale of 3.5GeV in the RIMOM scheme. At the same scale conversion at 1-loop to MS is
applied. Nonperturbative and NLO perturbative running agrees down to scales of 1.8 GeV within statistical uncertainties of about 2%

d Bk is renormalized nonperturbatively at a scale of 2GeV in two RI/SMOM schemes for N s = 3, and then run to 3 GeV using a nonperturbatively
determined step- scahng function. Conversion to MS is at 1-loop order at 3 GeV

' Bx (MS, 2GeV) and B  are related using the conversion factor 1.369, i.e., the one obtained with Ny =2 + 1

2 By (MS, 2 GeV) is obtained from the estimate for B k using the conversion factor 1.369
3B B is obtained from Bk (MS, 3GeV) using the conversion factor employed in Ref. [8]
4B k is obtained from the estimate for Bx (MS, 2 GeV) using the conversion factor 1.369

from ratios of gradient flow observables, such as 7o and wq, used for scale setting. This study extends the nonperturbative
investigations with two heavy mass-degenerate quarks [158,160] which indicate that dynamical charm-quark effects in low-
energy hadronic observables are considerably smaller than the expectation from a naive power counting in terms of o (m2.).
For an additional discussion on this point, we refer to Ref. [47]. Given the hierarchy of scales between the charm-quark mass
and that of Bk, we expect these errors to be modest, but a more quantitative understanding is needed as statistical errors on
B are reduced. Within this review we will not discuss this issue further. However, we wish to point out that the present
discussion also applies to N y = 2 + 1 + 1 computations of the kaon BSM B-parameters discussed in Sect. 6.4.

A compilation of results for Bx with Ny = 2,2+ 1 and 2 + 1 + 1 flavours of dynamical quarks is shown in Tables 31
and 32, as well as Fig. 20. An overview of the quality of systematic error studies is represented by the colour coded entries
in Tables 31 and 32. The values of the most relevant lattice parameters, and comparative tables on the various estimates of
systematic errors have been collected in the corresponding Appendices of the previous FLAG editions [2—4].

Since the last edition of the FLAG report no new results for Bx have appeared in the bibliography. We mention here an
ongoing work related to the Bx computation where the relevant operators are defined in the gradient flow framework. In a
first publication [460] the small flow time expansion method is applied in order to compute, to 1-loop approximation, the
finite matching coefficients between the gradient flow and the MS schemes for the operators entering the Bx computation.
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Table 32 Results for the kaon B-parameter in QCD with N y = 2 dynamical flavours, together with a summary of systematic errors. Information
about nonperturbative running is indicated in the column “running”, with details given at the bottom of the table

.QOQ
R S
§ & § &
& & g & 5
S § § S &
& $ & £ § %
g S N g S
5 'S & £ S S
. ¥ § S S & § _ .
Collaboration Refs. Ny < O O < & & Bx(MS,2GeV) By
ETM 12D [511 2 A * o) o) * e 0.531(16)(9) 0.727(22)(12)!
ETM 10A [4671 2 A * o o) * f 0.533(18)(12)!  0.729(25)(17)

e Bk is renormalized nonperturbatively at scales 1/a ~ 2 — 3.7 GeV in the N y = 2 RI/MOM scheme. In this scheme, nonperturbative and NLO
perturbative running are shown to agree from 4 GeV down to 2 GeV to better than 3% [467,468]

f Bk is renormalized nonperturbatively at scales 1/a ~ 2 — 3 GeV in the N y = 2 RI/MOM scheme. In this scheme, nonperturbative and NLO
perturbative running are shown to agree from 4 GeV down to 2 GeV to better than 3% [467,468]

7% (MS, 2GeV) and B  are related using the conversion factor 1.369, i.e., the one obtained with Ny =2 + 1

For a detailed description of previous Bk calculations — and in particular those considered in the computation of the average
values — we refer the reader to the FLAG 19 [4], FLAG 16 [3] and FLAG 13 [2] reports.

We now give the global averages for Bx for Ny = 2+ 1+ 1,2 + 1 and 2 dynamical flavours. The details about the
calculation of these averages can be found in FLAG 19 [4].

We begin with the Ny = 2 + 1 global average since it is estimated by employing four different Bg results, namely
BMW 11 [48], Laiho 11 [49], RBC/UKQCD 14B [8] and SWME 15A [50]. Note also that the expression of €x in terms
of Bk is obtained in the three-flavour theory (see Sect. 6.1). After constructing the global covariance matrix according to
Schmelling [163], we arrive at:

Ny=2+1: Bgx =0.7625(97)  Refs. [8,48-50], (158)
with X2 /dof = 0.675. After applying the NLO conversion factor B K/ BII\(TS(2 GeV) = 1.369,%0 this translates into
Ny=2+1: B%T(Z GeV) = 0.5570(71)  Refs. [8,48-50]. (159)
Note that the statistical errors of each calculation entering the global average are small enough to make their results statistically
incompatible. It is only because of the relatively large systematic errors that the weighted average produces a value of O(1)
for the reduced x 2.
There is only a single result for Ny = 2 + 1 + 1, computed by the ETM collaboration [47]. Since it is free of red tags, it
qualifies as the currently best global average, i.e.,
Nfp=2+1+1: By = 0.717(18)(16) BFQGeV) =0.524(13)(12)  Ref. [47]. (160)
For N y = 2 flavours the best global average is given by a single result, that of ETM 12D [51]:
Nrp=2: By = 0.727(22)(12), B}}TS(Z GeV) = 0.531(16)(19)  Ref. [51]. (161)
The result in the MS scheme has been obtained by applying the same conversion factor of 1.369 as in the three-flavour theory.

6.4 Kaon BSM B-parameters

We now report on lattice results concerning the matrix elements of operators that encode the effects of physics beyond the
Standard Model (BSM) to the mixing of neutral kaons. In this theoretical framework both the SM and BSM contributions add

30 We refer to the FLAG 19 report [4] for a discussion about the estimates of these conversion factors.
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Fig. 20 Recent unquenched lattice results for the RGI B-parameter Bk. The grey bands indicate our global averages described in the text. For
Ny=2+1+1and Ny = 2 the global averages coincide with the results by ETM 15 and ETM 12D, respectively

up to reproduce the experimentally observed value of €x. Since BSM contributions involve heavy but unobserved particles
they are short-distance dominated. The effective Hamiltonian for generic AS = 2 processes including BSM contributions
reads

5
Hatnem = D Ci(w) Qi(w), (162)
i=1
where Q) is the four-quark operator of Eq. (139) that gives rise to the SM contribution to €x. In the so-called SUSY basis
introduced by Gabbiani et al. [469] the operators Q3, ..., Os read’!

Q2 = (5(1 — y5)d*) (5" (1 — ys5)d"),

03 = (5“1 — y5)d”) (5" (1 = ys5)d*). (163

Q4 = (51 — y5)d*) (5" (1 + y5)d”).

Qs = (51 — y5)d”) (5" (1 + ys5)d*).
where a and b denote colour indices. In analogy to the case of Bx one then defines the B-parameters of Q», ..., Qs according
to

IZO . KO
B (1) = 0< 12: ()] K ) S i=2..5. (164)

N; (K [Sysd]| O) (O |sysd| K )

The factors {Na, ..., Ns}are givenby {—5/3, 1/3, 2, 2/3}, and itis understood that B; (1) is specified in some renormalization

scheme, such as MS or a variant of the regularization-independent momentum subtraction (RI-MOM) scheme.

The SUSY basis has been adopted in Refs. [47,51,52,470]. Alternatively, one can employ the chiral basis of Buras, Misiak
and Urban[471]. The SWME collaboration prefers the latter since the anomalous dimension that enters the RG running has
been calculated to 2-loops in perturbation theory [471]. Results obtained in the chiral basis can be easily converted to the
SUSY basis via

BSUSY — ! (5 pghiral _ 3 thiral) ) (165)
The remaining B-parameters are the same in both bases. In the following we adopt the SUSY basis and drop the superscript.

31 Thanks to QCD parity invariance lattice computations for three more dimension-six operators, whose parity conserving parts coincide with the
corresponding parity conserving contributions of the operators Q1, Q2 and Q3, can be ignored.
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Table 33 Results for the BSM B-parameters By, ..., Bsinthe MS scheme at a reference scale of 3 GeV. Information about nonperturbative running
is indicated in the column “running”, with details given at the bottom of the table.

£’$§
S IS
§ & § .
F & s S
g & & § &
S $ $ S
$ S & L §f17 Ko
RS S > ) S
Collaboration Refs. Ny < O O e < < B B3 By Bs
ETM 15 [47] 2+141A * * a  046(D(3) 0792)5) 07824  0.493)(3)
RBC/UKQCD [52] 2+1 A e} * b 0.488(7)(17)0.743(14)(65) 0.920(12)(16) 0.707(8)(44)
16
SWME 15A  [50] 2+1 A * o * of - 0.525(1)(23)0.773(6)(35) 0.981(3)(62) 0.751(7)(68)
SWME 14C  [476]2+1 C * o * ot —0.525(1)(23)0.774(6)(64) 0.981(3)(61) 0.748(9)(79)
SWME 13Af [46112+1 A * o * of - 0.549(3)(28)0.790(30) 1.033(6)(46) 0.855(6)(43)
RBC/ [470]12+1 A | 0] * * b 0.43(1)(5) 0.75(2)(9) 0.69(1)(7) 0.47(1)(6)
UKQCD 12E
ETM12D  [51] 2 A * 0 o * ¢ 0470)(1) 078H(Q2)  0.76)2)  0.58(2)2)

The renormalization is performed using perturbation theory at 1-loop, with a conservative estimate of the uncertainty

a B; are renormalized nonperturbatively at scales 1/a ~ 2.2—3.3GeV in the N y = 4 RI/MOM scheme using two different lattice momentum
scale intervals, with values around 1 /a for the first and around 3.5 GeV for the second one. The impact of these two ways to the final result is taken
into account in the error budget. Conversion to MS is at 1-loop at 3 GeV

b The B-parameters are renormalized nonperturbatively at a scale of 3 GeV

¢ B; are renormalized nonperturbatively at scales 1/a ~ 2 —3.7GeV in the N y = 2 RI/MOM scheme using two different lattice momentum scale
intervals, with values around 1/a for the first and around 3 GeV for the second one

*The computation of By and Bs has been revised in Refs. [50] and [476]

Older quenched results for the BSM B-parameters can be found in Refs. [472-474]. For a nonlattice approach to get
estimates for the BSM B-parameters see Ref. [475].

Estimates for By, ..., Bs have been reported for QCD with N = 2 (ETM 12D [51]), Ny = 2 + 1 (RBC/UKQCD
12E[470], SWME 13A[461], SWME 14C[476], SWME 15A[50], RBC/UKQCD 16 [52,477]) and Ny = 2+ 1 + 1
(ETM 15[47]) flavours of dynamical quarks. Since the publication of the FLAG 19 report [4] no new results for the BSM B-
parameters have appeared in the bibliography. The available results are listed and compared in Table 33 and Fig. 21. In general
one finds that the BSM B-parameters computed by different collaborations do not show the same level of consistency as the
SM kaon-mixing parameter Bx discussed previously. Control over the systematic uncertainties from chiral and continuum
extrapolations as well as finite-volume effects in B», . .., Bs is expected to be at a commensurate level as for By, as far as the
results by ETM 12D, ETM 15, SWME 15A and RBC/UKQCD 16 are concerned, since the set of gauge ensembles employed
in both kinds of computations is the same. The calculation by RBC/UKQCD 12E has been performed at a single value of the
lattice spacing and a minimum pion mass of 290 MeV.

Let us notice that as reported in RBC/UKQCD 16 [52] the comparison of results obtained in the conventional RI-MOM
and two RI-SMOM schemes shows significant discrepancies for B4 and Bs in the MS scheme at the scale of 3 GeV, which
amount up to 2.8¢ in the case of Bs. By contrast, the agreement for B, and B3z determined for different intermediate scheme
is much better. The RBC/UKQCD collaboration has presented an ongoing study [478] in which simulations with two values
of the lattice spacing at the physical point and with a third finer lattice spacing at M, = 234 MeV are employed in order to
obtain the BSM matrix elements in the continuum limit. Results are still preliminary.

The findings by RBC/UKQCD 16 [52,477] provide evidence that the nonperturbative determination of the matching
factors depends strongly on the details of the implementation of the Rome—Southampton method. The use of nonexceptional
momentum configurations in the calculation of the vertex functions produces a significant modification of the renormalization
factors, which affects the matching between MS and the intermediate momentum subtraction scheme. This effect is most
pronounced in B4 and Bs. Furthermore, it can be noticed that the estimates for B4 and Bs from RBC/UKQCD 16 are much
closer to those of SWME 15A. At the same time, the results for B, and B3 obtained by ETM 15, SWME 15A and RBC/UKQCD
16 are in good agreement within errors.
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Fig. 21 Lattice results for the F(A
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A nonperturbative computation of the running of the four-fermion operators contributing to the B, ..., Bs parameters has

been carried out with two dynamical flavours using the Schrodinger functional renormalization scheme [424]. Renormalization
matrices of the operator basis are used to build step-scaling functions governing the continuum-limit running between hadronic
and electroweak scales. A comparison to perturbative results using NLO (2-loops) for the four-fermion operator anomalous
dimensions indicates that, at scales of about 3 GeV, nonperturbative effects can induce a sizeable contribution to the running.

A detailed look at the calculations reported in the works of ETM 15 [47], SWME 15A [50] and RBC/UKQCD 16 [52]
reveals that cutoff effects appear to be larger for the BSM B-parameters compared to Bg. Depending on the details of the
renormalization procedure and/or the fit ansatz for the combined chiral and continuum extrapolation, the results obtained
at the coarsest lattice spacing differ by 15-30%. At the same time the available range of lattice spacings is typically much
reduced compared to the corresponding calculations of B, as can be seen by comparing the quality criteria in Tables 31 and
33. Hence, the impact of the renormalization procedure and the continuum limit on the BSM B-parameters certainly requires
further investigation.

Finally we present our estimates for the BSM B-parameters, quoted in the MS-scheme at scale 3 GeV. For N F=2+1
our estimate is given by the average between the results from SWME 15A and RBC/UKQCD 16, i.e.,

Np=2+1:
B> =0.502(14), B3z =0.766(32), B4 =0.926(19), Bs=0.720(38), Refs. [50,52]. (166)

For Ny =2+ 1+ 1and Ny = 2, our estimates coincide with the ones by ETM 15 and ETM 12D, respectively, since there
is only one computation for each case. Thus we quote

Np=2+1+1:

B, =0.46(1)(3), B3 =0.79(2)(5), B4 =0.78(2)(4), Bs=0.49(3)(3), Ref. [47], (167)
Nfp=2:

B, =0472)(1), B3 =0.78(4)(2), Bs=0.76(2)(2), Bs=0.58(2)(2), Ref.[51]. (168)

Based on the above discussion on the effects of employing different intermediate momentum subtraction schemes in the
nonperturbative renormalization of the operators, the discrepancy for B4 and Bs results between Ny = 2,2 + 1 + 1 and
Ny = 2 + 1 computations should not be considered an effect associated with the number of dynamical flavours. To clarify
the present situation, it would be important to perform a direct comparison of results by the ETM collaboration obtained
both with RI-MOM and RI-SMOM methods. Furthermore, extending the computation of the BSM-B parameters to include
physical point simulations with improved continuum-limit extrapolations would also provide valuable information. As a
closing remark, we encourage authors to provide the correlation matrix of the B; parameters since this information is required
in phenomenological studies of New Physics scenarios.
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7 Charm hadron decay constants and form factors

Authors: Y. Aoki, M. Della Morte, E. Lunghi, S. Meinel, C. Monahan, C. Pena

Leptonic and semileptonic decays of charmed D and Ds mesons or A, and other charm baryons occur via charged W-boson
exchange, and are sensitive probes of c — d and ¢ — s quark flavour-changing transitions. Given experimental measurements
of the branching fractions combined with sufficiently precise theoretical calculations of the hadronic matrix elements, they
enable the determination of the CKM matrix elements |V,4| and |V, | (within the Standard Model) and a precise test of the
unitarity of the second row of the CKM matrix. Here, we summarize the status of lattice-QCD calculations of the charmed
leptonic decay constants. Significant progress has been made in charm physics on the lattice in recent years, largely due to the
availability of gauge configurations produced using highly-improved lattice-fermion actions that enable treating the ¢ quark
with the same action as for the u, d, and s quarks.

This section updates the corresponding one in the last FLAG review [4] for results that appeared before April 30, 2021.
As already done in Ref. [4], we limit our review to results based on modern simulations with reasonably light pion masses
(below approximately 500 MeV).

Following our review of lattice-QCD calculations of D,)-meson leptonic decay constants and charm-hadron semileptonic
form factors, we then interpret our results within the context of the Standard Model. We combine our best-determined values
of the hadronic matrix elements with the most recent experimentally-measured branching fractions to obtain |V,4(s)| and test
the unitarity of the second row of the CKM matrix.

7.1 Leptonic decay constants fp and fp,

In the Standard Model, and up to electromagnetic corrections, the decay constant fp,,, of a pseudoscalar D or Dy meson is
related to the branching ratio for leptonic decays mediated by a W boson through the formula

2 2
GrlVeql“tpy)

B(Dy — Lvy) = S

2 2 m% ’
Ipg,mimpg | 1——5— - (169)
l "D

where g is d or s and V4 (V) is the appropriate CKM matrix element for a D (D) meson. The branching fractions have been
experimentally measured by CLEO, Belle, Babar and BES with a precision around 4-5% for both the D and the Ds-meson
decay modes [164]. When combined with lattice results for the decay constants, they allow for determinations of | V.| and
| Vcd |

In lattice-QCD calculations, the decay constants fp,, are extracted from Euclidean matrix elements of the axial current

(01A%,IDg(p)) = ifp, Pp,- (170)

withg = d, s and A’C‘q = cyuysq. Results for Ny =2, 2+ 1and 2 + 1 + 1 dynamical flavours are summarized in Table 34
and Fig. 22. Since the publication of the last FLAG review, a handful of results for fp and fp, have appeared, as described
below. We consider isospin-averaged quantities, although, in a few cases, results for fp+ are quoted (see, for example, the
FNAL/MILC 11,14A and 17 computations, where the difference between fp and fp+ has been estimated to be around
0.5 MeV).

Only one new computation appeared for Ny = 2. Reference [58], Balasubramanian 19, updates the result for fp_ in
Blossier 18 [479] (discussed in the previous review) by including in the analysis two additional ensembles at a coarser lattice
spacing (@ = 0.075 fm, compared to 0.065 fm and 0.048 fm used in Ref. [479]). Pion masses at this coarser resolution reach
282 MeV and M L is always kept larger than 4.

The Ny = 2 averages for fp and fp,/fp coincide with those in the previous FLAG review and are given by the values
in ETM 13B [56], while the estimate for fp, is the result of the weighted average of the numbers in ETM 13B [56] and
Balasubramanian 19 [58]. They read

Np=2: fp = 208(7) MeV Ref. [56], (171)

Np=2: fp, = 246(4) MeV Refs. [56,58], (172)

Np=2 ]}i = 1.20(0.02) Ref. [56]. (173)
D

@ Springer



869 Page 94 of 296 Eur. Phys. J. C (2022) 82:869

Table 34 Decay constants of the D and D; mesons (in MeV) and their ratio

N g Q g

og S & :g § fé
Collaboration Refs. Ny R O O & & < fo Iy So,/fp
FNAL/MILC 17V [16] 2+1+1 A * * * * v 212.1(0.6) 249.9(0.5) 1.1782(16)
FNAL/MILC 14A*  [17] 2+1+1 A * * * * v 212.6(0.4) (19) 249.000.3)(T}4) 1.1745(10)("3)
ETM I4E [38] 2+1+1 A * o o * v 207.4(3.8) 247.2(4.1) 1.192(22)
ETM I13F [306] 2+1+1 C o) o o} * v 202(8) 242(8) 1.199(25)
FNAL/MILC 13¥ [480] 2+1+1 C * * * * v 2123(0.3)(1.0)  248.7(0.2)(1.0) 1.1714(10)(25)
FNAL/MILC 12B [481] 2+1+1 C * * * * v 209.23.0)3.6) 246.4(0.5)(3.6) 1.175(16)(11)
xQCD 20A [482] 241 A [ * * * v 213(5) 249(7) 1.16(3)
RBC/UKQCD 18ADY [70] 241 P * * * * v 11740651 (*55)
RBC/UKQCD 17 [551 2+1 A * * o * v 208.72.8)(Y33) 246.4(1.3)(T13) 1.1667(77)(1))
4QCD 1410 24] 241 A o o o * v 2542)(4)
HPQCD 12A [531 2+1 A o) o} o} * v 208.3(1.0)3.3) 246.0(0.7)(3.5) 1.187(4)(12)
FNAL/MILC 11 [54] 241 A o) o o o) v 218.9(11.3) 260.1(10.8)  1.188(25)
PACS-CS 11 [483] 2+1 A [ * [ o) v 2266)(1)(5)  257Q2)1)(5)  1.14(3)
HPQCD 10A [571 2+1 A * e} * * v 213(4)* 248.0(2.5)
HPQCD/UKQCD 07 [40] 2+1 A o) o o} * v 207(4) 241 (3) 1.164(11)
FNAL/MILC 05 [484] 241 A o) o [ o) v 201(3)(17) 249(3)(16) 1.24(1)(7)
Balasubramanian 19 [58] 2 A S = * * v 244(4)(2)
Blossier 18 [479] 2 A o) * o * v 238(5)(2)
TWQCD 1450 [485] 2 A [ e} | * v 202.3(2.2)2.6) 258.7(1.1)(2.9) 1.2788(264)
ALPHA 13B [486] 2 C o) * o * v 216(7)(5) 247(5)(5) 1.142)3)
ETM 13BH [56] 2 A S o o % v 208(7) 250(7) 1.20(2)
ETM 11A [231] 2 A * o} o} * v 212(8) 248(6) 1.17(5)
ETM 09 [4s5] 2 A o) o o * v 197(9) 244(8) 1.24(3)

fUpdate of ETM 13F
VUpdate of FNAL/MILC 12B
*This result is obtained by using the central value for fp /fp from HPQCD/UKQCD 07 and increasing the error to account for the effects from the change in the physical
value of r|
H'Update of ETM 11A and ETM 09

One lattice spacing 2~ 0.1 fm only. mz minL = 1.93
At B = 5.8, my min L = 3.2 but this lattice spacing is not used in the final cont./chiral extrapolations
VVUpdate of FNAL/MILC 14A. The ratio quoted is fp,/fp+ = 1.1749(16). In order to compare with results from other collaborations, we rescale the number by the ratio
of central values for fpy and fp. We use the same rescaling in FNAL/MILC 14A. At the finest lattice spacing the finite-volume criterium would produce an empty green
circle, however, as checked by the authors, results would not significantly change by excluding this ensemble, which instead sharpens the continuum limit extrapolation
OVUpdate of RBC/UKQCD 17
T0Two values of sea pion masses
F1Four valence pion masses between 208 and 114 MeV have been used at one value of the sea pion mass of 139 MeV

Turning to Ny = 2 + 1 results, the xQCD collaboration presented in x QCD 20A [482] a calculation of the DS(*) , D™
and ¢ meson decay constants. The couplings of the vector mesons to the tensor current are also computed. The computation
is performed at a single lattice spacing with a~! ~ 1.7 GeV on a 2 + 1 domain wall fermion ensemble generated by the
RBC/UKQCD Collaboration. The sea pion mass is at its physical value and the spatial extension is 5.5 fm. Overlap valence
fermions are used with different values of the light, strange and (quenched) charm quark masses. For the light quarks the
corresponding pion masses range between 114 and 208 MeV. The setup follows very closely the one in x QCD 14 [24]
(presented in the 2016 FLAG review). The decay constants fp and fp, are obtained from an exactly conserved PCAC
Ward identity so they do not depend on renormalization factors. The results, however, do not enter the FLAG average as the
simulations do not meet the quality criteria concerning the number of lattice spacings used in the continuum extrapolation.
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Fig. 22 Decay constants of the D and D; mesons [values in Table 34 and Eqgs. (171-179)]. As usual, full green squares are used in the averaging
procedure, pale green squares have been superseded by later determinations, while pale red squares do not satisfy the criteria. The black squares
and grey bands indicate our averages

A new result (RBC/UKQCD 18A) for the SU(3)-breaking ratio fp, /fp has been reported in Ref. [70]. The setup includes
2 4+ 1 dynamical flavors of Domain Wall fermions. This new result essentially supersedes RBC/UKQCD 17 [55] (discussed in
the previous FLAG review) by implementing a number of improvements. One level of stout smearing for the gauge fields has
been introduced before performing the charm-quark inversions, which has allowed them to simulate directly at the physical
charm mass. At the same time, the valence the strange-quark mass has been tuned to its physical value in order to eliminate
a small correction needed previously. Finally, the number of source positions has been doubled on a few ensembles. As of
April 30, 2021 the article has not been published in a journal. Therefore, the result does not contribute to the FLAG estimates.

The Ny = 2 + 1 FLAG estimates remain unchanged and read

Np=2+41: fp = 209.0(2.4) MeV Refs. [53-55], (174)

Nf=2+1: fp, = 248.0(1.6) MeV Refs. [24,54,55,57], (175)

Nfp=2+1: ffi = 1.174(0.007) Refs. [53-55], (176)
D

where the error on the Ny = 2 + 1 average of fp, has been rescaled by the factor y/x?/dof = 1.1. Those come from
the results in HPQCD 12A [53], FNAL/MILC 11 [54] as well as RBC/UKQCD 17 [55] concerning fp while for fp, also
the y QCD 14 [24] result contributes, and instead of the value in HPQCD 12A [53] the one in HPQCD 10A [57] is used.
In addition, the statistical errors between the results of FNAL/MILC and HPQCD have been everywhere treated as 100%
correlated since the two collaborations use overlapping sets of configurations. The same procedure had been used in the past
reviews.

No new result appeared for Ny = 2 + 1 + 1 since the last FLAG review. Our estimates, therefore, coincide with those in
Ref. [4], namely

Nf=2+1+1: fp = 212.0(0.7) MeV Refs. [16,38], (177)

Np=2+1+1: fp, = 249.9(0.5) MeV Refs. [16,38], (178)

Np=2+1+1: J;i = 1.1783(0.0016) Refs. [16,38], (179)
D

where the error on the average of fp has been rescaled by the factor 1/ x2/dof = 1.22.

On a general note, an important recent theoretical development is represented by the nonperturbative calculation of the
form factors F4 and Fy contributing to the radiative leptonic decays of a charged pseudoscalar meson P. As discussed in
Ref. [238], those appear in the decomposition of the hadronic matrix element
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Hy/ (k, p) = €], (k) / d*y ™ T(0]jfy (0) jle, ()| P (D)) (180)

with EL (k) the polarisation vector of the outgoing photon (with momentum k) and j“f‘v and j/, the weak and electromagnetic
currents, respectively. With general kinematics four form factors together with the pseudoscalar decay constant fp are needed;
however, for k> = 0, by choosing in addition a physical basis for the polarisation such that ¢, (k) - k = 0, the decay rate
can be calculated once Fy4, Fy, and fp are known. A preliminary study has been presented in Ref. [487] in the theory
with 2 + 1 dynamical flavors. While a more complete calculation at three different lattice spacings (in the range 0.09-0.06
fm) and for Ny = 2 + 1 + 1 appeared in Ref. [488]. The form factors, once used in combination with the nonperturbative
calculation of the corrections to P — £v; due to the exchange of a virtual photon, allow for a complete determination of the
QED corrections to semileptonic decays of mesons. In Ref. [488] the form factors are defined after removing the point-like,
infrared divergent contribution, in order to highlight the interesting structure dependent part. Restricting attention to on-shell
photons, the behaviour of discretisation effects is studied in Ref. [488] as the photon momentum is changed and heavy quarks
are considered. A prescription is also given to nonperturbatively subtract infrared divergent cutoff effects. Still, for charmed
mesons discretization effects turned out to be rather large, relative to the size of the form factors, suggesting that very fine
lattice spacings will be needed in the case of B mesons.

7.2 Form factors for D — wfv and D — K{v semileptonic decays

The SM prediction for the differential decay rate of the semileptonic processes D — mwfv and D — K{v can be written as

2 2
dr(D — Plv) G2V @ —m2\ B} —m},

dq? T 2473 q*m?,

2
3m;

2
x [(1 + %) mp(Ep —mp)| f1(g*)) + 5 (mj, — m%>2|fo<q2>|2} (181)

where x = d, s is the daughter light quark, P = 7, K is the daughter light-pseudoscalar meson, E p is the light-pseudoscalar
meson energy in the rest frame of the decaying D, and ¢ = (pp — pp) is the momentum of the outgoing lepton pair; in
this section, the charged lepton £ will either be an electron (resp. positron) or (anti)muon. The vector and scalar form factors
fi+ (g% and fy(¢g?) parameterize the hadronic matrix element of the heavy-to-light quark flavour-changing vector current
Vi =Xypuc,

2 2 2 2
(PIV,ID) = f+(g?) (pDM + Py — ’”Dq—z’"” qu> + fa(qz>% G (182)

and satisfy the kinematic constraint f4 (0) = fo(0). Because the contribution to the decay width from the scalar form factor
is proportional to m%, within current precision standards it can be neglected for £ = e, u, and Eq. (181) simplifies to

dT' (D — Ptv) G

i = Saa3 PPl Ve f1 (gD (183)

In models of new physics, decay rates may also receive contributions from matrix elements of other parity-even currents. In
the case of the scalar density, partial vector current conservation allows one to write matrix elements of the latter in terms of
f+ and fy, while for tensor currents 7, = X0, ¢ a new form factor has to be introduced, viz.,

(P|Tyw|D) = ﬁ [PPupDy = PPopDL] fr(G). (184)
Recall that, unlike the Noether current V,,, the operator T}, requires a scale-dependent renormalization.

Lattice-QCD computations of f4 o allow for comparisons to experiment to ascertain whether the SM provides the correct
prediction for the ¢2-dependence of dT'(D — P{v)/dg?; and, subsequently, to determine the CKM matrix elements | V4| and
|Ves| from Eq. (181). The inclusion of fr allows for analyses to constrain new physics. Currently, state-of-the-art experimental
results by CLEO-c [489] and BESIII [490,491] provide data for the differential rates in the whole q2 range available, with a
precision of order 2-3% for the total branching fractions in both the electron and muon final channels.
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Calculations of the D — w€v and D — K {v form factors typically use the same light-quark and charm-quark actions as
those of the leptonic decay constants fp and fp,. Therefore, many of the same issues arise; in particular, considerations about
cutoff effects coming from the large charm-quark mass, or the normalization of weak currents, apply. Additional complications
arise, however, due to the necessity of covering a sizeable range of values in ¢2:

e Lattice kinematics imposes restrictions on the values of the hadron momenta. Because lattice calculations are performed
in a finite spatial volume, the pion or kaon three-momentum can only take discrete values in units of 277 /L when periodic
boundary conditions are used. For typical box sizes in recent lattice D- and B-meson form-factor calculations, L ~ 2.5—
3 fm; thus, the smallest nonzero momentum in most of these analyses lies in the range | pp| ~ 400-500 MeV. The largest
momentum in lattice heavy-light form-factor calculations is typically restricted to |pp| < 4m/L. For D — m{v and
D — K{v, g> = 0 corresponds to |pr| ~ 940 MeV and |px| ~ 1 GeV, respectively, and the full recoil-momentum
region is within the range of accessible lattice momenta. This has implications for both the accuracy of the study of the
g*-dependence, and the precision of the computation, since statistical errors and cutoff effects tend to increase at larger
meson momenta. As a consequence, many recent studies have incorporated the use of nonperiodic (“twisted”) boundary
conditions (tbc) [492,493] in the valence fields used for the computation of observables, as a means to alleviate some of
these difficulties. In particular, while they will not necessarily lead to a decrease of numerical noise or cutoff effects, the
use of tbc allows not only for a better momentum resolution, but also to better control the q2 = 0 endpoint [59,494-498].

e Final-state pions and kaons can have energies > 1 GeV, given the available kinematical range 0 < ¢ < qu =
(mp — mp)?. This makes the use of (heavy-meson) chiral perturbation theory to extrapolate to physical light-quark
masses potentially problematic.

e Accurate comparisons to experiment, including the determination of CKM parameters, requires good control of systematic
uncertainties in the parameterization of the ¢2-dependence of form factors. While this issue is far more important for
semileptonic B decays, where existing lattice computations cover just a fraction of the kinematic range, the increase in
experimental precision requires accurate work in the charm sector as well. The parameterization of semileptonic form
factors is discussed in detail in Appendix B.1.

The most advanced Ny = 2 lattice-QCD calculation of the D — mfv and D — K{v form factors is by the ETM
collaboration [494]. This work, which did not proceed beyond the preliminary stage, uses the twisted-mass Wilson action
for both the light and charm quarks, with three lattice spacings down to @ & 0.068 fm and (charged) pion masses down
to m; =~ 270 MeV. The calculation employs the method of Ref. [499] to avoid the need to renormalize the vector current,
by introducing double-ratios of lattice three-point correlation functions in which the vector current renormalization cancels.
Discretization errors in the double ratio are of O((am.)?), due to the automatic O (a) improvement at maximal twist. The
vector and scalar form factors f (¢2) and fo(g?) are obtained by taking suitable linear combinations of these double ratios.
Extrapolation to physical light-quark masses is performed using SU(2) heavy-light meson xPT. The ETM collaboration
simulates with twisted boundary conditions for the valence quarks to access arbitrary momentum values over the full physical
g range, and interpolate to g2 = 0 using the Be¢irevié—Kaidalov ansatz [500]. The statistical errors in f f 7(0) and f f K(0)
are 9% and 7%, respectively, and lead to rather large systematic uncertainties in the fits to the light-quark mass and energy
dependence (7% and 5%, respectively). Another significant source of uncertainty is from discretization errors (5% and 3%,
respectively). On the finest lattice spacing used in this analysis am, ~ 0.17, so (’)((amc)z) cutoff errors are expected to be
about 5%. This can be reduced by including the existing Ny = 2 twisted-mass ensembles with a ~ 0.051 fm discussed in
Ref. [87].

The first published Ny = 2 + 1 lattice-QCD calculation of the D — mfv and D — K{v form factors came from the
Fermilab Lattice, MILC, and HPQCD collaborations [501].3% This work uses asqtad-improved staggered sea quarks and light
(u, d, s) valence quarks and the Fermilab action for the charm quarks, with a single lattice spacing of a =~ 0.12 fm, and a
minimum RMS-pion mass of &~ 510 MeV, dictated by the presence of fairly large staggered taste splittings. The vector current
is normalized using a mostly nonperturbative approach, such that the perturbative truncation error is expected to be negligible
compared to other systematics. Results for the form factors are provided over the full kinematic range, rather than focusing
just at g2 = 0 as was customary in previous work, and fitted to a Becirevic—Kaidalov ansatz. In fact, the publication of this
result predated the precise measurements of the D — K{v decay width by the FOCUS [502] and Belle experiments [503],
and showed good agreement with the experimental determination of the shape of f f K(4?). Progress on extending this work

32 Because only two of the authors of this work are members of HPQCD, and to distinguish it from other more recent works on the same topic by
HPQCD, we hereafter refer to this work as “FNAL/MILC.”
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was reported in [504]; efforts are aimed at reducing both the statistical and systematic errors in f f” (¢*) and f f Kg?
by increasing the number of configurations analyzed, simulating with lighter pions, and adding lattice spacings as fine as
a ~ 0.045 fm.

The most precise published calculations of the D — m£v [60] and D — K{£v [62] form factors in Ny = 2 + 1 QCD are
by the HPQCD collaboration. They are also based on Ny = 2 + 1 asqtad-improved staggered MILC configurations, but use
two lattice spacings a =~ 0.09 and 0.12 fm, and a HISQ action for the valence u, d, s, and ¢ quarks. In these mixed-action
calculations, the HISQ valence light-quark masses are tuned so that the ratio m;/m; is approximately the same as for the sea
quarks; the minimum RMS sea-pion mass &~ 390 MeV. Form factors are determined only at ¢> = 0, by using a Ward identity to
relate matrix elements of vector currents to matrix elements of the absolutely normalized quantity (m. —m,){P|xc|D) (where
x =u,d, s), and exploiting the kinematic identity £ (0) = fo(0) to yield f(¢* = 0) = (m. —m,){P|%c|D)/(m% —m3).
A modified z-expansion (cf. Appendix B.1) is employed to simultaneously extrapolate to the physical light-quark masses
and the continuum and to interpolate to g> = 0, and allow the coefficients of the series expansion to vary with the light-
and charm-quark masses. The form of the light-quark dependence is inspired by xPT, and includes logarithms of the form
m%log(m%) as well as polynomials in the valence-, sea-, and charm-quark masses. Polynomials in E ) are also included to
parameterize momentum-dependent discretization errors. The number of terms is increased until the result for /5 (0) stabilizes,
such that the quoted fit error for f. (0) not only contains statistical uncertainties, but also reflects relevant systematics. The
largest quoted uncertainties in these calculations are from statistics and charm-quark discretization errors. Progress towards
extending the computation to the full q2 range have been reported in Refs. [495,496]; however, the information contained
in these conference proceedings is not enough to establish an updated value of f (0) with respect to the previous journal
publications.

The mostrecent Ny = 2+ 1 computation of D semileptonic form factors has been carried out by the JLQCD collaboration,
and so far only published in conference proceedings; most recently in Ref. [505]. They use their own Mobius domain-wall
configurations at three values of the lattice spacing a = 0.080, 0.055, 0.044 fm, with several pion masses ranging from 226
to 501 MeV (though there is so far only one ensemble, with m, = 284 MeV, at the finest lattice spacing). The vector and
scalar form factors are computed at four values of the momentum transfer for each ensemble. The computed form factors are
observed to depend mildly on both the lattice spacing and the pion mass. The momentum dependence of the form factors is
fitted to a BCL z-parameterization (see Appendix B.1) with a Blaschke factor that contains the measured value of the DE‘} mass
in the vector channel, and a trivial Blaschke factor in the scalar channel. The systematics of this latter fit is assessed by a BCL
fit with the experimental value of the scalar resonance mass in the Blaschke factor. Continuum and chiral extrapolations are
carried out through a linear fit in the squared lattice spacing and the squared pion and 7. masses. A global fit that uses hard-pion
HMx PT to model the mass dependence is furthermore used for a comparison of the form factor shapes with experimental
data.3? Since the computation is only published in proceedings so far, it will not enter our Nfp=2+1 average.>*

The first full computation of both the vector and scalar form factors in Ny = 2 4+ 1 4+ 1 QCD was achieved by the ETM
collaboration [59]. Furthermore, they have provided a separate determination of the tensor form factor, relevant for new
physics analyses [498]. Both works use the available Ny = 2 + 1 + 1 twisted-mass Wilson lattices [218], totaling three
lattice spacings down to a ~ 0.06 fm, and a minimal pion mass of 220 MeV. Matrix elements are extracted from suitable
double ratios of correlation functions that avoid the need of nontrivial current normalizations. The use of twisted boundary
conditions allows both for imposing several kinematical conditions, and considering arbitrary frames that include moving
initial mesons. After interpolation to the physical strange- and charm-quark masses, the results for form factors are fitted to a
modified z-expansion that takes into account both the light-quark mass dependence through hard-pion SU (2) xPT [507], and
the lattice-spacing dependence. In the latter case, a detailed study of Lorentz-breaking effects due to the breaking of rotational
invariance down to the hypercubic subgroup is performed, leading to a nontrivial momentum-dependent parameterization of
cutoff effects. The z-parameterization (see Appendix B.1) itself includes a single-pole Blaschke factor (save for the scalar
channel in D — K, where the Blaschke factor is trivial), with pole masses treated as free parameters. The final quoted
uncertainty on the form factors is about 5-6% for D — m, and 4% for D — K. The dominant source of uncertainty is quoted
as statistical+fitting procedure+input parameters — the latter referring to the values of quark masses, the lattice spacing (i.e.,
scale setting), and the LO SU (2) LECs.

33 It is important to stress the finding in Ref. [506] that the factorization of chiral logs in hard-pion yPT breaks down, implying that it does not
fulfill the expected requisites for a proper effective field theory. Its use to model the mass dependence of form factors can thus be questioned.

34 The ensemble parameters quoted in Ref. [505] appear to show that the volumes employed at the lightest pion masses are insufficient to meet our
criteria for finite-volume effects. There is, however, a typo in the table which results in a wrong assignment of lattice sizes, whereupon the criteria
are indeed met. We thank T. Kaneko for correspondence on this issue.
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Table 35 Summary of computations of charmed-meson semileptonic form factors. Note that HPQCD 20 (discussed in Sect. 7.4) addresses the
B, — B and B, — By transitions — hence the absence of quoted values for f f” (0) and f +D X (0) — while ETM 18 provides a computation of
tensor form factors

g
e ~
& &
) ’S\ ‘¢§ &?s
> S S ¢ § ¥
g § $ N N K
S $ & £ S S
§ § S L $ S
s & 3§ g 5 &
Collaboration ~ Refs. N, < ) O & 4 R P (0) rPx0)
HPQCD 21A  [61] 2+1+1 P % * of * v n/a 0.7380(44)
HPQCD 20 [510]  2+1+1 A * o * * v n/a n/a
ETM 17D, 18 [59,498] 2+1+1 A * o) o) * v 0.612(35) 0.765(31)
JLQCD 17B  [505] 2+1 C % s o * v 06153 1D(2* 0.698(29)(18)(F13)*
HPQCD 11 [60] 241 A o) o) e * v 0.666(29)
HPQCD 10B  [62] 241 A o o) o) * v 0.747(19)
ENAL/MILC 04 [S01] 2+1 A ] ] o o v 0.64(3)(6) 0.73(3)(7)
ETM 11B [494] 2 C o) o) * * v 0.65(6)(6) 0.76(5)(5)

*The first error is statistical, the second from the g2 — 0 extrapolation, the third from the chiral-continuum extrapolation
"The volumes used in the computation satisfy the nominal criterion for finite-volume effects. However, the impact of the topologically frozen ensemble at
a >~ 0.044 fm is neglected. We therefore assign a O rating here, as a mark of caution

Another Ny = 2 + 1 + 1 computation of f; and fy in the full kinematical range for the D — K/v mode, performed
by HPQCD, has recently been published — HPQCD 21A (Ref. [61]). This work uses MILC’s HISQ ensembles at five values
of the lattice spacing, and pion masses reaching to the physical point for the three coarsest values of a. Vector currents are
normalized nonperturbatively by imposing that form factors satisfy Ward identities exactly at zero recoil. Results for the form
factors are fitted to a modified z-expansion ansatz, with all sub-threshold poles removed by using the experimental value of
the mass shifted by a factor that matches the corresponding result at finite lattice spacing. The accuracy of the description
of the ¢* dependence is crosschecked by comparing to a fit based on cubic splines. Finite-volume effects are expected to be
small, and chiral-perturbation-theory-based estimates for them are included in the chiral fit. However, the impact of frozen
topology at the finest lattice spacing is neglected. The final uncertainty from the form factors in the determination of |V ]|
quoted in HPQCD 21A is at the 0.5% level, and comparable to the rest of the uncertainty (due to the experimental error, as
well as weak and electromagnetic corrections); in particular, the precision of the form factors is around seven times higher
than that of the other existing Ny = 2+ 1+ 1 determination by ETMC. The work also provides an accurate prediction for the
lepton flavour universality ratio between the muon and electron modes, where the uncertainty is overwhelmingly dominated
by the electromagnetic corrections.

The FNAL/MILC collaboration has also reported ongoing work on extending their computation to Ny = 2+ 141, using
MILC HISQ ensembles at four values of the lattice spacing down to a = 0.042 fm and pion masses down to the physical
point. The latest updates on this computation, focusing on the form factors at g> = 0, but without explicit values of the latter
yet, can be found in Refs. [508,509].

Table 35 contains our summary of the existing calculations of the D — 7fv and D — K{v semileptonic form factors.
Additional tables in Appendix C.5.1 provide further details on the simulation parameters and comparisons of the error
estimates. Recall that only calculations without red tags that are published in a refereed journal are included in the FLAG
average. We will quote no FLAG estimate for Ny = 2, since the results by ETM have only appeared in conference proceedings.
For Ny = 2+1, only HPQCD 10B,11 qualify, which provides our estimate for f (> =0) = fo(g® = 0).For Ny =2+1+1,
we quote as the FLAG estimate for f f 7 (0) the only published result by ETM 17D, while for f +D K (0) we quote the weighted
average of the values published by ETM 17D and HPQCD 21A:
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Fig. 23 D — mfvand D — K fv semileptonic form factors at g> = 0. The N r =2+ 1 HPQCD result for ff” (0) is from HPQCD 11, the one
for fPK (0) represents HPQCD 10B (see Table 35)

Drm _
SR (0) =0.747(19) Ref. [62],
P (0) = 0.612(35) Ref. [59],
Nfp=2+1+1: 186
fEETT LK) =0.7385(44) Refs. [59,61]. (156)

It is worth noting that, at the current level of precision, no significant effect of the dynamical charm quark is observed.
However, given the paucity of results, it is premature to infer strong conclusions on this point.

In Fig. 23, we display the existing Ny =2, Ny =2+ 1,and Ny = 2 + 1 + 1 results for ff” (0) and f_fK(O); the grey
bands show our estimates of these quantities. Section 7.5 discusses the implications of these results for determinations of the
CKM matrix elements | V4| and | V.| and tests of unitarity of the second row of the CKM matrix.

In the case of Ny = 2+ 1 + 1, we can also provide a complete result for the g* dependence of f, and fy. In the case
of the D — mfv channel, the latter is provided by the fit given in ETM 17D (Ref. [59]), to which we refer the reader. For
D — K{v, we can average the results in ETM 17D (Ref. [59]), and HPQCD 21A (Ref. [61]). To that purpose, we use the
parameterizations provided in the papers to produce synthetic data for both £, (¢?) and fy(g?) at a number of values of ¢>.
The large correlations involved make covariance matrices ill-behaved as the number of values of ¢ considered increases; we
have settled for two g2 values for ETM 17D and three ¢ values for HPQCD 21A, in both cases including the kinematical
endpoints > = 0 and ¢> = (mp —m)? of the semileptonic interval. This choice allows us to obtain well-behaved covariance
matrices. We fit the resulting dataset to a BCL ansatz (cf. Egs. (532, 533)) for a number of combinations of the highest orders
N4 and Ny considered for either form factor; the constraint f(0) = fo(0) is used to rewrite the highest-order coefficient
a?vo_l in fy in terms of the other N + Ny — 1 coefficients. In both form factors, we include non-trivial Blaschke factors,
with pole masses set to the experimental values of the D} (for the vector channel) and Dy (scalar channel) masses found in
the PDG [165]. We take flavour averages of charged and neutral states for the D and K masses. Our external input is thus
mp = 1.87265 GeV, mg = 495.644 MeV, mpy = 2.1122 GeV, and mp,, = 2.317 GeV. With this setup, we observe stable
fits beyond the linear approximation in z for the form factors, although precision is rapidly lost for coefficients of terms of
O(z%) and higher. We quote as our preferred fit, and, therefore, FLAG average, the N = No = 3 result, quoted in full in
Table 36, and illustrated in Fig. 24. As clearly shown in the figure, there is some tension between the two datasets, that grows
with ¢ to reach the ~ 20 level. This results in a relatively poor x?/d.o.f. = 9.17/3, which has resulted in our rescaling the
errors of our average fit accordingly.
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Table 36 Coefficients for the
Nt =3, NO = 3 z-expansion D— Ktv(Ny=2+1+1)

of the Ny =2+ 1+ 1 FLAG Values Correlation matrix
average for the D — K form

+
factors f and fp, and their ag 0.7877(87) 1.000000 —0.498440 0.073805 0.687417 0.363513
correlation matrix al+ —0.97(18) —0.498440 1.000000 —0.609159 —0.063023 0.309377
a;r —0.3(2.0) 0.073805 —0.609159 1.000000 0.020575 0.007175
ag 0.6959(47) 0.687417 —0.063023 0.020575 1.000000 0.273019
a? 0.775(69) 0.363513 0.309377 0.007175 0.273019 1.000000
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Fig. 24 The form factors f (qz) and fy (qz) for D — K/{v plotted versus z (left panel) and q2 (right panel). In the left plot, we removed the
Blaschke factors. See text for a discussion of the data set. The grey and salmon bands display our preferred N* = N° = 3 BCL fit (five parameters)

7.3 Form factors for A, and E. semileptonic decays

The motivation for studying charm-baryon semileptonic decays is two-fold. First, these decays allow for independent deter-
minations of |V,s|. Second, given that possible new-physics contributions to the ¢ — s€v weak effective Hamiltonian are
already constrained to be much smaller compared to b — ufv and b — s€¢, charm-baryon semileptonic decays allow
testing the lattice techniques for baryons that are also employed for bottom-baryon semileptonic decays (see Sect. 8.6) in a
better-controlled environment.

The amplitudes of the decays A, — AZfv receive contributions from both the vector and the axial components of the
current in the matrix element (A|sy*(1 — y5)c|A¢), and can be parameterized in terms of six different form factors f, fo,
f1, 8+, &0, g1 — see, e.g., Ref. [511] for a complete description.

The computation in Meinel 16 [512] uses RBC/UKQCD Ny = 2 + 1 DWF ensembles, and treats the ¢ quarks within the
Columbia RHQ approach. Two values of the lattice spacing (a ~ 0.11, 0.085 fm) are considered, with the absolute scale set
from the Y'(25)-Y (1S) splitting. In one ensemble, the pion mass m, ~ 139 MeV is at the physical point, while for other
ensembles it ranges from 295 to 352 MeV. Results for the form factors are obtained from suitable three-point functions, and
fitted to a modified z-expansion ansatz that combines the ¢2-dependence with the chiral and continuum extrapolations. The
paper predicts for the total rates in the e and u channels

C'(Ae = Aetvy)
[Ves|?

I'(Ac — Autvy)
[Ves|?

= 0.2007(71)(74) ps ",
(187)

=0.1945(69)(72) ps~",

where the uncertainties are statistical and systematic, respectively. In combination with the recent experimental determination
of the total branching fractions by BESIII [513,514], it is possible to extract |V,| as discussed in Sect. 7.5 below.

Lattice results are also available for the A, — N form factors, where N is a neutron or proton [515]. This calculation
uses the same lattice actions but a different set of ensembles with parameters matching those used in the 2015 calculation
of the A, — p form factors in Ref. [516] (cf. Sect. 8.6). Predictions are given for the rates of the ¢ — d semileptonic
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Table 37 Summary of computations of charmed-baryon semileptonic form factors
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Process Collaboration ~ Refs. Ny < O O L < &
B, — Elv Zhang 21 [517] 2+1 P @) | ) * |
Ae — nfv  Meinel 17 [515] 2+1 A o o) [ o) v
Ae — Ay Meinel 16 [512] 241 A o * * o) v

decays A, — n€*tvg; these modes have not yet been observed. Reference [515] also studies the phenomenology of the
flavour-changing neutral-current decay A. — pu™ ™. As is typical for rare charm decays to charged leptons, this mode is
dominated by long-distance effects that have not yet been calculated on the lattice and whose description is model-dependent.

Recently, the authors of Zhang 21 [517] also performed a first lattice calculation of the E, — E form factors and extracted
| Vs, with still large uncertainties, from the recent Belle measurement of the E. — E£7 v, branching fractions [518]. This
calculation uses only two ensembles with 2 + 1 flavours of clover fermions, with lattice spacings of 0.108 and 0.080 fm and
nearly identical pion masses of 290 and 300 MeV. The results are extrapolated to the continuum limit but are not extrapolated
to the physical pion mass. No systematic uncertainty is estimated for the effect of the missing chiral extrapolation.

A summary of the lattice calculations of charm-baryon semileptonic decay form factors is given in Table 37.

7.4 Form factors for charm semileptonic decays with heavy spectator quarks

Two other decays mediated by the ¢ — s€v and ¢ — d{v transitions are B, — Bg{lv and B, — BO%¢v, respectively. At
present, there are no experimental results for these processes, but it may be possible to produce them at LHCD in the future. The
HPQCD Collaboration has recently computed the form factors for both of these B. decay modes with Ny =2+ 1+ 1[510].
The calculation uses six different MILC ensembles with HISQ light, strange, and charm quarks, and employs the PCAC Ward
identity to nonperturbatively renormalize the ¢ — s and ¢ — d currents. Data were generated for two different choices of
lattice action for the spectator b quark: lattice NRQCD on five of the six ensembles, and HISQ on three of the six ensembles
(cf. Sect. 8 for a discussion of different lattice approaches used for the b quark). For the NRQCD calculation, two of the
ensembles have a physical light-quark mass, and the lattice spacings are 0.15 fm, 0.12 fm, and 0.09 fm. The heavy-HISQ
calculation is performed only at m;/mg = 0.2, and at lattice spacings of 0.12 fm, 0.09 fm, and 0.06 fm. The largest value of
the heavy-HISQ mass used is 0.8 in lattice units on all three ensembles, which does not reach the physical b-quark mass even
at the finest lattice spacing.

Form-factor fits are performed using z-expansions (see Appendix B.1) modified to include dependence on the lattice
spacing and quark masses, including an expansion in the inverse heavy quark mass in the case of the heavy-HISQ approach.
The parameters ¢ are setto (mp, +m By )2 even though the branch cuts start at (mp +m K)2 or (mp+my )2, as also noted by
the authors. The variable z is rescaled by a constant. The lowest charmed-meson poles are removed before the z-expansion,
but this still leaves the branch cuts and higher poles below 7. As a consequence of this structure, the good convergence
properties of the z-expansion are not necessarily expected to apply. Fits are performed (i) using the NRQCD data only, (ii)
using the HISQ data only, and (iii) using the NRQCD data, but with priors on the continuum-limit form-factor parameters
equal to the results of the HISQ fit. The results from fits (i) and (ii) are mostly consistent, with the NRQCD fit having smaller
uncertainties than the HISQ fit. Case (iii) then results in the smallest uncertainties and gives the predictions (for massless
leptons)

['(B. — Bgttvy)
|Ves|?

['(B, — B%*w)
|Vcd|2

= 1.738(55) x 10~ MeV,

(188)

=2.29(12) x 10~ MeV.
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Table 38 Determinations of

Vg (upper panel) and | Ve | Collaboration Refs. Ny From [Veal or |Ves|
(lower panel) obtained from FNAL/MILC 17 [16] 24141 fp 0.2179(6)(57)
lattice calculations of D-meson
leptonic decay constants and ETM 17D/Riggio 17 [59,521] 2+1+1 D — wly 0.2341(74)
semileptonic form factors. The ETM 14E [38] 2+1+1 fp 0.2228(41)(57)
errors sbown are from the lattice RBC/UKQCD 17 [55] 241 fo 0.2214(36)(57)
ﬁiﬁﬁ‘;ﬁﬁ:ﬁrg‘p;‘;;i‘:ﬁ;us HPQCD 12A (53] 241 fn 0.2218(36)(57)
save for ETM 17D/Riggio 17, HPQCD 11 [60] 2+1 D — mty 0.2140(93)(29)
where the joint fit to lattice and FNAL/MILC 11 [54] 241 fo 0.2110(108)(55)
ovide & separation of the two  ETM 138 1561 2 fo 0.2221(74)57)
sources of error (although the HPQCD 21A [61] 2+1+1 D — Kty 0.9750(54)(45)"
La;f;riZtﬁ,‘o’;‘l(yetgzgryremhS FNAL/MILC 17 [16] 24141 fo. 0.983(2)(18)
using D — 7 and D — K ETM 17D/Riggio 17 [59,521] 2+1+1 D — Kty 0.970(33)
decays) ETM 17D (¢2 = 0) [59] 2+1+1 D — K¢v 0.939(38)
ETM 14E [38] 2+1+1 Fi) 0.994(17)(19)
RBC/UKQCD 17 [55] 2+1 fb, 0.997(9)(19)
Meinel 16 [512] 2+1 Ae = ALy 0.949(24)(51)
xQCD 14 [24] 2+1 1o, 0.968(17)(19)
FNAL/MILC 11 [54] 2+1 1, 0.945(40)(19)
HPQCD 10A [57] 2+1 1, 0.991(10)(19)
HPQCD 10B [62] 2+1 D — K¢y 0.975(25)(7)
Balasubramanian 19 [58] 2 o, 1.007(18)(19)
ETM 13B [56] 2 o, 0.983(28)(19)

"The value quoted in HPQCD 21A is actually |Ves| = 0.9663(53)1at(39)exp(19) 2y, (40)EM, and takes into
account an electroweak correction ngw = 1.009(2) that we have eliminated to allow for a straight comparison
with the other results. The three remaining errors have been combined in quadrature. Note also that the other
computations in the table do not incorporate estimates of electroweak and soft electromagnetic corrections.
HPQCD 21A also quotes a value for |V,,| obtained from the total branching fraction that results in a very

small decrease in the total error due to a reduction in the estimate of electromagnetic corrections

We note that there is a discrepancy between the NRQCD and HISQ results in the case of fy(B. — BY), and the uncertainty
quoted for method (iii) does not cover this discrepancy. However, this form factor does not enter in the decay rate for massless
leptons.

7.5 Determinations of | V4| and | V.| and test of second-row CKM unitarity

We now interpret the lattice-QCD results for the D ;) meson decays as determinations of the CKM matrix elements | V4| and
| Ves| in the Standard Model.
For the leptonic decays, we use the latest experimental averages from the Particle Data Group [165, see Sec. 71.3.1]

IplVeal =46.2(12) MeV,  fp,|Ves| = 245.7(4.6) MeV, (189)

where the errors include those from nonlattice theory, e.g., estimates of radiative corrections to lifetimes [519]. By combining
these with the average values of fp and fp, from the individual Ny = 2, Ny =2+ 1 and Ny = 2 + 1 + 1 lattice-QCD
calculations that satisfy the FLAG criteria, we obtain the results for the CKM matrix elements | V4| and | V.| in Table 38. For
our preferred values we use the averaged Ny = 2,2+ 1, and 2 + 1 + 1 results for fp and fp, in Egs. (171-179). We obtain

leptonic decays, Ny =2+ 1+1: | Veal = 0.2179(7)(57), |Ves| = 0.983(2)(18), (190)

Refs. [16,38],
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leptonic decays, Ny =2+ 1: [Veal = 0.2211(25)(57), [Ves| = 0.991(7)(19), (191)
Refs. [24,53-55,57],
leptonic decays, Ny =2 : |Veal = 0.2221(74)(57), [Ves| = 0.998(16)(19), (192)

Refs. [56,58],

where the errors shown are from the lattice calculation and experiment (plus nonlattice theory), respectively. Forthe Ny = 2+1
and the Ny = 2 + 1 + 1 determinations, the uncertainties from the lattice-QCD calculations of the decay constants are
significantly smaller than the experimental uncertainties in the branching fractions.

The leptonic determinations of these CKM matrix elements have uncertainties that are reaching the few-percent level.
However, higher-order electroweak and hadronic-structure dependent corrections to the rate have not been computed for the
case of D) mesons, whereas they have been estimated to be around 1-2% for pion and kaon decays [520]. Therefore, it is
important that such theoretical calculations are tackled soon, perhaps directly on the lattice, as proposed in Ref. [238].

For D meson semileptonic decays, there are still no Ny = 2 results, and for Ny = 2 + 1 the only works entering the
FLAG averages are still HPQCD 10B/11 [60,62]. For Ny = 2 + 1 + 1, on the other hand, there is a new work that enters
FLAG averages, HPQCD 21A (Ref. [61]). There is also a new experimental result by BESIII [522], in which the muon mode
DY > K ~ v, has been measured for the first time. This has two consequences. First, HFLAV has updated their averages
for the combinations f4 (0)|Vex| [261]. They now find

FP7(0)|Veal = 0.1426(18),  fPK(0)|V,s] = 0.7180(33) (193)

The previous HFLAV average f f K(0)|V,.s| = 0.7226(34) differed from the new one by 1.4 standard deviations. Second,
we now determine | V| using the full g> dependence of the form factors provided by both HPQCD 21A and ETM 17D
(Ref. [59]). Using both the new lattice and new experimental input, we perform a joint lattice+experimental fit to determine
the CKM matrix elements. This reduces the error on the CKM matrix elements significantly compared with just using the
form factor at g2 = 0, especially for | V4| (cf. Fig. 26). This was, indeed, the strategy to extract |V,.4| and |V,,| pursued in a
companion paper to ETM 17D, Ref. [521], as as well as in HPQCD 21A (for | V.| only).??

The result for |V,4| in Ref. [521] is still state-of-the-art, and we will quote it as the FLAG estimate. In the case of
|Ves|, we have performed joint lattice+experiment fits using the same ansatz as described for the lattice average of form
factors in Sect. 7.2, including |V,|? as an additional coefficient that provides the normalization of the experimental data.
The experimental datasets we include are three different measurements of the D% — K~etv, mode by BaBar (BaBar 07,
Ref. [523]), CLEO-c (CLEO 09/0, Ref. [489]), and BESIII (BESIII 15, Ref. [524]); CLEO-c (CLEO 09/4, Ref. [489])
and BESIII measurements of the DT — K%y, mode (BESIII 17, Ref. [525]); and the recent first measurement of the
DY — K~ ,u+v,L mode by BESIII, Ref. [522]. There is also a Belle dataset available in Ref. [526], but it provides results for
parameterized form factors rather than partial widths, which implies that reverse modeling of the g2 dependence of the form
factor would be needed to add them to the fit, which involves an extra source of systematic uncertainty; it is, furthermore,
the measurement with the largest error. Thus, we will drop it. The CLEO collaboration provides correlation matrices for the
systematic uncertainties across the channels in their two measurements; the latter are, however, not available for BESIII, and,
therefore, we will conservatively treat their systematics with a 100% correlation, following the same prescription as in the
HFLAV review [261]. Since all lattice results have been obtained in the isospin limit, we will average over the D? and D*
electronic modes.

We observe that the error of the final result for |V, | is independent of the specific ansatz, while the central values differ
by at most one standard deviation. From the lattice point of view, HPQCD 21A dominates the result completely, because
of its much smaller uncertainties than in ETM 17D. The precision of the data does not allow us to consistently resolve the
higher-order coefficients of the z-expansion beyond N, = Ny = 3, at which point the result for | V,;| becomes insensitive to
increasing the order. Thus, we quote the result from the latter fit, provided in full detail in Table 39 and illustrated in Fig. 25,
as the Ny = 2+ 1+ 1 FLAG average. The x2/d.o.f. of our preferred fit is 1.46, and we have rescaled the full covariance
matrix with that value to obtain conservative error estimates.

Notice that, notwithstanding the fact that HPQCD 21A dominates the fit, our final value |V ;| = 0.9714(69) is slightly
higher than their quoted value |V.s| = 0.9663(66) (where for the error we have combined in quadrature their lattice and

35 Notice that the estimate for | V.| in Ref. [521] does not include the later experimental result in Ref. [522]. The value obtained in Ref. [521]
is however completely dominated by the uncertainty of the lattice form factors, and changes very little once the full experimental information is
incorporated into the determination.
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Table 39 Coefficients for the N* = N® = 3 z-expansion of the D — K form factors f and fy, |Ves|, and their correlation matrix

D— Kev(Ny=2+1+1)

Values Correlation matrix

aa' 0.7864(54) 1 —0.282248 —0.052775 0.760032 0.631483 —0.899274
a?’ —0.849(68) —0.282248 1 —0.640953 —0.088377 0.041977 0.128087
a; —1.5(1.1) —0.052775 —0.640953 1 0.018139 0.115382 0.020790
ag 0.6958(32) 0.760032 —0.088377 0.018139 1 0.300343 —0.734376
a(l) 0.781(45) 0.631483 0.041977 0.115382 0.300343 1 —0.664113
[Ves| 0.9714(69) —0.899274 0.128087 0.020790 —0.734376 —0.664113 1
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Fig. 25 The D — K{v differential decay rates

experiment error, in order to allow for a direct comparison, and dropped the estimated systematic uncertainties due to
electroweak and electromagnetic corrections also provided in HPQCD 21A). This is due to the fact that HPQCD 21A has
applied the structure-independent electroweak correction factor ngw = 1.009(2) in their analysis, which we are not doing
for consistency with other determinations in this review; if we had applied the same procedure, our final result would be
[Ves] = 0.9628(68).

Meinel 16 has also determined the form factors for A, — Afv decays for Ny = 2 + 1, which results in a determination
of |V,| in combination with the experimental measurement of the branching fractions for the et and u™ channels in
Refs. [513,514]. In Ref. [512] the value |V 5| = 0.949(24)(14)(49) is quoted, where the first error comes from the lattice
computation, the second from the A, lifetime, and the third from the branching fraction of the decay. While the lattice
uncertainty is competitive with meson channels (for Ny = 2 + 1), the experimental uncertainty is far larger.

Our estimates for V4| and |V,,| from semileptonic decay are

[Veal = 0.2141(93)(29) Ref. [60],
SL averages for Ny =2+ 1: [Ves| = 0.967(25)(5) Ref. [62], (194)
[Ves|(Ae) = 0.949(24)(51)  Ref. [512],

[Veal = 0.2341(74) Refs. [59,521],

o . (195)
SLaveragesfor Ny =2+ 1+1: 1y | — 09714(69) Refs. [59,61],

where the errors for Ny = 2 + 1 are lattice and experimental (plus nonlattice theory), respectively. It has to be stressed that
for meson decay errors are largely theory-dominated, save for the D — K mode for Ny = 2 + 1 + 1 where the lattice
contribution to the error is only slightly larger than the experimental one; while in the baryon mode for |V,,| the dominant
error is experimental. The above values are compared with individual leptonic determinations in Table 38.
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Table 40 Comparison of

determinations of | V4| and From Refs. [Vea| IVes|
| Ves| obtalr}ed from lgttlce Np=2+1+1 fo & fp, [16,38] 0.2179(57) 0.983(18)
methods with nonlattice
determinations and the Standard N7 =211 fp & [, [24,53-55,57) 0.2211(62) 0.991(20)
Model prediction from global Np=2 fp & fp, [56,58] 0.2220(93) 0.999(25)
fits assuming CKM unitarity.
Experimental and lattice errors Np=2+1+41 D — mévand D — K{v [59,61,521] 0.2341(74) 0.9714(69)
have been combined in Np=2+1 D — wtvand D — K{v [60,62] 0.2141(97) 0.967(25)
quadrature. The PDG figures Ny=2+1 Ae — Aby [512] n/a 0.949(56)
quoted are taken from the “CKM -
Quark-Mixing Matrix” review PDG Neutrino scattering [165] 0.230(11)
PDG CKM unitarity [165] 0.2265(5) 0.9732(1)
FAG2021  |Vdl A
our estimate for N,=2+1+1

< HPQCD 21A

* HPQCD 21A (¢q?=0) I

i L Bl

z '_A_. ETM 17D (qlggloo) — A

H ETM 14E -
= our estimate for Ny=2+1 _:iH

_ - RBC/UKQCD 17

& Meinel 16 & |

Il ¥QCD 14 H——H

: 3 Emam S

N—.-'—N FNAL/MILC 11 ———
« — our estimate for N;=2
4 Balasubramanian 19 -
H—m— ETM 13B
fi ——@— heutrino scattering
é ° CKM unitarity °

020 022 024 0.95 1.00 1.05

Fig. 26 Comparison of determinations of |V,4| and |V,s| obtained from lattice methods with nonlattice determinations and the Standard Model
prediction based on CKM unitarity. When two references are listed on a single row, the first corresponds to the lattice input for | V4| and the second
to that for | V,s|. The results denoted by squares are from leptonic decays, while those denoted by triangles are from semileptonic decays. The points
indicated as (¢ = 0) do not contribute to the average, and are shown to stress the decrease in the final uncertainty obtained by considering the full
¢? dependence. Notice that the HPQCD 21A point includes estimates of the electroweak and soft electromagnetic uncertainties that we have not
incorporated into our average

In Table 40, we summarize the results for |V,4| and |V,s| from leptonic and semileptonic decays, and compare them
to determinations from neutrino scattering (for |V,4| only) and global fits assuming CKM unitarity. These results are also
plotted in Fig. 26. For both | V,4| and | V.|, the errors in the direct determinations from leptonic and semileptonic decays are
approximately one order of magnitude larger than the indirect determination from CKM unitarity. The direct and indirect
determinations are still always compatible within at most 1.2¢, save for the leptonic determinations of | V.| — that show a
~ 20 deviation for all values of Ny —and |V,4| using the Ny = 2 + 1 + 1 lattice result, where the difference is 1.80.

In order to provide final estimates, we average all the available results separately for each value of Ny. Whenever two
results share ensembles, we have conservatively fully correlated their statistical uncertainties. This is a particularly sensitive
issue in the average for | V.|, that is dominated by the FNAL/MILC 17 and HPQCD 21A results, and for which precision
has been greatly improved by the latter; however, the uncertainty of the leptonic determination is completely dominated by
the experimental uncertainty, and therefore the impact of the statistical correlation is all but negligible. We have also 100%
correlated the errors from the heavy-quark discretization and scale setting in HPQCD’s Ny = 2 + 1 results. Finally, we
include a 100% correlation in the fraction of the error of |V,4(s)| leptonic determinations that comes from the experimental
input, to avoid an artificial reduction of the experimental uncertainty in the averages. Our results thus are

our average, Ny =2+ 1+1 |Veal = 0.2236(37), |Ves| = 0.9741(65), (196)

Refs. [16,38,59,61,521],
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our average, Ny =2+ 1: [Veal = 0.2192(54), |Ves| = 0.982(16), (197)
Refs. [24,53-55,57,60,62,512] ,
our average, Ny =2 : | Veal = 0.2221(93), |[Ves| = 0.998(24), (198)

Refs. [56,58],

where the errors include both theoretical and experimental uncertainties. These averages also appear in Fig. 26. The mutual
consistency between the various lattice results is good except for the case of | V4| with Ny = 2+ 1+ 1, where a ~ 20 tension
between the leptonic and semileptonic determinations is observed. Currently, the leptonic and semileptonic determinations
of V.4 are controlled by experimental and lattice uncertainties, respectively. The leptonic error will be reduced by Belle 11
and BES III. It would be valuable to have other lattice calculations of the semileptonic form factors.

Using the lattice determinations of |V,.4| and |V,| in Table 40, we can test the unitarity of the second row of the CKM
matrix. We obtain

Np=2+1+1: [Veal” + [Ves |I* + [ Vep|* = 1 = —=0.001(8), (199)
Np=2+1: [Veal? + [Ves |I* + [ Vep|* = 1 = 0.01(3), (200)
Np=2: [Veal” + [ Ves |I* + [ Veo|* — 1 = 0.05(6). (201)

The much-improved precision in | V.| — cf. the value 0.025(22) quoted in the latest PDG review, Ref. [165] — has thus not
resulted in any tension with CKM unitarity. Note that, given the current level of precision, this result does not depend on
|Vep|, which is of ©(1072). Notice, on the other hand, that the final quoted precision of 0.7% makes the incorporation of
electromagnetic corrections from first principles a necessary step for the near future, similarly to the ongoing developments
in the light-meson sector.

8 Bottom hadron decays and mixings

Authors: Y. Aoki, M. Della Morte, E. Lunghi, S. Meinel, C. Monahan, C. Pena

The (semi)leptonic decay and mixing processes of B(;) mesons have been playing a crucial role in flavour physics. In
particular, they contain important information for the investigation of the b—d unitarity triangle in the Cabibbo—Kobayashi—
Maskawa (CKM) matrix, and can be ideal probes of physics beyond the Standard Model. The charged-current decay channels
Bt — [Ty and B — 7wty where [T is a charged lepton with v; being the corresponding neutrino, are essential in
extracting the CKM matrix element |V,,;|. Similarly, the B to D™ semileptonic transitions can be used to determine |V,p|.
The flavour-changing neutral current (FCNC) processes, such as B — K ®¢+¢~ and Ba(sy — £, occur only beyond the
tree level in weak interactions and are suppressed in the Standard Model. Therefore, these processes can be sensitive to new
physics, since heavy particles can contribute to the loop diagrams. They are also suitable channels for the extraction of the
CKM matrix elements involving the top quark that can appear in the loop. The decays B — D™ ¢v and B — K ®)£¢ can also
be used to test lepton flavour universality by comparing results for £ = e, u and 7. In particular, anomalies have been seen in the
ratios R(D®) = B(B — D®1v)/B(B — D(*)Zv)g:e,# and R(K™) = B(B - K™ puu)/B(B — K™ee). In addition,
the neutral By()-meson mixings are FCNC processes and are dominated by the 1-loop “box” diagrams containing the top
quark and the W bosons. Thus, using the experimentally measured neutral Bg(s)-meson oscillation frequencies, AMy(s), and
the theoretical calculations for the relevant hadronic mixing matrix elements, one can obtain |V,4| and | Vi4| in the Standard
Model.

At the Large Hadron Collider, decays of b quarks can also be probed with Aj; and other bottom baryons, which can provide
complementary constraints on physics beyond the Standard Model. The most important processes are the charged-current
decays A, — pfv and A, — A.LD, and the neutral-current decay A, — ALTL™.

Accommodating the light quarks and the b quark simultaneously in lattice-QCD computations is a challenging endeavour.
To 1ncorp0rate the pion and the b hadrons with their physical masses, the simulations have to be performed using the lattice
size L = L Ja ~ O(10%), where a is the lattice spacing and L is the physical (dimensionful) box size. The most ambitious
calculations are now using such volumes; however, many ensembles are smaller. Therefore, in addition to employing Chiral
Perturbation Theory for the extrapolations in the light-quark mass, current lattice calculations for quantities involving b
hadrons often make use of effective theories that allow one to expand in inverse powers of my. In this regard, two general
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approaches are widely adopted. On the one hand, effective field theories such as Heavy-Quark Effective Theory (HQET) and
Nonrelativistic QCD (NRQCD) can be directly implemented in numerical computations. On the other hand, a relativistic
quark action can be improved a la Symanzik to suppress cutoff errors, and then re-interpreted in a manner that is suitable for
heavy-quark physics calculations. This latter strategy is often referred to as the method of the Relativistic Heavy-Quark Action
(RHQA). The utilization of such effective theories inevitably introduces systematic uncertainties that are not present in light-
quark calculations. These uncertainties can arise from the truncation of the expansion in constructing the effective theories
(as in HQET and NRQCD), or from more intricate cutoff effects (as in NRQCD and RHQA). They can also be introduced
through more complicated renormalization procedures which often lead to significant systematic effects in matching the
lattice operators to their continuum counterparts. For instance, due to the use of different actions for the heavy and the light
quarks, it is more difficult to construct absolutely normalized bottom-light currents.

Complementary to the above “effective theory approaches”, another popular method is to simulate the heavy and the light
quarks using the same (normally improved) lattice action at several values of the heavy-quark mass m; with am; < 1 and
myj, < myp. This enables one to employ HQET-inspired relations to extrapolate the computed quantities to the physical b mass.
When combined with results obtained in the static heavy-quark limit, this approach can be rendered into an interpolation,
instead of extrapolation, in mj. The discretization errors are the main source of the systematic effects in this method, and
very small lattice spacings are needed to keep such errors under control.

In recent years, it has also been possible to perform lattice simulations at very fine lattice spacings and treat heavy quarks
as fully relativistic fermions without resorting to effective field theories. Such simulations are, of course, very demanding in
computing resources.

Because of the challenge described above, the efforts that have been made to obtain reliable, accurate lattice-QCD results
for physics of the b quark have been enormous. These efforts include significant theoretical progress in formulating QCD
with heavy quarks on the lattice. This aspect is briefly reviewed in Appendix A.1.3 of FLAG 19 [4].

In this section, we summarize the results of the B-meson leptonic decay constants, the neutral B-mixing parameters, and
the semileptonic form factors of B mesons and A baryons, from lattice QCD. To focus on the calculations that have strong
phenomenological impact, we limit the review to results based on modern simulations containing dynamical fermions with
reasonably light pion masses (below approximately 500 MeV).

Following our review of B(,)-meson leptonic decay constants, the neutral B-meson mixing parameters, and semileptonic
form factors, we then interpret our results within the context of the Standard Model. We combine our best-determined values
of the hadronic matrix elements with the most recent experimentally-measured branching fractions to obtain | V,,;| and | V],
and compare these results to those obtained from inclusive semileptonic B decays.

8.1 Leptonic decay constants fp and fp,

The B- and Bg-meson decay constants are crucial inputs for extracting information from leptonic B decays. Charged B
mesons can decay to a lepton-neutrino final state through the charged-current weak interaction. On the other hand, neutral
B, (s) mesons can decay to a charged-lepton pair via a flavour-changing neutral current (FCNC) process.

In the Standard Model, the decay rate for BT — £7 vy is described by a formula identical to Eq. (169), with Dy, replaced
by B, and the relevant CKM matrix element V., replaced by V,,

mp o 2 2.2 ( my )2
F(B—>£vg)=8—GFfB|Vub| my|l——] . (202)
T my

The only two-body charged-current B-meson decay that has been observed so far is BT — 77 v, which has been measured
by the Belle and Babar collaborations [527,528]. Both collaborations have reported results with errors around 20%. These
measurements can be used to determine |V,;| when combined with lattice-QCD predictions of the corresponding decay
constant.

Neutral By(s)-meson decays to a charged-lepton pair By(s) — [T/~ is a FCNC process, and can only occur at one loop in
the Standard Model. Hence these processes are expected to be rare, and are sensitive to physics beyond the Standard Model.
The corresponding expression for the branching fraction has the form

+ GZF o ? 2 2 2 m%

—_ *

BBy —» 77) =5, - ¥ (m) 80 b, Vib Vil [1 =40 (209
B
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where the light quark ¢ = s or d, and the function Y includes NLO QCD and electro-weak corrections [417,529]. Evidence
for the By — p*u~ decay was first observed by the CMS and the LHCb collaborations, and a combined analysis was
presented in 2014 in Ref. [530]. In 2020, the ATLAS, CMS and LHCb collaborations reported their measurements from a
preliminary combined analysis as [531]

BBy — utu™) < (1.9) x 107'% at 95% CL,
B(By — ppm) = (2.697030) x 1077, (204)

which are compatible with the Standard Model predictions within approximately 2 standard deviations [532]. We note that
the errors of these results are currently too large to enable a precise determination of |V;4| and |Vi;|.

The decay constants fp, (with ¢ = u, d, s) parameterize the matrix elements of the corresponding axial-vector currents
Af;q = by"y>q analogously to the definition of fp, in Sect. 7.1:

(01A"|By(p)) = iP5, (205)

For heavy-light mesons, it is convenient to define and analyse the quantity

®p, = fB,/MmB, (206)

which approaches a constant (up to logarithmic corrections) in the m p — oo limit, because of heavy-quark symmetry. In the
following discussion, we denote lattice data for @, and the corresponding decay constant f, obtained at a heavy-quark mass
my, and light valence-quark mass my as ®;, and fj,, to differentiate them from the corresponding quantities at the physical
b- and light-quark masses.

The SU (3)-breaking ratio fp /fp is of phenomenological interest, because many systematic effects can be partially
reduced in lattice-QCD calculations of this ratio. The discretization errors, heavy-quark mass tuning effects, and renor-
malization/matching errors may all be partially reduced. This SU (3)-breaking ratio is, however, still sensitive to the chi-
ral extrapolation. Provided the chiral extrapolation is under control, one can then adopt fg /fs as an input in extracting
phenomenologically-interesting quantities. In addition, it often happens to be easier to obtain lattice results for fp, with
smaller errors than direct calculations of fp. Therefore, one can combine the Bs-meson decay constant with the SU (3)-
breaking ratio to calculate fp. Such a strategy can lead to better precision in the computation of the B-meson decay constant,
and has been adopted by the ETM [30,56] and the HPQCD collaborations [66]. An alternative strategy, used in Ref. [58], is
to obtain the By-meson decay constant by combining the D;-meson decay constant with the ratio f /fp,.

It is clear that the decay constants for charged and neutral B mesons play different roles in flavour-physics phenomenology.
Knowledge of the BT -meson decay constant fg+ is essential for extracting | V| from leptonic B decays. The neutral B-
meson decay constants fgo and fp are inputs to searches for new physics in rare leptonic B decays. In view of this, it is
desirable to include isospin-breaking effects in lattice computations for these quantities, and have results for fg+ and fpo.
With the increasing precision of recent lattice calculations, isospin splittings for B-meson decay constants can be significant,
and will play an important role in the foreseeable future. A few collaborations have reported fp+ and fpo separately by
taking into account strong isospin effects in the valence sector, and estimated the corrections from electromagnetism. The
Ny =2+ 1+ 1 strong isospin-breaking effect was computed in HPQCD 13 [63] (see Table 41 in this subsection). However,
since only unitary points (with equal sea- and valence-quark masses) were considered in HPQCD 13 [63], this procedure only
correctly accounts for the effect from the valence-quark masses, while introducing a spurious sea-quark contribution. The
decay constants fg+ and fpo are also separately reported in FNAL/MILC 17 [16] by taking into account the strong-isospin
effect. The new FNAL/MILC results were obtained by keeping the averaged light sea-quark mass fixed when varying the
quark masses in their analysis procedure. Their finding indicates that the strong isospin-breaking effects, fg+ — fp ~ 0.5
MeYV, could be smaller than those suggested by previous computations. One would have to take into account QED effects
in the B-meson leptonic decay rates to properly use these results for extracting phenomenologically relevant information.
Currently, errors on the experimental measurements on these decay rates are still very large. In this review, we will therefore
concentrate on the isospin-averaged result f5 and the By;-meson decay constant, as well as the SU (3)-breaking ratio f_/fp.

The status of lattice-QCD computations for B-meson decay constants and the SU (3)-breaking ratio, using gauge-field
ensembles with light dynamical fermions, is summarized in Tables 41 and 42, while Figs. 27 and 28 contain the graphical

36 See Ref. [238] for a strategy that has been proposed to account for QED effects.

@ Springer



869 Page 110 of 296 Eur. Phys. J. C (2022) 82:869

Table 41 Decay constants of the B, BT, BY and B, mesons (in MeV). Here B stands for the mean value of fz+ and fgo, extrapolated (or
interpolated) in the mass of the light valence-quark to the physical value of m,4

IS §°
~
o g  § N §
5 S > v
$ N 3 5 &
& & 8 & S5 o
§ g $ $ & §
s g & £ ¥ S
S § > ) § &
N < _57 N QS A
. 3 & F & & &

Collaboration Refs. Ny < O O R & X B+ fpo /B I
FNAL/MILC 17 [16] 24141 A * * * * v 189.4(1.4)  190.5(1.3)  189.9(1.4) 230.7(1.2)
HPQCD 17A [64] 2+41+1 A (e) * * o) v - - 196(6) 236(7)
ETM 16B [30] 24141 A * o) o) o) v - - 193(6) 229(5)
ETM 13E [533] 24141 C * o) o) o) v - - 196(9) 235(9)
HPQCD 13 [63] 24141 A o * * @) v 184(4) 188(4) 186(4) 224(5)
RBC/UKQCD 14 [68] 2+1 A o o) o 0 v 195.6(14.9) 199.5(12.6) — 235.4(12.2)
RBC/UKQCD 14A [67] 2+1 A o o) o) ) v - - 219(31) 264(37)
RBC/UKQCD 13A [534] 2+1 C o o o) 0o v - - 191(6)¢,  233(5)ga
HPQCD 12 [66] 2+1 A e} o) o) o) v - - 191(9) 228(10)
HPQCD 12 [66] 241 A o o o o vV - - 18942 —
HPQCD 11A [65] 2+1 A * o) * * v - - - 225(4)Y
FNAL/MILC 11 [54] 2+1 A o o) * o) v 197(9) - - 242(10)
HPQCD 09 [72] 2+1 A o o o 0o v - - 190(13)°  231(15)°
Balasubramamian 197  [58] 2 A * 5 * o v - - - 215(10)2)(+D)
ALPHA 14 [69] 2 A * * * * v - - 186(13)  224(14)
ALPHA 13 [535] 2 C * * * * v - - 187(12)(2) 224(13)
ETM 13B, 13C* [56,536] 2 A * o * o v - - 189(8) 228(8)
ALPHA 12A [537] 2 C * * * * v - - 193(9)4)  219(12)
ETM 12B [538] 2 C * o) * o) v - - 197(10) 234(6)
ALPHA 11 [539] 2 C % o) * * v - - 174(1D)Q2) -
ETM 11A [231] 2 A * o) * o) v - - 195(12) 232(10)
ETM 09D [540] 2 A * o o) o v - - 194(16)  235(12)

©Statistical errors only

“Obtained by combining fB, from HPQCD 11A with fp_/fp calculated in this work

V'This result uses one ensemble per lattice spacing with light to strange sea-quark mass ratio m,/ms ~ 0.2
*This result uses an old determination of r; = 0.321(5) fm from Ref. [118] that has since been superseded
#Obtained by combining [, updated in this work, with fp_/fp,, calculated in this work

*Update of ETM 11A and 12B

presentation of the collected results and our averages. Most results in these tables and plots have been reviewed in detail in
FLAG 19 [4]. Here, we only describe the new results published after January 2019.

One new Ny = 2 calculation of fp_has appeared after the publication of the previous FLAG review [4]. In Table 41, this
result is labelled Balasubramamian 19 [58].

In Balasubramamian 19 [58], simulations at three values of the lattice spacing, a = 0.0751, 0.0653 and 0.0483 fm were
performed with nonperturbatively O(a)-improved Wilson-clover fermions and the Wilson plaquette gauge action. The pion
masses in this work range from 194 to 439 MeV, and the lattice sizes are between 2.09 and 4.18 fm. A key feature of this
calculation is the use of a variant of the ratio method [540], applied for the first time to Wilson-clover fermions. This variant
is required because, in contrast to twisted-mass Wilson fermions, there is no simple relationship between the heavy quark
pole mass and the bare quark mass. In the application of this approach to the By-decay constant, one first computes the
quantity Fry = fag/Mpg, where fj, and My, are the decay constant and mass of the pseudoscalar meson composed of
valence (relativistic) heavy quark A and light (or strange) quark g. The matching between the lattice and the continuum
heavy-light currents for extracting the above fj, is straightforward because the valence heavy quark is also described by
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Table 42 Ratios of decay constants of the B and By mesons (for details see Table 41)

)
S
S F &
N I > 9
S .9 S &
N & > N &
S N QX )
F & g 3 § &
< 3 < S & g
g o & 5
S § & S Q8 K
e S A Q Q K
F g Ny = g N
. ¥ 3 5 ~ & 3
Collaboration Refs. Ny < O O B3 < < B, /fB+ fB,/fB0 fB,/fB
FNAL/MILC 17 [16] 24141 A * Y * * v 1.2180(49) 1.2109(41) —
HPQCD 17A [64] 241+1 A o % * o v - - 1.207(7)
ETM 16B [30] 2+41+1 A * o o) o v - - 1.184(25)
ETM 13E [533] 2+41+1 C * o o) o v - - 1.201(25)
HPQCD 13 [63] 2+1+1 A (@) * * (@) v 1.217(8) 1.194(7) 1.205(7)
RBC/UKQCD 18A [70] 2+1 P * * * * v — _ 1.1949(60)(:39755)
RBC/UKQCD 14 [68] 2+1 A (o) (0] (e} (@) v 1.223(71) 1.197(50) —
RBC/UKQCD 14A [67] 2+1 A o o) o) o v - - 1.193(48)
RBC/UKQCD 13A [534] 241  C o o o o v - - 1.202)%,
HPQCD 12 [66] 2+1 A o o) o) o v - - 1.188(18)
FNAL/MILC 11 [54] 2+1 A (o) (o) * (@] v 1.229(26) — —
RBC/UKQCD 10C  [541] 2+1 A ] [ ] o v - - 1.15(12)
HPQCD 09 [72] 2+1 A o o o o v - - 1.226(26)
ALPHA 14 [69] 2 A * * * * v - - 1.203(65)
ALPHA 13 [535] 2 C * * * * v - - 1.195(61)(20)
ETM 13B, 13C* [56,536] 2 A * o * o) v - - 1.206(24)
ALPHA 12A [537] 2 C * * * * v - - 1.13(6)
ETM 12B [538] 2 C * o * o) v - - 1.19(5)
ETM 11A [231] 2 A o o * o) v - - 1.19(5)
°Statistical errors only
TUpdate of ETM 11A and 12B
FIAG2021 fz [MeV] FIAG2021 fe, [MeV]
by our average for Ne=2+1+1 E our average for Ne=2+1+1
T FNAL/MILC 17 & FNAL/MILC 17
{\\I‘ HPQCD 17A Il HPQCD 17A
z ETM 138 - ETM 13
HPQCD 13 HPQCD 13
il our average for Ny=2+1 our average for N;=2+1
o RBC/UKQCD 14 2 T B . eI
T +—jl—+—————— RBC/UKQCD 14A o~
& e RBC/UKQCD 13A (stat. err. only) I RBC/UKQCD 13A (stat. err. only)
L —p— HPQCD 12 Z HPQCD 12
Z HPQCD 12/ 11A HPQCD 11A
ENAL/MILC 11 FNAL/MILC 11
»—h HPQCD 09 HPQCD 09
—— our average for Ny=2 our average for Ne=2
— ALPHA 14 Balasubramamian 19
—{—t ALPHA 13 ~ ALPHA 14
—— ETM 13B, 13C él ALPHA 13
93 - ALPHA 12A ETM 138, 13C
z —}— ETM 12B ALPHA 12A
H—T—H ALPHA 11 ETM 12B
—]— ETM 11A ETM 11A
] ETM 09D ETM 09D
160 175 190 205 220 235 250 210 230 250 270 290

Fig. 27 Decay constants of the B and By mesons. The values are taken from Table 41 (the fp entry for FNAL/MILC 11 represents fg+). The
significance of the colours is explained in Sect. 2. The black squares and grey bands indicate our averages in Egs. (207), (210), (213), (208), (211)

and (214)
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FIAG2021 fe./fs

our average for Ne=2+1+1

FNAL/MILC 17 1
FNAL/MILC 17 2
HPQCD 17A
ETM 16B

ETM 13E
HPQCD 13

Ni=2+1+1

—— our average for Ne=2+1

L RBC/UKQCD 18A
— RBC/UKQCD 14 1
|+ @+ RBC/UKQCD 14 2
———— RBC/UKQCD 14A
RBC/UKQCD 13A (stat. err. only)
HPQCD 12
FNAL/MILC 11
RBC/UKQCD 10C

=
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H_qg_H HPQCD 09
—
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ALPHA 14
ALPHA 13
ETM 13B, 13C
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7
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+E]-
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Fig. 28 Ratio of the decay constants of the B and By mesons. The values are taken from Table 42. Results labelled as FNAL/MILC 17 1 and
FNAL/MILC 17 2 correspond to those for fp /fgo and fp /fp+ reported in FNAL/MILC 17. The significance of the colours is explained in Sect. 2.
The black squares and grey bands indicate our averages in Egs. (209), (212), and (215)

Wilson-clover fermions. In the second step, the ratio z,(Mpq, 1) = [Fiy Ci‘at(Mh/q)M%z]/[fh/q Cita‘(th)M3,/q2] is calcu-
lated, where Cif“t(th) is the matching coefficient for the (hg)-meson decay constant in QCD and its counterpart in HQET,
and My, = AMy,. The authors of Balasubramamian 19 [58] use the NNLO perturbative result of Cf;{"“(th) [542-544]
and A = 1.18. By starting from a “triggering” point with the heavy-meson mass around that of the Dy meson, one can
proceed with the calculations in steps, such that M, is increased by a factor of A at each step. The authors simulate up
to heavy-quark mass around 4.5 GeV, but observed significant (a M Hr)2 cutoff effects on ensembles with lattice spacings
a = 0.0751 and 0.0653 fm and so simulate up to 3.2 GeV on these lattices. In this formulation of the ratio method, the
ratio obeys z,(Mpq, A) — 1/ /A in the limit Mp4 — o0. Designing the computations in such a way that in the last step
My is equal to the physical By mass, one obtains fB(S) / fD(s). Combining this ratio with results for fD(S), updated with
a third lattice spacing, the decay constant of the By meson can be extracted. The authors estimated the systematic uncer-
tainty associated with their generic fit form, which combines chiral-continuum extrapolation with heavy quark discretization
effects, and quote a single systematic uncertainty. The systematic uncertainty associated with scale-setting is estimated from
Fps-

There have been no new Ny = 2 calculations of fp or fp /fp. Therefore, our averages for these two cases stay the same
as those in Ref. [4]. We update our average of fp, to include the new calculation of Balasubramamian 19 [58]:

Np=2: f5 = 188(7) MeV Refs. [56,69], 207)

Nfp=2: fB, = 225.3(6.6) MeV Refs. [56,58,69], (208)

Nfp=2 j}i = 1.206(0.023) Refs. [56,69]. (209)
B

One new Ny = 2 + 1 calculation of fg /fp was completed after the publication of the previous FLAG review [4]. In
Table 42, this result is labelled RBC/UKQCD 18A [70].

The RBC/UKQCD collaboration presented in RBC/UKQCD 18A [70] the ratio of decay constants, fp /fp, using
Ny = 2 + 1 dynamical ensembles generated using Domain Wall Fermions (DWF). Three lattice spacings, of a = 0.114,
0.0835 and 0.0727 fm, were used, with pion masses ranging from 139 to 431 MeV, and lattice sizes between 2.65 and
5.47 fm. Two different Domain Wall discretizations (Mobius and Shamir) have been used for both valence and sea quarks.
These discretizations correspond to two different choices for the DWF kernel. The Mobius DWF are loosely equivalent
to Shamir DWF at twice the extension in the fifth dimension [8]. The bare parameters for these discretizations were cho-
sen to lie on the same scaling trajectory, to enable a combined continuum extrapolation. Heavy quark masses between the
charm and approximately half the bottom quark mass were used, with a linear extrapolation in 1/m g applied to reach the
physical Bs mass, where my is the mass of the heavy meson used to set the heavy quark mass. For the central fit, the
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authors set the heavy quark mass through the pseudoscalar heavy-strange meson H;, and estimate systematic uncertain-
ties by comparing these results to those obtained with H a heavy-light meson or a heavy-heavy meson. For the quenched
heavy quark Mobius DWF are always used, with a domain-wall height slightly different from the one adopted for light
valence quarks. The choice helps to keep cutoff effects under control, according to the study in Ref. [545]. The chiral-
continuum extrapolations are performed with a Taylor expansion in ¢ and m,zr - (m’;[hy *)2 and the associated systematic
error is estimated by varying the fit function to apply cuts in the pion mass. The corresponding systematic error is estimated
as approximately 0.5%, which is roughly equal to the statistical uncertainty and to the systematic uncertainties associated
with extrapolation to the physical mp_mass and with higher-order corrections to the static limit. These latter corrections
take the form O(A?/ m%s). The error estimate comes from assuming the coefficient of such terms is up to five times larger
than the fitted O(A /mp,) coefficient. Isospin corrections and heavy-quark discretization effects are estimated to be less than
0.1%.

At time of writing, RBC/UKQCD 18A [70] has not been published and therefore is not included in our average. Thus, our
averages for these quantities remain the same as in Ref. [4],

Nfp=2+1: fg = 192.0(4.3) MeV Refs. [54,65-68], (210)

Np=2+1: f, = 228.4(3.7) MeV Refs. [54,65-68], @211)

Np=2+1: J}—B = 1.201(0.016) Refs. [54,66-68,70]. 212)
B

Nonew Ny = 2 + 1 + 1 calculations of fp, f5,/fp or fp,, have appeared since the last FLAG review. Therefore, our
averages for these quantities remain the same as in Ref. [4],

Np=2+1+1: fB =190.0(1.3) MeV Refs. [16,30,63,64], (213)

Np=2+1+1: fB, =230.3(1.3) MeV Refs. [16,30,63,64], (214)

Np=2+1+1: % = 1.209(0.005) Refs. [16,30,63,64]. (215)
B

The PDG presented averages for the Ny =2+ 1and Ny = 2+ 1+ 1 lattice-QCD determinations of the isospin-averaged
B, fB, and fp /fp in 2020 [165]. The Ny =2+ 1and Ny = 2 + 1 + 1 lattice-computation results used in Ref. [165] are
identical to those included in our current work, and the averages quoted in Ref. [165] are those determined in [4].

8.2 Neutral B-meson mixing matrix elements

Neutral B-meson mixing is induced in the Standard Model through 1-loop box diagrams to lowest order in the electroweak
theory, similar to those for short-distance effects in neutral kaon mixing. The effective Hamiltonian is given by

AB—2sm  GFM
Har 0 = e (FaQl + 77D +he., (216)
with
Qf = [by,(1 — v5)q] [y (1 — v5)q]., (217)

where ¢ = d or s. The short-distance function .7-'3 in Eq. (216) is much simpler compared to the kaon mixing case due to the
hierarchy in the CKM matrix elements. Here, only one term is relevant,

F = kg So(x) (218)

where

Mg = VigVib, (219)
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and where So(x;) is an Inami—Lim function with x, = mt2 /M?,, which describes the basic electroweak loop contributions
without QCD [417]. The transition amplitude for Bg with ¢ = d or s can be written as

_ _ GLM?
(BOIHAF=21BD) = =L (42 SoCxinzs |

1672
y <g(ﬂ)2>_)/0/(2ﬂ0) exp /é(u) dg <& N ﬁ)
4 0 B(g) ' Pog
x (BJIQR(w)|B)) +hec., (220)

where Q[’R(M) is the renormalized four-fermion operator (usually in the NDR scheme of MS). The running coupling g, the
B-function B(g), and the anomalous dimension of the four-quark operator y (g) are defined in Eqs. (142) and (143). The
product of u-dependent terms on the second line of Eq. (220) is, of course, u-independent (up to truncation errors arising
from the use of perturbation theory). The explicit expression for the short-distance QCD correction factor 1, p (calculated to
NLO) can be found in Ref. [410].

For historical reasons the B-meson mixing matrix elements are often parameterized in terms of bag parameters defined as

(8210800 BY)

Bp, (1) = T2 3 (221)
! 3/5,M3

The renormalization group independent (RGI) B parameter B is defined as in the case of the kaon, and expressed to 2-loop

order as
c g\ T g w? [ B — Bow
Bs, = ( 47 ) 1+ (47)2 Zﬂg Bg, (1), (222)

with Bo, B1, Yo, and y; defined in Eq. (144). Note, as Eq. (220) is evaluated above the bottom threshold (m, < pu < m;), the
active number of flavours here is Ny = 5.

Nonzero transition amplitudes result in a mass difference between the CP eigenstates of the neutral B-meson system.
Writing the mass difference for a Bg meson as Amyg, its Standard Model prediction is

2.2
GFmeBq

Am, =
a 672

|hag)*SoCeom2s f3, B, (223)
Experimentally, the mass difference is determined from the oscillation frequency of the CP eigenstates. The frequencies are
measured precisely with an error of less than a percent. Many different experiments have measured Amg, but the current
average [165] is dominated by the LHCb experiment. For Am the experimental average is again dominated by results from
LHCDb [165] and the precision reached is about one per mille. With these experimental results and lattice-QCD calculations
of f 1%(1 B B,» Mg Ccan be determined. In lattice-QCD calculations the flavour SU (3)-breaking ratio

2
2 fB: BBS

fl%dBBd

(224)

can be obtained more precisely than the individual B,-mixing matrix elements because statistical and systematic errors cancel
in part. From £2, the ratio |V,4/ V;s| can be determined and used to constrain the apex of the CKM triangle.

Neutral B-meson mixing, being loop-induced in the Standard Model, is also a sensitive probe of new physics. The most
general A B = 2 effective Hamiltonian that describes contributions to B-meson mixing in the Standard Model and beyond is
given in terms of five local four-fermion operators:

5
HaPsdn =Y. Y Gl (225)

g=d,s i=1
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Table 43 Neutral B- and Bs-meson mixing matrix elements (in MeV) and bag parameters

§ ﬁo N
& 9 'S
g s § &
) L & A N
N & 5 § &
g & I J 5 ©
IS S & § & 3
S $ 5 N N S
N $ & £ S S
e~ ~ ~ ~ ~
Collaboration Refs. Ny < < ¢ <& & & S84y BBy fB,y/ BB,  Bs, B,
HPQCD 19A [71] 2+1+41 A o) le) % 0 v 210.6(5.5) 256.1(5.7)  1.222(61) 1.232(53)
FNAL/MILC 16  [73] 2+1 A * o) * 0 v 227.7(9.5)  274.6(8.4) 1.38(12)(6)° 1.443(88)(48)°
RBC/UKQCD 14A [67] 2+1 A o) o) o) 0 v 240(15)(33)  290(09)(40) 1.17(11)(24)  1.22(06)(19)
FNAL/MILC 11A  [548] 2+1 C * o) * e v 250(23)" 291(18)" — -
HPQCD 09 [72] 2+1 A o) oY ) o Ve 216(15)* 266(18)* 1.27(10)* 1.33(6)*
HPQCD 06A [549] 2+1 A [ | [ | * e} v - 281(21) — 1.17(17)
ETM 13B [56] 2 A * o) o) * v 216(6)(8)  262(6)(8)  1.30(5)(3) 1.32(5)(2)
ETM 124, 12B [538,550] 2 C * o) o) * v — - 1.32(8)° 1.36(8)°

OPDG averages of decay constant f po and fp [164] are used to obtain these values

fReported f §B at u = my, is converted to RGI by multiplying the 2-loop factor 1.517

VWhile wrong-spin contributions are not included in the HMrS x PT fits, the effect is expected to be small for these quantities (see description in FLAG 13 [2])

*This result uses an old determination of r; = 0.321(5) fm from Ref. [118] that has since been superseded, which however has only a small effect in the total error
budget (see description in FLAG 13 [2])

®Reported B at u = m;, = 4.35 GeV is converted to RGI by multiplying the 2-loop factor 1.521

where Q) is defined in Eq. (217) and where

Q1 = [b(1 —ys)q]| [b(1 —y5)q].  QF =[b*(1 — y5)g? | [P (1 — 5)q*] .
Qf = [b(1 —ys)q] [b(L +y5)q].  QF =[6*(1 — y5)gP] [BP (1 + v5)q*] . (226)

with the superscripts «, 8 denoting colour indices, which are shown only when they are contracted across the two bilinears.
There are three other basis operators in the AB = 2 effective Hamiltonian. When evaluated in QCD, however, they give
identical matrix elements to the ones already listed due to parity invariance in QCD. The short-distance Wilson coefficients
Ci depend on the underlying theory and can be calculated perturbatively. In the Standard Model only matrix elements of
Q? contribute to Amg, while all operators do, for example, for general SUSY extensions of the Standard Model [469]. The
matrix elements or bag parameters for the non-SM operators are also useful to estimate the width difference AI'; between
the CP eigenstates of the neutral B meson in the Standard Model, where combinations of matrix elements of Q7 07, and
Qf contribute to AT, at O(1/my,) [546,547].

In this section, we report on results from lattice-QCD calculations for the neutral B-meson mixing parameters B By> éBS,

fBo\/ Ba, fB.+/ Bp, and the SU (3)-breaking ratios Bp, /Bp, and £ defined in Egs. (221), (222), and (224). The results are
summarized in Tables 43 and 44 and in Figs. 29 and 30. Additional details about the underlying simulations and systematic
error estimates are given in Appendix C.6.2. Some collaborations do not provide the RGI quantities Bp,, but quote instead

Bp(u)MS-NPR 1n such cases, we convert the results using Eq. (222) to the RGI quantities quoted in Table 43 with a brief
description for each case. More detailed descriptions for these cases are provided in FLAG13 [2]. We do not provide the
B-meson matrix elements of the other operators Q5 _s in this report. They have been calculated in Ref. [56] for the Ny =2
case and in Refs. [73,548] for Ny =2 + 1.

There are no new results for Ny = 2 reported after the previous FLAG review. In this category, one work (ETM 13B) [56]
passes the quality criteria. A description of this work can be found in the FLAG 13 review [2] where it did not enter the
average as it had not appeared in a journal. Because this is the only result available for Ny = 2, we quote their values as our
estimates

f84\/ By, = 216(10) MeV f,y/ Bp, = 262(10) MeV Ref. [56], (227)
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Table 44 Results for SU (3)-breaking ratios of neutral B;- and Bg-meson mixing matrix elements and bag parameters

%
S
S s 5
Ny s 3 0
O S S &
& K & S >
N & Ny NS L
& oy S 3} g ~
I~ © & S & ¥
$ S s S s
N S o < S &
§ S & @ $ S
. 3 & & S & &
Collaboration Refs. Ny < (@) O < & By & Bg,/Bg,
HPQCD 19A [71] 24141 A o o) * o) v 1.216(16) 1.008(25)
RBC/UKQCD 18A  [70] 2+1 P * * * * v 1.1939(67)(T33,)  0.9984(45)(T59)
FNAL/MILC 16 [73] 2+1 A * o * o) v 1.206(18) 1.033(31)(26)°
RBC/UKQCD 14A  [67] 2+1 A o o o o v 1.208(41)(52) 1.028(60)(49)
FNAL/MILC 12 [551] 2+1 A o o * o v 1.268(63) 1.06(11)
RBC/UKQCD 10C  [541] 2+1 A ] n ] o v 1.13(12) -
HPQCD 09 [72] 2+1 A o oY o) o v 1.258(33) 1.05(7)
ETM 13B [56] 2 A * o) o) * v 1.225(16)(14)(22)  1.007(15)(14)
ETM 12A, 12B [538,550] 2 C * o) o) * v 1.21(6) 1.03(2)

OPDG average of the ratio of decay constants fg, /fgo [164] is used to obtain the value
VWrong-spin contributions are not included in the HMrS x PT fits. As the effect may not be negligible, these results are excluded from the average
(see description in FLAG 13 [2])

FAG2021 fg,\/ Ba, fe,\/ Bs. FAG2021 Bp, Bs,
T T
s FLAG average for Ne=2+1+ ¥ —— FLAG average for Ne=2+1+1 | g
N ~
I I
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_ - FNAL/MILC 16 - I —m—— FNAL/MILC 16 —H—
% RBC/UKQCD 14A Z'. i RBC/UKQCD 14A
z |+ FNALMILC 11 A - - HPQCD 09 -
- HPQCD 09 —H— HPQCD 06A —_—
HPQCD 06A n——[l]—<
i FLAG average for N¢=2
FLAG average N¢=2
. HH ge N Bl 1 - ETM 13B
= L ETM 13B L —H— ETM 12A,12B
180 220 260 220 260 300 MeVv 1.0 1.2 1.4 1.0 1.2 1.4

Fig. 29 Neutral B- and Bs-meson mixing matrix elements and bag parameters [values in Table 43 and Eqs. (227), (230), (233), (228), (231), (234)]

Ny=2: Bg, = 1.30(6) Bp, = 1.32(5) Ref. [56], (228)
£ =1.225(31) Bg,/Bg, = 1.007(21) Ref. [56]. (229)

For the Ny = 2 + 1 case the RBC/UKQCD collaboration reported their new results on the flavour SU(3) breaking ratio of
neutral B-meson mixing parameters in 2018. Their paper [70] has not been published yet, thus the results will not be included
in our averages presented here. Their computation uses ensembles generated by the 2 + 1 flavour domain-wall fermion (DWF)
formulation. The use of the DWF:s also for the heavy quarks makes the renormalization structure simple. Because of the chiral
symmetry, the mixing is the same as in the continuum theory. The operators for standard model mixing matrix elements are
multiplicatively renormalized. Since they only report the SU(3) breaking ratio, the renormalization of the operators is not
needed. The lattice spacings employed are not as fine as some of the recent results reported here. But, by applying successive
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Fig. 30 The SU (3)-breaking quantities & and Bp_/Bp, [values in Table 44 and Eqs. (229), (232), (235)]

stout link smearings in the heavy DWE, the reach to heavy mass is improved, which allows them to simulate up to half of
the physical bottom mass. Two ensembles are of physical ud quark mass at a = 0.11 and 0.09 fm, and there is yet another
ensemble off the physical point but with finer lattice spacing, @ = 0.07 fm. This is the first computation using physical
light-quark mass for these quantities, which yields a drastic reduction of the chiral extrapolation error.

The results that enter our averages for Ny = 2 + 1 are FNAL/MILC 16 [73], which had been included in the averages at
FLAG 19 [4], RBC/UKQCD 14A [67], included in the averages at FLAG 16 [3], and HPQCD 09 [72] for which a description
is available in FLAG 13 [2]. Thus, the averages for Ny = 2 + 1 are unchanged:

Nf = 2+1:
f,\/ Bs, = 225(9) MeV I8,y Bs, = 274(8) MeV Refs. [67,72,73], (230)
Bg, = 1.30(10) Bp, = 1.35(6) Refs. [67,72,73], (231)
£ = 1.206(17) Bg,/Bg, = 1.032(38) Refs. [67,73]. (232)

Here all the above equations have not been changed from the FLAG 19. The averages were obtained using the nested averaging
scheme described in Sect. 2.3.2, due to a nested correlation structure among the results. Details are discussed in the FLAG
19 report [4].

We have the first Ny = 2 + 1 + 1 calculation for these quantities by the HPQCD collaboration HPQCD 19A [71], using
the MILC collaboration’s HISQ ensembles. The lattice spacings used are 0.15, 0.12 and 0.09 fm, among which the mass
of the Nambu—Goldstone pion (lightest in the staggered taste multiplets) is as small as 130 MeV for two coarser lattices.
However, the smallest root-mean-squared pion mass through all taste multiplets is 241 MeV, which is a similar size as the
FNAL/MILC 16 result [73] with Ny = 2 + 1 and makes the rating on the chiral extrapolation a green circle. The heavy
quark formulation used is non-relativistic QCD (NRQCD). The NRQCD action employed is improved from that used in
older calculations, especially by including one-loop radiative corrections to most of the coefficients of the O(vl‘:) terms [552].
The b-quark mass is pre-tuned with the spin-averaged kinetic mass of the T and 7, states. Therefore, there is no need for
extrapolation or interpolation on the b-quark mass. The HISQ-NRQCD four-quark operators are matched through O(1/M)
and renormalized to one-loop, which includes the effects of O(w;), O(Aqgep/M), O(ag/aM), and O(as Agep/M). The
remaining error is dominated by O(os Aqep/M) 2.9% and O(asz) 2.1% for individual bag parameters. The bag parameters
are the primary quantities calculated in this work. The mixing matrix elements are obtained by combining the so-obtained
bag parameters with the B-meson decay constants calculated by Fermilab-MILC collaboration (FNAL/MILC 17 [16]).

Because this is the only result available for Ny = 2 + 1 + 1, we quote their values as the FLAG estimates
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Np=2+1+1:
I8\ By, = 210.6(5.5) MeV fB,\/ Bs, = 256.1(5.7) MeV Ref. [71], (233)
Bp, = 1.222(61) Bp, = 1.232(53) Ref. [71], (234)
£ =1.216(16) Bp,/Bp, = 1.008(25) Ref. [71]. (235)

We note that the above results within same N7 (e.g., those in Egs. (233-235)) are all correlated with each other, due to the use
of the same gauge field ensembles for different quantities. The results are also correlated with the averages obtained in Sect. 8.1
and shown in Egs. (207)—(209) for Ny = 2, Egs. (210)—(212) for Ny = 2 + 1 and Egs. (213)-(215) for Ny =2+ 1+ 1.
This is because the calculations of B-meson decay constants and mixing quantities are performed on the same (or on similar)
sets of ensembles, and results obtained by a given collaboration use the same actions and setups. These correlations must
be considered when using our averages as inputs to unitarity triangle (UT) fits. For this reason, if one were for example to

estimate fgx\/;s from the separate averages of fp  (Eq. (211)) and I§S (Eq. (231)) for Ny = 2 + 1, one would obtain a
value about one standard deviation below the one quoted above in Eq. (230). While these two estimates lead to compatible
results, giving us confidence that all uncertainties have been properly addressed, we do not recommend combining averages
this way, as many correlations would have to be taken into account to properly assess the errors. We recommend instead
using the numbers quoted above. In the future, as more independent calculations enter the averages, correlations between the
lattice-QCD inputs to UT fits will become less significant.

8.3 Semileptonic form factors for B decays to light flavours
The Standard Model differential rate for the decay B(;) — P{£v involving a quark-level b — u transition is given, at leading

order in the weak interaction, by a formula analogous to the one for D decays in Eq. (181), but with D — B and the
relevant CKM matrix element |Veg| — [ Vypl:

AU (B — Plv)  G3|Vp[2 @ —m%)zm

2 - 3 4,2
dq 247 q mB(s)
| (14 22 ) (BB — e @D + o, = R (236)
2q2 B(S) P P + q 8q2 mB(S) mP 0 f] .

Again, for £ = e, u the contribution from the scalar form factor fj can be neglected, and one has a similar expression to
Eq. (183), which, in principle, allows for a direct extraction of |V,;| by matching theoretical predictions to experimental
data. However, while for D (or K) decays the entire physical range 0 < ¢> < qrznax can be covered with moderate momenta
accessible to lattice simulations, in B — 7 €v decays one has g2, ~ 26 GeV? and only part of the full kinematic range is
reachable. As a consequence, obtaining |V,;,| from B — 7 £v is more complicated than obtaining | V()| from semileptonic
D-meson decays.

In practice, lattice computations are restricted to large values of the momentum transfer ¢ (see Sect. 7.2) where statistical
and momentum-dependent discretization errors can be controlled,’” which in existing calculations roughly cover the upper
third of the kinematically allowed ¢ range. Since, on the other hand, the decay rate is suppressed by phase space at large g2,
most of the semileptonic B — 7 events are observed in experiment at lower values of ¢2, leading to more accurate experimental
results for the binned differential rate in that region.38 It is, therefore, a challenge to find a window of intermediate values of
g at which both the experimental and lattice results can be reliably evaluated.

State-of-the-art determinations of CKM matrix elements, say, e.g., |V,|, are obtained from joint fits to lattice and experi-
mental results, keeping the relative normalization |V, |2 as a free parameter. This requires, in particular, that both experimental
and lattice data for the ¢>-dependence be parameterized by fitting data to specific ansitze, with the ultimate aim of minimizing
the systematic uncertainties involved. This plays a key role in assessing the systematic uncertainties of CKM determinations,

37 The variance of hadron correlation functions at nonzero three-momentum is dominated at large Euclidean times by zero-momentum multiparticle
states [553]; therefore the noise-to-signal grows more rapidly than for the vanishing three-momentum case.

38 Upcoming data from Belle II are expected to significantly improve the precision of experimental results, in particular, for larger values of ¢2.
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and will be discussed extensively in this section. A detailed discussion of the parameterization of form factors as a function
of g2 can be found in Appendix B.1.

8.3.1 Form factors for B — mwlv

The semileptonic decay process B — m{v enables determination of the CKM matrix element |V,,;,| within the Standard Model
via Eq. (236). Early results for B — m£v form factors came from the HPQCD [554] and FNAL/MILC [555] collaborations.
Only HPQCD provided results for the scalar form factor fy. Our 2016 review featured a significantly extended calculation of
B — mfv from FNAL/MILC [556] and a new computation from RBC/UKQCD [557]. All the above computations employ
Ny = 2 + 1 dynamical configurations, and provide values for both form factors f} and fy. In addition, HPQCD using
MILC ensembles had published the first Ny = 2 + 1 + 1 results for the B — m£v scalar form factor, working at zero recoil
(¢* = qéax) and pion masses down to the physical value [558]; this adds to previous reports on ongoing work to upgrade their
2006 computation [559,560]. Since this latter result has no immediate impact on current |V,;| determinations, which come
from the vector-form-factor-dominated decay channels into light leptons, we will from now on concentrate onthe Ny =241
determinations of the ¢>-dependence of B — m form factors.

Several groups are working on new calculations of the B — m form factors and have reported on their progress at the annual
Lattice conferences and the 2020 Asia-Pacific Symposium for Lattice Field Theory. The results are preliminary or blinded,
so not yet ready for inclusion in this review. The JLQCD collaboration is using Mobius Domain Wall fermions (including for
the heavy quark) with a = 0.08, 0.055, and 0.044 fm and pion masses down to 225 MeV to study this process [561-563].
FNAL/MILC is using Ny = 2 + 1 + 1 HISQ ensembles with a ~ 0.15, 0.12, 0.088 fm, 0.057 fm, with Goldstone pion mass
down to its physical value [564,565]. The RBC/UKQCD Collaborations have added a new Md&bius-domain-wall-fermion
ensemble with a &~ 0.07 fm and m, ~ 230 MeV to their analysis [566].

Returning to the calculations that contribute to our averages (with no new results since FLAG 19), both the HPQCD
and the FNAL/MILC computations of B — m£v amplitudes use ensembles of gauge configurations with Ny = 2 + 1
flavours of rooted staggered quarks produced by the MILC collaboration; however, the latest FNAL/MILC work makes a
much more extensive use of the currently available ensembles, both in terms of lattice spacings and light-quark masses.
HPQCD have results at two values of the lattice spacing (@ ~ 0.12, 0.09 fm), while FNAL/MILC employs four values
(a =~ 0.12, 0.09, 0.06, 0.045 fm). Lattice-discretization effects are estimated within heavy-meson rooted staggered chiral
perturbation theory (HMrS x PT) in the FNAL/MILC computation, while HPQCD quotes the results at a &~ 0.12 fm as central
values and uses the a &~ 0.09 fm results to quote an uncertainty. The relative scale is fixed in both cases through the quark—
antiquark potential-derived ratio r1 /a. HPQCD set the absolute scale through the Y 25—1S splitting, while FNAL/MILC uses
acombination of f;; and the same Y splitting, as described in Ref. [54]. The spatial extent of the lattices employed by HPQCD
is L ~ 2.4 fm, save for the lightest mass point (at a & 0.09 fm) for which L ~ 2.9 fm. FNAL/MILC, on the other hand, uses
extents up to L >~ 5.8 fm, in order to allow for light-pion masses while keeping finite-volume effects under control. Indeed,
while in the 2006 HPQCD work the lightest RMS pion mass is 400 MeV, the latest FNAL/MILC work includes pions as light
as 165 MeV - in both cases the bound m, L 2 3.8 is kept. Other than the qualitatively different range of MILC ensembles
used in the two computations, the main difference between HPQCD and FNAL/MILC lies in the treatment of heavy quarks.
HPQCD uses the NRQCD formalism, with a 1-loop matching of the relevant currents to the ones in the relativistic theory.
FNAL/MILC employs the clover action with the Fermilab interpretation, with a mostly nonperturbative renormalization of
the relevant currents, within which the overall renormalization factor of the heavy-light current is written as a product of the
square roots of the renormalization factors of the light-light and heavy-heavy temporal vector currents (which are determined
nonperturbatively) and a residual factor that is computed using 1-loop perturbation theory. (See Table 45; full details about
the computations are provided in tables in Appendix C.6.3.)

The RBC/UKQCD computation is based on Ny = 2 + 1 DWF ensembles at two values of the lattice spacing (a ~
0.12, 0.09 fm), and pion masses in a narrow interval ranging from slightly above 400 MeV to slightly below 300 MeV,
keeping m, L 2 4. The scale is set using the Q~ baryon mass. Discretization effects coming from the light sector are
estimated in the 1% ballpark using HM x PT supplemented with effective higher-order interactions to describe cutoff effects.
The b quark is treated using the Columbia RHQ action, with a mostly nonperturbative renormalization of the relevant currents.
Discretization effects coming from the heavy sector are estimated with power-counting arguments to be below 2%.

Given the large kinematical range available in the B — m transition, chiral extrapolations are an important source of
systematic uncertainty: apart from the eventual need to reach physical pion masses in the extrapolation, the applicability of
xPT is not guaranteed for large values of the pion energy E. Indeed, in all computations E reaches values in the 1 GeV
ballpark, and chiral extrapolation systematics is the dominant source of errors. FNAL/MILC uses SU (2) NLO HMrS x PT
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Table 45 Results for the B — m£v semileptonic form factor

S S
F g §© >
i & § IS & $
N I~y S 3 $ & &
5 S & § Ny ¥ 5
S § S N 3 g o
S N & S F S &
5 § S & $ & §
N s
Collaboration Refs. N; & ¢ g & <& & o
FNAL/MILC 15 [556] 2+1 A * o * o) v BCL
RBC/UKQCD 15  [557] 2+1 A o o o o v BCL
HPQCD 06 [554] 2+1 A o o o o v n/a

for the continuum-chiral extrapolation, supplemented by NNLO analytic terms and hard-pion x PT terms [507];% systematic
uncertainties are estimated through an extensive study of the effects of varying the specific fit ansatz and/or data range.
RBC/UKQCD uses SU (2) hard-pion HM x PT to perform its combined continuum-chiral extrapolation, and obtains estimates
for systematic uncertainties by varying the ansitze and ranges used in fits. HPQCD performs chiral extrapolations using
HMrSxPT formulae, and estimates systematic uncertainties by comparing the result with the ones from fits to a linear
behaviour in the light-quark mass, continuum HM x PT, and partially quenched HMrS x PT formulae (including also data with
different sea and valence light-quark masses).

FNAL/MILC and RBC/UKQCD describe the g*-dependence of f, and fy by applying a BCL parameterization to the
form factors extrapolated to the continuum limit, within the range of values of ¢> covered by data. (A discussion of the various
parameterizations can be found in Appendix B.1.) RBC/UKQCD generate synthetic data for the form factors at some values
of g% (evenly spaced in z) from the continuous function of ¢ obtained from the joint chiral-continuum extrapolation, which
are then used as input for the fits. After having checked that the kinematical constraint f(0) = fo(0) is satisfied within
errors by the extrapolation to g% = 0 of the results of separate fits, this constraint is imposed to improve fit quality. In the case
of FNAL/MILC, rather than producing synthetic data a functional method is used to extract the z-parameterization directly
from the fit functions employed in the continuum-chiral extrapolation. In the case of HPQCD, the parameterization of the
g*-dependence of form factors is somewhat intertwined with chiral extrapolations: a set of fiducial values {E,(T")} is fixed for
each value of the light-quark mass, and f ¢ are interpolated to each of the Ef,”); chiral extrapolations are then performed at
fixed E, (i.e., m, and ¢” are varied subject to E,, = constant). The interpolation is performed using a Ball-Zwicky (BZ)
ansatz [567]. The g2-dependence of the resulting form factors in the chiral limit is then described by means of a BZ ansatz,
which is cross-checked against Becirevic—Kaidalov (BK) [500], Richard Hill (RH) [568], and Boyd—Grinstein—Lebed (BGL)
[569] parameterizations (see Appendix B.1), finding agreement within the quoted uncertainties. Unfortunately, the correlation
matrix for the values of the form factors at different ¢? is not provided, which severely limits the possibilities of combining
them with other computations into a global z-parameterization.

The different ways in which the current results are presented do not allow a straightforward averaging procedure.
RBC/UKQCD only provides synthetic values of f, and fy at a few values of g2 as an illustration of their results, and
FNAL/MILC does not quote synthetic values at all. In both cases, full results for BCL z-parameterizations defined by
Eq. (532) are quoted. In the case of HPQCD 06, unfortunately, a fit to a BCL z-parameterization is not possible, as discussed
above.

In order to combine these form factor calculations, we start from sets of synthetic data for several g2 values. HPQCD and
RBC/UKQCD directly provide this information; FNAL/MILC present only fits to a BCL z-parameterization from which we
can easily generate an equivalent set of form factor values. It is important to note that in both the RBC/UKQCD synthetic data
and the FNAL/MILC z-parameterization fits the kinematic constraint at ¢> = 0 is automatically included (in the FNAL/MILC
case the constraint is manifest in an exact degeneracy of the (a;, ag) covariance matrix). Due to these considerations, in
our opinion, the most accurate procedure is to perform a simultaneous fit to all synthetic data for the vector and scalar
form factors. Unfortunately, the absence of information on the correlation in the HPQCD result between the vector and
scalar form factors even at a single g2 point makes it impossible to include consistently this calculation in the overall fit.

39 It is important to stress the finding in Ref. [506] that the factorization of chiral logs in hard-pion y PT breaks down, implying that it does not
fulfill the expected requisites for a proper effective field theory. Its use to model the mass dependence of form factors can thus be questioned.
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Fig. 31 The form factors f; (qz) and fp (qz) for B — m{v plotted versus z (left panel) and q2 (right panel). In the left plot, we removed the
Blaschke factors. See text for a discussion of the data set. The grey and salmon bands display our preferred N* = N = 3 BCL fit (five parameters)

Table 46 Coefficients and correlation matrix for the N* = N® = 3 z-expansion fit of the B — 7 form factors f, and fo. The coefficient ag is

fixed by the fy (g% = 0) = fo(g*> = 0) constraint. The chi-square per degree of freedom is x2/dof = 0.82. The lattice calculations that enter this
fit are taken from FNAL/MILC 15 [556] and RBC/UKQCD 15 [557]. The parameterizations are defined in Eqs. (532) and (533)

B—na (Nr=2+1)

Central values Correlation matrix
aa’ 0.404 (13) 1 0.404 0.118 0.327 0.344
af’ —0.68 (13) 0.404 1 0.741 0.310 0.900
az+ —0.86 (61) 0.118 0.741 1 0.363 0.886
ag 0.490 (21) 0.327 0.310 0.363 1 0.233
“(1) —1.61 (16) 0.344 0.900 0.886 0.233 1

In fact, the HPQCD and FNAL/MILC statistical uncertainties are highly correlated (because they are based on overlapping
subsets of MILC Ny = 2 + 1 ensembles) and, without knowledge of the f; — fy correlation we are unable to construct the
HPQCD-FNAL/MILC off-diagonal entries of the overall covariance matrix.

In conclusion, we will present as our best result a combined vector and scalar form factor fit to the FNAL/MILC and
RBC/UKQCD results that we treat as completely uncorrelated. For sake of completeness, we will also show the results of a
vector form factor fit alone in which we include one HPQCD datum at g> = 17.34 GeV? assuming conservatively a 100%
correlation between the statistical error of this point and of all FNAL/MILC synthetic data. In spite of contributing just one
point, the HPQCD datum has a significant weight in the fit due to its small overall uncertainty. We stress again that this
procedure is slightly inconsistent because FNAL/MILC and RBC/UKQCD include information on the kinematic constraint
at g% = 0 in their f, results.

The resulting data set is then fitted to the BCL parameterization in Egs. (532) and (533). We assess the systematic uncertainty
due to truncating the series expansion by considering fits to different orders in z. In Fig. 31, we show the FNAL/MILC,
RBC/UKQCD, and HPQCD data points for (1 — g%/ m%*) fi(g?) and fo(g?) versus z. The data is highly linear and we get
x?%/dof = 0.82with N* = N = 3. Note that this implies three independent parameters for f, corresponding to a polynomial
through O(z?) and two independent parameters for fy corresponding to a polynomial through O(z?) (the coefficient a(z) is
fixed using the g> = 0 kinematic constraint). We cannot constrain the coefficients of the z-expansion beyond this order; for
instance, including a fourth parameter in f5 results in 100% uncertainties on a;' and a; . The outcome of the five-parameter

N*T = NO = 3 BCL fit to the FNAL/MILC and RBC/U KQCD calculations is shown in Table 46. The uncertainties on ag ’0,

ar’o and a;' encompass the central values obtained from N + = 2,4 and N° = 2, 4, 5 fits and thus adequately reflect the

systematic uncertainty on those series coefficients. The fit shown in Table 46 can therefore be used as the averaged FLAG
result for the lattice-computed form factor fy(g2). The coefficient a;’ can be obtained from the values for aar —a;r using
Eq. (531). The coefficient ag can be obtained from all other coefficients imposing the f (¢ = 0) = fo(¢> = 0) constraint.

The fit is illustrated in Fig. 31.
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We emphasize that future lattice-QCD calculations of semileptonic form factors should publish their full statistical and
systematic correlation matrices to enable others to use the data. It is also preferable to present a set of synthetic form factors
data equivalent to the z-fit results, since this allows for an independent analysis that avoids further assumptions about the
compatibility of the procedures to arrive at a given z-parameterization.*" It is also preferable to present covariance/correlation
matrices with enough significant digits to calculate correctly all their eigenvalues.

For the sake of completeness, we present also a standalone z-fit to the vector form factor. In this fit, we are able to include
the single f, point at g> = 17.34 GeV? that we mentioned above. This fit uses the FNAL/MILC and RBC/UKQCD results
that do make use of the kinematic constraint at q2 = 0, but is otherwise unbiased. The results of the three-parameter BCL fit
to the HPQCD, FNAL/MILC and RBC/UKQCD calculations of the vector form factor are:

Ny=2+1: af =0421(13), a =-0.35(10), aF =—0.41(64);
1.000 0.306 0.084

corr(a;,aj) = | 0.306 1.000 0.856 | . (237)
0.084 0.856 1.000

Note that the aar coefficient, that is the most relevant for input to the extraction of V,,;, from semileptonic B — wfv,(£ = e, 1)
decays, shifts by about a standard deviation.

8.3.2 Form factors for B; — K{v

Similar to B — m£v, measurements of By — K{v decay rates enable determinations of the CKM matrix element |V,|
within the Standard Model via Eq. (236). From the lattice point of view, the two channels are very similar. As a matter of
fact, By — K{v is actually somewhat simpler, in that the kaon mass region is easily accessed by all simulations making the
systematic uncertainties related to chiral extrapolation smaller.

At the time of our FLAG 19 review [4], results for By — K{v form factors were provided by HPQCD [570] and
RBC/UKQCD [557] for both form factors f and fo, in both cases using Ny = 2 + 1 dynamical configurations. HPQCD
has recently emphasized the value of using ratios of form factors for the processes By — K{v and By — Dglv for the
determination of | V,;/ Vep| [S71]. In the FLAG Review 19 [4], FNAL/MILC preliminary results had been reported for both
Ny =2+1[572]and Ny = 2+ 1+1[564], but were not included in the average due to their non-final status. The Ny = 2+1
results have since been published [573]; we will, therefore, include them in the average here.

The RBC/UKQCD computation has been published together with the B — m¢v computation discussed in Sect. 8.3.1,
all technical details being practically identical. The main difference is that errors are significantly smaller, mostly due to the
reduction of systematic uncertainties due to the chiral extrapolation. Detailed information is provided in Appendix C.6.3.
The RBC/UKQCD collaboration is also working on an improved determination of B; — K form factors that includes a finer
lattice spacing, with preliminary results shown in Ref. [566], but these results cannot yet be included in the average. The
HPQCD computation uses ensembles of gauge configurations with Ny = 2 + 1 flavours of asqtad rooted staggered quarks
produced by the MILC collaboration at two values of the lattice spacing (a &~ 0.12, 0.09 fm), for three and two different
sea-pion masses, respectively, down to a value of 260 MeV. The b quark is treated within the NRQCD formalism, with a 1-loop
matching of the relevant currents to the ones in the relativistic theory, omitting terms of O(as Agcp/mp). The HISQ action
is used for the valence s quark. The continuum-chiral extrapolation is combined with the description of the ¢2-dependence
of the form factors into a modified z-expansion (cf. Appendix B.1) that formally coincides in the continuum with the BCL
ansatz. The dependence of form factors on the pion energy and quark masses is fitted to a 1-loop ansatz inspired by hard-pion
xPT [507], that factorizes out the chiral logarithms describing soft physics. The FNAL/MILC computation coincides with
HPQCD’s in using ensembles of gauge configurations with Ny = 2 + 1 flavours of asqtad rooted staggered quarks produced
by the MILC collaboration, but only one ensemble is shared, and a different valence regularization is employed; we will thus
treat the two results as fully independent from the statistics point of view. FNAL/MILC uses three values of the lattice spacing
(a = 0.12, 0.09, 0.06 fm); only one value of the sea pion mass and the volume is available at the extreme values of the
lattice spacing, while four different masses and volumes are considered at a = 0.09 fm. Heavy quarks are treated within the
Fermilab approach. HMrS x PT expansion is used at next-to-leading order in SU (2) and leading order in 1/Mp, including
next-to-next-to-leading-order (NNLO) analytic and generic discretization terms, to perform continuum-chiral extrapolations.

40 Note that generating synthetic data is a trivial task, but less so is choosing the number of required points and the ¢ values that lead to an optimal
description of the form factors.
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Table 47 Summary of lattice calculations of the B, — K {v semileptonic form factors
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Table 48 Coefficients and
correlation matrix for the By > K(Ny=2+1
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Fig. 32 The form factors fy(¢?) and fy(g?) for By — K£v plotted versus z (left panel) and ¢2 (right panel). In the left plot, we remove the
Blaschke factors. See text for a discussion of the data sets. The grey and salmon bands display our preferred N* = N° = 4 BCL fit (seven
parameters)

Hard kaons are assumed to decouple, i.e., their effect is reabsorbed in the SU (2) LECs. Continuum- and chiral-extrapolated
values of the form factors are fitted to a z-parametrization imposing the kinematical constraint f(0) = fo(0). See Table 47
and the tables in Appendix C.6.3 for full details.

In order to combine the results for the ¢> dependence of the form factors from the three collaborations, we will follow a
similar approach to the one adopted above for B — m£v, and produce synthetic data from the preferred fits quoted in the
papers, to obtain a dataset to which a joint fit can be performed. Note that the kinematic constraint at g> = 0 is included
in all three cases; we will impose it in our fit as well, since the synthetic data will implicitly depend on that fitting choice.
However, it is worth mentioning that the systematic uncertainty of the resulting extrapolated value f4(0) = fp(0) can be
fairly large, the main reason being the required long extrapolation from the high-¢> region covered by lattice data. While we
stress that the average far away from the high-¢? region has to be used carefully, it is possible that increasing the number of
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z coefficients beyond what is sufficient for a good description of the lattice data and using unitarity constraints to control the
size of additional terms, might yield fits with a more stable extrapolation at very low g2. We plan to include said unitarity
analysis into the next edition of the FLAG review. It is, however, important to emphasize that joint fits with experimental data,
where the latter accurately map the g2 region, are expected to be safe.

Our fits employ a BCL ansatz with ;. = (Mp + My)? and to = t4 — /1. (t; — t—), withr_ = (Mp, — Mg)?. Our pole
factors will contain a single pole in both the vector and scalar channels, for which we take the mass values Mg+ = 5.32465 GeV
and Mp«+y = 5.68 GeV.#! The constraint f+(0) = fo(0) is imposed by expressing the coefficient b?vo_ | in terms of all
others. The outcome of the seven-parameter N* = N° = 4 BCL fit, which we quote as our preferred result, is shown in
Table 48. The fit has a chi-square per degree of freedom x2/dof = 1.54. Following the PDG recommendation, we rescale
the whole covariance matrix by x2/dof: the errors on the z-parameters are increased by /x2/dof = 1.24 and the correlation
matrix is unaffected. The parameters shown in Table 48 provide the averaged FLAG results for the lattice-computed form
factors f (qz) and fp (q2). The coefficient azr can be obtained from the values for aar —a; using Eq. (531). The fit is illustrated
in Fig. 32.4?

We will conclude by pointing out progress in the application of the npHQET method to the extraction of semileptonic form
factors, reported for By — K transitions in Ref. [574], which extends the work of Ref. [575]. This is a methodological study
based on CLS Ny = 2 ensembles at two different values of the lattice spacing and pion masses, and full 1/m,, corrections
are incorporated within the npHQET framework. Emphasis is on the role of excited states in the extraction of the bare form
factors, which are shown to pose an impediment to reaching precisions better than a few percent.

8.3.3 Form factors for rare and radiative B-semileptonic decays to light flavours

Lattice-QCD input is also available for some exclusive semileptonic decay channels involving neutral-current b — ¢ transi-
tions at the quark level, where g = d, s. Being forbidden at tree level in the SM, these processes allow for stringent tests of
potential new physics; simple examples are B — K*y, B — K®¢*¢~ or B — 77 ¢~ where the B meson (and therefore
the light meson in the final state) can be either neutral or charged.

The corresponding SM effective weak Hamiltonian is considerably more complicated than the one for the tree-level
processes discussed above: after integrating out the top quark and the W boson, as many as ten dimension-six operators
formed by the product of two hadronic currents or one hadronic and one leptonic current appear.** Three of the latter, coming
from penguin and box diagrams, dominate at short distances and have matrix elements that, up to small QED corrections,
are given entirely in terms of B — (i, K, K*) form factors. The matrix elements of the remaining seven operators can
be expressed, up to power corrections whose size is still unclear, in terms of form factors, decay constants and light-cone
distribution amplitudes (for the 7, K, K* and B mesons) by employing OPE arguments (at large di-lepton invariant mass) and
results from Soft Collinear Effective Theory (at small di-lepton invariant mass). In conclusion, the most important contributions
to all of these decays are expected to come from matrix elements of current operators (vector, tensor, and axial-vector) between
one-hadron states, which in turn can be parameterized in terms of a number of form factors (see Ref. [577] for a complete
description).

In channels with pseudoscalar mesons in the final state, the level of sophistication of lattice calculations is similar to the
B — 7 case and there are results for the vector, scalar, and tensor form factors for B — K¢1¢~ decays by HPQCD [579],
and more recent results for both B — 7w£7¢~ [580] and B — K{¢T¢~ [578] from FNAL/MILC. Full details about these
two calculations are provided in Table 49 and in Appendix C.6.4. Both computations employ MILC Ny = 2 + 1 asqtad
ensembles. HPQCD [581] and FNAL/MILC [582] have also companion papers in which they calculate the Standard Model
predictions for the differential branching fractions and other observables and compare to experiment. The HPQCD computation
employs NRQCD b quarks and HISQ valence light quarks, and parameterizes the form factors over the full kinematic range
using a model-independent z-expansion as in Appendix B.1, including the covariance matrix of the fit coefficients. In the
case of the (separate) FNAL/MILC computations, both of them use Fermilab b quarks and asqtad light quarks, and a BCL
z-parameterization of the form factors.

41 These are the values used in the FNAL/MILC determination, while HPQCD and RBC/UKQCD use M B*(0+) = 5.6794(10) GeV and Mp+(oq) =
5.63 GeV, respectively. They also employ different values of 74 and #y than employed here, which again coincide with FNAL/MILC’s choice.

42 Note that in FLAG 19 [4] we had adopted the threshold 1, = (Mp, + Mg)? rather than ty =(Mp + M)?. This change impacted the z-range
which the physical ¢ interval maps onto. We also point out that, in the FLAG 19 version of Fig. 32, the three synthetic fy data points from HPQCD
were plotted incorrectly, but this did not affect the fit.

43 See, e.g., Ref. [576] and references therein.
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Table 49 Summary of lattice calculations of the B — K semileptonic form factors
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aOT 0.393(17) 1.000 0.400 0.204 0.166
al —0.65(23) 0.400 1.000 0.862 0.806
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al 0.1(2.8) 0.166 0.806 0.989 1.000

Reference [580] includes results for the tensor form factor for B — £+ £~ not included in previous publications on the
vector and scalar form factors [556]. Nineteen ensembles from four lattice spacings are used to control continuum and chiral
extrapolations. The results for N, = 4 z-expansion of the tensor form factor and its correlations with the expansions for the
vector and scalar form factors, which we consider the FLAG estimate, are shown in Table 50. Partial decay widths for decay
into light leptons or 77~ are presented as a function of ¢2. The former is compared with results from LHCb [583], while
the latter is a prediction.

The averaging of the HPQCD and FNAL/MILC results for the B — K form factors is similar to our treatment of the
B — m and B; — K form factors. In this case, even though the statistical uncertainties are partially correlated because
of some overlap between the adopted sets of MILC ensembles, we choose to treat the two calculations as independent.
The reason is that, in B — K, statistical uncertainties are subdominant and cannot be easily extracted from the results
presented by HPQCD and FNAL/MILC. Both collaborations provide only the outcome of a simultaneous z-fit to the vector,
scalar and tensor form factors, that we use to generate appropriate synthetic data. We then impose the kinematic constraint
I+ (g*> = 0) = fo(g?> = 0) and fit to (Nt = N® = NT = 3) BCL parameterization. The functional forms of the form
factors that we use are identical to those adopted in Ref. [582].** The results of the fit are presented in Table 51. The fit is
illustrated in Fig. 33. Note that the average for the fr form factor appears to prefer the FNAL/MILC synthetic data. This
happens because we perform a correlated fit of the three form factors simultaneously (both FNAL/MILC and HPQCD present
covariance matrices that include correlations between all form factors). We checked that the average for the fr form factor,
obtained neglecting correlations with fj and f., is a little lower and lies in between the two data sets. There is still a noticeable
tension between the FNAL/MILC and HPQCD data for the tensor form factor; indeed, a standalone fit to these data results
in x2, = 7.2/3 = 2.4, while a similar standalone joint fit to f and fp has x2, = 9.2/7 = 1.3. Finally, the global fit that is
shown in the figure has x2, = 18.6/10 = 1.86.

Lattice computations of form factors in channels with a vector meson in the final state face extra challenges with respect to the
case of a pseudoscalar meson: the state is unstable, and the extraction of the relevant matrix element from correlation functions
is significantly more complicated; x PT cannot be used as a guide to extrapolate results at unphysically heavy pion masses to
the chiral limit. While field-theory procedures to take resonance effects into account are available [328-330,585-592], they
have not yet been implemented in the existing preliminary computations, which therefore suffer from uncontrolled systematic
errors in calculations of weak decay form factors into unstable vector meson final states, such as the K* or p mesons.

44 Note in particular that not much is known about the sub-threshold poles for the scalar form factor. ENAL/MILC includes one pole at the BY,
mass as taken from the calculation in Ref. [584].

45 In cases such as B — D* transitions, that will be discussed below, this is much less of a practical problem due to the very narrow nature of the
resonance.
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Table 51 Coefficients and
correlation matrix for the
Nt=N'=NT =3
z-expansion of the B — K form
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Fig. 33 The B — K form factors f (qz), fo (qz) and fr (qz) plotted versus z (left panels) and q2 (right panels). In the plots as a function of z, we
remove the Blaschke factors. See text for a discussion of the data sets. The grey, salmon and blue bands display our preferred Nt = N = N7 =3
BCL fit (eight parameters)

As a consequence of the complexity of the problem, the level of maturity of these computations is significantly below the
one present for pseudoscalar form factors. Therefore, we only provide a short guide to the existing results. Horgan et al. have
obtained the seven form factors governing B — K*£1£~ (as well as those for By — ¢ £7¢~ and for the charged-current
decay By — K*¢v)in Ref. [593] using NRQCD b quarks and asqtad staggered light quarks. In this work, they use a modified
z-expansion to simultaneously extrapolate to the physical light-quark masses and fit the g2-dependence. As discussed above,
the unstable nature of the vector mesons was not taken into account. Horgan et al. use their form-factor results to calculate
the differential branching fractions and angular distributions and discuss the implications for phenomenology in a companion
paper [594]. An update of the form factor fits that enforces endpoint relations and also provides the full correlation matrices
can be found in Ref. [595]. Finally, preliminary results on B — K*¢7¢~ and B; — ¢£*¢~ by RBC/UKQCD have been
reported in Refs. [596-598].
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8.4 Semileptonic form factors for B(s) — D(s)€v and B(s) — D{ lv

The semileptonic processes B(s) — D)€v and B(s) — DE‘;)EU have been studied extensively by experimentalists and theorists
over the years. They allow for the determination of the CKM matrix element | V|, an extremely important parameter of the
Standard Model. The matrix element V,;, appears in many quantities that serve as inputs to CKM unitarity triangle analyses
and reducing its uncertainties is of paramount importance. For example, when € g, the measure of indirect CP violation in the
neutral kaon system, is written in terms of the parameters p and 7 that specify the apex of the unitarity triangle, a factor of
|Vep|* multiplies the dominant term. As a result, the errors coming from |V, | (and not those from By ) are now the dominant
uncertainty in the Standard Model (SM) prediction for this quantity.

The decay rate for B — D{v can be parameterized in terms of vector and scalar form factors in the same way as, e.g.,
B — mlv (see Sect. 8.3). The decay rate for B — D*{v is different because the final-state hadron is spin-1. There are four
form factors used to describe the vector and axial-vector current matrix elements that are needed to calculate this decay. We
define the 4-velocity of the meson P as vp = pp/mp and the polarization vector of the D* as €. When the light lepton £ = e,
or 4, it is traditional to use w = vp - vy rather than q2 as the variable upon which the form factors depend. Then, the form
factors hy and ha,, with i = 1, 2 or 3 are defined by

(D*|V,|B) = /mpmphy (w)emape™ v v, (238)
(D*|Ap|B) = i/mpmps [ha, (w)(1 + w)e™ — ha,(w)e* - vpvp, — hay(w)e™ - vgup,]. (239)
46

The differential decay rates can then be written as

2,3
dlp-— poe—y _Ggmp

o = P mp - mp) (w? = 1) new P Ves PG (w) (240)
dr - 0% p— 5 G2m3*
Pt = g — o) w? = D)2 lew P Ve | x ()| F(w) P, (241)

where w = vp - vy (depending on whether the final-state meson is D or D*) and ngw = 1.0066 is the 1-loop electroweak
correction [599]. The function x (w) in Eq. (241) depends on the recoil w and the meson masses, and reduces to unity at zero
recoil [576].7 These formulas do not include terms that are proportional to the lepton mass squared, which can be neglected
for £ = e, p. Further details of the definitions of 7 and G (which can be expressed in terms of the form factors Ay and h4;)
may be found, e.g., in Ref. [576]. Until recently, most unquenched lattice calculations for B — D*{¢v and B — D{v decays
focused on the form factors at zero recoil F5~P" (1) and GB=P(1); these can then be combined with experimental input to
extract |V,p|. The main reasons for concentrating on the zero recoil point are that (i) the decay rate then depends on a single
form factor, and (ii) for B — D*{v, there are no O(A gcp/m o) contributions due to Luke’s theorem [600]. Further, the zero
recoil form factor can be computed via a double ratio in which most of the current renormalization cancels and heavy-quark
discretization errors are suppressed by an additional power of Agcp/mg. Recent work on B — D™ ¢y transitions has
started to explore the dependence of the relevant form factors on the momentum transfer, using a similar methodology to the
one employed in B — mfv transitions; see Sect. 8.3 for a detailed discussion.

Early computations of the form factors for B — D{v decays include Ny = 2 + 1 results by FNAL/MILC [601,602]
for GB~P(1) and the N r = 2 study by Atoui et al. [603], that in addition to providing GB=D(1) explored the w > 1
region. This latter work also provided the first results for B; — Dsfv amplitudes, again including information about the
momentum-transfer dependence. The first published unquenched results for 75~ " (1), obtained by FNAL/MILC, date from
2008 [604]. In 2014 and 2015, significant progress was achieved in Ny = 2 + 1 computations: the FNAL/MILC value
for FB—D *(1) was updated in Ref. [605], and full results for B — D¢v at w > 1 were published by FNAL/MILC [606]

46 These are the only meson decay channels dealt with in this review where we apply the Sirlin correction factor 5w, that incorporates leading-
order, structure-independent corrections. This is in keeping with common practice. While including ngw in the analysis of b — ¢ transitions is
nearly universal in the literature, this is not so in other flavour-changing decays. It is worth stressing that this is just part of the expected corrections
—cf. the discussion of QED corrections in the sections of this review dealing with light meson decay — and therefore its inclusion is largely arbitrary,
insofar as a precise control of the full corrections, including the structure-dependent ones, is unavailable for a given channel. It is also necessary
to remark, on the other hand, that different practices contribute to a small ambiguity in the comparison of CKM matrix elements determined from
different decays, precisely of the order of the typically neglected electromagnetic corrections.

47 The reason to keep the factor x (w) outside the combination of form factors that defines F(w) is conventional, and inspired by the heavy-quark
limit. One particular consequence of this notation is that at zero recoil F (1) = h4, (1).

@ Springer



869 Page 128 of 296 Eur. Phys. J. C (2022) 82:869

and HPQCD [607]. These works also provided full results for the scalar form factor, allowing analysis of the decay with a
final-state 7. In the FLAG 19 review [4], we included new results for By — D £v form factors over the full kinematic range
for Ny =2 + 1 from HPQCD [608,609], and for B(;) — DZ‘;)KU form factors at zero recoil with Ny =2 + 1 + 1 also from
HPQCD [610,611]. Most recently, HPQCD published further new calculations of the By — D} form factor at zero recoil
[612] and of the By — D form factors in the full kinematic range [613], now using MILC’s HISQ Ny = 2+ 1+ 1 ensembles
and using the HISQ action also for the b quark. Both of these calculations have recently been used by LHCb to determine
[Vep| [614,615], as discussed further in Sect. 8.9. Improved calculations of the B — D and By — D, form factors are also
underway by RBC/UKQCD [566], and the Fermilab/MILC computation of the B — D* form factors at nonzero recoil is
nearing completion [616]. The JLQCD collaboration also presented preliminary results for the B — D and B — D* form
factors, both at nonzero recoil [617].

In the discussion below, we mainly concentrate on the latest generation of results, which supersedes previous Ny =2+ 1
determinations and allows for an extraction of | V| that incorporates information about the ¢>-dependence of the decay rate
(cf. Sect. 8.9).

8.4.1 By — D) decays

We will first discuss the Ny = 2+ 1 computations of B — D¢v by FNAL/MILC and HPQCD mentioned above, both based on
MILC asqtad ensembles. Full details about all the computations are provided in Table 54 and in the tables in Appendix C.6.5.

The FNAL/MILC study [606] employs ensembles at four values of the lattice spacing ranging between approximately
0.045 fm and 0.12 fm, and several values of the light-quark mass corresponding to pions with RMS masses ranging between
260 MeV and 670 MeV (with just one ensemble with MEMS ~ 330 MeV at the finest lattice spacing). The b and ¢ quarks
are treated using the Fermilab approach. The quantities directly studied are the form factors .4 defined by

(D(pp)licyb|B(pp))

=h h_ — , 242
s +(w)(wp +vp)y + h_(w)(vpg —vp)y (242)
which are related to the standard vector and scalar form factors by
1

fr(q®) = NG [(1+ )y (w) = (1 =r)h-(w)], (243)

l+w 1—w
folq®) = r ha(w) + ——h_(w) |, (244)

1+r 1—r

with r = mp/mp. (Recall that q2 = (pp — pD)2 = m% + mZD — 2wmpmp.) The hadronic form factor relevant for
experiment, G(w), is then obtained from the relation G(w) = Jar fi(g®/(1 + r). The form factors are obtained from
double ratios of three-point functions in which the flavour-conserving current renormalization factors cancel. The remaining
matching factor to the flavour-changing normalized current is estimated with 1-loop lattice perturbation theory. In order to
obtain A4 (w), a joint continuum-chiral fit is performed to an ansatz that contains the light-quark mass and lattice-spacing
dependence predicted by next-to-leading order HMrS x PT, and the leading dependence on m . predicted by the heavy-quark
expansion (1/ m% for hy and 1/m, for h_). The w-dependence, which allows for an interpolation in w, is given by analytic
terms up to (1 — w)?, as well as a contribution from the logarithm proportional to gzD* pr+ LThe total resulting systematic error,
determined as a function of w and quoted at the representative point w = 1.16 as 1.2% for f and 1.1% for fj, dominates
the final error budget for the form factors. After fi and fy have been determined as functions of w within the interval of
values of ¢ covered by the computation, synthetic data points are generated to be subsequently fitted to a z-expansion of
the BGL form, cf. Sect. 8.3, with pole factors set to unity. This in turn enables one to determine | V,;| from a joint fit of this
z-expansion and experimental data. The value of the zero-recoil form factor resulting from the z-expansion is

GE7P (1) = 1.054(4)stat (8)sys- (245)

The HPQCD computations [607,609] use ensembles at two values of the lattice spacing, a = 0.09, 0.12 fm, and two and
three values of light-quark masses, respectively. The b quark is treated using NRQCD, while for the ¢ quark the HISQ action
is used. The form factors studied, extracted from suitable three-point functions, are
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(Des) (o )IVOIBw) = [2M £, (Disy(pp DIV IBw) = \[2Mp, Pl FL, (246)

where V), is the relevant vector current and the By, rest frame is chosen. The standard vector and scalar form factors are
retrieved as

18" = = [+ O, = Ep) 7], 47
(s)
/2M,
me MZ—() [(MBM ED<v>)f|(S) + (M123<s> D(s))fm] ) (248)
B(s) D)

The currents in the effective theory are matched at 1-loop to their continuum counterparts. Results for the form factors are then
fitted to a modified BCL z-expansion ansatz, that takes into account simultaneously the lattice spacing, light-quark masses,
and ¢2-dependence. For the mass dependence, NLO chiral logarithms are included, in the form obtained in hard-pion y PT
(see footnote 33). As in the case of the FNAL/MILC computation, once f and fy have been determined as functions of ¢2,
|Vep| can be determined from a joint fit of this z-expansion and experimental data. The papers quote for the zero-recoil vector
form factor the result

GB=P (1) =1.035(40) GB~Ps(1) = 1.068(40). (249)

The HPQCD and FNAL/MILC results for B — D differ by less than half a standard deviation (assuming they are uncorrelated,
which they are not as some of the ensembles are common) primarily because of lower precision of the former result. The
HPQCD central value is smaller by 1.8 of the FNAL/MILC standard deviations than the FNAL/MILC value. The dominant
source of errors in the |V,,| determination by HPQCD are discretization effects and the systematic uncertainty associated
with the perturbative matching.

In order to combine the form factor determinations of HPQCD and FNAL/MILC into a lattice average, we proceed in a
similar way as with B — v and By — K{v above. FNAL/MILC quotes synthetic values for each form factor at three values
of w (or, alternatively, ¢) with a full correlation matrix, which we take directly as input. In the case of HPQCD, we use their
preferred modified z-expansion parameterization to produce synthetic values of the form factors at five different values of g2
(three for f and two for fy). This leaves us with a total of six (five) data points in the kinematical range w € [1.00, 1.11] for
the form factor f (fp). As in the case of B — v, we conservatively assume a 100% correlation of statistical uncertainties
between HPQCD and FNAL/MILC. We then fit this data set to a BCL ansatz, using t = (Mpo + M p=)? ~ 51.12 GeV?
and tg = (Mo + Mp=)(\/Mgo — /Mp=)> ~ 6.19 GeV?. In our fits, pole factors have been set to unity, i.e., we do not
take into account the effect of sub-threshold poles, which is then implicitly absorbed into the series coefficients. The reason
for this is our imperfect knowledge of the relevant resonance spectrum in this channel, which does not allow us to decide the
precise number of poles needed.*® This, in turn, implies that unitarity bounds do not rigorously apply, which has to be taken
into account when interpreting the results (cf. Appendix B.1).

With a procedure similar to what we adopted for the B — 7 and By — K cases, we impose the kinematic constraint at
g? = 0 by expressing the a?vo_l coefficient in the z-expansion of fy in terms of all the other coefficients. As mentioned above,
FNAL/MILC provides synthetic data for f and fy including correlations; HPQCD presents the result of simultaneous z-fits
to the two form factors including all correlations, thus enabling us to generate a complete set of synthetic data for f and fo.
Since both calculations are based on MILC ensembles, we then reconstruct the off-diagonal HPQCD-FNAL/MILC entries
of the covariance matrix by conservatively assuming that statistical uncertainties are 100% correlated. The Fermilab/MILC
(HPQCD) statistical error is 58% (31%) of the total error for every f; value, and 64% (49%) for every fy one. Using
this information we can easily build the off- diagonal block of the overall covariance matrix (e.g., the covariance between
[f+(@DIenaL and [ fo(gD) TupgceD is (81 f1(g7)1enaL x 0.58) (8[fo(g3)ImpQep X 0.49), where 8f i IS the total error).

For our central value we choose an NT = N? = 3 BCL fit, shown in Table 52. The coefficient a3 can be obtained from
the values for ao —a2 using Eq. (531). We find x2/dof = 4.6/6 = 0.77. The fit, which is dominated by the FNAL/MILC
calculation, is illustrated in Fig. 34.

Reference [603] is the only existing Ny = 2 work on B — D{v transitions, that furthermore provided the first available
results for By — D fv. This computation uses the publicly available ETM configurations obtained with the twisted-mass
QCD action at maximal twist. Four values of the lattice spacing, ranging between 0.054 and 0.098 fm, are considered, with

48 As noted above, this is the same approach adopted by FNAL/MILC in their fits to a BGL ansatz. HPQCD, meanwhile, uses one single pole in
the pole factors that enter their modified z-expansion, using their spectral studies to fix the value of the relevant resonance masses.
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Table 52 Coefficients and correlation matrix for the N* = NO = 3 z-expansion of the B — D form factors £, and fo. The chi-square per degree
of freedom is x2/dof = 4.6/6 = 0.77. The lattice calculations that enter this fit are taken from FNAL/MILC [606] and HPQCD [607]

B— D (N;=2+1)

al Central values Correlation matrix
ao+ 0.896 (10) 1 0.423 —0.231 0.958 0.596
af —7.94 (20) 0.423 1 0.325 0.498 0.919
a; 51.43.2) —0.231 0.325 1 —0.146 0.317
a8 0.7821 (81) 0.958 0.498 —0.146 1 0.593
a? —3.28 (20) 0.596 0.919 0.317 0.593 1
13 fEAG2021 S 13 AG2021 ———— :
i ffo Suerase ] F fo average 1
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Fig. 34 The form factors f (¢2) and fo(¢?) for B — DLv plotted versus z (left panel) and ¢ (right panel). See text for a discussion of the data
sets. The grey and salmon bands display our preferred N* = N = 3 BCL fit (five parameters)

physical box lengths ranging between 1.7 and 2.7 fm. At two values of the lattice spacing two different physical volumes are
available. Charged-pion masses range between & 270 and & 490 MeV, with two or three masses available per lattice spacing
and volume, save for the a &~ 0.054 fm point at which only one light mass is available for each of the two volumes. The
strange- and heavy-valence quarks are also treated with maximally twisted-mass QCD.

The quantities of interest are again the form factors 44+ defined above. In order to control discretization effects from the
heavy quarks, a strategy similar to the one employed by the ETM collaboration in their studies of B-meson decay constants
(cf. Sect. 8.1) is employed: the value of G(w) is computed at a fixed value of m. and several values of a heavier quark mass
m,(lk) = AXm., where 1 is a fixed scaling parameter, and step-scaling functions are built as

G(w, ¥ *me, me, a?)

> =
k(w) g(wa )"kmcv me, a2)

(250)

Each ratio is extrapolated to the continuum limit, ox(w) = lim,_.9 Xt (w). One then exploits the fact that the m;, — oo
limit of the step-scaling is fixed. In particular, it is easy to find from the heavy-quark expansion that lim,, .o 0 (1) = 1. In
this way, the physical result at the b-quark mass can be reached by interpolating o (w) between the charm region (where the
computation can be carried out with controlled systematics) and the known static limit value.

In practice, the values of m, and m; are fixed at each value of the lattice spacing such that the experimental kaon and Dy
masses are reached at the physical point, as determined in Ref. [618]. For the scaling parameter, A = 1.176 is chosen, and
eight scaling steps are performed, reaching my, /m. = 1.176° ~ 4.30, approximately corresponding to the ratio of the physical
b- and c-masses in the MS scheme at 2 GeV. All observables are obtained from ratios that do not require (re)normalization.
The ansatz for the continuum and chiral extrapolation of ¥; contains a constant and linear terms in mge, and a?. Twisted
boundary conditions in space are used for valence-quark fields for better momentum resolution. Applying this strategy, the
form factors are finally obtained at four reference values of w between 1.004 and 1.062, and, after a slight extrapolation to
w = 1, the result is

GB=DPs(1) = 1.052(46). (251)
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The authors also provide values for the form factor relevant for the meson states with light-valence quarks, obtained from
a similar analysis to the one described above for the By — Dy case. Values are quoted from fits with and without a linear
Mgea /My term in the chiral extrapolation. The result in the former case, which safely covers systematic uncertainties, is

GB=P (1) = 1.033(95). (252)

Given the identical strategy, and the small sensitivity of the ratios used in their method to the light valence- and sea-quark
masses, we assign this result the same ratings in Table 54 as those for their calculation of G2~ Ps (1). Currently, the precision
of this calculation is not competitive with that of Ny = 241 works, but this is due largely to the small number of configurations
analyzed by Atoui et al. The viability of their method has been clearly demonstrated, however, which leaves significant room
for improvement on the errors of both the B — D and By — D; form factors with this approach by including either additional
two-flavour data or analysing more recent ensembles with Ny > 2.

Atoui et al. also study the scalar and tensor form factors, as well as the momentum-transfer dependence of f o. The value
of the ratio f(g?)/f+(g?) is provided at a reference value of g as a proxy for the slope of G(w) around the zero-recoil limit.

Let us finally discuss the most recent results for By — Dy form factors, obtained by the HPQCD collaboration using
MILC’s Ny = 2+ 1+ 1 ensembles in Ref. [613]. Three values of the lattice spacing are used, including a very fine ensemble
at a >~ 0.044 fm; the pion mass is kept fixed at around 300 MeV, and in addition at the coarser a ~ 0.09 fm lattice an
ensemble with the physical pion mass is included. The scalar current needs no renormalization because of the PCVC relation,
while the vector current is nonperturbatively normalized by imposing a condition based on the PCVC relation at zero recoil.
Heavy quarks are treated in a fully relativistic fashion through the use of the HISQ regularization, employing bare values of
the quark mass up to amj;, = 0.8 for the extrapolation to the physical b point.

Results for the form factors are fitted to a modified z-expansion ansatz, based on a BCL ansatz with a Blaschke factor
containing one sub-threshold pole, tuned to reproduce the lattice-spacing and heavy-quark-mass-dependent mass of the
corresponding resonance. The final error budget is equally dominated by statistics and the combined effect of the continuum
and heavy quark mass extrapolations, which correspond to 1.1% and 1.2% uncertainties, respectively, for the scalar form
factor at zero recoil. The total uncertainty of the latter is thus below 2%, which remains true in the whole ¢2 range. The
uncertainty of f, is somewhat larger, starting at around 2% at ¢> = 0 and increasing up to around 3.5% at zero recoil.

One important matter of concern with this computation is the use of the @ ~ 0.044 fm ensemble with periodic boundary
conditions, which suffers from severe topology freezing. Other than possible implications for statistical uncertainties, the lack
of topology fluctuations are expected to significantly enhance finite-volume effects, which are no longer exponential in m L,
but become power-like in the spatial volume. The authors neglect the impact of finite-volume effects in the computation, with
a twofold argument: for the two coarser lattice spacings, the impact of pion-mass-related corrections on the heavy-meson
states involved is presumably negligible; and, for the finest ensemble, the estimate of finite-volume effects on the D decay
constant obtained in Ref. [142] turns out to be very small, a result which is presumed to extend to form factors. It is however
unclear whether the latter argument would really hold, since the computation in Ref. [142] does show that the expected effect
is heavily observable-dependent, reaching, e.g., more than 1% for fp. We have, therefore, concluded that our standard criteria
for finite-volume effects cannot be applied at the finest lattice spacing, and opted to assign o rating to them.

We thus proceed to quote the final result of HPQCD 19 as the FLAG estimate for the Ny =2+ 1+ 1 By — Dy form
factors. The preferred fit is a constrained BCL form with the imposition of the kinematical constraint f (0) = f(0), carried
through z? for f; and z> for £ . Both form factors contain just one sub-threshold pole, to which the masses M Br = 6.329 GeV
and Mp, = 6.704 GeV, respectively, have been assigned. The fit parameters and covariance matrix, quoted in Table VIII of
Ref. [613], are reproduced in Table 53.

8.4.2 Lepton-flavour-universality ratios R(D) and R(Dy)

The availability of results for the scalar form factor f for B — Dfv amplitudes allows us to study interesting observables
that involve the decay in the 7 channel. One such quantity is the ratio

R(Dy= BB = D) b= (253)
B(B — D{v) T

which, in the Standard Model, depends only on the form factors and hadron and lepton masses. Indeed, the recent availability
of experimental results for R(D) has made this quantity particularly relevant in the search for possible physics beyond the
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Table 53 Coefficients and
correlation matrix for the

B, — Dy (Nf=2+1+1)

z-expansion of the By — Dy ay, Central values Correlation matrix

form factors f and fp
ag 0.666(12) 1 0.62004 0.03149 1 0.03973 0.00122
a? —0.26(25) 0.62004 1 0.36842 0.62004 0.12945 0.00002
ag —0.1(1.8) 0.03149 0.36842 1 0.03149 0.22854 -0.00168
aar —0.075(12) 1 0.62004 0.03149 1 0.03973 0.00122
a|+ —3.24(45) 0.03973 0.12945 0.22854 0.03973 1 0.11086
a;' 0.7(2.0) 0.00122 0.00002 —0.00168 0.00122 0.11086 1

Standard Model. The most recent HFLAV average reads [619]:
R(D)exp = 0.340(27)(13). (254)
HPQCD provides a Standard-Model prediction for R(D) using the form factors from their 2015 lattice computation [607],
R(D)1ar = 0.300(8) Ref. [607]. (255)

The FNAL/MILC collaboration computed R (D) using form factors from a combined fit of their lattice data and B — D{v
experimental data:

R(D)jagtexp = 0.299(11) Ref. [606]. (256)

Note that other authors have obtained even smaller uncertainties from fits including B — D¥v experimental data, cf. the
value R(D)iatexp = 0.299(3) quoted in Ref. [620]. One important reason for this is that, while Refs. [606,607] only use the
2009 BaBar data in Refs. [620,621] also incorporates the more precise Belle 2015 data in Ref. [622].

If instead we take the lattice-only form factors from FNAL/MILC, we obtain

R(D)1ar = 0.285(15) Ref. [606]. (257)

(We average over electrons and muons in the denominator, which only affects the last digit.)

Finally, using the FLAG average of the B — D form factors discussed above, we find R(D)E;AG = 0.2934(38). The ratio
R(D) requires the integral of the branching ratios for £ = e, i, T over the whole phase space. Since lattice simulations are
sensitive mostly to relatively large ¢ values, lattice-only calculations of R(D) rely on the extrapolation of the form factors
to low ¢2 and are especially sensitive to the choice of parameterization. In order to estimate this source of systematics, we
repeated the fit using the parameterization adopted by HPQCD in Ref. [607]. The main difference with respect to our default
paremeterization is the inclusion of Blaschke factors for the form factors f and fy located at My = Mg = 6.330(9) GeV

and My = 6.420(9) GeV; additionally, the parameter ¢ is set to (mp — mp)Z. Using five coefficients (affz3 and a?’z with
aj fixed by the f1(¢% = 0) = fo(g® = 0) condition) we find R(D) °*" = 0.3009(38) which deviates from R(D)F-AC

lat lat
by 1.4 o. To take this potential source of systematic uncertainty into account we rescale accordingly the uncertainty of our

default fit and obtain:

R(D)1ar = 0.2934(53), our average. (258)

This result is about 1.5¢ lower than the current experimental average [261] for this quantity. It has to be stressed that achieving
this level of precision critically depends on the reliability with which the low-¢2 region is controlled by the parameterizations
of the form factors.

After including the B — D{v (£ = e, ) data in the fit, as discussed at the end of Sect. 8.9, we obtain the following
combined lattice plus experiment result:

R(D)yat4exp = 0.2951(31),  our average. (259)
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HPQCD also computes values for R(Dy), the analog of R(D) with both heavy-light mesons containing a strange quark.
The earlier calculation using NRQCD b quarks gives

R(Dg)1at = 0.301(6), Ny=2+1 [609]. (260)
The newer calculation with HISQ b quarks yields the somewhat more precise value
R(Dg)jar = 0.2987(46), Ny=2+4+1+1 [613]. (261)

A similar ratio R(D*) can be considered for B — D* transitions. As a matter of fact, the experimental value of R(D*)
is significantly more accurate than the one of R(D). A preliminary lattice-QCD-only prediction of R(D*) was shown by
A. Vaquero [623].

8.4.3 Fragmentation fraction ratio fs/fq

Another area of immediate interest in searches for physics beyond the Standard Model is the measurement of By — ™™
decays, recently studied at the LHC. One of the inputs required by the LHCb analysis is the ratio of B, meson (¢ = d, s)
fragmentation fractions f;/fs, where f; is the probability that a ¢ quark hadronizes into a B;. This ratio can be measured by
writing it as a product of ratios that involve experimentally measurable quantities, cf. Refs. [624,625]. One of the factors is
the ratio fés) (M72T) / fo(d) (M [2<) of scalar form factors for the corresponding semileptonic meson decay, which is where lattice
input becomes useful.

A dedicated Ny = 2 + 1 study by FNAL/MILC* [626] addresses the ratios of scalar form factors fo(q)(qz), and quotes:
M2 /1D (ME) = 1.046(44)(15), M2 /D M2y = 1.05447)(17), (262)

where the first error is statistical and the second systematic. The more recent results from HPQCD [609] are:
M2 P ME) =1.000062),  f0 M2/ (M2) = 1.006(62). (263)

Results from both groups lead to fragmentation fraction ratios f;/f; that are consistent with LHCb’s measurements via other
methods [625].

8.4.4 B(s) — Dy, decays

The most precise computation of the zero-recoil form factors needed for the determination of | V.| from exclusive B semilep-
tonic decays comes from the B — D*{v form factor at zero recoil 5= " (1), calculated by the FNAL/MILC collaboration.
The original computation, published in Ref. [604], has been updated [605] by employing a much more extensive set of
gauge ensembles and increasing the statistics of the ensembles originally considered, while preserving the analysis strategy.
There are currently no final unquenched results for the relevant form factors at nonzero recoil, but work is in progress by
FNAL/MILC [616] and JLQCD [617].

Reference [605] uses the MILC Ny = 2 + 1 ensembles. The bottom and charm quarks are simulated using the clover
action with the Fermilab interpretation and light quarks are treated via the asqtad staggered fermion action. Recalling the
definition of the form factors in Eq. (239), at zero recoil 5P " (1) reduces to a single form factor /1 4, (1) coming from the
axial-vector current

(D*(v, €)| AL B(v)) = iy/2mp2m p GL*hAl (1), (264)
where €’ is the polarization of the D*. The form factor is accessed through a ratio of three-point correlators, viz.,

(D*|cy;ysb|B) (Blbyjysc|D*)
(D*|cysc|D*) (B|bysb|B)

Ra, = = |ha, (D% (265)

49 This work also provided a value for R(D), now superseded by Ref. [606].

@ Springer



869 Page 134 of 296 Eur. Phys. J. C (2022) 82:869

Simulation data is obtained on MILC ensembles with five lattice spacings, ranging from a =& 0.15 fm to a ~ 0.045 fm, and
as many as five values of the light-quark masses per ensemble (though just one at the finest lattice spacing). Results are then
extrapolated to the physical, continuum/chiral, limit employing staggered x PT.

The D* meson is not a stable particle in QCD and decays predominantly into a D plus a pion. Nevertheless, heavy-light
meson x PT can be applied to extrapolate lattice simulation results for the B — D*¢v form factor to the physical light-quark
mass. The D* width is quite narrow, 0.096 MeV for the D**(2010) and less than 2.1 MeV for the D*°(2007), making this
system much more stable and long lived than the p or the K* systems. The fact that the D* — D mass difference is close to the
pion mass leads to the well-known “cusp” in R 4, just above the physical pion mass [627-629]. This cusp makes the chiral
extrapolation sensitive to values used in the xPT formulas for the D* D coupling gp+pr. The error budget in Ref. [605]
includes a separate error of 0.3% coming from the uncertainty in g p+p in addition to general chiral extrapolation errors in
order to take this sensitivity into account.

The final value presented in Ref. [605] is

Np=2+1: FEZP'(1) =0.906(4)(12), (266)

where the first error is statistical, and the second the sum of systematic errors added in quadrature, making up a total error
of 1.4% (down from the original 2.6% of Ref. [604]). The largest systematic uncertainty comes from discretization errors
followed by effects of higher-order corrections in the chiral perturbation theory ansatz.

In 2017, the HPQCD collaboration has published the first study of B(sy — D v form factors at zero recoil for Ny =
2+ 141 using eight MILC ensembles with lattice spacing a &~ 0.15 fm, 0.12 fm, and 0.09 fm [611]. There are three ensembles
with varying light-quark masses for the two coarser lattice spacings and two choices of light-quark mass for the finest lattice
spacing. In each case, there is one ensemble for which the light-quark mass is very close to the physical value. The b quark
is treated using NRQCD and the light quarks are treated using the HISQ action. The resulting zero-recoil form factors are:

Np=2+1+1: FF2P7(1)=0.895(10)24), FB~P5(1) = 0.883(12)(28). (267)

In 2019, the HPQCD collaboration published a new Ny = 2 + 1 + 1 calculation of the By — D form factor at zero recoil,
now using the HISQ action also for the b quark [612]. The lattice methodology and ensembles used are the same as in their
2019 calculation of the B; — D; form factors [613], which was discussed in detail in Sect. 8.4.1. The resulting form factor
is:

Np=2+1+1: FB2PI(1) =0.9020(96)(90). (268)

The calculations in Refs. [611,612] use different b-quark actions and share only two ensambles at a = 0.09 fm and can be
considered essentially independent, yielding the average:

Np=2+1+1: FBEZDPI(1)=0.899(12), our average. (269)

In recent years, the FNAL/MILC, HPQCD, and JLQCD collaborations have periodically reported about their efforts to
determine the full momentum dependence of B() — DZ*S)EU form factors at Lattice conferences. JLQCD efforts are based
on Ny = 2 + 1 Mdbius domain-wall ensembles and a relativistic heavy quark action. The latest status update published
in conference proceedings can be found in Ref. [617]. At the time of finalizing this review, FNAL/MILC and HPQCD
have produced preprints with their final results for B — D* and By — D} form factors, respectively. The FNAL/MILC
computation, Ref. [630] is based on Ny = 2 + 1 asqtad sea-quark ensembles with lattice spacing between approximately
0.15 and 0.045 fm, and uses a relativistic heavy-quark action with the Fermilab interpretation. The HPQCD computation,
Ref. [631],is based on Ny = 2+ 1+ 1 HISQ ensembles, and uses the same regularization for heavy quarks. Upon publication
of both works, we intend to include full details for them in an upcoming intermediate update of this section (Table 54).

8.5 Semileptonic form factors for B, — (1., J/v¥)€v decays
In a recent publication, HPQCD 20B [632] provided the first full determination of B, — J /v form factors, extending earlier
preliminary work that also covered B, — 7., Refs. [633,634]. While the latter employed both NRQCD and HISQ actions

for the valence b quark, and the HISQ action for the ¢ quark, in HPQCD 20B the HISQ action is used throughout for all
flavors. The setup is the same as for the B; — D, computation discussed above, HPQCD 19; we refer to the entries for the
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Table 54 Lattice results for mesonic processes involving b — ¢ transitions
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§ § > 2 & S

S § S s S &
Collaboration Refs. Ny R O @) & 5 & w = 1 form factor/ratio
HPQCD 15, HPQCD 17 [607,609] 2+1 A o o o) o) v gB=P(1)  1.035(40)
FNAL/MILC 15C [606] 241 A Y o) * o v gB=P(1)  1.054(4)(8)
Atoui 13 [603] 2 A * o * - v gB=D(1) 1.033(95)
HPQCD 19 [613]  2+1+1 A * o) o* v v GB=Ds(1) 1.071(37)
HPQCD 15, HPQCD 17 [607,609] 2+1 A o o o) o) v GB=Ds(1) 1.068(40)
Atoui 13 [603] 2 A * o) * - v GB:s=Ds (1) 1.052(46)
HPQCD 17B [611] 2+1+1 A o * * o) v FB=D (1) 0.895(10)(24)
FNAL/MILC 14 [605] 241 A * o) * o) v FE=DU(1) 0.906(4)(12)
HPQCD 17B [611]  2+1+1 A o * * o v FBs—=D{ (1) 0.883(12)(28)
HPQCD 19B [612] 2+1+1 A * o o* vV v FB= DY (1) 0.9020(96)(90)
HPQCD 15, HPQCD 17 [607,609] 2+1 A o o o o v GB=Ds (1) 1.068(40)
HPQCD 20B [632]  2+1+1 A * o o* v v n/a n/a
HPQCD 15, HPQCD 17 [607,609] 2+1 A o o o o v R(D) 0.300(8)
FNAL/MILC 15C [606] 2+1 A * o * o v R(D) 0.299(11)

*The rationale for assigning a O rating is discussed in the text

latter paper in summary tables for details. The flavor singlet nature of the final state means that there are contributions to the
relevant three-point functions from disconnected Wick contractions, which are not discussed in the paper.

There are however some relevant differences with By — Dg decays. In the J /¢ case, since the hadron in the final state
has vector quantum numbers, the description of the hadronic amplitude requires four independent form factors V, Ag, Aq,
Aj. Specifically,

_ _ 2iV(g?)
J /’)“ 'ubB — HVPO % /’)\' / ,
(J/¥(p', MIcy™bIBS (p)) P T ex(p'. VP, po

* /,)» .
(/P ) IEy Y bIBS (p)) = zMJ/onwz)E(pq#

e“(p',A)-q
q"* + (Mp, + MJ/x//)Al(qz) [E*“(P/, A) — q—qu
2 2
e*(p',1) - q My — My,
—Ay(gH— L T phgp p - eV 270
2(q )MBc‘i‘MJ/w pr+p 7 q (270)

where €, is the polarization vector of the J /v state. The computed form factors are fitted to a z-parameterization-inspired
ansatz, where coefficients are modified to model the lattice-spacing and the heavy- and light-mass dependences, for a total of
280 fit parameters. In the continuum and at physical kinematics only 16 parameters survive, as each form factor is parameterized
by an expression of the form

3

1
F(g*) = anz", 271)
P(g?) 2 !
where the pole factor is given by
P(g*) =] ]za* Mp) (272)
k
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with { M} a different set of pole energies below the B D* threshold for each set of J© quantum numbers, taken from a mixture
of experimental results, lattice determinations, and model estimates. The values used (in GeV) are

0~ : 6.275, 6.872, 7.25;
17 : 6.335, 6.926, 7.02, 7.28: (273)
17 6.745, 6.75, 7.15, 7.15.

The outcome of the fit, that we quote as a FLAG estimate, is

ag ap az as
\% 0.1057(55) —0.746(92) 0.10(98) 0.006(1.000)
A0 0.1006(37) —0.731(72) 0.30(90) —0.02(1.00)
Al 0.0553(19) —0.266(40) 0.31(70) 0.11(99)
A2 0.0511(91) —0.22(19) —0.36(82) —0.05(1.00)

The correlation matrix for the coefficients is provided in Tables XIX—-XXVII of Ref. [632]
8.6 Semileptonic form factors for A, — (p, Aé*))ﬁf) decays

The b — cfv and b — ulv transitions can also be probed in decays of Aj; baryons. With the LHCb experiment, the final
state of A, — puv is easier to identify than that of B — 7 uv [635], and the first determination of |V,;|/|Vcp| at the Large
Hadron Collider was performed using a ratio of A, — puv and Ap — A uv decay rates [636] (cf. Sect. 8.10).

The amplitudes of the decays A, — pfv and A, — ALy receive contributions from both the vector and the axial-vector
components of the current in the matrix elements (p|uy™ (1 — y5)b|Ap) and (A |cy* (1 — y5)b|Ap). The matrix elements
split into three form factors f, fo, f1 mediated by the vector component of the current, and another three form factors g,
80, g1 mediated by the axial-vector component — see, e.g., Ref. [511] for a complete description. Given the sensitivity to all
Dirac structures, measurements of the baryonic decay rates also provides useful complementary constraints on right-handed
couplings beyond the Standard Model [636].

To date, only one unquenched lattice-QCD computation of the A, — p and A, — A, form factors with physical heavy-
quark masses has been published: Detmold 15 [516]. This computation uses RBC/UKQCD Ny = 2 + 1 DWF ensembles,
and treats the b and ¢ quarks within the Columbia RHQ approach. The renormalization of the currents is carried out using
a mostly nonperturbative method, with residual matching factors computed at one loop. Two values of the lattice spacing
(a ~ 0.11, 0.085 fm) are considered, with the absolute scale set from the T (25)-Y (15) splitting. Sea pion masses lie in a
narrow interval ranging from slightly above 400 MeV to slightly below 300 MeV, keeping m, L 2 4; however, lighter pion
masses are considered in the valence DWF action for the u, d quarks. The lowest valence-valence pion mass is 227(3) MeV,
which leads to a B rating of finite-volume effects. Results for the form factors are obtained from suitable three-point functions,
and fitted to a modified z-expansion ansatz that combines the ¢2-dependence with the chiral and continuum extrapolations.
The main results of the paper are the predictions (errors are statistical and systematic, respectively)

2
1 dmax dI'(Ap — pu™vy) _
Cpui(15GeV?) = W/lsavz i k2 dg? = 12.31(76)(77) ps— ", (274)
u c
2
1 e AT (Ap = At y) _
Ca.u5(7GeV?) = W/m - i’ M g% =8.37(16)(34) ps~ !, (275)
C (5]
5(15GeV?
M — 1.471(95)(109), (276)
EAcuiv (7GeV?)

which are the input for the LHCb analysis. Predictions for the total rates in all possible lepton channels, as well as for ratios
similar to R(D) (cf. Sect. 8.4) between the t and light-lepton channels are also available, in particular,

R(Ay) = ~B0 = AT V) ) 330674y (70). (277)
C(Ap = Ac ™)
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Datta 2017 [637] additionally includes results for the A, — A, tensor form factors iy, h ], 7z+, n |, based on the same lattice
computation as Detmold 15 [516]. The main focus of Datta 2017 is the phenomenology of the A, — A.tVv; decay and
how it can be used to constrain contributions from beyond the Standard Model physics. Unlike in the case of the vector and
axial-vector currents, the residual matching factors of the tensor currents are set to their tree-level value. While the matching
systematic uncertainty is augmented to take this fact into account, the procedure implies that the tensor current retains an
uncanceled logarithmic divergence at O(w).

Recently, first lattice calculations have also been completed for Aj; semileptonic decays to negative-parity baryons in the
final state. Such calculations are substantially more challenging and have not yet reached the same level of precision. Meinel

21[638] considers the decays A, — A%(2595)¢v and A, — A% (2625)€v, where the A (2595) and A} (2625) are the lightest

charm baryons with isospin 0 and J* = %_ and J¥ = %_, respectively. These decay modes may eventually provide new

opportunities to test lepton-flavor universality at the LHC, but are also very interesting from a theoretical point of view. The
lattice results for the form factors may help tighten dispersive constraints in global analyses of b — ¢ semileptonic decays
[639], and may provide new insights into the internal structure of the negative-parity heavy baryons and their description
in heavy-quark-effective-theory. The A¥(2595) and A}(2625) are very narrow resonances decaying through the strong
interaction into A . The strong decays are neglected in Meinel 21 [638]. The calculation was performed using the same
lattice actions as previously for A, — A, albeit with newly tuned RHQ parameters. Only three ensembles are used, with
a ~ 0.11, 0.08 fm and pion masses in the range from approximately 300—430 MeV, with valence-quark masses equal to the
sea-quark masses. Chiral-continuum extrapolations linear in m% and a? are performed, with systematic uncertainties estimated
using higher-order fits. Finite-volume effects and effects associated with the strong decays of the A’’s are not quantified. The
calculation is done in the A rest frame, where the cubic symmetry is sufficient to avoid mixing with unwanted lower-mass
states. As a consequence, the calculation is limited to a small kinematic region near the zero-recoil point w = 1. On each
ensemble, lattice data were produced for two values of w — 1 of approximately 0.01 and 0.03. The final results for the form
factors are parameterized as linear functions of w — 1 and can be found in Meinel 21 [638] and associated supplemental files.

8.7 Semileptonic form factors for A, — A®¢¢

The decays A, — ALT¢™ are mediated by the same underlying b — s€* £~ FCNC transition as, for example, B — K{£T¢~
and B — K*{*¢~, and can therefore provide additional information on the hints for physics beyond the Standard Model
seen in the meson decays. The A baryon in the final state decays through the weak interaction into pz~ (or nx?), leading
to a wealth of angular observables even for unpolarized Ap. When including the effects of a nonzero A, polarization,
Ap — A(— pm™)Lte~ decays are characterized by five angles leading to 34 angular observables [640], which have been
measured by LHCD in the bin q2 € [15, 20]GeV? [641]. Given that the A is stable under the strong interactions, the A, — A
form factors parametrizing the matrix elements of local sI"b currents can be calculated on the lattice with high precision
using standard methods. Of course, the process A, — A£T£~ also receives contributions from nonlocal matrix elements
of four-quark and quark-gluon operators in the weak effective Hamiltonian combined with the electromagnetic current. As
with the mesonic b — s¢* £~ decays, these contributions cannot easily be calculated on the lattice and one relies on other
theoretical tools for them, including the local OPE at high ¢ and a light-cone OPE/QCD factorization at low ¢?.

Following an early calculation with static b quarks [642], Detmold 16 [643] provides results for all ten relativistic A, — A
form factors parametrizing the matrix elements of the local vector, axial-vector and tensor b — s currents. The lattice setup is
identical to that used in the 2015 calculation of the A, — p form factors in Detmold 15 [516], and similar considerations as
in the previous section thus apply. The lattice data cover the upper 60% of the ¢ range, and the form factors are extrapolated
to the full ¢ range using BCL z-expansion fits. This extrapolation is done simultaneously with the chiral and continuum
extrapolations. The caveat regarding the renormalization of the tensor currents also applies here.

Reference [644] uses the lattice results for the A, — A form factors together with the experimental results for A, —
A(— pr )t~ from LHCb [641,645] to perform fits of the b — su™ ™ Wilson coefficients and of the Aj, polarization
parameter. Given the uncertainties (which are still dominated by experiment), the results for the Wilson coefficients are
presently consistent both with the Standard-Model values and with the deviations seen in global fits that include all mesonic
decays [646,647].

As with the b — ¢ semileptonic form factors, a first lattice calculation, Meinel 2020 [648], was also recently completed

for a b — s transition to a negative-parity baryon in the final state, in this case the A*(1520) with J© = %_ (no calculation

has yet been published for the strange JX = %_ final states, which would be the broader and even more challenging

A*(1405)/A*(1380) [165]). The A*(1520) decays primarily to pK~/nK°, £, and Az with a total width of 15.6 & 1.0
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Table 55 Summary of computations of bottom baryon semileptonic form factors (see also Refs. [642,649] for calculations with static b quarks).
The rationale for the M rating of finite-volume effects in Meinel 20 and 21 (despite meeting the o criterion based on the minimum pion mass) is
that the unstable nature of the final-state baryons was neglected in the analysis

I
S g $ §
LA 4 o . & 8
. g & § & ¥
g § S N S >
N § & £ > s
5 § $ s &5
4 S
Process Collaboration Refs. Ny < o} g & <& &
Ap = A%(2625)£7 vy  Meinel 21 [638] 2+1 A (0] e} | e} v
Ap — AF(2595) €70 Meinel 21 [638] 241 A ) o [ ] o v
Ap — A*(1520) £7¢~ Meinel 20 [648] 2+1 A (0] 0 [ | 0 v
Ap — ALt Detmold 16 [643] 241 A o) o) [ o) v
Ap — pl iy Detmold 15 [516] 2+1 A ) o [ ] o v
Ap — ATy Detmold 15, Datta 17 [516,637] 2+1 A o) o | o v
Table 56 Experimental Collaboration Tagging method B(B~ — D) x 10*
measurements for
B(B~ — t7 ). The first error : . +0.27
on each result is statistical, while Belle [650] Hadronic 072255 £0.11
the second error is systematic Belle [528] Semileptonic 1.254+0.28 £0.27
BaBar [527] Hadronic 1.837033 +£0.24
BaBar [651] Semileptonic 1.7£0.8+0.2

MeV [165] . The analysis of the lattice data again neglects the strong decays and does not quantify finite-volume effects, and
is again limited to a small kinematic region near qﬁlax (Table 55).

8.8 Determination of | V3|

We now use the lattice-determined Standard Model transition amplitudes for leptonic (Sect. 8.1) and semileptonic (Sect. 8.3)
B-meson decays to obtain exclusive determinations of the CKM matrix element |V,,;|. In this section, we describe the aspect
of our work that involves experimental input for the relevant charged-current exclusive decay processes. The relevant formulae
are Egs. (202) and (236). Among leptonic channels the only input comes from B — tv;, since the rates for decays to e and
1 have not yet been measured. In the semileptonic case, we only consider B — m{v transitions (experimentally measured
for ¢ = e, p).

We first investigate the determination of | V,,;| through the B — tv; transition. This is the only experimentally measured
leptonic decay channel of the charged B meson. The experimental measurements of the branching fraction of this channel,
B(B~™ — 17 1), have not been updated since the publication of the FLAG Review in 2016 [3]. The status of the experimental
results for this branching fraction, summarized in Table 56, is unchanged from FLAG Review 16 [3]. Our corresponding
values of |V,;| are unchanged from FLAG Review 19 [4].

It is obvious that all the measurements listed in Table 56 have significance smaller than 5o, and the large uncertainties
are dominated by statistical errors. These measurements lead to the averages of experimental measurements for B(B~ —
Tv) [527,528],

B(B™ — 1v) X 10* = 0.91 £ 0.22 from Belle, (278)
= 1.79 £ 0.48 from BaBar, 279)
= 1.06 & 0.33 average, (280)
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where, following our standard procedure we perform a weighted average and rescale the uncertainty by the square root of the
reduced chi-squared. Note that the Particle Data Group [164] did not inflate the uncertainty in the calculation of the averaged
branching ratio.

Combining the results in Eqgs. (278-280) with the experimental measurements of the mass of the r-lepton and the B-meson
lifetime and mass we get

[Vupl fB = 0.72 £ 0.09 MeV from Belle, (281)

= 1.01 £ 0.14 MeV from BaBar, (282)

= 0.77 £ 0.12 MeV average, (283)

which can be used to extract |V, |, viz.,

Nf=2 Belle B — tv; : |Vup| = 3.83(14)(48) x 1073, (284)
Nf=2+1 Belle B — tv; : [Vup| = 3.75(8)(47) x 1073, (285)
Np=2+1+1 Belle B — tv; : |Vun| = 3.79(3)(47) x 1073; (286)
Np=2 Babar B — tv; : |Vip| = 5.37(20)(74) x 1073, (287)
Ny=2+1 Babar B — tv; : |Vup| = 5.26(12)(73) x 1073, (288)
Ny=2+1+1 Babar B — tv; : |Vl = 5.32(4)(74) x 1073, (289)
Nf=2 average B — tv; : | Vup| = 4.10(15)(64) x 10_3, (290)
Ny=2+1 average B — tv; : [Vup| = 4.01(9)(63) x 1073, (291)
Ny=2+1+1 average B — tv; ¢ [Vup| = 4.05(3)(64) x 10_3, (292)

where the first error comes from the uncertainty in fp and the second comes from experiment.

Let us now turn our attention to semileptonic decays. The experimental value of |V,| f(g?) can be extracted from the
measured branching fractions for B — 7% ¢v and/or B¥ — 7%¢v applying Eq. (236);°° |V,,5| can then be determined by
performing fits to the constrained BCL z-parameterization of the form factor f, (¢2) given in Eq. (532). This can be done
in two ways: one option is to perform separate fits to lattice and experimental results, and extract the value of |V,;| from
the ratio of the respective ag coefficients; a second option is to perform a simultaneous fit to lattice and experimental data,
leaving their relative normalization |V,;| as a free parameter. We adopt the second strategy, because it combines the lattice
and experimental input in a more efficient way, leading to a smaller uncertainty on |V,;|.

The available state-of-the-art experimental input consists of five data sets: three untagged measurements by BaBar (6-
bin [652] and 12-bin [653]) and Belle [654], all of which assume isospin symmetry and provide combined BY - 7~ and
Bt — 70 data; and the two tagged Belle measurements of B — 7 (13-bin) and B~ — 7° (7-bin) [655]. Including
all of them, along with the available information about cross-correlations, will allow us to obtain a meaningful final error
estimate.”! The lattice input data set will be the same discussed in Sect. 8.3.

We perform a constrained BCL fit of the vector and scalar form factors (this is necessary in order to take into account the
fi(g> = 0) = fo(q*> = 0) constraint) together with the combined experimental data sets. We find that the error on |V, |
stabilizes for N* = N9 = 3. The result of the combined fit is presented in Table 57. The fit has a chi-square per degree
of freedom x2/dof = 78.7/56 = 1.41. Following the PDG recommendation we rescale the whole covariance matrix by
x%/dof: the errors on the z-parameters are increased by /x2/dof = 1.19 and the correlation matrix is unaffected.

In Fig. 35, we show both the lattice and experimental data for (1 — g2/ m%*) fi(g?) as a function of z(¢?), together with
our preferred fit; experimental data has been rescaled by the resulting value for |V,;|2. It is worth noting the good consistency
between the form factor shapes from lattice and experimental data. This can be quantified, e.g., by computing the ratio of the
two leading coefficients in the constrained BCL parameterization: the fit to lattice form factors yields al+ / ao+ = —1.67(35)
(cf. the results presented in Sect. 8.3.1), while the above lattice+experiment fit yields a1+ /aar = —1.19(13).

30 Since £ = e, u the contribution from the scalar form factor in Eq. (236) is negligible.
51 See, e.g., Sec. V.D of Ref. [556] for a detailed discussion.
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Table 57 |V,;|, coefficients for the N* = N® = N7 = 3 z-expansion of the B — 7 form factors f, and fp, and their correlation matrix.
The chi-square per degree of freedom is x2/dof = 78.7/56 = 1.41 and the errorson the fit parameters have been rescaled by /x2/dof = 1.19.
The lattice calculations that enter this fit are taken from FNAL/MILC [556] and RBC/UKQCD [557]. The experimental inputs are taken from
BaBar [652,653] and Belle [654,655]

B— mlv (Nyp=2+1)

Central values Correlation matrix

V., X 103 3.74 (17) 1 —0.851 —0.349 0.375 —-0.211 —0.246
aa' 0.415 (14) —0.851 1 0.155 —0.454 0.260 0.144
al+ —0.488 (53) —0.349 0.155 1 —0.802 —0.0962 0.220
a; —0.31 (18) 0.375 —0.454 —0.802 1 0.0131 —0.100
ag 0.500 (23) —0.211 0.260 —0.0962 0.0131 1 —0.453
a(l) —1.424 (54) —0.246 0.144 0.220 —0.100 —0.453 1

FIAG2021 S — go AG2021

wf g A — g P Ber fi
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r f+ RBC/UKQCD 15 +—4— ] 6.0 £ f+ RBC/UKQCD 15 +4— 3
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Fig. 35 Lattice and experimental data for f’ f 7 (¢%) and fOB =7 (¢?) versus z (left panel) and ¢? (right panel). Experimental data has been rescaled
by the value for |V,;| found from the joint fit. Green symbols denote lattice-QCD points included in the fit, while blue and indigo points show
experimental data divided by the value of |V,| obtained from the fit. The grey and orange bands display the preferred N* = N° = 3 BCL fit (five
z-parameters and |V |)

We plot the values of |V,;| we have obtained in Fig. 37, where the GGOU [656] determination through inclusive decays,
[V, plinct = (4.32£0.12¢xp +0.13theo 0.2375F) X 1073 [165,261] (the ABF error has been added in Ref. [165] to account
for the spread in results obtained using different theoretical models), is also shown for comparison.>? In this plot the tension
between the BaBar and the Belle measurements of B(B~ — 7~ v) is manifest. As discussed above, it is for this reason that
we do not extract | V| through the average of results for this branching fraction from these two collaborations. In fact this
means that a reliable determination of |V, | using information from leptonic B-meson decays is still absent; the situation will
only clearly improve with the more precise experimental data expected from Belle II [657,658]. The value for |V, | obtained
from semileptonic B decays for Ny = 2 + 1, on the other hand, is significantly more precise than both the leptonic and the
inclusive determinations, and exhibits a ~ 1.70 tension with the latter.

8.9 Determination of | V|

We will now use the lattice-QCD results for the B — D™ ¢v form factors in order to obtain determinations of the CKM
matrix element | V.| in the Standard Model. The relevant formulae are given in Eq. (241).

Let us summarize the lattice input that satisfies FLAG requirements for the control of systematic uncertainties, discussed
in Sect. 8.4. In the (experimentally more precise) B — D*{v channel, there is only one Ny = 2 4 1 lattice computation of
the relevant form factor F5~P" at zero recoil. Concerning the B — D{v channel, for Ny = 2 there is one determination
of the relevant form factor G872 at zero recoil, while for N f = 2 + 1 there are two determinations of the B — D form

32 Note that a recent Belle measurement of partial B — X, £+ v, branching fractions which superseeds their previous result and which yields the
somewhat lower value | V| = 4.10(9)(22)(15) x 1073, has not been included in the HFLAV average yet.
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factor as a function of the recoil parameter in roughly the lowest third of the kinematically allowed region. In this latter case,
it is possible to replicate the analysis carried out for |V,;| in Sect. 8.8, and perform a joint fit to lattice and experimental
data; in the former, the value of | V.| has to be extracted by matching to the experimental value for F B—D* (Dnew|Vep| and
GE=L(new| Ve |-

The latest experimental average by HFLAV [619] for the B — D* form factor at zero recoil makes use of the CLN [659]
parameterization of the B — D* form factor and is

[FE=P" (D new| VeplloLn,nrLay = 35.61(43) x 1072, (293)

Recently the Belle collaboration presented an updated measurement of the B — D*{v branching ratio [660] in which, as
suggested in Refs. [661-663], the impact of the form factor parameterization has been studied by comparing the CLN [659]
and BGL [569,664] ansitze. The fit results using the two parameterizations are now consistent. In light of the fact that the
BGL parameterization has a much stronger theoretical standing than the CLN one and that it imposes less stringent constraints
on the shape of the form factors, we do not consider the CLN determination any further and focus on the BGL fit:

[F5= L7 (1) new | Ve | IBGL, Betle = 35.44(23)(60) x 1073, (299

where the first error is statistical and the second is systematic.>® Given the fact that the two determinations in Egs. (293) and
(294) are quite compatible and that the BGL parameterization is on firmer theoretical ground, in the following we present the
determination of |V, | obtained from Eq. (294). We refer to the discussion presented at the end of Sec. 8.8 of the previous
edition of this review [4] for further comments on the CLN and BGL parameterizations.

By using ngw = 1.00662°* and the N =2+ 1 lattice value for F B=D%(1) in Eq. (266)>°, we thus extract the average

N =2+ 1[B — D*(v]BGLBellc : |Vep| = 38.86(54)(70) x 1073, (295)

where the first uncertainty comes from the lattice computation and the second from the experimental input.
For the zero-recoil B — D form factor, HFLAV [619] quotes

HFLAV:  GB=P(1)new|Vep| = 41.57(45)(89) x 1073, (296)
yielding the following average for Ny = 2:
Nfp=2 B — Dtv: |Vep| = 40.0(3.7)(1.0) x 1073, (297)

where the first uncertainty comes from the lattice computation and the second from the experimental input.

Finally, for Ny = 2 + 1 we perform, as discussed above, a joint fit to the available lattice data, discussed in Sect. 8.4,
and state-of-the-art experimental determinations. In this case, we will combine the aforementioned Belle measurement [666],
which provides partial integrated decay rates in 10 bins in the recoil parameter w, with the 2010 BaBar data set in Ref. [667],
which quotes the value of G2~ P (w)new|Vep| for ten values of w.>® The fit is dominated by the more precise Belle data;
given this, and the fact that only partial correlations among systematic uncertainties are to be expected, we will treat both data
sets as uncorrelated.”’

A constrained (Nt = N° = 3) BCL fit using the same ansatz as for lattice-only data in Sect. 8.4, yields our average,
which we present in Table 58. The chi-square per degree of freedom is x2/dof = 20.0/25 = 0.80. The fit is illustrated in

33 Note that the BGL fit employed by Belle uses very few z parameters and that this could lead to an underestimation of the error on
[FB~ b* (1)new| Ve |- See Ref. [665] for a through review of this point.

>4 Note that this determination does not include the electromagnetic Coulomb correction roughly estimated in Ref. [605]. Currently the numerical
impact of this correction is negligible.

35 In light of our policy not to average Ny =24 1and Ny =2+ 1+ 1 calculations and of the controversy over the use of the CLN vs. BGL
parameterizations, we prefer to simply use only the more precise Ny = 2 + 1 determination of F B=D"(1) in Eq. (266) for the extraction of V.

36 We thank Marcello Rotondo for providing the ten bins result of the BaBar analysis.

7 We have checked that results using just one experimental data set are compatible within 1o In the case of BaBar, we have taken into account
the introduction of some EW corrections in the data.
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Table 58 |V, |, coefficients for the N* = N z-expansion of the B — D form factors f, and fpy, and their correlation matrix. The coefficient ag
is fixed by the £, (g% = 0) = fo(g*> = 0) constrain. The chi-square per degree offreedom is y?/dof = 20.0/25 = 0.80. The lattice calculations
that enter this fit are taken from FNAL/MILC [606] and HPQCD [607]. The experimental inputs are taken from BaBar [667] and Belle [666]

B— Dlv (N;=2+1)

Central values

Correlation matrix

[Vl x 10° 40.0 (1.0) 1.00 —0.525 —-0.339 0.0487 —0.521 —0.433
aa' 0.8946 (94) —0.525 1.00 0.303 —0.351 0.953 0.529
a?’ —8.03 (16) —0.339 0.303 1.00 0.203 0.375 0.876
c12+ 50.1 (3.1) 0.0487 —0.351 0.203 1.00 —0.276 0.196
ag 0.7804 (75) —0.521 0.953 0.375 —0.276 1.0 0.502
“(1) —3.38 (16) —0.433 0.529 0.876 0.196 0.502 1.0
FLAG2021 FLAG2021
13 T f oL . 13 T T T ™]
L o ! ] [ fo BCL fit ]
. f4 BCL fit ] [ f1 BCL fit ]
12F= 4 f+ HPQCD 15 & 1.2 b -
g f+ FNAL/MILC 15C 18— ] Fre FN/KLyn’;ﬁngslg '_HI—H ]
s T fo HPQCD 15 —&— ] F fo HPQCD 15 —8—1
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Fig. 36 Lattice and experimental data for ff_’D (¢?) and fOB =D (¢?) versus z (left panel) and ¢? (right panel). Green symbols denote lattice-QCD
points included in the fit, while blue and indigo points show experimental data divided by the value of | V.| obtained from the fit. The grey and
orange bands display the preferred Nt = N° = 3 BCL fit (five z-parameters and |V, |)

Fig. 36. In passing, we note that, if correlations between the FNAL/MILC and HPQCD calculations are neglected, the |V,p|
central value rises to 40.3 x 1073 in nice agreement with the results presented in Ref. [620].

Before discussing the combination of the above |V,;| results, we note that the LHCb Collaboration recently reported the
first determination of | V| at the Large Hadron Collider using By — Dy M+Vu and B; — D}~ ;ﬁvu decays [614,615]. The
differential decay rates, in combination with the Ny =2+ 1+ 1 HPQCD 19 [613] and HPQCD 19B [612] lattice results for
Sy <7 Ds and FB— D} (1), were analyzed using either the CLN or BGL form-factor parameterizations. The result for | V|
from the BGL fit is [615]

[Vl x 10° = 417408+ 09+ 1.1) By — D~ utv,, BGL, LHCb. (298)
The LHCD analysis used ratios to the reference decay modes B — D~ wtv, and B — D*~ v, whose branching
fractions are used as input in the form of the Particle Data Group averages of measurements by other experiments [431].
The result (298) is therefore correlated with the determinations of |V,,| from B — D and B — D* semileptonic decays.
Given the challenges involved in performing our own fit to the LHCb data, we do not, at present, include the LHCb results
for By - Dy u"v, and B — D}~ v, in our combination of | Vs |.

We now proceed to combine the determinations of |V, | from exclusive B — D and B — D* semileptonic decays. To
this end, we need to estimate the correlation between the lattice uncertainties in the two modes. We assume conservatively
that the statistical component of the lattice error in both determinations are 100% correlated because they are based on the
same MILC configurations (albeit on different subsets). We obtain:

V., x 10° =39.36(68) BGL, Belle. (299)
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Table 59 Results for |V,;|. When two errors are quoted in our averages, the first one comes from the lattice form factor, and the second from the

experimental measurement. The LHCDb result using By — D§*) £v decays [612—615], as well as the inclusive average obtained in the kinetic scheme
from Ref. [668] are shown for comparison

From [V x 103
Our average for Ny =2+ 1 (BGL) B — D*tv 38.86(54)(70)
Our average for Ny =2 + 1 B — Dtv 40.0(1.0)
Our average for Ny =2+ 1 (BGL) B — (D, D*)¢v 39.36(68)
Our average for Ny =2 B — D{v 40.0(3.7)(1.0)
LHCb result for Ny =2+ 1+ 1 (BGL) By — Di*)ﬁv 41.7(0.8)(0.9)(1.1)
Gambino et al. B — X v 42.00(64)
FIAG2021 IVylx103 FIAG2021 IV blx103
n = B>t (BaBar) ;t "
X —.— B—1v (Belle) N —— B~D{"¢v (BGL,LHCb)
2 —. B—1v (average) =
- FLAG average FLAG average
< - B—nty s *
i — +m+ B-t(BaBar) i i B—D"¢v (BGL)
= —— B—1v (BeIIe) = B—D¢tv
- B—1v (average)

—  m B>t (BaBar) o
i — B—1v (Belle) z = B-Drv
= — B—1v (average) _
‘—E —@—— PDG inclusive T§ —e— Gambino et al.

3.0 35 40 45 50 55 6.0 36 38 40 42 44 46

Fig. 37 Left: Summary of |V,;| determined using: i) the B-meson leptonic decay branching fraction, B(B~ — 7~ v), measured at the Belle and
BaBar experiments, and our averages for fp from lattice QCD; and ii) the various measurements of the B — mfv decay rates by Belle and BaBar,
and our averages for lattice determinations of the relevant vector form factor fy (¢2). Right: Same for determinations of |V,;| using semileptonic
decays. The inclusive results are taken from Refs. [619,668]

Our results are summarized in Table 59, which also shows the HFLAV inclusive determination of | V.| = 42.00(64) x
1073 [668] for comparison, and illustrated in Fig. 37. Finally, using the fit results in Table 59, we extract a value for R(D)
which includes both lattice and experimental information:

R(D)at+exp = 0.2951(31),  our average. (300)

Note that we do not need to rescale the uncertainty on R(D)1at+exp because, after the inclusion of experimental B — Dev (¢ =
e, u) results, the shift in central value caused by using a different parameterization is negligible (see the discussion above
Eq. (258)).

8.10 Determination of | V,,;/ V| from Aj decays

In 2015, the LHCb Collaboration reported a measurement of the ratio [636]

s dB(Ap — puv.) L 5
1 2 dq

2 d
Rpr(Ap) = 1306V i ___ , 301)
/qmax AB(AY = A0 | o
7 GeV2 dg?
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which, combined with the lattice QCD prediction [516] discussed in Sect. 8.6 yields a determination of | Vy,;/ V,p|. The LHCb
analysis uses the decay A, — pKm to reconstruct the A, and requires the branching fraction B(A, — pKm) of this
decay as an external input. Using the latest world average of B(A, — pKm) = (6.28 £ 0.32)% [165] to update the LHCb
measurement gives [261]

Rer(Ap) = (0.9240.04 +0.07) x 1072, (302)

and, combined with the lattice QCD prediction for ?’“”(1(% discussed in Sect. 8.6,
Acpv

[Vub/ Vep| = 0.079 4= 0.004 15, £ 0.004 xp.. (303)
8.11 Determination of |V, / V| from B decays
More recently, LHCD reported the measurements [669]
7GeV? dB(B; — K~ Vu)
=m? dg?

_ qmm w _ -3
Rpr(B;, low) = B(B, = Dt vy = (1.66+0.12) x 107~, (304)

/qmax_(mgv_mK) dB(B — K~ M UM)

R (B, high) = £7GeV2 dg? —(3.25+0.28) x 1073 (305)
v B(By — Dy ptvy) ’

B(B; — K~ putv,)
B(By — Dy jutvy)

Rpr(By, all) = = (4.8940.33) x 1073, (306)

Using our average of the By — K form factors from lattice QCD as discussed in Sect. 8.3.2, we obtain the Standard-Model
predictions

1 7 GeV? dTI'(B K~ +
— /2 2 (By zqz ) (2,264 0.38) ps. (307)
ub qminzmﬂ
2 2
1 Ginax=0m8; =MK)” (B K—ut
— (Bs = K1) _ (402+031) ps. (308)
|Vub|2 7 GeV? dq2
|Vb|2r(3 — K v, = (6.28 4 0.67) ps . (309)
u

For the denominator, we use the By — D, form factors from Ref. [613], which yields

1
Vol T(By — Dy ptv,) = (9.15+£0.37) ps~ . (310)
C

Combined with the LHCb measurements we obtain

v,
_|| VMZ : (low) = 0.0819 £ 0.0072 1. =+ 0.0029 exp., (311)
C
v,
|| Vub: (high) = 0.0860 £ 0.0037 (. & 0.0038 exp , G12)
v,
||VZ|| (all) = 0.0844 £ 0.0048 5. == 0.0028 cxp.- G139
C

We note the excellent compatibility of the results in the high and low ¢ regions. Nevertheless, we will use the result from
the high-g? region in our combination in Sect. 8.12, as this is the region in which the form factor shape is most reliably
constrained by the lattice data.
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FLAG2021
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Fig. 38 Summary of | V,,;,| and |V | determinations. The black solid and dashed lines correspond to 68% and 95% C.L. contours, respectively. The
result of the global fit (which does not include |Vub/ ng| from baryon modes or | V.| from By — Df*)liv) is (IVpls V1) = (39.48£0.68, 3.63 +
0.14) x 1073 with a p-value of 0.39. The lattice and experimental results that contribute to the various contours are the following. B — 7 £v: lattice
(FNAL/MILC [556] and RBC/UKQCD [557]) and experiment (BaBar [652,653] and Belle [654,655]). B — D¢{v: lattice (FNAL/MILC [606]
and HPQCD [607]) and experiment (BaBar [667] and Belle [666]). B — D*{v: lattice (FNAL/MILC [605]) and experiment (Belle [660]).
B — tv: lattice (fp determinations in Fig 27) and experiment (BaBar [528] and Belle [527]). By — K{v/B; — Ds{v: lattice (HPQCD [570],
RBC/UKQCD [556], ENAL/MILC [573], HPQCD [613]) and experiment (LHCb [669]). A, — plv/Ap — A Lv: lattice (Detmold 15 [516]) and
experiment (LHCb [636]). B; — Dj¢v/B; — Dgtv: lattice (HPQCD 19 [613] and HPQCD 19B [612]) and experiment (LHCb [614,615]). The
inclusive determinations are taken from Refs. [165,261,668] and read (|V_, |, |V,; )incl = (42.00 & 0.64, 4.32 £ 0.29) x 1073

8.12 Summary: | V| and | V|

In Fig. 38, we present a summary of determinations of |V,;| and |V,p| from B — (7, D®)¢v, By — (K, Ds)¢v (high
q2 only), B — tv and Ap, — (p, Ac)Cv, as well as the results from inclusive B — X, -€v decays. Note that constraints
on |Vu »/ VCb| from baryon modes are displayed but, in view of the rating in Table 55, are not included in the global fit.

As discussed in Sect. 8.9, experimental inputs used in the extraction of |V,,| from By — Ds(*)ﬁv decays [614,615] given in
Eq. (298) are highly correlated with those entering the global (| V3|, | Vep|) fit described in this section. Given these correlations
and the challenges in reproducing the LHCb analysis, for the time being we do not include the result Eq. (298) into the global
fit.

Currently, the determinations of V., from B — D* and B — D decays are quite compatible; however, a sizeable tension
involving the extraction of V,, from inclusive decays remains. In the determination of the 1o and 20 contours for our average,
we have included an estimate of the correlation between |V,;| and | V| from semileptonic B decays: the lattice inputs
to these quantities are dominated by results from the Fermilab/MILC and HPQCD collaborations that are both based on
MILC Ny = 2 + 1 ensembles, leading to our conservatively introducing a 100% correlation between the lattice statistical
uncertainties of the three computations involved. The results of the fit are

[V, = 39.48(68) x 1073, (314)
[V,,| = 3.63(14) x 1073, (315)
p—value = 0.39. (316)

For reference, the inclusive determinations read |V, linct = (42.00 £ 0.64) x 1073 [668] and [V,plinel = (4.32 4+ 0.12¢p £
0.13theo = 0.23A8F) X 1073 [165,261] (the ABF error has been added in Ref. [165] to account for the spread in results
obtained using different theoretical models). Note that a recent Belle analysis [670] of partial B — X, £ v, branching
fractions finds a slightly lower central value |V, linc1,Belle = (4.10 & 0.0945¢ &= 0.22y5¢ £ 0.15theo) X 1073,
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9 The strong coupling o
Authors®® : R. Horsley, P. Petreczky, S. Sint
9.1 Introduction

The strong coupling gs (1) defined at scale w, plays a key role in the understanding of QCD and in its application to collider
physics. For example, the parametric uncertainty from o« is one of the dominant sources of uncertainty in the Standard-
Model prediction for the H — bb partial width, and the largest source of uncertainty for H — gg. Thus higher precision
determinations of o are needed to maximize the potential of experimental measurements at the LHC, and for high-precision
Higgs studies at future colliders and the study of the stability of the vacuum [671-678]. The value of «; also yields one of
the essential boundary conditions for completions of the Standard Model at high energies.

In order to determine the running coupling at scale u

22w

) 317
4 G17)

as(p) =
we should first “measure” a short-distance quantity Q at scale p either experimentally or by lattice calculations, and then
match it to a perturbative expansion in terms of a running coupling, conventionally taken as oy (it),

Q) = crayg(p) + ooy ()® + - . (318)

The essential difference between continuum determinations of o and lattice determinations is the origin of the values of Q
in Eq. (318).

The basis of continuum determinations are experimentally measurable cross sections or decay widths from which Q is
defined. These cross sections have to be sufficiently inclusive and at sufficiently high scales such that perturbation theory
can be applied. Often hadronization corrections have to be used to connect the observed hadronic cross sections to the
perturbative ones. Experimental data at high w, where perturbation theory is progressively more precise, usually have increasing
experimental errors, and it is not easy to find processes that allow one to follow the p-dependence of a single Q(u) over a
range where o, (1) changes significantly and precision is maintained.

In contrast, in lattice gauge theory, one can design Q(u) as Euclidean short-distance quantities that are not directly
related to experimental observables. This allows us to follow the p-dependence until the perturbative regime is reached
and nonperturbative “corrections” are negligible. The only experimental input for lattice computations of « is the hadron
spectrum which fixes the overall energy scale of the theory and the quark masses. Therefore experimental errors are completely
negligible and issues such as hadronization do not occur. We can construct many short-distance quantities that are easy to
calculate nonperturbatively in lattice simulations with small statistical uncertainties. We can also simulate at parameter values
that do not exist in nature (for example, with unphysical quark masses between bottom and charm) to help control systematic
uncertainties. These features mean that precise results for «; can be achieved with lattice-gauge-theory computations. Further,
as in the continuum, the different methods available to determine « in lattice calculations with different associated systematic
uncertainties enable valuable cross-checks. Practical limitations are discussed in the next section, but a simple one is worth
mentioning here. Experimental results (and therefore the continuum determinations) of course have all quarks present, while
in lattice gauge theories in practice only the lighter ones are included and one is then forced to use the matching at thresholds,
as discussed in the following subsection.

It is important to keep in mind that the dominant source of uncertainty in most present day lattice-QCD calculations of
o are from the truncation of continuum/lattice perturbation theory and from discretization errors. Perturbative truncation
errors are of particular concern because they often cannot easily be estimated from studying the data itself. Further, the size
of higher-order coefficients in the perturbative series can sometimes turn out to be larger than naive expectations based on
power counting from the behaviour of lower-order terms. We note that perturbative truncation errors are also the dominant
source of uncertainty in several of the phenomenological determinations of .

The various phenomenological approaches to determining the running coupling constant, al%(M 7) are summarized by
the Particle Data Group [165]. The PDG review lists five categories of phenomenological results used to obtain the running

38 There is a strong overlap with the FLAG 19 report’s section on o, authored by Horsley, Onogi and Sommer [4]. In particular the introduction,
and the description of methods without new data have been taken over almost unchanged.
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coupling: using hadronic 7 decays, hadronic final states of ete™ annihilation, deep inelastic lepton-nucleon scattering,
electroweak precision data, and high energy hadron collider data. Excluding lattice results, the PDG quotes the weighted
average as

all(Mz) = 0.1176(11), PDG 20[165] G

compared to (x%(M 7z) = 0.1174(16) of the older PDG 2018 [431]. For a general overview of the various phenomenological
and lattice approaches see, e.g., Ref. [679]. The extraction of oy from t data, which is one of the most precise and thus has a
large impact on the nonlattice average in Eq. (319), is especially sensitive to the treatment of higher-order perturbative terms
as well as the treatment of nonperturbative effects. This is important to keep in mind when comparing our chosen range for
a%(M 7) from lattice determinations in Eq. (396) with the nonlattice average from the PDG.
9.1.1 Scheme and scale dependence of oy and Agcp

Despite the fact that the notion of the QCD coupling is initially a perturbative concept, the associated A parameter is
nonperturbatively defined

A = 1es(8s(w)),

i ) , & 1 1 by
— (bo2)~b1/ ) = 1/2hogD) _/ d ———1. 320
@5 (8s) = (bogy) ¢ exp 0 o B(x) * box3  bix (320

where B8(gs) = M%XU is the full renormalization group function in the scheme which defines g;, and by and b; are the first
two scheme-independent coefficients of the perturbative expansion

B(x) ~ —box> —bix> + -, (321)

with

bo= (11— 2N b= (100 BN (322)
0= @n)? 30 ) U= Gn)? 30 )

Thus the A parameter is renormalization-scheme-dependent but in an exactly computable way, and lattice gauge theory
is an ideal method to relate it to the low-energy properties of QCD. In the MS scheme presently by, up to n; = 4 are
known [199,680-683].

The change in the coupling from one scheme S to another (taken here to be the MS scheme) is perturbative,

o (1) = g5 (W (1 + ¢V gg() + -+, (323)
where cg), i > 1 are finite renormalization coefficients. The scale ;« must be taken high enough for the error in keeping only
the first few terms in the expansion to be small. On the other hand, the conversion to the A parameter in the MS scheme is
given exactly by

Ags = As exp [c;” /(2190)] . (324)

The fact that Ay can be obtained exactly from Ag in any scheme S where cél) is known together with the high-order

knowledge (5-loop by now) of Bj75 means that the errors in e (mz) are dominantly due to the errors of A g. We will therefore
mostly discuss them in that way. Starting from Eq. (320), we have to consider (i) the error of gé(u) (denoted as (AA—A) Aas) and

(ii) the truncation error in Ss (denoted as (AA—A) wune)- Concerning (i), note that knowledge of cé,"’ ) for the scheme S means

that Bg is known to n; + 1 loop order; by, is known. We thus see that in the region where perturbation theory can be applied,
the following errors of A (or consequently Aggg) have to be considered
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AN Aars (1)
AN Aas() 2
( A )ms 87 ool (11) x [T+ Oes(u)], (325)
AA ; )
<T>trunc - kaSl (M) T O(O[Sl—i_l(ﬂ/)), (326)

where k depends on by, +1 and in typical good schemes such as MS it is numerically of order one. Statistical and systematic
errors such as discretization effects contribute to Aas(w). In the above we dropped a scheme subscript for the A-parameters
because of Eq. (324).

By convention aqg is usually quoted at a scale u = Mz where the appropriate effective coupling is the one in the 5-flavour

theory: a%(M 7). In order to obtain it from a result with fewer flavours, one connects effective theories with different number

of flavours as discussed by Bernreuther and Wetzel [684]. For example, one considers the MS scheme, matches the 3-flavour
theory to the 4-flavour theory at a scale given by the charm-quark mass [685—687], runs with the 5-loop S-function [199,680—
683] of the 4-flavour theory to a scale given by the b-quark mass, and there matches to the 5-flavour theory, after which one
runs up to u = Mz with the 5-loop B function. For the matching relation at a given quark threshold we use the mass m,
which satisfies m, = myg(m,), where m is the running mass (analogous to the running coupling). Then

BNy —1(m) = gy, (m) x [1+0x gy () + Y tn gy, (m.)] (327)
n>2
with [685,687,688]

=1 U (328)

2T @nr7
1 82043 564731 2633

th = _ _ Nr—1Dl, 329

3 (4n2)3[ 27648° T 124416~ 31108V )] (329)
1

ty = ——[5.170347 — 1.009932(N s — 1) — 0.021978 (N s — 1)?], (330)

T (@n2)?

(where 3 is the Riemann zeta-function) provides the matching at the thresholds in the MS scheme. Often the package RunDec
is used for quark-threshold matching and running in the MS-scheme [689,690].

While 5, #3, t4 are numerically small coefficients, the charm-threshold scale is also relatively low and so there are nonper-
turbative uncertainties in the matching procedure, which are difficult to estimate but which we assume here to be negligible.
Obviously there is no perturbative matching formula across the strange “threshold”; here matching is entirely nonperturbative.
Model dependent extrapolations of g%vf from Ny = 0,2 to Ny = 3 were done in the early days of lattice gauge theory.
We will include these in our listings of results but not in our estimates, since such extrapolations are based on untestable
assumptions.

9.1.2 Overview of the review of o

We begin by explaining lattice-specific difficulties in Sect. 9.2.1 and the FLAG criteria designed to assess whether the
associated systematic uncertainties can be controlled and estimated in a reasonable manner. These criteria are taken over
unchanged from the FLAG 19 report, as there has not yet been sufficiently broad progress to make these criteria more
stringent. We would also like to point to a recent review [691] of lattice methodology and systematic uncertainties for .
There, a systematic scale variation is advocated to assess systematic errors due to the truncation of the perturbative series and
such a procedure may indeed be incorporated into future FLAG criteria, as it can be applied without change to most lattice
approaches.

We then discuss, in Sects. 9.3-9.9, the various lattice approaches and results from calculations with Ny = 0, 2, 2+1, and
2+1+1 flavours.

Besides new results and upgrades of previous works, a new strategy of nonperturbative renormalization by decoupling has
been proposed by the ALPHA collaboration [692], which shifts the perspective on results with unphysical flavour numbers, in
particular for N y = 0. As these can be nonperturbatively related to N ¢ > 0 results by a nonperturbative matching calculation,
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it becomes very important to obtain precise and controlled N y = 0 results, with obvious implications for this and future
FLAG reports. A short account of the decoupling strategy is given in Sect. 9.4.

In Sect. 9.11, we present averages together with our best estimates for o) These are currently determined from 3-
and 4-flavour QCD simulations only, however, in the near future the decoupling strategy is expected to link e.g. 3-flavour
simulations with the pure gauge theory simulations. Therefore, for the A parameter, we also give results for other numbers

of flavours, including N y =0 and N y = 2.

9.1.3 Additions with respect to the FLAG 19 report

The additional papers since the FLAG 19 report are:

Dalla Brida 19 [693] and Nada 20 [694] from step-scaling methods (Sect. 9.3).

ALPHA 19A [692] from the decoupling method (Sect. 9.4).

TUMQCD 19 [75] and Ayala 20 [74] and Husung 20 [695] from the static quark potential (Sect. 9.5).

Cali 20 [76] from (light-quark) vacuum polarization in position space (Sect. 9.6).

Petreczky 20 [696], Petreczky 19 [26], and Boito 20 [697,698] from heavy-quark current two-point functions (Sect. 9.8).
Zafeiropoulos 19 [699] from QCD vertices (Sect. 9.9).

9.2 General issues
9.2.1 Discussion of criteria for computations entering the averages

As in the PDG review, we only use calculations of s published in peer-reviewed journals, and that use NNLO or higher-order
perturbative expansions, to obtain our final range in Sect. 9.11. We also, however, introduce further criteria designed to assess
the ability to control important systematics, which we describe here. Some of these criteria, e.g., that for the continuum
extrapolation, are associated with lattice-specific systematics and have no continuum analogue. Other criteria, e.g., that for
the renormalization scale, could in principle be applied to nonlattice determinations. Expecting that lattice calculations will
continue to improve significantly in the near future, our goal in reviewing the state-of-the-art here is to be conservative and
avoid prematurely choosing an overly small range.

In lattice calculations, we generally take Q to be some combination of physical amplitudes or Euclidean correlation
functions which are free from UV and IR divergences and have a well-defined continuum limit. Examples include the force
between static quarks and two-point functions of quark-bilinear currents.

In comparison to values of observables Q determined experimentally, those from lattice calculations require two more
steps. The first step concerns setting the scale u in GeV, where one needs to use some experimentally measurable low-energy
scale as input. Ideally one employs a hadron mass. Alternatively convenient intermediate scales such as /7, wo, ro, 1,
[114,317,700,701] can be used if their relation to an experimental dimensionful observable is established. The low-energy
scale needs to be computed at the same bare parameters where Q is determined, at least as long as one does not use the
step-scaling method (see below). This induces a practical difficulty given present computing resources. In the determination
of the low-energy reference scale the volume needs to be large enough to avoid finite-size effects. On the other hand, in order
for the perturbative expansion of Eq. (318) to be reliable, one has to reach sufficiently high values of u, i.e., short enough
distances. To avoid uncontrollable discretization effects the lattice spacing a has to be accordingly small. This means

L > hadron size ~ A&éD and 1/a > u, (331)
(where L is the box size) and therefore
L/a >> u/Aqgcp- (332)

The currently available computer power, however, limits L /a, typically to L /a = 32—96. Unless one accepts compromises
in controlling discretization errors or finite-size effects, this means one needs to set the scale x according to

n <K L/a x Agcp ~ 10—-30GeV. (333)
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(Here << or > means at least one order of magnitude smaller or larger.) Therefore, i can be 1—3 GeV at most. This raises
the concern whether the asymptotic perturbative expansion truncated at 1-loop, 2-loop, or 3-loop in Eq. (318) is sufficiently
accurate. There is a finite-size scaling method, usually called step-scaling method, which solves this problem by identifying
@ = 1/L in the definition of Q(u), see Sect. 9.3.

For the second step after setting the scale w in physical units (GeV), one should compute Q on the lattice, Qjy(a, p) for
several lattice spacings and take the continuum limit to obtain the left hand side of Eq. (318) as

o) = lin}) Qlat(a, ) with p fixed. (334)
a—

This is necessary to remove the discretization error.

Here it is assumed that the quantity Q has a continuum limit, which is regularization-independent. The method discussed
in Sect. 9.7, which is based on the perturbative expansion of a lattice-regulated, divergent short-distance quantity Wi, (a)
differs in this respect and must be treated separately.

In summary, a controlled determination of o needs to satisfy the following:

1. The determination of « is based on a comparison of a short-distance quantity Q at scale x with a well-defined continuum
limit without UV and IR divergences to a perturbative expansion formula in Eq. (318).

2. The scale u is large enough so that the perturbative expansion in Eq. (318) is precise to the order at which it is truncated,
i.e., it has good asymptotic convergence.

3. If Q is defined by physical quantities in infinite volume, one needs to satisfy Eq. (332).
Nonuniversal quantities need a separate discussion, see Sect. 9.7.

Conditions 2. and 3. give approximate lower and upper bounds for u respectively. It is important to see whether there is a
window to satisfy 2. and 3. at the same time. If it exists, it remains to examine whether a particular lattice calculation is done
inside the window or not.

Obviously, an important issue for the reliability of a calculation is whether the scale u that can be reached lies in a regime
where perturbation theory can be applied with confidence. However, the value of  does not provide an unambiguous criterion.
For instance, the Schrodinger Functional, or SF-coupling (Sect. 9.3) is conventionally taken at the scale u = 1/L, but one
could also choose . = 2/L. Instead of u we therefore define an effective aefr. For schemes such as SF (see Sect. 9.3) or
qq (see Sect. 9.5) this is directly the coupling of the scheme. For other schemes such as the vacuum polarization we use the
perturbative expansion Eq. (318) for the observable Q to define

aeff = Q/cy. (335)

If there is an «g-independent term it should first be subtracted. Note that this is nothing but defining an effective, regularization-
independent coupling, a physical renormalization scheme.

Let us now comment further on the use of the perturbative series. Since it is only an asymptotic expansion, the remainder
R(Q)=Q-3; <n c,‘cx"; of a truncated perturbative expression Q ~ ), <n Ci ai cannot just be estimated as a perturbative
error koz?“. The error is nonperturbative. Often one speaks of “nonperturbative contributions”, but nonperturbative and
perturbative cannot be strictly separated due to the asymptotic nature of the series (see, e.g., Ref. [702]).

Still, we do have some general ideas concerning the size of nonperturbative effects. The known ones such as instantons or

renormalons decay for large u like inverse powers of p and are thus roughly of the form
exp(—y/as), (336)
with some positive constant . Thus we have, loosely speaking,
Q = cro5 + 202 + - + cpa + 0@ + O(exp(—y fay)). (337)
For small «g, the exp(—y /) is negligible. Similarly the perturbative estimate for the magnitude of relative errors in Eq. (337)
is small; as an illustration for n = 3 and oy = 0.2 the relative error is ~ 0.8% (assuming coefficients |c,+1/c1| ~ 1).

For larger values of «g nonperturbative effects can become significant in Eq. (337). An instructive example comes from
the values obtained from t decays, for which «; & 0.3. Here, different applications of perturbation theory (fixed order and
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contour improved) each look reasonably asymptotically convergent®® but the difference does not seem to decrease much with
the order (see, e.g., the contribution of Pich in Ref. [704]). In addition nonperturbative terms in the spectral function may be
nonnegligible even after the integration up to m, (see, e.g., Refs. [705,706]). All of this is because o is not really small.

Since the size of the nonperturbative effects is very hard to estimate one should try to avoid such regions of the coupling.
In a fully controlled computation one would like to verify the perturbative behaviour by changing « over a significant
range instead of estimating the errors as ~ o ! . Some computations try to take nonperturbative power ‘corrections’ to the
perturbative series into account by including such terms in a fit to the ;-dependence. We note that this is a delicate procedure,
both because the separation of nonperturbative and perturbative is theoretically not well defined and because in practice a term
like, e.g., oy ()3 is hard to distinguish from a 1/ term when the p-range is restricted and statistical and systematic errors
are present. We consider it safer to restrict the fit range to the region where the power corrections are negligible compared to
the estimated perturbative error.

The above considerations lead us to the following special criteria for the determination of o:

e Renormalization scale

J all points relevant in the analysis have aefr < 0.2
o all points have aefr < 0.4 and at least one oy < 0.25
m otherwise

e Perturbative behaviour

# verified over a range of a factor 4 change in a; without power corrections or alternatively o f; < L Adegr/ (8booy)
is reached

o agreement with perturbation theory over a range of a factor (3/2)? in ocglif possibly fitting with power corrections or
alternatively ag}f < Adefr/ (Snboagff) is reached
m otherwise

Here Aa.fy is the accuracy cited for the determination of aefr and 7 is the loop order to which the connection of ar to the MS
scheme is known. Recall the discussion around Egs. (325,326); the S-function of aegr is then known to n; + 1 loop order.%0

e Continuum extrapolation
At a reference point of aeir = 0.3 (or less) we require

J three lattice spacings with pa < 1/2 and full O(a) improvement,
or three lattice spacings with na < 1/4 and 2-loop O(a) improvement,
or na < 1/8 and 1-loop O(a) improvement

o three lattice spacings with ua < 3/2 reaching down to na = 1 and full O(a) improvement,
or three lattice spacings with pa < 1/4 and 1-loop O(a) improvement

m otherwise

We also need to specify what is meant by . Here are our choices:

step-scaling : u = 1/L,
heavy quark—antiquark potential : © = 2/r,
observables in position space : u = 1/|x]|,
observables in momentum space : u = g,
moments of heavy-quark currents : u = 2mc,

eigenvalues of the Dirac operator : i = Ay (338)

59 See, however, the recent discussion in [703].

0 Once one is in the perturbative region with o, the error in extracting the A parameter due to the truncation of perturbation theory scales like
oLk, as discussed around Eq. (326). In order to detect/control such corrections properly, one needs to change the correction term significantly; we

require a factor of four for a % and a factor (3/2)2 for a O. An exception to the above is the situation where the correction terms are small anyway,
ie., alle & (AA/Niune < (AN/A)pa & Adtesr /(8T boa%y) is reached.
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where |x| is the Euclidean norm of the 4-vector x, ¢ is the magnitude of the momentum, . is the heavy-quark mass (in the
MS scheme) and usually taken around the charm-quark mass and Apg 1s the eigenvalue of the Dirac operator, see Sect. 9.10.
We note again that the above criteria cannot be applied when regularization dependent quantities Wiy (a) are used instead of
Q(w). These cases are specifically discussed in Sect. 9.7.

In principle one should also account for electro-weak radiative corrections. However, both in the determination of «; at
intermediate scales u and in the running to high scales, we expect electro-weak effects to be much smaller than the presently
reached precision. Such effects are therefore not further discussed.

The attentive reader will have noticed that bounds such as pua < 3/2 or at least one value of cefr < 0.25 which we require
for a o are not very stringent. There is a considerable difference between o and *. We have chosen the above bounds,
unchanged as compared to FLAG 16 and FLAG 19, since not too many computations would satisfy more stringent ones
at present. Nevertheless, we believe that the o criteria already give reasonable bases for estimates of systematic errors. An
exception may be Cali 20, which is discussed in detail in Sect. 9.6. In the future, we expect that we will be able to tighten
our criteria for inclusion in the average, and that many more computations will reach the present % rating in one or more
categories.

In addition to our explicit criteria, the following effects may influence the precision of results:

Topology sampling: In principle a good way to improve the quality of determinations of ¢ is to push to very small lattice
spacings thus enabling large p. It is known that the sampling of field space becomes very difficult for the HMC algorithm when
the lattice spacing is small and one has the standard periodic boundary conditions. In practice, for all known discretizations
the topological charge slows down dramatically for @ ~ 0.05 fm and smaller [116,125,128-132]. Open boundary conditions
solve the problem [133] but are not frequently used. Since the effect of the freezing on short distance observables is not
known, we also do need to pay attention to this issue. Remarks are added in the text when appropriate.

Quark-mass effects: We assume that effects of the finite masses of the light quarks (including strange) are negligible in the
effective coupling itself where large, perturbative, u is considered.

Scale setting: The scale does not need to be very precise, since using the lowest-order 8-function shows that a 3% error in
the scale determination corresponds to a ~ 0.5% error in ag(Mz). As long as systematic errors from chiral extrapolation
and finite-volume effects are well below 3% we do not need to be concerned about those at the present level of precision in
os(Mz). This may change in the future.

9.2.2 Physical scale

Since FLAG 19, a new FLAG working group on scale setting has been established. We refer to Sect. 11 for definitions and
the current status. Note that the error from scale setting is sub-dominant for current oy determinations.

A popular scale choice has been the intermediate r( scale, and its variant 1, which both derive from the force between
static quarks, see Eq. (358). One should bear in mind that their determination from physical observables also has to be
taken into account. The phenomenological value of ry was originally determined as rop ~ 0.49 fm through potential models
describing quarkonia [700]. Of course the quantity is precisely defined, independently of such model considerations. But
a lattice computation with the correct sea-quark content is needed to determine a completely sharp value. When the quark
content is not quite realistic, the value of ry may depend to some extent on which experimental input is used to determine
(actually define) it.

The latest determinations from two-flavour QCD are rp = 0.420(14)-0.450(14) fm by the ETM collaboration [45,87], using
as input f; and fx and carrying out various continuum extrapolations. On the other hand, the ALPHA collaboration [707]
determined ro = 0.503(10) fm with input from fx, and the QCDSF collaboration [107] cites 0.501(10)(11) fm from the mass
of the nucleon (no continuum limit). Recent determinations from three-flavour QCD are consistent with 7; = 0.313(3) fm and
ro = 0.472(5) fm [41,120,708]. Due to the uncertainty in these estimates, and as many results are based directly on ry to set
the scale, we shall often give both the dimensionless number ro Ay, as well as Agpg. In the cases where no physical r( scale
is given in the original papers or we convert to the rq scale, we use the value ro = 0.472 fm. In case r| Ayg is given in the
publications, we use ro/r1 = 1.508 [708], to convert, which remains well consistent with the update [116] neglecting the error
on this ratio. In some, mostly early, computations the string tension, /o was used. We convert to r using rga =1.65—m/12,
which has been shown to be an excellent approximation in the relevant pure gauge theory [709,710].

The new scales 7y, wo based on the gradient flow are very attractive alternatives to ro but their discretization errors are
still under discussion [112,711-713] and their values at the physical point are not yet determined with great precision. We
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remain with ro as our main reference scale for now. A general discussion of the various scales is given in [714] and in the
scale-setting section of this FLAG report, cf. Sect. 11.

9.2.3 Studies of truncation errors of perturbation theory

As discussed previously, we have to determine ¢ in a region where the perturbative expansion for the S-function, Eq. (321)
in the integral Eq. (320), is reliable. In principle this must be checked, however, this is difficult to achieve as we need to reach
up to a sufficiently high scale. A frequently used recipe to estimate the size of truncation errors of the perturbative series is to
vary the renormalization-scale dependence around the chosen ‘optimal’ scale 4, of an observable evaluated at a fixed order
in the coupling from u = w4 /2 to 2. For examples, see Ref. [691].

Alternatively, or in addition, the renormalization scheme chosen can be varied, which investigates the perturbative con-
version of the chosen scheme to the perturbatively defined MS scheme and in particular “fastest apparent convergence’ when
the ‘optimal’ scale is chosen so that the (9(0(3) coefficient vanishes.

The ALPHA collaboration in Ref. [715] and ALPHA 17 [716], within the SF approach defined a set of v-schemes for
which the 3-loop (scheme-dependent) coefficient of the S-function for Ny = 2 + 1 flavours was computed to be by =

—(0.064(27) + 1.259(1)v)/(4x)3. The standard SF scheme has v = 0. For comparison, 1712\/[s = 0.324/(4n)3. A range of
scales from about 4 GeV to 128 GeV was investigated. It was found that while the procedure of varying the scale by a factor
2 up and down gave a correct estimate of the residual perturbative error for v & 0. .. 0.3, for negative values, e.g., v = —0.5,
the estimated perturbative error is much too small to account for the mismatch in the A-parameter of ~ 8% at oy = 0.15.
This mismatch, however, did, as expected, still scale with ot! with n; = 2. In the schemes with negative v, the coupling o
has to be quite small for scale-variations of a factor 2 to correctly signal the perturbative errors.

For a systematic study of renormalization scale variations as a measure of perturbative truncation errors in various lattice
determinations of oy we refer to the recent review by Del Debbio and Ramos [691].

9.3 «; from step-scaling methods
9.3.1 General considerations

The method of step-scaling functions avoids the scale problem, Eq. (331). It is in principle independent of the particular
boundary conditions used and was first developed with periodic boundary conditions in a two-dimensional model [717].

The essential idea of the step-scaling strategy is to split the determination of the running coupling at large © and of a
hadronic scale into two lattice calculations and connect them by ‘step-scaling’. In the former part, we determine the running
coupling constant in a finite-volume scheme in which the renormalization scale is set by the inverse lattice size u = 1/L. In
this calculation, one takes a high renormalization scale while keeping the lattice spacing sufficiently small as

pw=1/L~10...100GeV, a/L < 1. (339)

In the latter part, one chooses a certain g?nax = 2°(1/Lmax), typically such that Ly is around 0.5-1 fm. With a common
discretization, one then determines L,x/a and (in a large volume L > 2-3 fm) a hadronic scale such as a hadron mass, /7o/a
or ro/a at the same bare parameters. In this way one gets numbers for, e.g., Lmax /7o and by changing the lattice spacing a
carries out a continuum limit extrapolation of that ratio.

In order to connect g%(1/Lmax) to g2(u) at high 1, one determines the change of the coupling in the continuum limit
when the scale changes from L to L/s, starting from L = Ly, and arriving at u = sk /Lmax. This part of the strategy is
called step-scaling. Combining these results yields gz(m at u = s* (ro /Lmax) T 1, where r( stands for the particular chosen
hadronic scale. Most applications use a scale factor s = 2.

At present most applications in QCD use Schrédinger functional boundary conditions [421,718] and we discuss this below
in a little more detail. (However, other boundary conditions are also possible, such as twisted boundary conditions and the
discussion also applies to them.) An important reason is that these boundary conditions avoid zero modes for the quark fields
and quartic modes [719] in the perturbative expansion in the gauge fields. Furthermore the corresponding renormalization
scheme is well studied in perturbation theory [720-722] with the 3-loop B-function and 2-loop cutoff effects (for the standard
Wilson regularization) known.

In order to have a perturbatively well-defined scheme, the SF scheme uses Dirichlet boundary conditions at time ¢t = 0
and t = T. These break translation invariance and permit O(a) counter terms at the boundary through quantum corrections.
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Table 60 Results for the A parameter from computations using step-scaling of the SF-coupling. Entries without values for A computed the running
and established perturbative behaviour at large 1

g
§ s 5 &
By 5 & &
Y s
Collaboration Refs. Ny < <& i ol Scale Ay [MeV] roAyis
ALPHA 10A [735] 4 A * * * Only running of «; in Fig. 4
Perez 10 [736] 4 C * * o Only step-scaling function in Fig. 4
ALPHA 17 [77] 2+1 A * * * V8o = 0.415fm 341(12) 0.816(29)
PACS-CS 09A [78] 2+1 A * * o mp 371(13)(8)(F))* 0.888(30)(18) (25
A * * o) mp 345(59)* 0.824(141)%

ALPHA 12*  [707] 2 A * * * fx 310(20) 0.789(52)
ALPHA 04 [737] 2 A [ ] * * ro = 0.5 fm¥ 245(16)(16)8 0.62(2)(2)}
ALPHAOIA [738] 2 A * * * Only running of a in Fig. 5
Nada 20 [694] 0 A * * * Consistency checks for [693], same gauge configurations
Dalla Brida 19 [693] 0 A * * * ro = 0.5fm 260.5(4.4) 0.660(11)
Ishikawa 17 [732] 0 A * * * ro, [Vo] 2534 (N 0.6069)(F3H*
CP-PACS 04% [723]1 0 A * * o) Only tables of g2
ALPHA 98%"  [739] 0 A * * o) ro = 0.5fm 238(19) 0.602(48)
Liischer 93  [720] 0 A * o) o ro = 0.5fm 233(23) 0.590(60)%3

#Result with a constant (in @) continuum extrapolation of the combination Lyaxm

In conversion from Asfs to roAgfg and vice versa, rq is taken to be 0.472 fm

#Result with a linear continuum extrapolation in a of the combination Lmaxm,

*Supersedes ALPHA 04

$The N = 2 results were based on values for ry/a which have later been found to be too small by [707]. The effect will be of the order of 10-15%,
presumably an increase in Arg. We have taken this into account by a B in the renormalization scale

&This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well as the scale setting of ALPHA 98

T Uses data of Liischer 93 and therefore supersedes it

$SConverted from a5 (377, ') = 0.1108(25)

*Also Aggs/+/o = 0.532(8)("2) is quoted

Therefore, the leading discretization error is O(a). Improving the lattice action is achieved by adding counter terms at
the boundaries whose coefficients are denoted as ¢;, ¢;. In practice, these coefficients are computed with 1-loop or 2-loop
perturbative accuracy. A better precision in this step yields a better control over discretization errors, which is important, as
can be seen, e.g., in Refs. [709,723].

Also computations with Dirichlet boundary conditions do in principle suffer from the insufficient change of topology in the
HMC algorithm at small lattice spacing. However, in a small volume the weight of nonzero charge sectors in the path integral is
exponentially suppressed [724]%! and in a Monte Carlo run of typical length very few configurations with nontrivial topology
should appear. Considering the issue quantitatively Ref. [725] finds a strong suppression below L ~ 0.8 fm. Therefore the
lack of topology change of the HMC is not a serious issue for the high energy regime in step-scaling studies. However, the
matching to hadronic observables requires volumes where the problem cannot be ignored. Therefore, Ref. [726] includes
a projection to zero topology into the definition of the coupling. We note also that a mix of Dirichlet and open boundary
conditions is expected to remove the topology issue entirely [727] and may be considered in the future.

Apart from the boundary conditions, the very definition of the coupling needs to be chosen. We briefly discuss in turn, the
two schemes used at present, namely, the ‘Schrodinger Functional’ (SF) and ‘Gradient Flow’ (GF) schemes.

61 We simplify here and assume that the classical solution associated with the used boundary conditions has charge zero. In practice this is the case.
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The SF scheme is the first one, which was used in step-scaling studies in gauge theories [421]. Inhomogeneous Dirichlet
boundary conditions are imposed in time,

Ar(®)]xg=0 = Cr,  Ak(®)|xo=1 = Cp., (340)

for k = 1,2, 3. Periodic boundary conditions (up to a phase for the fermion fields) with period L are imposed in space. The
matrices

LCy = idiag(n — /3, —n/2, —n/2 + 7/3),
LC} = idiag( — (n+ ), n/2 + /3, n/2 + 271/3),

just depend on the dimensionless parameter 1. The coupling gsr is obtained from the n-derivative of the effective action,

127
(0nSly=0) = ——- (341)

8SF

For this scheme, the finite cg), Eq. (323), are known for i = 1, 2 [721,722].

More recently, gradient-flow couplings have been used frequently because of their small statistical errors at large couplings
(in contrast to gsg, which has small statistical errors at small couplings). The gradient flow is introduced as follows [317,728].
Consider the flow gauge field B, (¢, x) with the flow time ¢, which is a one parameter deformation of the bare gauge field
A, (x), where B, (¢, x) is the solution to the gradient-flow equation

0B, (t, x) = D,G,, (2, x),
G;w = 8;1.Bv - 8UB;L + [B;u BU]v (342)

with initial condition B, (0, x) = A, (x). The renormalized coupling is defined by [317]

-2 2
= E(t, , 343
Br () = NPEC)| o (343)
with N = 1672 /3 + O((a/L)?) and where E(z, x) is the action density given by
1 a a
E(t,x) = ZG;w(t’x)G;w(t’x)' (344)

In a finite volume, one needs to specify additional conditions. In order not to introduce two independent scales one sets
V8t =cL, (345)

for some fixed number ¢ [729]. Schrodinger functional boundary conditions [730] or twisted boundary conditions [731,732]
have been employed. Matching of the GF coupling to the MS-scheme coupling is known to 1-loop for twisted boundary
conditions with zero quark flavours and SU (3) group [732] and to 2-loop with SF boundary conditions with zero quark
flavours [733]. The former is based on a MC evaluation at small couplings®? and the latter on numerical stochastic perturbation
theory.

9.3.2 Discussion of computations

In Table 60 we give results from various determinations of the A parameter. For a clear assessment of the N s-dependence,
the last column also shows results that refer to a common hadronic scale, rg. As discussed above, the renormalization scale
can be chosen large enough such that «; < 0.2 and the perturbative behaviour can be verified. Consequently only  is present

for these criteria except for early work where the n; = 2 loop correction to MS was not yet known and we assigned a m

62 For a variant of the twisted periodic finite volume scheme the 1-loop matching has been computed analytically [734].
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concerning the renormalization scale. With dynamical fermions, results for the step-scaling functions are always available
for atleasta/L = pna = 1/4,1/6, 1/8. All calculations have a nonperturbatively O(a) improved action in the bulk. For the
discussed boundary O(a) terms this is not so. In most recent calculations 2-loop O(a) improvement is employed together
with at least three lattice spacings.®® This means a # for the continuum extrapolation. In other computations only 1-loop c;
was available and we arrive at 0. We note that the discretization errors in the step-scaling functions of the SF coupling are
usually found to be very small, at the percent level or below. However, the overall desired precision is very high as well, and
the results in CP-PACS 04 [723] show that discretization errors at the below percent level cannot be taken for granted. In
particular with staggered fermions (unimproved except for boundary terms) few percent effects are seen in Perez 10 [736].
In the work by PACS-CS 09A [78], the continuum extrapolation in the scale setting is performed using a constant function
in @ and with a linear function. Potentially the former leaves a considerable residual discretization error. We here use, as
discussed with the collaboration, the continuum extrapolation linear in a, as given in the second line of PACS-CS 09A [78]
results in Table 60. After perturbative conversion from a three-flavour result to five flavours (see Sect. 9.2.1), they obtain

a%(Mz) —=0.118(3). (346)

In Ref. [77], the ALPHA collaboration determined A% combining step-scaling in gép in the lower scale region ppag <
uw < uo, and step-scaling in g%F for higher scales ;o < n < upr. Both schemes are defined with SF boundary conditions.
For géF a projection to the sector of zero topological charge is included, Eq. (344) is restricted to the magnetic components,
and ¢ = 0.3. The scales jthad, (o, and upt are defined by géF(,uhad) =11.3, g%F(uo) = 2.012, and pupr = 1640 which are
roughly estimated as

1/Lmax = [thad &~ 0.2 GeV, po ~ 4 GeV, upr ~ 70 GeV. (347)

Step-scaling is carried out with an O(a)-improved Wilson quark action [740] and Liischer—Weisz gauge action [741] in the
low-scale region and an O(a)-improved Wilson quark action [742] and Wilson gauge action in the high-energy part. For the
step-scaling using steps of L/a — 2L /a, three lattice sizes L/a = 8, 12, 16 were simulated for gé}, and four lattice sizes
L/a = (4,)6,8, 12 for g%F. The final results do not use the small lattices given in parenthesis. The parameter A% is then
obtained via

3

AL
AQ = MS o, KT a1 ek (348)
UPT Mhad frk ——
~—— ~—— ~—— experimental data

perturbation theory  step-scaling  large volume simulation

where the hadronic scale fr g is frx = %(2 fx + fr) = 147.6(5) MeV. The first factor on the right hand side of Eq. (348)
is obtained from asp(upr) which is the output from SF step-scaling using Eq. (320) with asp(upt) ~ 0.1 and the 3-loop
B-function and the exact conversion to the MS-scheme. The second factor is essentially obtained from step-scaling in the GF
scheme and the measurement of géF(uo) (except for the trivial scaling factor of 16 in the SF running). The third factor is
obtained from a measurement of the hadronic quantity at large volume.

A large-volume simulation is done for three lattice spacings with sufficiently large volume and reasonable control over
the chiral extrapolation so that the scale determination is precise enough. The step-scaling results in both schemes satisfy
renormalization criteria, perturbation theory criteria, and continuum limit criteria just as previous studies using step-scaling.
So we assign green stars for these criteria.

The dependence of A, Eq. (320) with 3-loop B-function, on o and on the chosen scheme is discussed in [715]. This
investigation provides a warning on estimating the truncation error of perturbative series. Details are explained in Sect. 9.2.3.

The result for the A parameter is A% = 341(12) MeV, where the dominant error comes from the error of asr(upr) after
step-scaling in the SF scheme. Using 4-loop matching at the charm and bottom thresholds and 5-loop running one finally
obtains

a%(Mz) —0.11852(84). (349)

3 With 2-loop O(a) improvement we here mean ¢; including the gé term and ¢; with the gé term. For gluonic observables such as the running
coupling this is sufficient for cutoff effects being suppressed to O(g%a).
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Several other results do not have a sufficient number of quark flavours or do not yet contain the conversion of the scale to
physical units (ALPHA 10A [735], Perez 10 [736]). Thus no value for oz%(M 7) is quoted.

The computation of Ishikawa et al. [732] is based on the gradient flow coupling with twisted boundary conditions [731]
(TGF coupling) in the pure gauge theory. Again they use ¢ = 0.3. Step-scaling with a scale factor s = 3/2 is employed,
covering a large range of couplings from oy &~ 0.5 to oy & 0.1 and taking the continuum limit through global fits to the
step-scaling function on L/a = 12, 16, 18 lattices with between 6 and 8 parameters. Systematic errors due to variations of
the fit functions are estimated. Two physical scales are considered: rg/a is taken from [709] and oa? from [194] and [743].
As the ratio Atgr/Aggg has not yet been computed analytically, Ref. [732] determines the 1-loop relation between gsf and
grar from MC simulations performed in the weak coupling region and then uses the known Agg/Agsg. Systematic errors
due to variations of the fit functions dominate the overall uncertainty.

Since FLAG 19 two new and quite extensive N ; = 0 step-scaling studies have been carried out in Dalla Brida 19 [693]
and by Nada and Ramos [694]. They use different strategies for the running from mid to high energies, but use the same gauge
configurations and share the running at low energies and matching to the hadronic scales. These results are therefore correlated.
However, given the comparatively high value for ro Ay, it is re-assuring that these conceptually different approaches yield
perfectly compatible results within errors of similar size of around 1.5% for /8t Ayg = 0.6227(98), or, alternatively
roAyg = 0.660(11).

In Dalla Brida 19 [693] two GF-coupling definitions with SF-boundary conditions are considered, corresponding to
(colour-) magnetic and electric components of the action density respectively. The coupling definitions include the projection
to Q = 0, as was also done in [77]. The flow time parameter is set to ¢ = 0.3, and both Zeuthen and Wilson flow are measured.
Lattice sizes range from L/a = 8 to L/a = 48, covering up to a factor of 3 in lattice spacings for the step-scaling function,
where both L/a and 2L /a are needed. Lattice effects in the step-scaling function are visible but can be extrapolated using
global fits with a? errors. Some remnant O(a) effects from the boundaries are expected, as their perturbative cancellation
is incomplete. These O(a) contaminations are treated as a systematic error on the data, following [77] and are found to be
subdominant. An intermediate reference scale jref is defined where « = 0.2, and the scales above and below are analyzed
separately. Again this is similar to [77], except that here GF coupling data is available also at high energy scales. The GF
B-functions are then obtained by fitting to the continuum extrapolated data for the step-scaling functions. In addition, a
nonperturbative matching to the standard SF coupling is performed above .. for a range of couplings covering a factor 2.
The nonperturbative S-function for the SF scheme can thus be inferred from the GF B-function. It turns out that GF schemes
are very slow to reach the perturbative regime. Particularly the A-parameter for the magnetic GF coupling shows a large
slope in «?, which is the parametric uncertainty with known 3-loop B-function. Also, convincing contact with the 3-loop
B-function is barely seen down to o = 0.08. This is likely to be related to the rather large 3-loop B-function coefficients,
especially for the magnetic GF scheme [733]. In contrast, once the GF couplings are matched nonperturbatively to the SF
scheme the contact to perturbative running can be safely made. It is also re-assuring that in all cases the extrapolations (linear
in o?) to o = 0 for the A-parameters agree very well, and the authors argue in favour of such extrapolations. Their data
confirms that this procedure yields consistent results with the SF scheme for v = 0, where such an extrapolation is not
required.

The low energy regime between uref and a hadronic scale upag 1S covered again using the nonperturbative step-scaling
function and the derived S-function. Finally, contact between upaq and hadronic scales #y and ry is established using 5 lattice
spacings covering a factor up to 2.7. The multitude of cross checks of both continuum limit and perturbative truncation errors
make this a study which passes all current FLAG criteria by some margin. The comparatively high value for ro Ay found in
this study must therefore be taken very seriously.

In Nada 20 [694], Nada and Ramos provide further consistency checks of [693] for scales larger than .. The step scaling
function for ¢ = 0.2 is constructed in 2 steps, by determining first the relation between couplings for ¢ = 0.2 and ¢ = 0.4 at
the same L and then increasing L to 2L keeping the flow time fixed (in units of the lattice spacing), so that one arrives again at
¢ = 0.2 on the 2L volume. The authors demonstrate that the direct construction of the step-scaling function for ¢ = 0.2 would
require much larger lattices in order to control the continuum limit at the same level of precision. The consistency with [693]
for the A-parameter is therefore a highly non-trivial check on the systematic effects of the continuum extrapolations. The
study obtains results for the A-parameter (again extrapolating to « = 0) with a similar error as in [693]. using the low-energy
running and matching to the hadronic scale from that reference. For this reason and since gauge configurations are shared
between both papers, these results are not independent of [693], so Dalla Brida 19 will be taken as representative for both
works.
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9.4 The decoupling method

The ALPHA collaboration has proposed a new strategy to compute the A parameter in QCD with N s > 3 flavours based on
simultaneous decoupling of N y > 3 heavy quarks with RGI mass M [692]. We refer to [744] for a pedagogical introduction
and to [745] for recent results. Generically, a running coupling in a mass-dependent renormalization scheme

2, M)V = g2 yNr=9 1 oMy (350)

can be represented by the corresponding N y = 0 coupling, up to power corrections in 1/M. The leading power is usually
k = 2, however renormalization schemes in finite volume may have k = 1, depending on the set-up. For example, this
is the case with standard SF or open boundary conditions in combination with a standard mass term. In practice one may
try to render such boundary contributions numerically small by a careful choice of the scheme’s parameters. In principle,
power corrections can be either (/M) or (A/M)*. Fixing it = ptdec, €.g. by prescribing a value for the mass-independent
coupling, such that pgec/A = O(1) thus helps to reduce the need for very large M. Defining gz(udec, M) = uy at fixed
2% (tdec, M = 0), Eq. (350) translates to a relation between A-parameters, which can be cast in the form,

AL ©

M g Afs (V=0 —
M5 p w5 | = 28 ™M (V) + 0, (351)
Mdec HdecAMiSf Ay

with the function ¢y as defined in Eq. (320), for scheme s and N y = 0. A crucial observation is that the function P, which

gives the ratios of A-parameters A%/ A%f ), can be evaluated perturbatively to a very good approximation [158,160].

Eq. (350) also implies a relation between the couplings in mass-independent schemes, in the theories with N  and zero
flavours, respectively. In the MS scheme this relation is analogous to Eq. (327),

B m) M= = g2 (m)N x € (gm(m*)(N ,->) (352)
and the function C(g) is also known up to to 4-loop order [685-688,746]. The function P(y), with y = M/ Al(v[isf) can
therefore be evaluated perturbatively in the MS scheme, as the ratio

(N7=0) ; -
s EOVCE) L
P(y) = or L) = gyg ), (353)

s (€ O))

Hence, perturbation theory is only required at the scale set by the heavy-quark mass, which works the better the larger M can
be chosen. Once P is known, the LHS of (351) can be inferred from a N y = 0 computation of the RHS in the scheme s,
assuming the ratio Agg/ Ay is known from a 1-loop calculation.

To put the decoupling strategy into practice, the ALPHA collaboration uses N ¢ = 3, so that information from [77] can
be used. Using the massless GF coupling in finite volume from this project, itdec is defined through gép(udec) = 3.95, and
thus known in physical units, pgec = 789(15) MeV. Varying L /a between 12 and 32 (five lattice spacings) defines a range
of values for the bare coupling along a line of constant ptgec and for vanishing quark mass. Next, a mass-dependent GF
coupling is defined at constant ptgec, using the available information on nonperturbative mass renormalization [203] and O(a)
improvement. In order to obtain a larger suppression of the leading 1/M boundary correction term, the time extent 7 is here

set to 2L, so as to maximize the distance to the time boundaries. Choosing 4 values of z = M /jtgec Within the range fron31 2to
(N =
W

to power corrections in 1/z, expected to be predominantly of order 1/z2. Figure 39, taken from [692] shows the continuum
extrapolated results obtained for AST)S/ Udec at different values of z, together with the FLAG 19 average for three-flavour
QCD. While the authors of [692] stopped short of quoting an extrapolated value for the three-flavour A-parameter, the result
A% = 332(10)(2) MeV is now given in the 2021 lattice conference proceedings [745], compatible with ALPHA 17 albeit
with a somewhat smaller error. Despite some common elements with ALPHA 17, the authors emphasize that the decoupling

8, with up to 5 lattice spacings®* and using precision results for N f = 0 from [693] then leads to the result for A

64 At the largest mass, z = 8, only the 2-3 finest lattice spacings are useful in a linear extrapolation in a?.
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method is largely independent, with the overlap in squared error amounting to ca. 40 percent. This is due to the fact that the
error in ALPHA 17 is dominated by the N s = 3 step scaling procedure at high energy, and this part is completely replaced
by the N y = Oresult by Dalla Brida 19 [693]. The decoupling method thus seems to offer scope for a further error reduction,
the major challenges being the continuum extrapolation for the GF coupling at fixed and large RGI masses, followed by the
large M limit.

It is important to note that this new method relies on new precision results for N y = 0 which have appeared in the last
two years [693,694]. Therefore, the pure gauge theory acquires new relevance for ay results, beyond its traditional role as a
test bed for the study of systematic errors. FLAG will take account of this development by continuing to carefully monitor
N ¢ = O results. It is hoped that this will encourage more groups to undertake precision studies with N y = 0.

9.5 o from the potential at short distances
9.5.1 General considerations

The basic method was introduced in Ref. [747] and developed in Ref. [748]. The force or potential between an infinitely
massive quark and antiquark pair defines an effective coupling constant via

dv(r) agq(r)
= = . 354
dr F=a (354)
The coupling can be evaluated nonperturbatively from the potential through a numerical differentiation, see below. In pertur-
bation theory one also defines couplings in different schemes oy, oy via

vy = -2 o (o) = —cr 22
; 0

(355)

where one fixes the unphysical constant in the potential by lim,_,», V(r) = 0 and V(Q) is the Fourier transform of V (r).
Nonperturbatively, the subtraction of a constant in the potential introduces an additional renormalization constant, the value of
V (rrer) at some distance rrt. Perturbatively, it is believed to entail a renormalon ambiguity. In perturbation theory, the different
definitions are all simply related to each other, and their perturbative expansions are known including the a?, ot;‘ log g and
OlSS log a, a? (log as)2 terms [749-756].

The potential V (r) is determined from ratios of Wilson loops, W (7, t), which behave as

(W(r, 1) = |col?e™" " 4 " JeqlPe™ O, (356)
n#0

where ¢ is taken as the temporal extension of the loop, r is the spatial one and V,, are excited-state potentials. To improve the

overlap with the ground state, and to suppress the effects of excited states, ¢ is taken large. Also various additional techniques

are used, such as a variational basis of operators (spatial paths) to help in projecting out the ground state. Furthermore some

lattice-discretization effects can be reduced by averaging over Wilson loops related by rotational symmetry in the continuum.
In order to reduce discretization errors it is of advantage to define the numerical derivative giving the force as

Vir)—V(r—a)

F(rp) = (357)
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Table 61 Short-distance potential results

S ~~§
&
5 & _\;f &
§$ 9 § $
XS & L §
Collaboration Refs. Ny < & i O Scale Ay [MeV]  roAys
Ayala 20 [74] 241 A o * o r = 0.3106(17) fm¢  338(13) 0.802(31)
TUMQCD 19 [75] 241 A o * o) ri =0.3106(17) fm¢ 31473 0.745(3%)
Takaura 18 [758,759] 2+1 A n o o Vio = 0.1465(25)fm®  334(10)(F39)P 0.799(51)*
Bazavov 14 [760] 241 A o * o ri =0.3106(17) fm¢  315(715)4 0.746(*32)
Bazavov 12 [761] 241 A of [e) o ro = 0.468 fm 295(30)* 0.70(7)**
Karbstein 18 [762] 2 A o o o ro = 0.420(14) fm¢  302(16) 0.643(34)
Karbstein 14 [763] 2 A o o o ro = 0.42fm 331(21) 0.692(31)
ETM 11C [764] 2 A o o o ro = 0.42 fm 315(30)8 0.658(55)
Husung 20 [695] 0 C o) * * No quoted value for Ay
Husung 17 [765] 0 C o * * ro = 0.50 fm 232(6) 0.590(16)
Brambilla 10 [766] 0 A o * oft 266(13)* 0.637(H35) "
UKQCD 92  [748] 0 A % ott m Jo = 0.44 GeV 256(20) 0.686(54)
Bali 92 [767] 0 A * ott n Jo = 0.44 GeV 247(10) 0.661(27)

4Scale determined from #( in Ref. [114]

baPl(Mz) = 0.1179(7)(1}3)

“Determination on lattices with m,; L = 2.2 — 2.6. Scale from r [116] as determined from f; in Ref. [41]
da%(l.S GeV) = 0.336(*}?), a%(Mz) =0.1166(*1?)

¢Scale determined from f;, see [87]

Since values of aefr Within our designated range are used, we assign a O despite values of aefr up to aefr = 0.5 being used
#Since values of 2a/r within our designated range are used, we assign a O although only values of 2a/r > 1.14 are used at oy = 0.3

*Using results from Ref. [708]

**a%(l.S GeV) = 0.326(19), a%(MZ) =0.1156(*32})

$Both potential and ry/a are determined on a small (L = 3.2rp) lattice

T Uses lattice results of Ref. [709], some of which have very small lattice spacings where according to more recent investigations a bias due to the
freezing of topology may be present

TOur conversion using rp = 0.472 fm

T+We give a O because only a NLO formula is used and the error bars are very large; our criterion does not apply well to these very early calculations

where 77 is chosen so that at tree level the force is the continuum force. F (ry) is then a ‘tree-level improved’ quantity and
similarly the tree-level improved potential can be defined [757].

Lattice potential results are in position space, while perturbation theory is naturally computed in momentum space at large
momentum. Usually, the Fourier transform of the perturbative expansion is then matched to lattice data.

Finally, as was noted in Sect. 9.2.1, a determination of the force can also be used to determine the scales ro, rq, by defining
them from the static force by

roF(ro) = 1.65, riF(r;) =1. (358)
9.5.2 Discussion of computations
In Table 61, we list results of determinations of ro Ayg (together with Agg using the scale determination of the authors).
Since the last review, FLAG 19, there have been three new publications, namely, TUMQCD 19 [75], Ayala 20 [74] and
Husung 20 [695].

The first determinations in the three-colour Yang Mills theory are by UKQCD 92 [748] and Bali 92 [767] who used aqq as
explained above, but not in the tree-level improved form. Rather a phenomenologically determined lattice-artifact correction
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was subtracted from the lattice potentials. The comparison with perturbation theory was on a more qualitative level on the
basis of a 2-loop B-function (n; = 1) and a continuum extrapolation could not be performed as yet. A much more precise
computation of aqq with continuum extrapolation was performed in Refs. [709,757]. Satisfactory agreement with perturbation
theory was found [757] but the stability of the perturbative prediction was not considered sufficient to be able to extract a A
parameter.

In Brambilla 10 [766] the same quenched lattice results of Ref. [757] were used and a fit was performed to the continuum
potential, instead of the force. Perturbation theory to n; = 3 loop was used including a resummation of terms a? (otg Inag)”
and oe;1 (a5 Inag)™. Close agreement with perturbation theory was found when a renormalon subtraction was performed. Note
that the renormalon subtraction introduces a second scale into the perturbative formula which is absent when the force is
considered.

Bazavov 14 [760] updates Bazavov 12 [761] and modifies this procedure somewhat. They consider the perturbative
expansion for the force. They set u = 1/r to eliminate logarithms and then integrate the force to obtain an expression for the
potential. The resulting integration constant is fixed by requiring the perturbative potential to be equal to the nonperturbative
one exactly at a reference distance ryr and the two are then compared at other values of r. As a further check, the force is
also used directly.

For the quenched calculation of Brambilla 10 [766] very small lattice spacings, a ~ 0.025 fm, were available from
Ref. [757]. For ETM 11C [764], Bazavov 12 [761], Karbstein 14 [763] and Bazavov 14 [760] using dynamical fermions such
small lattice spacings are not yet realized (Bazavov 14 reaches down to a ~ 0.041 fm). They all use the tree-level improved
potential as described above. We note that the value of Ay in physical units by ETM 11C [764] is based on a value of
ro = 0.42 fm. This is at least 10% smaller than the large majority of other values of ry. Also the values of ry/a on the finest
lattices in ETM 11C [764] and r1 /a for Bazavov 14 [760] come from rather small lattices with m, L ~ 2.4, 2.2 respectively.

Instead of the procedure discussed previously, Karbstein 14 [763] reanalyzes the data of ETM 11C [764] by first estimating
the Fourier transform V ( p) of V(r) and then fitting the perturbative expansion of V( p) in terms of ag(p). Of course,
the Fourier transform requires some modelling of the r-dependence of V (r) at short and at large distances. The authors
fit a linearly rising potential at large distances together with string-like corrections of order » =" and define the potential at
large distances by this fit.%% Recall that for observables in momentum space we take the renormalization scale entering our
criteria as 4 = ¢, Eq. (338). The analysis (as in ETM 11C [764]) is dominated by the data at the smallest lattice spacing,
where a controlled determination of the overall scale is difficult due to possible finite-size effects. Karbstein 18 [762] is a
reanalysis of Karbstein 14 and supersedes it. Some data with a different discretization of the static quark is added (on the same
configurations) and the discrete lattice results for the static potential in position space are first parameterized by a continuous
function, which then allows for an analytical Fourier transformation to momentum space.

Similarly also for Takaura 18 [758,759] the momentum space potential V (Q) is the central object. Namely, they assume
that renormalon/power-law effects are absent in V (Q) and only come in through the Fourier transformation. They provide
evidence that renormalon effects (both u = 1/2 and u = 3/2) can be subtracted and arrive at a nonperturbative term k AIS\Tsﬂ'
Two different analyses are carried out with the final result taken from “Analysis II”. Our numbers including the evaluation
of the criteria refer to it. Together with the perturbative 3-loop (including the ozf log a5 term) expression, this term is fitted
to the nonperturbative results for the potential in the region 0.04 fm < r < 0.35fm, where 0.04 fm is r = a on the finest
lattice. The nonperturbative potential data originates from JLQCD ensembles (Symanzik-improved gauge action and Mobius
domain-wall quarks) at three lattice spacings with a pion mass around 300 MeV. Since at the maximal distance in the analysis
we find aggg(2/r) = 0.43, the renormalization scale criterion yields a m. The perturbative behaviour is © because of the high
orders in perturbation theory known. The continuum-limit criterion yields a o.

One of the main issues for all these computations is whether the perturbative running of the coupling constant has been
reached. While for Ny = 0 fermions Brambilla 10 [766] reports agreement with perturbative behaviour at the smallest
distances, Husung 17 (which goes to shorter distances) finds relatively large corrections beyond the 3-loop oqq. For dynamical
fermions, Bazavov 12 [761] and Bazavov 14 [760] report good agreement with perturbation theory after the renormalon is
subtracted or eliminated.

A second issue is the coverage of configuration space in some of the simulations, which use very small lattice spacings with
periodic boundary conditions. Affected are the smallest two lattice spacings of Bazavov 14 [760] where very few tunnelings
of the topological charge occur [116]. With present knowledge, it also seems possible that the older data by Refs. [709,757]
used by Brambilla 10 [766] are partially obtained with (close to) frozen topology.

65 Note that at large distances, where string breaking is known to occur, this is not any more the ground state potential defined by Eq. (356).
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The computation in Husung 17 [765], for Ny = 0 flavours, first determines the coupling ggq (r, a) from the force and
then performs a continuum extrapolation on lattices down to a & 0.015 fm, using a step-scaling method at short distances,
r/ro < 0.5. Using the 4-loop B9 function this allows rgAqq to be estimated, which is then converted to the MS scheme.
Qeff = Qqq ranges from ~ 0.17 to large values; we give o for renormalization scale and + for perturbative behaviour. The
range ap = 2a/r ~ 0.37-0.14 leads to a % in the continuum extrapolation. Recently these calculations have been extended
in Husung 20 [695]. A finer lattice spacing of a = 0.01 fm (scale from ro = 0.5 fm) is reached and lattice volumes up
to L/a = 192 are simulated (in Ref. [765] the smallest lattice spacing is 0.015 fm). The Wilson action is used despite its
significantly larger cutoff effects compared to Symanzik-improved actions; this avoids unitarity violations, thus allowing
for a clean ground state extraction via a generalized eigenvalue problem. Open boundary conditions are used to avoid the
topology-freezing problem. Furthermore, new results for the continuum approach are employed, which determine the cutoff
dependence at O(a?) including the exact coupling-dependent terms, in the asymptotic region where the Symanzik effective
theory is applicable [768]. An ansatz for the remaining higher order cutoff effects at O(a*) is propagated as a systematic
error to the data, which effectively discards data for r/a < 3.5. The large volume step-scaling function with step factor 3/4
is computed and compared to perturbation theory. For g, > 0.2 there is a noticeable difference between the 2-loop and
3-loop results. Furthermore, the ultra-soft contributions at 4-loop level give a significant contribution to the static Q Q force.
While this study is for N ; = 0 flavours it does raise the question whether the weak coupling expansion for the range of
r-values used in present analyses of «; is sufficiently reliable. Around aqq A~ 0.21 the differences get smaller but the error

increases significantly, mainly due to the propagated lattice artifacts. The dependence of Ani:O\/% on agq is very similar
to the one observed in the previous study but no value for its a;; — 0 limit is quoted. Husung 20 [695] is more pessimistic
about the error on the A parameter stating the relative error has to be 5% or larger, while Husung 17 quotes a relative error
of 3%.

In 2+1-flavor QCD two new papers appeared on the determination of the strong coupling constant from the static quark
anti-quark potential after the FLAG 19 report [74,75]. In TUMQCD 19 [75]% the 2014 analysis of Bazavov 14 [760] has
been extended by including three finer lattices with lattice spacing a = 0.035, 0.030 and 0.025 fm as well as lattice results on
the free energy of static quark anti-quark pair at non-zero temperature. On the new fine lattices the effect of freezing topology
has been observed, however, it was verified that this does not affect the potential within the estimated errors [769,770]. The
comparison of the lattice result on the static potential has been performed in the interval r = [rmin, 'max], With rmax = 0.131,
0.121, 0.098, 0.073 and 0.055 fm. The main result quoted in the paper is based on the analysis with ry,x = 0.073 fm [75].
Since the new study employs a much wider range in » than the previous one [760] we give it a % for the perturbative behaviour.
Since aefr = o4 varies in the range 0.2-0.4 for the r values used in the main analysis we give o for the renormalization scale.
Several values of rpin have been used in the analysis, the largest being ryin/a = /8 ~ 2.82, which corresponds to ap >~
0.71. Therefore, we give a o for continuum extrapolation in this case. An important difference compared to the previous
study [760] is the variation of the renormalization scale. In Ref. [760] the renormalization scale was varied by a factor of
/2 around the nominal value of & = 1/r, in order to exclude very low scales, for which the running of the strong coupling
constant is no longer perturbative. In the new analysis the renormalization scale was varied by a factor of two. As the result,
despite the extended data set and shorter distances used in the new study the perturbative error did not decrease [75]. We also
note that the scale dependence turned out to be non-monotonic in the range = 1/(2r)-2/r [75]. The final result reads (“us”
stands for “ultra-soft”),

A%=3 = 314.0 + 5.8(stat) & 3.0(lat) £ 1.7(scale) " %* (pert) £ 4.0(pert. us) MeV = 3147} MeV, (359)
where all errors were combined in quadrature. This is in very good agreement with the previous determination [760].

The analysis was also applied to the singlet static quark anti-quark free energy at short distances. At short distances the
free energy is expected to be the same as the static potential. This is verified numerically in the lattice calculations TUMQCD
19 [75] for r T < 1/4 with T being the temperature. Furthermore, this is confirmed by the perturbative calculations at 7 > 0
at NLO [771]. The advantage of using the free energy is that it gives access to much shorter distances. On the other hand, one
has fewer data points because the condition r7' < 1/4 has to be satisfied. The analysis based on the free energy gives

N =3

Am = 310.9 £ 11.3(stat) & 3.0(lat) £+ 1.7(scale)fgi§(pert) 4 2.1(pert. us) MeV = 311(13) MeV, (360)

in good agreement with the above result and thus, providing additional confirmation of it.

66 The majority of authors are the same as in [760].
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The analysis of Ayala 20 [74] uses a subset of data presented in TUMQCD 19 [75] with the same correction of the lattice
effects. For this reason the continuum extrapolation gets o, too. They match to perturbation theory for 1/r > 2 GeV, which
corresponds to deff = ogq = 0.2-0.4. Therefore, we give o for the renormalization scale. They verify the perturbative
behaviour in the region 1 GeV < 1/r < 2.9 GeV, which corresponds to variation of agﬁ by a factor of 3.34. However,
the relative error on the final result has A /A ~ 0.035 which is larger than agff = 0.011. Therefore, we give a * for the
perturbative behaviour in this case. The final result for the A-parameter reads:

A%:S = 338 £ 2(stat) £ 8(matching) + 10(pert) MeV = 338(13) MeV. (361)
This is quite different from the above result. This difference is mostly due to the organization of the perturbative series.
The authors use ultra-soft (log) resummation, i.e. they resum the terms O‘EM In" oy to all orders instead of using fixed-
order perturbation theory. They also include what is called the terminant of the perturbative series associated to the leading
renormalon of the force [74]. When they use fixed order perturbation theory they obtain very similar results to Refs. [75,760].
It has been argued that log resummation cannot be justified since for the distance range available in the lattice studies o is
not small enough and the logarithmic and non-logarithmic higher-order terms are of a similar size [760]. On the other hand,
the resummation of ultra-soft logs does not lead to any anomalous behaviour of the perturbative expansion like large scale
dependence or bad convergence [74].

To obtain the value of A{\\%:S from the static potential we combine the results in Egs. (359) and (361) using the weighted
average with the weight given by the perturbative error and using the difference in the central value as the error estimate. This
leads to

N =3

s = = 330(24) MeV. (362)
from the static potential determination. In the case of TUMQCD 19, where the perturbative error is very asymmetric we used
the larger upper error for the calculation of the corresponding weight.

9.6 oy from the light-quark vacuum polarization in momentum/position space
9.6.1 General considerations

Except for the new calculation Cali 20 [76], where position space is used (see below), the light-flavour-current 2-point function
is usually evaluated in momentum space, in terms of the vacuum-polarization function. For the flavour-nonsinglet currents
Jﬁ (a =1, 2, 3) in the momentum representation this is parametrized as

(JOID) = 871(8,, 0% — 0,001 (Q) — 0, 0,11V (0)], (363)

where O, is a space-like momentum and J,, = V, for a vector current and J, = A, for an axial-vector current. Defining
I,(0) = H(JO)(Q) + H(Jl)(Q), the operator product expansion (OPE) of ITy,4(Q) is given by

My/alope(Q% a) = ¢+ C}” (Q)+CV/A(Q)m 0, + ) V/A(Q>méim

q=u,d,s

sGG
+el eI 007, (364)

for large 02. The perturbative coefficient functions C ;(// 4 (0?) for the operators X (X = 1,gq, GG) are given as C )‘?/ A (0% =

o (cy/A (i)o:i(Qz) and 7 is the runnin f th -d dd ks. €V sk includi
i>0 X s g mass o € mass egenerate up an own quar S. 1 1S Known inclu ng

a;‘ in a continuum renormalization scheme such as the MS scheme [772-775]. Nonperturbatively, there are terms in C )‘;/ 4

that do not have a series expansion in «;. For an example for the unit operator see Ref. [776]. The term ¢ is Q-independent
and divergent in the limit of infinite ultraviolet cutoff. However the Adler function defined as

,dT1(Q?)

D(Q*) =-0 0 (365)
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is a scheme-independent finite quantity. Therefore one can determine the running-coupling constant in the MS scheme from
the vacuum-polarization function computed by a lattice-QCD simulation. Of course, there is the choice whether to use the
vector or the axial vector channel, or both, the canonical choice being ITy 4 = ITy + IT4. While perturbation theory does
not distinguish between these channels, the nonperturbative contributions are different, and the quality of lattice data may
differ, too. For a given choice, the lattice data of the vacuum polarization is fitted with the perturbative formula Eq. (364) with
fit parameter Az parameterizing the running coupling am(Qz).

While there is no problem in discussing the OPE at the nonperturbative level, the ‘condensates’ such as (¢;GG) are
ambiguous, since they mix with lower-dimensional operators including the unity operator. Therefore one should work in the
high-Q? regime where power corrections are negligible within the given accuracy. Thus setting the renormalization scale as
"= \/@, one should seek, as always, the window Aqgcp K 1 < a L.

9.6.2 Definitions in position space

The 2-point current correlation functions in position space contain the same physical information as in momentum space, but
the technical details are sufficiently different to warrant a separate discussion. The (Euclidean) current-current correlation
function for J j‘f 1 (with flavour indices f, f”) is taken to be either the flavour non-diagonal vector or axial vector current, with
the Lorentz indices contracted,

Cav(0) == 3 (I Ay @ o v ) = % (1+=+0e). (366)

n

In the chiral limit, the perturbative expansion is known to (x;‘ [777], and is identical for vector and axial vector correlators.
The only scale is set by the Euclidean distance n = 1/|x| and the effective coupling can thus be defined as

aerr( = 1/Jx) = 7 [P 6)Cav ) — 1] (367)

As communicated to us by the authors of [76], there is a typo in Eq. (35) of [777]. For future reference, the numerical
coefficients for the 3-loop conversion

aefr (1) = oy (i) + c1am (1) + 20 (1) + (), (368)

should read
c1 = —1.4346, ¢ = 0.16979, c3 = 3.21120. (369)

9.6.3 Discussion of computations

Results using this method in momentum space are, to date, only available using overlap fermions or domain-wall fermions.
Since the last review, FLAG 19, there has been one new computation, Cali 20 [76], which uses the vacuum polarization in
position space, using O(a) improved Wilson fermions. The results are collected in Table 62 for Ny = 2, JLQCD/TWQCD
08C [778] and for Ny =2+ 1, JLQCD 10 [779], Hudspith 18 [780] and Cali 20 [76].

We first discuss the results of JLQCD/TWQCD 08C [778] and JLQCD 10 [779]. The fit to Eq. (364) is done with the
4-loop relation between the running coupling and Agg. It is found that without introducing condensate contributions, the
momentum scale where the perturbative formula gives good agreement with the lattice results is very narrow, a Q >~ 0.8—1.0.
When a condensate contribution is included the perturbative formula gives good agreement with the lattice results for the
extended range a Q =~ 0.6—1.0. Since there is only a single lattice spacing a &~ 0.11 fm there is a m for the continuum limit.
The renormalization scale w is in the range of O = 1.6-2 GeV. Approximating aefr ~ ayg(Q), we estimate that aefr =
0.25-0.30 for Ny = 2 and aeff = 0.29-0.33 for Ny = 2+ 1. Thus we givea 0 and m for Ny =2and Ny = 2 + 1,
respectively, for the renormalization scale and a m for the perturbative behaviour.

A further investigation of this method was initiated in Hudspith 15 [781] and completed by Hudspith 18 [780] (see also
[782]) based on domain-wall fermion configurations at three lattice spacings, a~! =1.78,2.38, 3.15 GeV, with three different
light-quark masses on the two coarser lattices and one on the fine lattice. An extensive discussion of condensates, using
continuum finite-energy sum rules was employed to estimate where their contributions might be negligible. It was found that
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Table 62 Results from the vacuum polarization in both momentum and position space

. §
] S X
g ® &
S 5 $ &
F § $ &
Q% &u ) '&b
O N o
& § Sk $
& § § §
Collaboration Ref. N; < < € O Scale Agis[MeV] roAgg
Cali 20 [76] 2+1 A o * * ms 342(17) 0.818(41)¢
Hudspith 18 [780] 2+1 P o o n my, 337(40) 0.806(96)”
Hudspith 15 [781] 2+1 C o o n m, 300247  0.717(58)
JLQCD 10 [779] 2+1 A n o n ro = 0.472fm 247(5) 0.591(12)
JLQCD/TWQCD 08C [778] 2 A 0 o n ro=049fm  2349)(T)") 0.58122)(*y")

$Via #o/a?, still unpublished. We use ro = 0.472 fm

*Determined in [8]

Evaluates to a(S) (Mz) = 0.11864(114)

In conversion to roA we used ro = 0.472 fm.

b Q(MZ) =0.1181(27) (+ »). Aygg determined by us from a (2 GeV) = 0.2961(185). In conversion to ro A we used ro = 0.472 fm

+Determmed by us from a(S) (2 GeV) = 0.279(11). Evaluates to a(s) (Mz) =0.1155(18)
aCL(Mz) = 0. 1118<3><+17)

even up to terms of O ((1/ QZ)S) (a higher order than depicted in Eq. (364) but with constant coefficients) no single condensate
dominates and apparent convergence was poor for low Q2 due to cancellations between contributions of similar size with
alternating signs. (See, e.g., the list given by Hudspith 15 [781].) Choosing Q2 to be at least ~ 3.8 GeV? mitigated the problem,
but then the coarsest lattice had to be discarded, due to large lattice artefacts. So this gives a m for continuum extrapolation.
With the higher Q2 the quark-mass dependence of the results was negligible, so ensembles with different quark masses were
averaged over A range of Q2 from 3.8-16 GeV? gives aefr = 0.31-0.22, so there is a o for the renormalization scale. The
value of o3 o reaches Aot /(87 boctetr) and thus glves a o for perturbative behaviour. In Hudspith 15 [781] (superseded by
Hudspith 18 [780]) about a 20% difference in ITy (Q ) was seen between the two lattice spacings and a result is quoted only
for the smaller a.

9.6.4 Vacuum polarization in position space

Cali 20 [76] evaluate the light-current 2-point function in position space. The 2-point functions for the nonperturbatively
renormalized (non-singlet) flavour currents is computed for distances |x| between 0.1 and 0.25 fm and extrapolated to the
chiral limit. The available CLS configurations are used for this work, with lattice spacings between 0.039 and 0.086 fm.
Despite fully nonperturbative renormalization and O(a) improvement, the remaining O(a?) effects, as measured by O (4)
symmetry violations, are very large, even after subtraction of tree-level lattice effects. Therefore the authors performed a
numerical stochastic perturbation theory (NSPT) simulation in order to determine the lattice artifacts at O(g?). Only after
subtraction of these effects the constrained continuum extrapolations from 3 different lattice directions to the same continuum
limit are characterized by reasonable y2-values, so the feasibility of the study crucially depends on this step. Interestingly,
there is no subtraction performed of nonperturbative effects. For instance, chiral-symmetry breaking would manifest itself
in a difference between the vector and the axial vector 2-point functions, and is invisible to perturbation theory, where these
2-point functions are known to oz [777]. According to the authors, phenomenological estimates suggest that a difference of
1.5% between the continuum correlators would occur around 0.3 fm and this difference would not be resolvable by their lattice
data. Equality within their errors is confirmed for shorter distances. We note, however, that chiral symmetry breaking effects
are but one class of nonperturbative effects, and their smallness does not allow for the conclusion that such effects are generally
small. In fact, the need for explicit subtractions in momentum space analyses may lead one to suspect that such effects are

not negligible at the available distance scales. For the determination of A= the authors limit the range of distances to
0.13-0.19 fm, where aefr € [0.2354, 0.3075] (private communication by the authors). These effective couplings are converted
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to MS couplings at the same scales i = 1/|x| by solving Eq. (368) numerically. Central values for the A-parameter thus
obtained are in the range 325-370 MeV (using the S-function at 5-loop order) and a weighted average yields the quoted result
342(17) MeV, where the average emphasizes the data around |x| = 0.16 fm, or u = 1.3 GeV.

Applying the FLAG criteria the range of lattice spacings yields ¥ for the continuum extrapolation. However, the FLAG
criterion implicitly assumes that the remaining cutoff effects after non-perturbative O(a) improvement are small, which is not
the case here. Some hypercubic lattice artefacts are still rather large even after 1-loop subtraction, but these are not used for the
analysis. As for the renormalization scale, the lowest effective coupling entering the analysis is 0.235 < 0.25, so we give 0. As
for perturbative behaviour, for the range of couplings in the above interval agff changes by (0.308/0.235)3 ~ 2.2, marginally
reaching (3/2)? = 2.25. The errors Aaef after continuum and chiral extrapolations are 4-6% (private communication by the
authors) and the induced uncertainty in A is comfortably above Zaé”ff, which gives a s according to FLAG criteria.

Although the current FLAG criteria are formally passed by this result, the quoted error of 5% for A seems very optimistic.
We have performed a simple test, converting to the MS scheme by inverting Eq. (368) perturbatively (instead of solving the
fixed-order equation numerically). The differences between the couplings are of order ozAf and thus indicative of the sensitivity
to perturbative truncation errors. The resulting A-parameter estimates are now in the range 409—468 MeV, i.e. ca. 15-30%
larger than before. While the difference between both estimates decreases proportionally to the expected agff, an extraction of
the A-parameter in this energy range is a priori affected by systematic uncertainties corresponding to such differences. The
FLAG criterion might fail to capture this e.g. if the assumption of an O(1) coefficient for the asymptotic ocgff behaviour is not
correct. Some indication for a problematic behaviour is indeed seen when perturbatively inverting Eq. (368) to order af. The
resulting MS couplings are then closer to the values used in Cali 20, although the difference is formally O(oz;‘) rather than
O(@).

9.7 ay from observables at the lattice spacing scale
9.7.1 General considerations

The general method is to evaluate a short-distance quantity Q at the scale of the lattice spacing ~ 1/a and then determine its
relationship to agg via a perturbative expansion.

This is epitomized by the strategy of the HPQCD collaboration [783,784], discussed here for illustration, which computes
and then fits to a variety of short-distance quantities

Mmax

Y =" caod(g"). (370)
n=1

The quantity Y is taken as the logarithm of small Wilson loops (including some nonplanar ones), Creutz ratios, ‘tadpole-
improved” Wilson loops and the tadpole-improved or ‘boosted’ bare coupling (O(20) quantities in total). The perturbative
coefficients ¢, (each depending on the choice of Y) are known to n = 3 with additional coefficients up to nny,x being fitted
numerically. The running coupling ey is related to ay from the static-quark potential (see Sect. 9.5).67

The coupling constant is fixed at a scale g* = d/a. The latter is chosen as the mean value of In ¢ with the one-gluon loop as
measure [785,786]. (Thus a different result for d is found for every short-distance quantity.) A rough estimate yields d ~ =,
and in general the renormalization scale is always found to lie in this region.

For example, for the Wilson loop W,,,,, = (W (ma, na)) we have

W
In <—uz(n;nfn>) = cray(q%) + c203:(q") + c305: (g% + -+, 371)
0

for the tadpole-improved version, where cy, ¢z, . . . are the appropriate perturbative coefficients and ug = Wlll/ * Substituting
the nonperturbative simulation value in the left hand side, we can determine ay(g*), at the scale ¢g*. Note that one finds
empirically that perturbation theory for these tadpole-improved quantities have smaller ¢, coefficients and so the series has
a faster apparent convergence compared to the case without tadpole improvement.

67 @y is defined by Ayr = Ay and bY' = b fori =0, 1,2 buthy =0 fori > 3.
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Using the B-function in the V' scheme, results can be run to a reference value, chosen as oy = avi(qo), go = 7.5GeV.
This is then converted perturbatively to the continuum MS scheme

axis(qo) = oo + diaf + doad + - - (372)

where d1, d> are known 1-and 2-loop coefficients.
Other collaborations have focused more on the bare ‘boosted’ coupling constant and directly determined its relationship
to ag- Specifically, the boosted coupling is defined by

1 g%
ap(l/a) = Py (373)

again determined at a scale ~ 1/a. As discussed previously, since the plaquette expectation value in the boosted coupling
contains the tadpole-diagram contributions to all orders, which are dominant contributions in perturbation theory, there is
an expectation that the perturbation theory using the boosted coupling has smaller perturbative coefficients [785], and hence
smaller perturbative errors.

9.7.2 Continuum limit

Lattice results always come along with discretization errors, which one needs to remove by a continuum extrapolation. As
mentioned previously, in this respect the present method differs in principle from those in which ¢ is determined from physical
observables. In the general case, the numerical results of the lattice simulations at a value of u fixed in physical units can be
extrapolated to the continuum limit, and the result can be analyzed as to whether it shows perturbative running as a function
of w in the continuum. For observables at the cutoff-scale (¢* = d/a), discretization effects cannot easily be separated out
from perturbation theory, as the scale for the coupling comes from the lattice spacing. Therefore the restriction au < 1
(the ‘continuum-extrapolation” criterion) is not applicable here. Discretization errors of order a> are, however, present. Since
a ~ exp(—1/(2bgy g%)) ~ exp(—1/(8mwboa(g*)), these errors now appear as power corrections to the perturbative running,
and have to be taken into account in the study of the perturbative behaviour, which is to be verified by changing a. One thus
usually fits with power corrections in this method.

In order to keep a symmetry with the ‘continuum-extrapolation’ criterion for physical observables and to remember that
discretization errors are, of course, relevant, we replace it here by one for the lattice spacings used:

e Lattice spacings

J 3 or more lattice spacings, at least 2 points below @ = 0.1 fm
o 2 lattice spacings, at least 1 point below a = 0.1 fm
m otherwise

9.7.3 Discussion of computations

Note that due to ;& ~ 1/a being relatively large the results easily have a % or o in the rating on renormalization scale.

The work of El-Khadra 92 [794] employs a 1-loop formula to relate ozl%(n /a) to the boosted coupling for three lattice
spacings a~! = 1.15, 1.78, 2.43 GeV. (The lattice spacing is determined from the charmonium 1S-1P splitting.) They obtain
A% = 234 MeV, corresponding to aefr = a%(n /a) =~ 0.15-0.2. The work of Aoki 94 [791] calculates ag/z) and Ol% for a
single lattice spacing a~! ~ 2 GeV, again determined from charmonium 1S-1P splitting in two-flavour QCD. Using 1-loop
perturbation theory with boosted coupling, they obtain ag) = 0.169 and a2 = 0.142. Davies 94 [790] gives a determination
of ay from the expansion

@
MS

4 (N N
—In Wy, = Ta(v P (3.41/a) x [1 — (1.185 + 0.070N pa "1, (374)
neglecting higher-order terms. They compute the Y spectrum in Ny = 0, 2 QCD for single lattice spacings at a~! =257,

2.47GeV and obtain ay(3.41/a) =~ 0.15, 0.18, respectively. Extrapolating the inverse coupling linearly in Ny, a value of
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a£,3 )(8.3 GeV) = 0.196(3) is obtained. SESAM 99 [788] follows a similar strategy, again for a single lattice spacing. They

linearly extrapolated results for 1/ as) ), 1/ aé,z ) at a fixed scale of 9 GeV to give oz£,3 ), which is then perturbatively converted
to a%. This finally gave oz%(M z) = 0.1118(17). Wingate 95 [789] also follows this method. With the scale determined
from the charmonium 1S-1P splitting for single lattice spacings in Ny = 0, 2 giving a~!' ~ 1.80GeV for N r = 0and
a~!' ~ 1.66GeV for Ny = 2, they obtain ag) )(3.41 /a) ~ 0.15 and a§,2 )~ 0.18, respectively. Extrapolating the inverse
coupling linearly in N7, they obtain a&? ) (6.48GeV) = 0.194(17).

The QCDSF/UKQCD collaboration, QCDSF/UKQCD 05 [787,795-797], use the 2-loop relation (re-written here in terms
of o)

1
oys()  ap(l/a)

+ 4w (2bgInap — 1F) + (47)>@2by Inap — )ap(1/a), (375)

where tf and tg are known. (A 2-loop relation corresponds to a 3-loop lattice B-function.) This was used to directly compute
aygs» and the scale was chosen so that the (’)(ag) term vanishes, i.e.,

2.63/a N;=0

14/a Np=2" (376)

* 1 P
po=—exp [7y /(2bo)] ~

The method is to first compute ap(1/a) and from this, using Eq. (375) to find og(11*). The RG equation, Eq. (320), then
determines */ Aypg and hence using Eq. (376) leads to the result for rg Ajzg. This avoids giving the scale in MeV until the
end. In the N ; = 0 case seven lattice spacings were used [709], giving a range "/ Ay A 24-72 (or a~! ~2-7 GeV) and
aeff = ag(™) A~ 0.15-0.10. Neglecting higher-order perturbative terms (see discussion after Eq. (377) below) in Eq. (375)
this is sufficient to allow a continuum extrapolation of 79 Ajzg. A similar computation for Ny = 2 by QCDSF/UKQCD 05
[787] gave u* /Ay ~ 12-17 (or roughly a”' ~2-3 GeV) and aer = ayps(n*) ~ 0.20-0.18. The Ny = 2 results of
QCDSF/UKQCD 05 [787] are affected by an uncertainty which was not known at the time of publication: It has been realized
that the values of ro/a of Ref. [787] were significantly too low [707]. As this effect is expected to depend on a, it influences
the perturbative behaviour leading us to assign a m for that criterion.

Since FLAG 13, there has been one new result for Ny = 0 by FlowQCD 15 [793], later updated and published in Kitazawa
16 [792]. They also use the techniques as described in Egs. (375), (376), but together with the gradient flow scale wq (rather
than the ¢ scale) leading to a determination of wo Agzg. The continuum limit is estimated by extrapolating the data at 6 lattice
spacings linearly in a?. The data range used is 1"/ Ay ~ 50-120 (or a~!' ~5-11 GeV) and ay(n*) ~ 0.12-0.095. Since
a very small value of agg is reached, there is a % in the perturbative behaviour. Note that our conversion to the common ry
scale unfortunately leads to a significant increase of the error of the A parameter compared to using wq directly [714]. Again
we note that the results of QCDSF/UKQCD 05 [787] (N s = 0) and Kitazawa 16 [792] may be affected by frozen topology as
they have lattice spacings significantly below a = 0.05 fm. Kitazawa 16 [792] investigate this by evaluating wg/a in a fixed
topology and estimate any effect at about ~ 1%.

The work of HPQCD 05A [783] (which supersedes the original work [798]) uses three lattice spacings a '~ 12,1.6,
2.3GeV for 2 + 1 flavour QCD. Typically the renormalization scale ¢ ~ 7 /a =~ 3.50-7.10 GeV, corresponding to oy’ ~
0.22-0.28.

In the later update HPQCD 08A [784] twelve data sets (with six lattice spacings) are now used reachinguptoa ™! ~ 4.4 GeV,
corresponding to ayr =~ 0.18. The values used for the scale r; were further updated in HPQCD 10 [11]. Maltman 08 [79]
uses most of the same lattice ensembles as HPQCD 08A [784], but not the one at the smallest lattice spacing, a =~ 0.045 fm.
Maltman 08 [79] also considers a much smaller set of quantities (three versus 22) that are less sensitive to condensates. They
also use different strategies for evaluating the condensates and for the perturbative expansion, and a slightly different value
for the scale ;. The central values of the final results from Maltman 08 [79] and HPQCD 08A [784] differ by 0.0009 (which
would be decreased to 0.0007 taking into account a reduction of 0.0002 in the value of the r; scale used by Maltman 08 [79]).

As mentioned before, the perturbative coefficients are computed through 3-loop order [799], while the higher-order per-
turbative coefficients ¢, with ny,x > n > 3 (with npx = 10) are numerically fitted using the lattice-simulation data for the
lattice spacings with the help of Bayesian methods. It turns out that corrections in Eq. (371) are of order |c; /ci|a’ = 5-15%
and 3-10% for i = 2, 3, respectively. The inclusion of a fourth-order term is necessary to obtain a good fit to the data, and
leads to a shift of the result by 1 — 2 sigma. For all but one of the 22 quantities, central values of |c4/c1| ~ 2—4 were found,
with errors from the fits of & 2. It should be pointed out that the description of lattice results for the short distance quantities
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does not require Bayesian priors, once the term proportional to c4 is included [79]. We also stress that different short distance
quantities have quite different nonperturbative contributions [800]. Hence the fact that different observables lead to consistent
o, values is a nontrivial check of the approach.

An important source of uncertainty is the truncation of perturbation theory. In HPQCD 08A [784], 10 [11] it is estimated
to be about 0.4% of aj5(Mz). In FLAG 13 we included a rather detailed discussion of the issue with the result that we prefer
for the time being a more conservative error based on the above estimate |c4/c1| = 2. From Eq. (370) this gives an estimate
of the uncertainty in o of

c4

Adegr (1) = ‘; ade(11), (377)

at the scale p where aefr is computed from the Wilson loops. This can be used with a variation in A at lowest order of
perturbation theory and also applied to a evolved to a different scale 11,5

AA 1 Aag, Aag(pa) o (i)

A 8mboas oy Aag(uy)  aZ(uy)

(378)

With py = Mz and as(e1) = 0.2 (a typical value extracted from Wilson loops in HPQCD 10 [11], HPQCD 08A [784] at
n = 5GeV) we have

Aags(mz) = 0.0012, (379)

which we shall later use as the typical perturbative uncertainty of the method with 2 + 1 fermions.
Table 63 summarizes the results. Within the errors of 3-5% Ny = 3 determinations of ro A nicely agree.

9.8 o from heavy-quark current two-point functions
9.8.1 General considerations

The method has been introduced in HPQCD 08, Ref. [202], and updated in HPQCD 10, Ref. [11], see also Ref. [801]. In
addition there is a 2+1+1-flavour result, HPQCD 14A [14].
The basic observable is constructed from a current,

J(x) = iamcyr (x)yspre (x), (380)

of two mass-degenerate heavy-valence quarks, ¢, ¢/, usually taken to be at or around the charm-quark mass. The pre-factor
m. denotes the bare mass of the quark. When the lattice discretization respects chiral symmetry, J(x) is a renormalization
group invariant local field, i.e., it requires no renormalization. Staggered fermions and twisted-mass fermions have such a
residual chiral symmetry. The (Euclidean) time-slice correlation function

G(xo) =a® ) (JT(0)J(0)), (381)

(J'(x)=i amcwc/ (X)ys¥e(x)) has a ~ xy 3 singularity at short distances and moments

T/2—a

Go=a Y  xjGx) (382)
xo=—(T/2—a)

are nonvanishing for even n and furthermore finite for n > 4. Here T is the time extent of the lattice. The moments are
dominated by contributions at xo of order 1/m.. For large mass m. these are short distances and the moments become

8 From Eq. (327) we see that at low order in PT the coupling «; is continuous and differentiable across the mass thresholds (at the same scale).
Therefore to leading order oy and A are independent of N .
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Table 63 Wilson loop results. Some early results for N s = 0, 2 did not determine Ay

§ g $
& S & &
“ & ) S
g & ~ &
S & S K
& § § 7
& S S &
® & & F
Collaboration Refs. Ny o R4 RS N Scale Ays [MeV]  roAyg
HPQCD 104 [11] 2+1 A o * * ri = 0.3133(23) fm  340(9) 0.812(22)
HPQCD 08A¢ [784] 2+1 A o * * r1=0.321(5) fm®"  338(12)* 0.809(29)
Maltman 08¢ (791 2+1 A o o) * r1 = 0.318 fm 352(17)1 0.841(40)
HPQCD 05A¢ [783] 2+1 A o o o rit 319(17)**  0.763(42)
QCDSF/UKQCD 05 [787] 2 A * n * ro =0.467(33)fm  261(17)(26)  0.617(40)(21)°
SESAM 99¢ [788] 2 A o n n c&(1S-1P)
Wingate 95¢ [789] 2 A * u ] ce(1S-1P)
Davies 94¢ [790] 2 A * ] ] T
Aoki 94/ [7911 2 A * n = c&(18-1P)
Kitazawa 16 [7921 0 A * * * wo 260(5)/ 0.621(11)7
FlowQCD 15 [7931 0 P * * * wh , 258(6)! 0.618(11)
QCDSF/UKQCD 05 [787] 0 A * o) * ro =0.467(33)fm  259(1)(20)  0.614(2)(5)®
SESAM 99¢ [788] 0 A * n n cé(1S-1P)
Wingate 95¢ [789] 0 A * n = cé(18-1P)
Davies 94¢ [790] 0 A * n = Y
El-Khadra 92¢ [794] 0 A * m o c&(18-1P) 234(10) 0.560(24)"

"The numbers for A have been converted from the values for o )(M 7)

(3) (5 GeV) = l(vslg (Mz) = 0.1184(6), only update of intermediate scale and c-, b-quark masses, supersedes HPQCD 08A

(5’ o (Mz) =0.1192(11)
* <V3> (7.5GeV) = ﬁ;(MZ) = 0.1183(8), supersedes HPQCD 05
¥Scale is originally determined from Y’ mass splitting. r; is used as an intermediate scale. In conversion to roAsfs» 1o is taken to be 0.472 fm
“ay) (7.5 GeV) = 0.2082(40), aoL (M) = 0.1170(12)
bThis supersedes Refs. [795-797]. a(s) (Mz) = 0.112(1)(2). The Ny = 2 results were based on values for ro/a which have later been found to be
too small [707]. The effect will be of the order of 10-15%, presumably an increase in Arg
ca%(Mz) =0.1118(17)
d (3)(6 48 GeV) = 0.194(7) extrapolated from N ; = 0,2. a>L(M7) = 0.107(5)

« 8.2 GeV) = 0.1959(34) extrapolated from N; = 0, 2. a<5) (Mz) = 0.115(2)

/Estimated oz (MZ) =0.108(5)(4)
8This early computation violates our requirement that scheme conversions are done at the 2-loop level. A( ) = l60(+‘g)MeV a(4) (5GeV) =

0.174(12). We converted this number to give al(\T)s(M 7z) = 0.106(4)

"'We used ro = 0.472 fm to convert to roAys
iReference scale wo4 where wy is defined by t0; [12(E (t))]} w2 = X in terms of the action density E(f) at positive flow time ¢ [793]. Our

gonversion to rp scale using [793] ro/wo.4 = 2.587(45) and ro = 0.472 fm
/Our conversion from wo Agg = 0.2154(12) to rg scale using ro /wo = (ro/wo.4) - (wo.4/wo) = 2.885(50) with the factors cited by the collaboration
[793] and with rop = 0.472 fm

increasingly perturbative for decreasing n. Denoting the lowest-order perturbation theory moments by Gf,o), one defines the
normalized moments

G4/GY forn = 4,
R, = 1/(—4) (383)
S ( GG(g)> forn > 6,
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of even order n. Note that Eq. (380) contains the variable (bare) heavy-quark mass m.. The normalization Gf,o) is introduced
to help in reducing lattice artifacts. In addition, one can also define moments with different normalizations,

R, =2R,/m,,  forn > 6. (384)

While R, also remains renormalization-group invariant, it now also has a scale which might introduce an additional ambiguity
[25].
The normalized moments can then be parameterized in terms of functions

ra(as () forn = 4,

R, = (385)

e (e () forn = 6,

with m.(u,;,) being the renormalized heavy-quark mass. The scale p,, at which the heavy-quark mass is defined could be
different from the scale p at which «; is defined [802]. The HPQCD collaboration, however, used the choice u = u,, =
3m.(w). This ensures that the renormalization scale is never too small. The reduced moments r,, have a perturbative expansion

Fn= 14 rp 0 4 rp 00 +rpzed + .., (386)

where the written terms r, ; (t/mq(p)), i < 3 are known for low n from Refs. [803—-807]. In practice, the expansion is
performed in the MS scheme. Matching nonperturbative lattice results for the moments to the perturbative expansion, one
determines an approximation to agg(u) as well as m.(u). With the lattice spacing (scale) determined from some extra
physical input, this calibrates . As usual suitable pseudoscalar masses determine the bare-quark masses, here in particular
the charm mass, and then through Eq. (385) the renormalized charm-quark mass.

A difficulty with this approach is that large masses are needed to enter the perturbative domain. Lattice artifacts can
then be sizeable and have a complicated form. The ratios in Eq. (383) use the tree-level lattice results in the usual way for
normalization. This results in unity as the leading term in Eq. (386), suppressing some of the kinematical lattice artifacts. We
note that in contrast to, €.g., the definition of agq, here the cutoff effects are of order a*ay, while there the tree-level term
defines o and therefore the cutoff effects after tree-level improvement are of order a*a2. To obtain the continuum results for
the moments it is important to perform fits with high powers of a. This implies many fit parameters. To deal with this problem
the HPQCD collaboration used Bayesian fits of their lattice results. More recent analyses of the moments, however, did not
rely on Bayesian fits [25,26,189,696].

Finite-size effects (FSE) due to the omission of |xg| > 7/2 in Eq. (382) grow with n as (m,, T /2)" exp (—my,T/2). In
practice, however, since the (lower) moments are short-distance dominated, the FSE are expected to be small at the present
level of precision. Possible exception could be the ratio Rg/R1p, where the finite-volume effects could be significant as
discussed below.

Moments of correlation functions of the quark’s electromagnetic current can also be obtained from experimental data for
ete™ annihilation [808,809]. This enables a nonlattice determination of c; using a similar analysis method. In particular, the
same continuum perturbation-theory computation enters both the lattice and the phenomenological determinations.

9.8.2 Discussion of computations

The determination of the strong-coupling constant from the moments of quarkonium correlators by HPQCD collaboration
have been discussed in detail in the FLAG 2016 and 2019 reports. Therefore, we only give the summary of these determinations
in Table 64.

Two additional computations have appeared between the FLAG 16 and the FLAG 19 reports. We re-discuss them here
(see also the summary section), as the assessment in FLAG 19 was partially based on an inconsistent use of the FLAG
criteria and has now been changed. Maezawa and Petreczky, [189] computed the two-point functions of the c¢ pseudoscalar
operator and obtained R4, Rg/Rg and Rg/R1 based on the HotQCD collaboration HISQ staggered ensembles, [116]. The
scale is set by measuring r; = 0.3106(18) fm. Continuum limits are taken fitting the lattice-spacing dependence with a? + a*
form as the best fit. For R4, they also employ other forms for fit functions such as a2, a}?ooswdaz + a*, etc., the results

agreeing within errors. Matching R4 with the 3-loop formula Eq. (386) through order ai/Ts [803], where u is fixed to m.,
they obtain a%(u =m.) = 0.3697(54)(64)(15). The first error is statistical, the second is the uncertainty in the continuum
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Table 64 Heavy-quark current two-point function results. Note that all analysis using 2 + 1 flavour simulations perturbatively add a dynamical
charm quark. Partially they then quote results in N y = 4-flavour QCD, which we converted back to N y = 3, corresponding to the nonperturbative
sea quark content

S ~§
s § & £
s ¢ & 5
& § Sk &
N § g §
Collaboration Refs. Ny ¢ & i o Scale Asis [MeV] roAyg
HPQCD 14A [14] 2+141 A o * o) wo = 0.1715(9) fm®  294(11)*¢  0.703(26)
Petreczky 20 [696] 2+1 P o) o) * r1 = 0.3106(18) fm 332317 0.792(41)8
Boito 20 [698] 2+1 A m n o me(me) = 1.28(2) GeV 328(30)"  0.785(72)
Petrezcky 19, my=m. [26] 2+1 A m m * ri=0.3106(18) fm¢  314(10) 0.751(24)8
Petrezcky 19, Zt—15 [26] 2+1 A m m o ri =0.3106(18) fm¢  310(10) 0.742(24)8
Maezawa 16 [189] 2+1 A m m o ri=0.3106(18) fm?  309(10)°  0.739(24)¢
JLQCD 16 [25] 2+1 A [ o o) Vio =0.1465(25)fm  331(38)/  0.792(89)/
HPQCD 10 [11] 2+41 A o * o r=0313323)fm"  338(10)*  0.809(25)
HPQCD 08B [202] 2+1 A m m m r1 = 0.321(5) fm® 325(18)t  0.777(42)

“Scale determined in [37] using f

by (4) B (5GeV) = <5> L (Mz) = 0.11822(74)

¢ We evaluated A% from ai\T)s' We also used ro = 0.472 fm

dScale is determined from f;

"ot@(mc = 1.267GeV) = 0.3697(85), a<5) (Mz) = 0.11622(84). Our conversion with rg = 0.472 fm

fWe evaluated A(3)S from the given a(i)(3 GeV) = 0.2528(127). a(s) (Mz) = 0.1177(26). We also used r9p = 0.472 fm to convert
8We used ro = 0.472fm to convert
""'We back- engineered from a (M 7z) = 0.1177(20). We used ro = 0.472 fm to convert
oe%(S GeV) = , ﬁ;(MZ) = 0.1183(7)
fScale is determined from Y mass splitting
+We evaluated A(3) from the given a1 (3 GeV) = 0.251(6). a<5) (Mz) = 0.1174(12)

extrapolation, and the third is the truncation error in the perturbative approximation of r4. This last error is estimated by the
“typical size” of the missing 4-loop contribution, which they assume to be ot;‘Ts(/L) multiplied by 2 times the 3-loop coefficient

2 X rs3 X af(;t) =0.2364 x aL(/t) The result is converted to
(5) ) (Mz) = 0.11622(84). (387)

Since e = 0.38 we assign m for the criterion of the renormalization scale. As AA/A < agff, we assign m for the criterion
of perturbative behaviour. The lattice cutoff ranges as a~! = 1.42-4.89 GeV with . = 2m. ~ 2.6 GeV so that we assign o
for continuum extrapolation.

JLQCD 16 [25] also computed the two-point functions of the cc pseudoscalar operator and obtained Rg, Ry, Rio and their
ratios based on 2+1-flavour QCD with Mobius domain-wall quark for three lattice cutoff a1=25,3.6,4.5GeV. The scale
is set by 4/fo = 0.1465(21)(13) fm. The continuum limit is taken assuming linear dependence on a®. They find a sizeable
lattice-spacing dependence of R4, which is therefore not used in their analysis, but for Rg, Ry, Ro the dependence is mild
giving reasonable control over the Continuum limit. They use the perturbative formulae for the vacuum polarization in the
pseudoscalar channel I1 pg through order aNT in the MS scheme [805,806] to obtain aMS Combining the matching of lattice

results with continuum perturbation theory for Rg, Rg/Rg and Rg, they obtain a (/,L =3 GeV) = 0.2528(127), where the
error is dominated by the perturbative truncation error. To estimate the truncation error they study the dependence of the final
result on the choice of the renormalization scales w, u,, which are used as renormalization scales for ¢ and the quark mass.
Independently [802] the two scales are varied in the range of 2 GeV to 4 GeV. The above result is converted to oz%(M 7) as
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oz%(Mz) = 0.1177(26). (388)

Since aeff >~ 0.37, they have m for the renormalization scale criterion. Since AA/A =~ ozgff, we also assign o for the criterion
of perturbative behaviour. The lattice cutoff ranges over a~!' = 2.5-4.5 GeV with © = 3 GeV so we also give them a o
for continuum extrapolation. We note, however, that the x?/dof of the a? extrapolation was quite bad, namely between 2.1
and 5.1 [25]. Please note that the 2019 FLAG review mistakenly took aggg(2m.) for aegr. This resulted in a o rating for the
renormalization scale for both Maezawa 16 and JLQCD 16. With the consistent definition of «ef both determinations now
have m for the renormalization scale.

Three new determinations of «y from the moments of quarkonium correlators appeared since the 2019 FLAG review
[26,696,698]. Petreczky 19 [26] extended the calculation of [189] by considering heavy-quark masses larger than the charm-
quark mass, namely, mj; = 1.5m., 2m. and 3m.. Also three additional lattice spacings, a = 0.025, 0.03 and 0.035 fm have
been added to the analysis. Another improvement compared to Maezawa 16 was the use of random-colour wall sources which
greatly reduced the statistical errors. In fact, the statistical errors on the moments were completely negligible compared to other
sources of errors. The lattices corresponding to the three smallest lattice spacings have been generated for the calculations
of the QCD equation of state at high temperature [769] at light sea-quark masses corresponding to the pion mass of 300
MeV in the continuum limit, instead of the pion mass of 160 MeV as in the previous calculations. However, it has been
checked that the effect of the larger light sea-quark masses is very small, about the size of the statistical errors [26]. Therefore,
the calculations at the two light sea-quark masses have been combined into a single analysis [26]. For each value of the
heavy-quark mass the continuum extrapolations have been performed using various fit ansitze, some of which included high
powers of a. Due to availability of many lattice spacing it was possible to perform such fits without using Bayesian priors. The
variation of the continuum-extrapolated values with the variation of the fit range in a> and the fit forms has been investigated
and included as the systematic error of the contir]buurgl results. The renormalization scale p was fixed to the heavy-quark

f=

mass, and o (i = my,) and the corresponding Am has been determined for each value of mj using continuum results

for R4, Rg/Rg and Rg/Rjo. The perturbative error was estimated as in Maezawa 16 but with the coefficient of the 4-loop
term being 1.6 times the coefficient of the 3-loop term. The values of Aﬁz3 obtained for m; = m. and m;, = 1.5m. were

MS
consistent with each other, A%:3 = 314(10) MeV for m;, = m. and A]\Lf:3 = 310(10) MeV for m;, = 1.5m.. However,

MS
the Afo:3 values turned out to be significantly lower for mj; = 2m, and 3m.. In Petreczky 20 [696], it has been argued
that reliable continuum extrapolations of R4, Rg/Rg and Rg/Rjo are not possible for m; > 2m.. Therefore, we only review
the results obtained for m; = m. and m;, = 1.5m.. There are many lattice spacings available for analysis, including three
lattice spacings a < 0.035 fm, implying that au < 0.5. Therefore, we assign s for the continuum extrapolation. The value
of aegr is 0.38 and 0.31 for m;, = m, and m;, = 1.5m., respectively. So we assign m for the renormalization scale. Since
(AA/A)pg < ozgff we assign m for the perturbative behaviour.

Petreczky 20 [696] used the same raw lattice data as Petreczky 19 but a different strategy for continuum extrapolation and
o extraction. The lattice spacing dependence of the results of R4 at different quark masses was fitted simultaneously in a
similar manner as in the HPQCD 10 and HPQCD 14 analyses, but without using Bayesian priors. In extracting o several
choices of the renormalization scale p in the range 2/3m,—3m, have been considered. The perturbative error was estimated
as in Petreczky 19 but the variation of the results due to the scale variation was larger than the estimated perturbative error.

The final error of the result A%ZS = 331(17) MeV comes mostly from the scale variation [696]. Since there are three
lattice spacing available with ap < 0.5 we give J for continuum extrapolation. Because aerf = 0.22 — 0.38 we give o
for the renormalization scale. Finally, since (AA/A)aq > aesz for the smallest aegr value we give o for the perturbative
behaviour. In addition to R4 Petreczky 20 also considered using Rg/Rg and Rg/Rjo for the o determination. It was pointed
out that the lattice spacing dependence of Rg/Rg is quite subtle and therefore reliable continuum extrapolations for this ratio
are not possible for my > 2m. [696]. For m, = m. and 1.5m_ the ratio Rg/Rg leads to o values that are consistent with
the ones from R4. Furthermore, it was argued that finite-volume effects in the case of Rg/R¢ are large for m; = m. and
therefore the corresponding data are not suitable for extracting «;. This observation may explain why the central values of o
extracted from Rg/Rj( in some previous studies were systematically lower [26,189,202]. On the other hand for m;, > 1.5m,
the finite-volume effects are sufficiently small in the continuum extrapolated results if some small-volume lattice data are
excluded from the analysis [696]. The «; obtained from Rg/R1¢ with mj; > 1.5m, were consistent with the ones obtained
from Ry.

Boito 20 [698] use published continuum extrapolated lattice results on R4, Rg/Rg and Rg/Rj¢ from various groups
combined with experimental results on e e~ annihilation. They quote a separate result for each lattice determinations of Ry,
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Table 65 Moments and the

ratios of the moments from HPQCD 08 HPQCD 10  Maezawa 16 JLQCD 16 Petreczky 19 Petreczky 20

Ny =3 simulations at the Ra 1.272(5) 1.282(4) 1.265(7) - 1.279(4) 1.278(2)
charm mass
Re 1.528(11) 1.527(4) 1.5204) 1.509(7) 1.521(3) 1.522(2)
Ry 1.370(10) 1.373(3) 1.367(8) 1.359(4) 1.369(3) 1.368(3)
Rio 1.304(9) 1.304(2) 1.302(8) 1.297(4) 1.311(7) 1.301(3)
Re¢/Rs  1.113(2) - 1.114(2) 1.1112) 1.1092(6) 1.10895(32)
Rg/Rio  1.049(2) - 1.0495(7) 1.048109)  1.0485(8) -

Re/Rg and Rg/ R for m;, = m, from different lattice groups. They vary the scale x and w,, independently in the region
between m, and 4 GeV. As the typical value they quote oz (Mz) = 0.1177(20). The error is dominated by the perturbative
uncertainty. Since the effective coupling is around 0.38 we give m for the renormalization scale. Because (AA/A)ay < agff
we give this determination m for perturbative behaviour. The continuum results used in the analysis were rated as © with the
exception of HPQCD 08B, which however, does not affect the quoted «; value. Therefore we give them o for the continuum
extrapolation. An interesting point of the Boito 20 analysis is that the o values extracted from Rg/Rjo are systematically
lower than the ones extracted from R4. This confirms the above assertion that finite volume effects are significant for Rg/R1¢
atmy = me.

Aside from the final results for o5 (12 7) obtained by matching with perturbation theory, it is interesting to make a comparison
of the short distance quantities in the continuum limit R,, which are available from HPQCD 08 [202], JLQCD 16 [25], Maezawa
16 [189], Petreczky 19 [26] and Petreczky 20 [696] (all using 2 + 1 flavours). This comparison is shown in Table 65. The
results are in quite good agreement with each other. For future studies it is of course interesting to check agreement of these
numbers before turning to the more involved determination of «.

9.9 o, from QCD vertices
9.9.1 General considerations

The most intuitive and in principle direct way to determine the coupling constant in QCD is to compute the appropriate three-
or four-point gluon vertices or alternatively the quark-quark-gluon vertex or ghost-ghost-gluon vertex (i.e., gq A or cc A vertex,
respectively). A suitable combination of renormalization constants then leads to the relation between the bare (lattice) and
renormalized coupling constant. This procedure requires the implementation of a nonperturbative renormalization condition
and the fixing of the gauge. For the study of nonperturbative gauge fixing and the associated Gribov ambiguity, we refer to
Refs. [810-812] and references therein. In practice the Landau gauge is used and the renormalization constants are defined by
requiring that the vertex is equal to the tree-level value at a certain momentum configuration. The resulting renormalization
schemes are called ‘MOM’ scheme (symmetric momentum configuration) or ‘M’ (one momentum vanishes), which are
then converted perturbatively to the MS scheme.

A pioneering work to determine the three-gluon vertex in the Ny = O theory is Alles 96 [813] (which was followed by
Ref. [814] for two flavour QCD); a more recent Ny = 0 computation was Ref. [815] in which the three-gluon vertex as
well as the ghost-ghost-gluon vertex was considered. (This requires a computation of the propagator of the Faddeev—Popov
ghost on the lattice.) The latter paper concluded that the resulting Agg depended strongly on the scheme used, the order of
perturbation theory used in the matching and also on nonperturbative corrections [816].

Subsequently in Refs. [817,818] a specific MOM scheme with zero ghost momentum for the ghost-ghost-gluon vertex
was used. In this scheme, dubbed the ‘MM’ (Minimal MOM) or ‘Taylor’ (T) scheme, the vertex is not renormalized, and so
the renormalized coupling reduces to

2
1 hos 8
ar(n) = Di" (w, @) D™ (11, a)? ﬁ, (389)
where Dl“’;lzoSt and Dlgaltu " are the (bare lattice) dressed ghost and gluon “form factors’ of these propagator functions in the

Landau gauge,
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Dghost(p)
b _ b
D (p) = =50 ———

luon
PMPv) D& (p) (390)

b _ sab
B sz(p) - 8a (fs;w - P2 p2 B

Dghost/gluon

and we have written the formula in the continuum with Dghost/glvon(py — p2i

compute the ghost-ghost-gluon vertex, just the ghost and gluon propagators.

(p, 0). Thus there is now no need to

9.9.2 Discussion of computations

For the calculations considered here, to match to perturbative scaling, it was first necessary to reduce lattice artifacts by an
H (4) extrapolation procedure (addressing O (4) rotational invariance), e.g., ETM 10F [824] or by lattice perturbation theory,
e.g., Sternbeck 12 [822]. To match to perturbation theory, collaborations vary in their approach. In ETM 10F [824], it was
necessary to include the operator A2 in the OPE of the ghost and gluon propagators, while in Sternbeck 12 [822] very large
momenta are used and a? p? and a* p* terms are included in their fit to the momentum dependence. A further later refinement
was the introduction of higher nonperturbative OPE power corrections in ETM 11D [821] and ETM 12C [820]. Although
the expected leading power correction, 1/p*, was tried, ETM finds good agreement with their data only when they fit with
the next-to-leading-order term, 1/p%. The update ETM 13D [819] investigates this point in more detail, using better data
with reduced statistical errors. They find that after again including the 1/p® term they can describe their data over a large
momentum range from about 1.75 GeV to 7 GeV.

In all calculations except for Sternbeck 10 [823], Sternbeck 12 [822], the matching with the perturbative formula is
performed including power corrections in the form of condensates, in particular (A?). Three lattice spacings are present in
almost all calculations with Ny = 0, 2, but the scales ap are rather large. This mostly results in a m on the continuum
extrapolation (Sternbeck 10 [823], Boucaud 01B [814] for Ny = 2. Ilgenfritz 10 [825], Boucaud 08 [818], Boucaud 05 [815],
Becirevic 99B [830], Becirevic 99A [831], Boucaud 98B [832], Boucaud 98A [833], Alles 96 [813] for Ny = 0). A o is
reached in the N y = 0 computations Boucaud 00A [829], 00B [828], 01A [827], Soto 01 [826] due to a rather small lattice
spacing, but this is done on a lattice of a small physical size. The Ny = 2 + 1 + 1 calculation, fitting with condensates, is
carried out for two lattice spacings and with ap > 1.5, giving m for the continuum extrapolation as well. In ETM 10F [824]
we have 0.25 < aeff < 0.4, while in ETM 11D [821], ETM 12C [820] (and ETM 13 [80]) we find 0.24 < «etr < 0.38,
which gives a o in these cases for the renormalization scale. In ETM 10F [824] the values of ap violate our criterion for a
continuum limit only slightly, and we give a o.

In Sternbeck 10 [823], the coupling ranges over 0.07 < aefr < 0.32for Ny = 0and 0.19 < aefr < 0.38 for Ny = 2 giving
Y and o for the renormalization scale, respectively. The fit with the perturbative formula is carried out without condensates,
giving a satisfactory description of the data. In Boucaud 01A [827], depending on a, a large range of s is used which goes
down to 0.2 giving a o for the renormalization scale and perturbative behaviour, and several lattice spacings are used leading
to © in the continuum extrapolation. The N y = 2 computation Boucaud 01B [827], fails the continuum limit criterion because
both apu is too large and an unimproved Wilson fermion action is used. Finally in the conference proceedings Sternbeck 12
[822], the Ny =0, 2, 3 coupling art is studied. Subtracting 1-loop lattice artifacts and subsequently fitting with a’p? and
a*p* additional lattice artifacts, agreement with the perturbative running is found for large momenta (rg p? > 600) without
the need for power corrections. In these comparisons, the values of 7o Agzg from other collaborations are used. As no numbers
are given, we have not introduced ratings for this study.

Since the previous FLAG review, there has been one new result, Zafeiropoulos 19 [699], again based on the method
described in ETM 10F, [824] but now for Ny = 3 flavours rather than two. Again an (Az) condensate is included, but cannot
be determined; an estimate is used from ETM 10F (Ny = 2) and ETM12C (N = 4). The scale A is determined from the
largest momenta available (when a plateau appears), and the error is estimated from the larger range p ~ 3.0-3.7 GeV. This
is used to determine a;%. In this work there is also some emphasis on being close to the physical-quark masses, using three
domain-wall fermion data sets and careful consideration of discretization effects following [834]. The disadvantage is that a
lower upper bound on the momenta is now reached.

The range of effective couplingsis 0.35 < aefr < 0.42,and over this range we have (cefr (3.0 GeV) /aess (3.7 GeV))3 ~ 1.7,
which leads to a m for perturbative behaviour. With no «. at or below 0.3 and only two lattice spacings, we also obtain a m
for both the renormalization scale and the continuum extrapolation.

In Table 66 we summarize the results. Presently there are no Ny > 3 calculations of a from QCD vertices that satisfy the
FLAG criteria to be included in the range.
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Table 66 Results for the gluon—ghost vertex

N S
s S 3 &
s & & s
E § § $
N § IS §
Collaboration Refs. Ny < <& i S Scale Ayis [MeV] roAxis
ETM 13D [819] 2+1+1 A o o = Fr 314(7)(14)(10)*  0.752(18)(34)(81)*
ETM 12C [820] 2+1+1 A o o = Fr 324(17)% 0.775(41)*
ETM 11D 8211 2+1+1 A o o n fr 316(13)®)(F*  0.756(31)(19)(F9,)7
Zafeiropoulos 19 [699] 2+1 A [ [ [] mo 320(4)(12)b 0.766(10)(29)
Sternbeck 12 [822] 2+1 C Only running of & in Fig. 4
Sternbeck 12 [822] 2 C Agreement with ro Aggg value of [707]
Sternbeck 10 [823] 2 C o) * = 251(15)* 0.60(3)(2)
ETM I0F [824] 2 A o o fx 330(23)(22)(*Yy) 0.72(5)*
Boucaud 01B [814] 2 A o o n K*—K 264(27)* 0.669(69)
Sternbeck 12 [822] O C Agreement with rg Aygg value of [766]
Sternbeck 10 [823] 0 C * * n 259(4)* 0.62(1)
Ilgenfritz 10 [825] O A * * u Only running of e in Fig. 13
Boucaud 08 [818] 0 A o s = Vo =445MeV  224(3)(TY) 0.59(1)(*%)
Boucaud 05 [815] 0 A m ¥ = Jo =445MeV  320(32) 0.85(9)
Soto 01 [826] 0 A o) o e} Jo =445MeV  260(18) 0.69(5)
Boucaud 01A [827] O A o) (0] e} Jo = 445MeV 233(28) MeV 0.62(7)
Boucaud 00B [828] O A e} e} o) Only running of o
Boucaud 00A [829] 0 A o) o) e} Vo =445MeV  2373)(F ) 0.63(1H(™Y)
Becirevic 99B [830] O A o) o) n Vo =445MeV 31914 ()0 0.84H (D)
Becirevic 99A [831] 0 A o o n Vo =445MeV  <3532)(P) £0.93(T)
Boucaud 98B [832] 0O A n o n Jo =445MeV  295(5)(15) 0.78(4)
Boucaud 98A [833] 0 A m o = Jo =445MeV  300(5) 0.79(1)
Alles 96 [813] 0 A m n = Jo = 440MeV Tt 340(50) 0.91(13)

”a%(Mz) =0.1196(4)(8)(6)
We use the 2+1 value rg = 0.472 fm

§a%(Mz) =0.1200(14)

*First error is statistical; second is due to the lattice spacing and third is due to the chiral extrapolation. a%(M 7z) =0.1198(9) (5)(1’2)

b a%(M 7) = 0.1172(3)(9)(5). The first error is the uncertainty in the determination of «7, the second due to the condensate while the third is due to higher

order nonperturbative corrections

#In the paper only ro Az is given, we converted to MeV with rg = 0.472 fm
TThe determination of ro from the f; scale is found in Ref. [87]

**a%(MZ) =0.1133)(4)

T+The scale is taken from the string tension computation of Ref. [767]

9.10 o4 from the eigenvalue spectrum of the Dirac operator

9.10.1 General considerations

Consider the spectral density of the continuum Dirac operator
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where V is the volume and X, are the eigenvalues of the Dirac operator in a gauge background.
Its perturbative expansion

3 - _ _ _
POy = 5 (= pig? = pag" = ;g + 0@, (392)
is known including p3 in the MS scheme [835,836]. In renormalization group improved form one sets the renormalization
scale u to u = sA with s = O(1) and the p; are pure numbers. Nakayama 18 [837] initiated a study of p(A) in the
perturbative regime. They prefer to consider  independent from A. Then p; are polynomials inlog(A/u) of degree i. One may
consider

dlog(p(1) _

3-Fi1g* — Fg' — Fg® — Fg® + 0", (393)
dlog(A)

F() =
where the coefficients, F;, which are known fori = 1, ..., 4, are again polynomials of degree i in log(A /). Choosing the
alternate renormalization-group-improved form with . = sA in Eq. (392), Eq. (393) would instead lead to

F) =3-Fg*) - Fg°0 — Bg8 ) + 0@, (394)

with pure numbers F; and F; = 0. Determinations of « can be carried out by a computation and continuum extrapolation of
p (1) and/or F(A) at large A. Such computations are made possible by the techniques of [85,362,837].

We note that according to our general discussions in terms of an effective coupling, we have n; = 2; the 3-loop § function
of a coupling defined from Eq. (392) or Eq. (394) is known.%’

9.10.2 Discussion of computations

There is one pioneering result to date using this method by Nakayama 18 [837]. They computed the eigenmode distributions
of the Hermitian operator azng Doy where Doy = Doy (m ¢ = 0, ampy) is the overlap operator and mpy is the Pauli—Villars
regulator on ensembles with 2+1 flavours using Mobius domain-wall quarks for three lattice cutoffs a !'=25,3.6,4.5GeV,
where ampy = 3 or 0o. The bare eigenvalues are converted to the MS scheme at 4 = 2 GeV by multiplying with the renormal-
ization constant Z,, (2 GeV), which is then transformed to those renormalized at © = 6 GeV using the renormalization-group
equation. The scale is set by /7y = 0.1465(21)(13) fm. The continuum limit is taken assuming a linear dependence in a?,
while the volume size is kept about constant: 2.6-2.8 fm. Choosing the renormalization scale © = 6 GeV, Nakayama 18 [837]

extracted the strong coupling constant a%(é GeV) = 0.204(10). The result is converted to

a%(MZ) — 0.1226(36). (395)

Three lattice spacings in the range a~! = 2.5-4.5 GeV with u = A = 0.8-1.25 GeV yield quite small values a. However,
our continuum-limit criterion does not apply as it requires us to consider oy = 0.3. We thus deviate from the general rule and
give a 0 which would result at the smallest value agg(1t) = 0.4 considered by Nakayama 18 [837]. The values of oz lead
to a m for the renormalization scale, while perturbative behaviour is rated o.

In Table 67 we list this result.

9.11 Summary

After reviewing the individual computations, we are now in a position to discuss the overall result. We first present the current
status and for that briefly consider ro A with its flavour dependence from Ny = 0 to 4 flavours. Then we discuss the central
ays(Mz) results, which just use Ny > 3, give ranges for each sub-group discussed previously, and give final FLAG average
as well as an overall average together with the current PDG nonlattice numbers. Finally we return to ro A, presenting our
estimates for the various N .

% In the present situation, Nakayama 18 [837], the effective coupling is defined by g%(u) = F{ 12

definition, Eq. (394), would give g2(11) = F; /> 3 — F())'/2.

(3 — F())) with & = A. The alternative
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Table 67 Dirac eigenvalue result

N S
$
F § s
S ; & &
& $ ol §
IS & L &@
$ S & $
O S $
§ E $ E
Q
Collaboration ~ Refs. Ny < & < O Scale  Ayg[MeV]  roAyg
Nakayama 18 [837] 2+1 A - o o o 409(60)* 0.978(144)

*a%(Mz) = 0.1226(36). Ay determined by us using a%(6 GeV) = 0.204(10). Uses ro = 0.472 fm

FIAG2021 ro/A

HEH FLAG average for N¢=4
HilH HPQCD 14A
O+ ETM 13D
—— ETM 12C
H{H

Ne=4

ETM 11D

FLAG estimate for Ni=3

Petreczky 20
— Boito 20
Ayala 20
— Cali 20
Zafeiropoulos 19
Petreczky 19
TUMQCD 19
o H Takaura 18
I — Hudspith 18
z ———13—— Nakayama 18
HEH ALPHA 17
HH Maezawa 16
— JLQCD 16
Bazavov 14
—{— Bazavov 12
[m) JLQCD 10
HEH HPQCD 10
HH HPQCD 10
PACS-CS 09
Maltman 08
HPQCD 08B
HPQCD 08A
HPQCD 05A

FLAG estimate for Ni=2

Karbstein 18

HH Karbstein 14

~ —i— ALPHA 12

N ETM 11C

> Sternbeck 10
—— ETM 10F

—{H JLQCD/TWQCD 08C

QCDSF/UKQCD 05

ALPHA 04

Boucaud 01B

FLAG estimate for Ny=0

Dalla Brida 19
Husung 17
Ishikawa 17
Kitazawa 16
Sternbeck 10
Brambilla 10
Boucaud 08
Boucaud 05
QCDSF/UKQCD 05
Soto 01
Boucaud 01A
Boucaud 00A
Becirevic 99B
Boucaud 98B
Boucaud 98A
ALPHA 98
Alles 96
Luscher 93
Bali 92
UKQCD 92
El-Khadra 92

0.6 07 08 0.9
Fig. 40 roAgg estimates for Ny = 0, 2, 3, 4 flavours. Full green squares are used in our final ranges, pale green squares also indicate that there

are no red squares in the colour coding but the computations were superseded by later more complete ones or not published, while red open squares
mean that there is at least one red square in the colour coding

9.11.1 The present situation

We first summarize the status of lattice-QCD calculations of the QCD scale Ay;g. Figure 40 shows all the results for ro Ayg
discussed in the previous sections.

Many of the numbers are the ones given directly in the papers. However, when only Agg in physical units (MeV) is
available, we have converted them by multiplying with the value of r( in physical units. The notation used is full green
squares for results used in our final average, while a lightly shaded green square indicates that there are no red squares in the
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previous colour coding but the computation does not enter the ranges because either it has been superseded by an update or
it is not published. Red open squares mean that there is at least one red square in the colour coding.

For Ny = 0 there is now some tension: the value of the new result, Dalla Brida 19 [693] is rather high compared to the
previous FLAG average and yet it passes the FLAG 19 criteria by some margin.

When two flavours of quarks are included, the numbers extracted by the various groups show a considerable spread, as
in particular older computations did not yet control the systematics sufficiently. This illustrates the difficulty of the problem
and emphasizes the need for strict criteria. The agreement among the more modern calculations with three or more flavours,
however, is quite good.

We now turn to the status of the essential result for phenomenology, al%(M 7). In Table 68 and the upper plot in Fig. 41

we show all the results for oe]%(M z) (i.e., ogg at the Z mass) obtained from Ny =2+ 1and Ny = 2+ 1 + 1 simulations.
The conversion from Ny =3 or Ny = 4 to Ny = 5 is made by matching the coupling constant at the charm and bottom
quark thresholds and using the scale as determined or used by the authors.

As can be seen from the tables and figures, at present there are several computations satisfying the criteria to be included
in the FLAG average. Since FLAG 19 four new computations of a%(M 7) pass all our criteria with at least a © . The results
agree quite well within the stated uncertainties, which vary significantly.

9.11.2 Our range for a%
We now explain the determination of our range. We only include those results without a red tag and that are published in a
refereed journal. We also do not include any numbers that were obtained by extrapolating from theories with less than three
flavours. They are not controlled and can be looked up in the previous FLAG reviews.

A general issue with most determinations of oz, both lattice and nonlattice, is that they are dominated by perturbative
truncation errors, which are difficult to estimate. Further, all results discussed here except for those of Sects. 9.3, 9.7 are
based on extractions of agyg that are largely influenced by data with aefr > 0.3. At smaller oy the momentum scale u quickly
gets at or above a~!. We have included computations using ax up to 1.5 and et up to 0.4, but one would ideally like to be
significantly below that. Accordingly we choose to not simply perform weighted averages with the individual errors estimated
by each group. Rather, we use our own more conservative estimates of the perturbative truncation errors in the weighted
average.

In the following we repeat aspects of the methods and calculations that inform our estimates of the perturbative truncation
errors. We also provide separate estimates for oy obtained from step-scaling, the heavy-quark potential, Wilson loops, heavy-
quark current two-point functions and vacuum polarization to enable a comparison of the different lattice approaches; these
are summarized in Table 68.

o Step-scaling
The step-scaling computations of PACS-CS 09A [78] and ALPHA 17 [77] reach energies around the Z-mass where
perturbative uncertainties in the three-flavour theory are negligible. Perturbative errors do enter in the conversion of the
A-parameters from three to five flavours, but successive order contributions decrease rapidly and can be neglected. We
form a weighted average of the two results and obtain ayg = 0.11848(81).

e Static-quark potential computations
Brambilla 10 [766], ETM 11C [764] and Bazavov 12 [761] give evidence that they have reached distances where pertur-
bation theory can be used. However, in addition to A, a scale is introduced into the perturbative prediction by the process
of subtracting the renormalon contribution. This subtraction is avoided in Bazavov 14 [760] by using the force and again
agreement with perturbative running is reported. Husung 17 [765] (unpublished) studies the reliability of perturbation
theory in the pure gauge theory with lattice spacings down to 0.015 fm and finds that at weak coupling there is a downwards
trend in the A-parameter with a slope AA/A = 905‘;7’. The downward trend is broadly confirmed in Husung 20 [695] albeit
with larger errors.
Bazavov 14 [760] satisfies all of the criteria to enter the FLAG average for «; but has been superseded by TUMQCD
19 [75]. Moreover, there is another study, Ayala 20 [74] who use the very same data as TUMQCD 19, but treat perturbation
theory differently, resulting in a rather different central value. This shows that perturbative truncation errors are the main

. Ny=3 . .
source of errors. We combine the results for Aﬁg from both groups as a weighted average (with the larger upward error

of TUMQCD 19) and take the difference of the central values as the uncertainty of the average. We obtain A%:3 =
330(24) MeV, which translates to oz (mz) = 0.11782(165).
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Table 68 Results for ag(Mz). Different methods are listed separately and they are combined to a pre-range when computations are available
without any WM. A weighted average of the pre-ranges gives 0.11843(60), using the smallest pre-range uncertainty gives 0.11843(81) while the
average uncertainty of the ranges used as an error gives 0.11843(187). Note that TUMQCD 19 supersedes Bazavov 14/12

S
¥ s g
; s S $
§ S s &
s 8 3 &
s & &8
O S S S

Collaboration  Ref. Ny ¢ 5 i O oys(Mz) Remark Tables

ALPHA 17 [771 2+1 A * * * 0.11852(84) Step-scaling 60

PACS-CS 09A  [78] 2+1 A * * o 0.11800(300) Step-scaling 60

Pre-range (average) 0.11848(81)

Ayala 20 [74] 2+1 A e} * e} 0.11836(88) Q-0 potential 61

TUMQCD 19 [75] 241 A o * o) 0.11671(4%) 0-0 potential (and 61
free energy)

Takaura 18 [758,759] 2+1 A = o o 0.11790(70)(*}30) Q-0 potential 61

Bazavov 14 [760] 2+1 A * e} 0.11660(100) Q-0 potential 61

Bazavov 12 [761] 241 A o o o 0.11560(7219) 0-0 potential 61

Pre-range with estimated pert. error 0.11782(165)

Cali 20 [76] 241 A o) * * 0.11863(114) Vacuum pol. 62
(position space)

Hudspith 18 [780] 2+1 P * 0.1 1810(270)(f§§0) Vacuum polarization 62

JLQCD 10 [779] 2+1 A | e} 0.11 180(30)(Jj}$8) Vacuum polarization 62

Pre-range with estimated pert. error 0.11863(360)

HPQCD 10 [11] 2+1 A e} * * 0.11840(60) Wilson loops 63

Maltman 08 [79] 2+1 A (e) (0] * 0.11920(110) Wilson loops 63

Pre-range with estimated pert. error 0.11871(128)

Petreczky 20 [696] 2+1 P o) o) * 0.11773(119) Heavy current two 64
points

Boito 20 [697,698] 2+1 A | | e} 0.1177(20) Use published lattice 64
data

Petreczky 19 [26] 241 A ] ] * 0.1159(12) Heavy current two 64
points

JLQCD 16 [25] 2+1 A n e} e} 0.11770(260) Heavy current two 64
points

Maezawa 16 [189] 2+1 A [ ] [ ] (e) 0.11622(84) Heavy current two 64
points

HPQCD 14A [14] 2+1+1 A e} * o 0.11822(74) Heavy current two 64
points

HPQCD 10 [11] 2+1 A o * o 0.11830(70) Heavy current two 64
points

HPQCD 08B [202] 2+1 A n n [ 0.11740(120) Heavy current two 64
points

Pre-range with estimated pert. error 0.11826(200)

Zafeiropoulos 19 [699] 241 A ] ] | 0.1172(11) Gluon-ghost vertex 66

ETM 13D [819] 2+1+1 A e} e} [ 0.11960(40)(80)(60)  Gluon-ghost vertex 66

ETM 12C [820] 2+1+1 A e} e} [ 0.12000(140) Gluon-ghost vertex 66

ETM 11D [821] 2+1+1 A e} e} [ 0.1 1980(90)(50)@500) Gluon-ghost vertex 66

Nakayama 18 [837] 241 A * o [ ] 0.12260(360) Dirac eigenvalues 67
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Fig. 41 aQ(M 7), the coupling constant in the MS scheme at the Z mass. Top: lattice results, pre-ranges from different calculation methods, and
final average. Bottom: Comparison of the lattice pre-ranges and average with the nonlattice ranges and average. The first PDG 20 entry gives the
outcome of their analysis excluding lattice results (see Sect. 9.11.4)

e Small Wilson loops
Here the situation is unchanged as compared to FLAG 16. In the determination of o from observables at the lattice
spacing scale, there is an interplay of higher-order perturbative terms and lattice artifacts. In HPQCD 05A [783], HPQCD
08A [784] and Maltman 08 [79] both lattice artifacts (which are power corrections in this approach) and higher-order
perturbative terms are fitted. We note that Maltman 08 [79] and HPQCD 08A [784] analyze largely the same data set
but use different versions of the perturbative expansion and treatments of nonperturbative terms. After adjusting for the
slightly different lattice scales used, the values of a5 (Mz) differ by 0.0004 to 0.0008 for the three quantities considered.
In fact the largest of these differences (0.0008) comes from a tadpole-improved loop, which is expected to be best
behaved perturbatively. We therefore replace the perturbative-truncation errors from [79] and [11] with our estimate of
the perturbative uncertainty Eq. (379). Taking the perturbative errors to be 100% correlated between the results, we obtain
for the weighted average ayg = 0.11871(128).

e Heavy quark current two-point functions
Other computations with small errors are HPQCD 10 [11] and HPQCD 14A [14], where correlation functions of heavy
valence quarks are used to construct short-distance quantities. Due to the large quark masses needed to reach the region
of small coupling, considerable discretization errors are present, see Fig. 30 of FLAG 16. These are treated by fits to
the perturbative running (a 5-loop running o with a fitted 5-loop coefficient in the B-function is used) with high-order
terms in a double expansion in a>A? and azmg supplemented by priors which limit the size of the coefficients. The priors
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play an especially important role in these fits given the much larger number of fit parameters than data points. We note,
however, that the size of the coefficients does not prevent high-order terms from contributing significantly, since the data
includes values of am that are rather close to 1.

We note that the result of JLQCD 16 was classified in FLAG 19 as having passed all FLAG criteria, although the scale
is set by the charm-quark mass, implying aefr =~ 0.38. We now assign a red flag for renormalization scale, as we do for
Petreczky 19 and Boito 20 (see below). Since FLAG 19, there have been three new studies, Petreczky 19 [26], Petreczky
20 [696] and Boito 20 [698] (Petreczky 19/Petreczky 20 supersede Maezawa 16 [189]). While Petreczky 19/Petreczky 20
share the same lattice data for heavy quark masses in the range mj;, = m.—4m. they use a different strategy for continuum
extrapolations and a different treatment of perturbative uncertainties. Petreczky 19 [26] perform continuum extrapolation
separately for each value of the valence-quark mass, while Petreczky 20 rely on joint continuum extrapolations of the lattice
data at different heavy-quark masses, similar to the analysis of HPQCD, but without Bayesian priors. It is concluded that
reliable continuum extrapolations for m; > 2m, require a joint fit to the data. This limits the eligible «; determinations in
Petreczky 19 [26] to m), = m. and 1.5m.., for which, however, the FLAG criteria are not satisfied. There is also a difference
in the choice of renormalization scale between both analyses: Petreczky 19 [26] uses u = my,, while Petreczky 20 [696]
considers several choices [Us] of u in the range u = 2/3m;,—3my,, which leads to larger perturbative uncertainties in the
determination of o [696]. Boito 20 [698] use published continuum extrapolated lattice results for m;, = m. and performs
its own extraction of «. Limiting the choice of m, to the charm-quark mass means that the FLAG criteria are not met
(atefr =~ 0.38). However, their analysis gives valuable insight into the perturbative error. In addition to the renormalization
scale ., Boito 20 also vary the renormalization scale (i, at which the charm quark mass is defined. The corresponding
result oy (Mz) = 0.1177(20) agrees well with previous lattice determination but has a larger error, which is dominated by
the perturbative uncertainty due to the variation of both scales. This increased uncertainty suggests that the perturbative
error estimated by HPQCD using a fixed scale i = 3mj;, may be too small. Therefore, we take the average of the HPQCD
10 and HPQCD 14A determinations and assign an error of 0.0020, based on the analysis of Boito 20 [698]. This results
in the range a;(Mz) = 0.11826(200).

e Light quark vacuum polarization

Since FLAG 19 a new study, Cali 20 [76] appeared, which uses the light current two-point functions in position space,
evaluated on a subset of CLS configurations for lattice spacings in the range 0.038-0.076 fm, and for Euclidean distances
0.13-0.19 fm, corresponding to renormalization scales u = 1-1.5 GeV. Both flavour nonsinglet vector and axial vector
currents are considered and their difference is shown to vanish within errors. After continuum and chiral limits are taken,
the effective coupling from the axial vector two-point function is converted at 3-loop order to ogg(e). The authors do this
by numerical solution for a5 and then perform a weighted average of the A-parameter estimates for the available energy

range, which yields A%:3 = 342(17) MeV. Note that this is the first calculation in the vacuum polarization category
that passes the current FLAG criteria. Yet the renormalization scales are rather low and one might suspect that other
nonperturbative (i.e., non chiral-symmetry breaking) effects may still be sizeable. Our main issue is a rather optimistic
estimate of perturbative truncation errors, based only on the variation of the A-parameter from the range of effective
couplings considered. If the solution for the MS coupling is done by series expansion in ., the differences in NS>
formally of order agff, are still large at the scales considered. Hence, as a measure of the systematic uncertainty we take

the difference 409 — 355 MeV between A%=3 estimates at £ = 1.5 GeV as a proxy for the total error, i.e. Af\ng=3 =
342(54) MeV, which translates to our pre-range, oz (mz) = 0.11863(360), from vacuum polarization.

e Other methods
Computations using other methods do not qualify for an average yet, predominantly due to a lacking o in the continuum
extrapolation.

We obtain the central value for our range of oy from the weighted average of the five pre-ranges listed in Table 68. The
error of this weighted average is 0.0006, which is quite a bit smaller than the most precise entry. Because, however, the errors
on almost all of the «; calculations that enter the average are dominated by perturbative truncation errors, which are especially
difficult to estimate, we choose instead to take a larger range for o of 0.0008. This is the error on the pre-range for oy from
step-scaling, because perturbative-truncation errors are sub-dominant in this method. Our final range is then given by

a%(MZ) = 0.1184(8). (396)
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moving up by 2 in the last given digit compared to FLAG 19 and with the same uncertainty. Of the eleven calculations that are
included most are within 1o of this range, an exception being TUMQCD 19 (which supersedes Bazavov 14 and Bazavov 12).
Further, the range for a%(M z) presented here is based on results with rather different systematics (apart from the matching
across the charm threshold). We therefore believe that the true value is very likely to lie within this range.

All computations which enter this range, with the exception of HPQCD 14A [14], rely on a perturbative inclusion of the
charm and bottom quarks. Perturbation theory for the matching of gfv and g]%, _ looks very well behaved even at the mass
of the charm. Worries that still there may be purely nonperturbative effects at this rather low scale have been removed by
nonperturbative studies of the accuracy of perturbation theory. While the original study in Ref. [158] was not precise enough,
the extended one in Ref. [160] estimates effects in the A-parameter to be significantly below 1% and thus negligible for the
present and near future accuracy.

9.11.3 Ranges for [roA1N 1) and Ay

In the present situation, we give ranges for [rgA]V/) and Ay, discussing their determination case by case. We include
results with N y < 3 because it is interesting to see the N y-dependence of the connection of low- and high-energy QCD.
This aids our understanding of the field theory and helps in finding possible ways to tackle it beyond the lattice approach. It is
also of interest in providing an impression on the size of the vacuum-polarization effects of quarks, in particular with an eye
on the still difficult-to-treat heavier charm and bottom quarks. Most importantly, however, the decoupling strategy described
in Sect. 9.4 means that A-parameters at different N y can be connected by a nonperturbative matching computation. Thus,
even results at unphysical flavour numbers, in particular N y = 0, may enter results for the physically interesting case. Rather
than phasing out results for “unphysical flavour numbers”, continued scrutiny by FLAG will be necessary. Having said this,
we emphasize that results for [rgA]? and [rgA]® are not meant to be used directly for phenomenology.
For the ranges we obtain:

[roAxs]® = 0.70(3), (397)
[roAxs]™ = 0.808(29), (398)
[roAys]® = 0.79(7 ). (399)
[roA5s1® = 0.624(36). (400)

No change has occurred since FLAG 19 for N y = 2, 4, so we take over the respective discussion from FLAG 19.
For N y = 2+1+1, we presently do not quote arange as there is a single result: HPQCD 14A [14] found [roA]® = 0.70(3).
For Ny = 2 + 1, we take as a central value the weighted average of Cali 20 [76], Ayala 20 [74], TUMQCD 19 [75],
ALPHA 17 [771HPQCD 10 [11] (Wilson loops and current two-point correlators), PACS-CS 09A [78] (with linear continuum
extrapolation) and Maltman 08 [79]. Since the uncertainty in rg is small compared to that of A, we can directly propagate the
error from the analog of Eq. (396) with the 2+1+1 number removed and arrive at

[roAis]® = 0.808(29). (401)

(The error of the straight weighted average is 0.012.) It is in good agreement with all 2+1 results without red tags. In physical
units, using ro = 0.472 fm and neglecting its error, this means’’

A% — 338(12) MeV, (402)

where the error of the straight weighted average is less than 5 MeV.

For Ny = 2, at present there is one computation with a Y rating for all criteria, ALPHA 12 [707]. We adopt it as our
central value and enlarge the error to cover the central values of the other three results with filled green boxes. This results in
an asymmetric error. Our range is unchanged as compared to FLAG 13,

[roAss]® = 0.79C ), (403)

70 1n the FLAG 19 report [4], an inaccurate conversion of [roAWS](3) in Eq. (345) to physical units (using r9p = 0.472 fm) led to 343 MeV in
Eqgs. (346, 353). However, using fm x MeV = 1/197.3 gives 337 MeV (Eqgs. (351) and (352) are however correct) (Note: All equation references
in this footnote refer to [4]).
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and in physical units, using ro = 0.472 fm,

AZL=330(2}) MeV. (404)
A weighted average of the four eligible numbers would yield [roAMS](z) = 0.689(23), not covering the best result and in
particular leading to a smaller error than we feel is justified, given the issues discussed previously in Sect. 9.5.2 (Karbstein 18
[762], ETM 11C [764]) and Sect. 9.9.2 (ETM 10F [824]). Thus we believe that our estimate is a conservative choice; the low
values of ETM 11C [764] and Karbstein 18 [762] lead to a large downward error. We note that this can largely be explained
by different values of ry between ETM 11C [764] and ALPHA 12 [707]. We still hope that future work will improve the
situation.

For N y = 0, the new result DallaBrida 19 [693], is quite large compared to the FLAG 19 average. We combine it with
those results which entered the FLAG 19 report, namely ALPHA 98 [739], QCDSF/UKQCD 05 [787], Brambilla 10 [766],
Kitazawa 16 [792] and Ishikawa 17 [732] for forming a range.”! Taking a weighted average of the six numbers, we obtain
[roAys]® = 0.624(5), up from 0.615(5) for FLAG 19.

Clearly the errors are dominantly systematic, mostly due to perturbative truncation errors. Since we do not change the
FLAG 19 criteria for this edition, we give a range which encompasses all central values. Unfortunately, this requires to double
the error of the FLAG 19 result (which was given by 0.615(18)), due to the large central value of 0.660 by DallaBrida 19.
We arrive at our range for N y =0,

[roAzis]® = 0.624(36). (405)

This is clearly not very satisfactory, and, despite this large error, this still means that the high quality, and statistics dominated
new step-scaling result Dalla Brida 19 is more than 3 sigma away from the central value of the new FLAG average.
Converting to physical units, again using ro = 0.472 fm yields

(0) = 261(15) MeV. (406)
While the conversion of the A parameter to physical units is quite unambiguous for N y = 2+ 1, our choice of ryp = 0.472 fm
also for smaller numbers of flavour amounts to a convention, in particular for N y = 0. Indeed, in the Tables 60, 61, 62, 63,
64, 65 and 66 somewhat different numbers in MeV are found.
9.11.4 Conclusions
With the present results our range for the strong coupling is (repeating Eq. (396))

(5) OL(Mz) = 0.1184(8)  Refs. [11,14,74-79]

and the associated A parameters

AQ = 214(10) MeV Refs. [11,14,74-79], (407)
<4) = 297(12) MeV Refs. [11,14,74-79], (408)
A% = 339(12) MeV Refs. [11,14,74-79]. (409)

Compared with FLAG 19, the central values have moved slightly, with the errors remaining the same.
It is interesting to compare with the Particle Data Group average of nonlattice determinations of recent years,

<5) ) (Mz) = 0.1176(11), PDG 20, nonlattice [165], also appeared as Eq. (319),
(5> ) (Mz) = 0.1174(16), PDG 18, nonlattice [431], (410)

‘5) O} (Mz) = 0.1174(16), PDG 16, nonlattice [234], 11

71 We have assigned a O for the continuum limit, in Boucaud 00A [829], 00B [828], 01A [827], Soto 01 [826] but these results are from lattices
of a very small physical size with finite-size effects that are not easily quantified.
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alX(Mz) = 0.1175(17), PDG 14, nonlattice [201], (412)
Ol%(MZ) =0.1183(12), PDG 12, nonlattice [838], (413)

(there was no update in [431]). There is good agreement with Eq. (396). Despite our very conservative error estimate, the
FLAG lattice average has an error that is 30% smaller than the PDG 20 nonlattice-world average and a weighted average of
the two [Eq. (396) and Eq. (319)] yields

a%(Mz) =0.1181(7), FLAG 21 + PDG 20. (414)

In the lower plot in Fig. 41 we show as blue circles the various PDG pre-averages which lead to the PDG 20 nonlattice
average. They are on a similar level as our pre-ranges (green squares) : each one corresponds to an estimate (by the PDG) of
o, determined from one set of input quantities. Within each pre-average multiple groups did the analysis and published their
results as displayed in Ref. [165].

The fact that our range for the lattice determination of ay(Mz) in Eq. (396) is in excellent agreement with the PDG
20 nonlattice average Eq. (319) is an excellent check for the subtle interplay of theory, phenomenology and experiments in
the nonlattice determinations. The work done on the lattice provides an entirely independent determination, with negligible
experimental uncertainty, which reaches a better precision even with our quite conservative estimate of its uncertainty.

We finish by commenting on perspectives for the future. The step-scaling methods have been shown to yield a very precise
result and to satisfy all criteria easily. A downside is that dedicated simulations have to be done and the method is thus hardly
used. It would be desirable to have at least one more such computation by an independent collaboration, as also requested in
the review [679].

While this FLAG review does not report an error reduction compared to FLAG 19, the understanding of some systematic
errors has improved. With the exception of the step-scaling result, all determinations of ¢, appear to be limited by systematic
uncertainties due to perturbative truncation errors. Similar conclusions have been drawn in the recent review article [691].
In order to improve control of systematics it would be necessary to reach higher energy scales without incurring large cutoff
effects. This could be achieved by applying step-scaling methods in large (infinite) volume, provided that finite volume effects
are carefully controlled. Even a relatively modest increase by a scale factor 2—3 could significantly enhance the scope for some
of the current approaches to determine c;. Another hope for improvement are decoupling strategies, following the recent
proposal by the ALPHA collaboration, cf. Sect. 9.4. This in turn motivates further state-of-the-art studies in the pure gauge
theory (N ¢ = 0), where it would be important to resolve the current tension between results in the literature.

10 Nucleon matrix elements (NME)

Authors: S. Collins, R. Gupta, A. Nicholson, H. Wittig

A large number of experiments testing the Standard Model (SM) and searching for physics Beyond the Standard Model
(BSM) involve either free nucleons (proton and neutron beams) or the scattering of electrons, muons, neutrinos and dark
matter off nuclear targets. Necessary ingredients in the analysis of the experimental results are the matrix elements of various
probes (fundamental currents or operators in a low energy effective theory) between nucleon or nuclear states. The goal of
lattice-QCD calculations in this context is to provide high precision predictions of these matrix elements, the simplest of
which give the nucleon charges and form factors. Determinations of the charges are the most mature and in this review we
summarize the results for twelve quantities, the isovector and flavour diagonal axial vector, scalar and tensor charges. Other
quantities that are not being reviewed but for which significant progress has been made in the last five years are the nucleon
axial vector and electromagnetic form factors [839—-853] and parton distribution functions [854-858]. The more challenging
calculations of nuclear matrix elements, that are needed, for example, to calculate the cross-sections of neutrinos or dark
matter scattering off nuclear targets, are proceeding along three paths. First is direct evaluation of matrix elements calculated
with initial and final states consisting of multiple nucleons [859,860]. Second, convoluting nucleon matrix elements with
nuclear effects [861], and third, determining two and higher body terms in the nuclear potential via the direct or the HAL
QCD methods [862,863]. We expect future FLAG reviews to include results on these quantities once a sufficient level of
control over all the systematics is reached.
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10.1 Isovector and flavour diagonal charges of the nucleon

The simplest nucleon matrix elements are composed of local quark bilinear operators, g;I'yq;, where I'y can be any of
the sixteen Dirac matrices. In this report, we consider two types of flavour structures: (a) when i = u and j = d. These
ul'yd operators arise in W+ mediated weak interactions such as in neutron or pion decay. We restrict the discussion to the
matrix elements of the axial vector (A), scalar (S) and tensor (7) currents, which give the isovector charges, gZTS‘{ T.72 (b)
When i = j for j € {u, d, s}, there is no change of flavour, e.g., in processes mediated via the electromagnetic or weak
neutral interaction or dark matter. These y or Z° or possible dark matter mediated processes couple to all flavours with their
corresponding charges. Since these probes interact with nucleons within nuclear targets, one has to include the effects of
QCD (to go from the couplings defined at the quark and gluon level to those for nucleons) and nuclear forces in order to make
contact with experiments. The isovector and flavour diagonal charges, given by the matrix elements of the corresponding
operators calculated between nucleon states, are these nucleon level couplings. Here we review results for the light and strange
flavours, g7 ¢ 7. g‘f"s’T, and g ¢ 7 and the isovector charges gZTSd’T.

The isovector and flavour diagonal operators also arise in BSM theories due to the exchange of novel force carriers or as
effective interactions due to loop effects. The associated couplings are defined at the energy scale Agsy, while lattice-QCD
calculations of matrix elements are carried out at a hadronic scale, ., of a few GeV. The tool for connecting the couplings at
the two scales is the renormalization group. Since the operators of interest are composed of quark fields (and more generally
also of gluon fields), the predominant change in the corresponding couplings under a scale transformation is due to QCD.
To define the operators and their couplings at the hadronic scale w, one constructs renormalized operators, whose matrix
elements are finite in the continuum limit. This requires calculating both multiplicative renormalization factors, including the
anomalous dimensions and finite terms, and the mixing with other operators. We discuss the details of the renormalization
factors needed for each of the six operators reviewed in this report in Sect. 10.1.3.

Once renormalized operators are defined, the matrix elements of interest are extracted using expectation values of two-
point and three-point correlation functions illustrated in Fig. 42, where the latter can have both quark-line connected and
disconnected contributions. In order to isolate the ground-state matrix element, these correlation functions are analyzed using
their spectral decomposition. The current practice is to fit the n-point correlation functions (or ratios involving three- and
two-point functions) including contributions from one or two excited states. In some cases, such as axial and vector operators,
Ward identities provide relations between correlation functions, or ground state matrix elements, or facilitate the calculation of
renormalization constants. It is important to ensure that all such Ward identities are satisfied in lattice calculations, especially
as in the case of axial form factors where they provide checks of whether excited state contamination has been removed in
obtaining matrix elements within ground state nucleons [101,850,864].

The ideal situation occurs if the time separation t between the nucleon source and sink positions, and the distance of the
operator insertion time from the source and the sink, 7 and T — ¢, respectively, are large enough such that the contribution of
all excited states is negligible. In the limit of large t, the ratio of noise to signal in the nucleon two- and three-point correlation
functions grows exponentially as eM¥ —3Ma)T [865,866], where My and M, are the masses of the nucleon and the pion,
respectively. Therefore, in particular at small pion masses, maintaining reasonable errors for large 7 is challenging, with current
calculations limited to ¢ < 1.5 fm. In addition, the mass gap between the ground and excited (including multi-particle) states
is smaller than in the meson sector and at these separations, excited-state effects can be significant. The approach commonly
taken is to first obtain results with high statistics at multiple values of t, using the methods described in Sect. 10.1.1. Then,
as mentioned above, excited-state contamination is removed by fitting the data using a fit form involving one or two excited
states. The different strategies that have been employed to minimize excited-state contamination are discussed in Sect. 10.1.2.

Usually, the quark-connected part of the three-point function (corresponding to the plot in the centre of Fig. 42) is computed
via the so-called “sequential propagator method”, which uses the product of two quark propagators between the positions
of the initial and the final nucleons as a source term for another inversion of the lattice Dirac operator. This implies that the
position of the sink timeslice is fixed at some chosen value. Varying the value of the source-sink separation t then requires
the calculation of another sequential propagator.

The evaluation of quark-disconnected contributions is computationally more challenging as the disconnected loop (which
contains the operator insertion, as illustrated in Fig. 42, right) is needed at all points on a particular timeslice or, in general, over
the whole lattice. The quark loop is computed stochastically and then correlated with the nucleon two-point function before
averaging this three-point function over the ensemble of gauge configurations. The associated statistical error, therefore, is a

72 In the isospin symmetric limit (p|ul'd|n) = (plul’'u — chd|p) = (n|dT'd — iTu|n) for nucleon and proton states |p) and |n), respectively. The
latter two (equivalent) isovector matrix elements are computed on the lattice.
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Fig. 42 The two- and three-point correlation functions (illustrated by Feynman diagrams) that need to be calculated to extract the ground state
nucleon matrix elements. (Left) the nucleon two-point function. (Middle) the connected three-point function with source-sink separation v and
operator insertion time slice ¢. (Right) the disconnected three-point function with operator insertion at ¢

combination of that due to the stochastic evaluation (on each configuration) and that from the gauge average. The number of
stochastic sources employed on each configuration is, typically, optimized to reduce the overall error for a given computational
cost. The statistical errors of the connected contributions, in contrast, usually come only from the ensemble average since they
are often evaluated exactly on each configuration, for a small number of source positions. If these positions are well-separated
in space and time, then each measurement is statistically independent. The methodology applied for these calculations and
the variance reduction techniques are summarized in Sect. 10.1.1. By construction, arbitrary values of t across the entire
temporal extent of the lattice can be realized when computing the quark-disconnected contribution, since the source-sink
separation is determined by the part of the diagram that corresponds to the two-point nucleon correlator. However, in practice
statistical fluctuations of both the connected and disconnected contributions increase sharply, so that the signal is lost in the
statistical noise for 2 1.5fm.

The lattice calculation is performed for a given number of quark flavours and at a number of values of the lattice spacing a,
the pion mass M, and the lattice size, represented by M L. The results need to be extrapolated to the physical point defined
by a = 0, M; = 135 MeV and M, L — oo. This is done by fitting the data simultaneously in these three variables using a
theoretically motivated ansatz. The ansitze used and the fitting strategy are described in Sect. 10.1.4.

The procedure for rating the various calculations and the criteria specific to this chapter are discussed in Sect. 10.2, which
also includes a brief description of how the final averages are constructed. The physics motivation for computing the isovector
charges, gl'f[s‘{ r» and the review of the lattice results are presented in Sect. 10.3. This is followed by a discussion of the

relevance of the flavour diagonal charges, g:”é’ST, and a presentation of the lattice results in Sect. 10.4.

10.1.1 Technical aspects of the calculations of nucleon matrix elements

The calculation of n-point functions needed to extract nucleon matrix elements requires making four essential choices. The first
involves choosing between the suite of background gauge field ensembles one has access to. The range of lattice parameters
should be large enough to facilitate the extrapolation to the continuum and infinite-volume limits, and, ideally, the evaluation
at the physical pion mass taken to be M, = 135 MeV. Such ensembles have been generated with a variety of discretiza-
tion schemes for the gauge and fermion actions that have different levels of improvement and preservation of continuum
symmetries. The actions employed at present include (i) Wilson gauge with nonperturbatively improved Sheikholeslami—
Wohlert fermions (nonperturbatively improved clover fermions) [107,369,867-871], (ii) Iwasaki gauge with nonperturba-
tively improved clover fermions [847,872], (iii) Iwasaki gauge with twisted-mass fermions with a clover term [873-877], (iv)
tadpole Symanzik improved gauge with highly improved staggered quarks (HISQ) [98,99,103,110,878-882], (v) Iwasaki
gauge with domain-wall fermions (DW) [101,106,883—887] and (vi) Iwasaki gauge with overlap fermions [888—890]. For
details of the lattice actions, see the glossary in the Appendix A.1 of FLAG 19 [4].

The second choice is of the valence quark action. Here there are two choices, to maintain a unitary formulation by choosing
exactly the same action as is used in the generation of gauge configurations or to choose a different action and tune the quark
masses to match the pseudoscalar meson spectrum in the two theories. Such mixed action formulations are nonunitary but
are expected to have the same continuum limit as QCD. The reason for choosing a mixed action approach is expediency. For
example, the generation of 2+1+1 flavour HISQ and 2+1 flavour DW ensembles with physical quark masses has been possible
even at the coarse lattice spacing of @ = 0.15 fm and there are indications that cut-off effects are reasonably small. These
ensembles have been analyzed using clover-improved Wilson fermions, DW and overlap fermions since the construction of
baryon correlation functions with definite spin and parity is much simpler compared to staggered fermions.
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The third choice is the combination of the algorithm for inverting the Dirac matrix and variance reduction techniques.
Efficient inversion and variance reduction techniques are needed for the calculation of nucleon correlation functions with high
precision because the signal-to-noise ratio degrades exponentially as eGMx=MM)T \ith the source-sink separation 7. Thus,
the number of measurements needed for high precision is much larger than in the meson sector. Commonly used inversion
algorithms include the multigrid [891] and the deflation-accelerated Krylov solvers [892], which can handle linear systems
with large condition numbers very efficiently, thereby enabling calculations of correlation functions at the physical pion mass.

The sampling of the path integral is limited by the number Nonr of gauge configurations generated. One requires sufficiently
large Ncont such that the phase space (for example, different topological sectors) has been adequately sampled and all the
correlation functions satisfy the expected lattice symmetries such as C, P, T, momentum and translation invariance. Thus,
one needs gauge field generation algorithms that give decorrelated large volume configurations cost-effectively. On such large
lattices, to reduce errors one can exploit the fact that the volume is large enough to allow multiple measurements of nucleon
correlation functions that are essentially statistically independent. Two other common variance reduction techniques that
reduce the cost of multiple measurements on each configuration are: the truncated solver with bias correction method [893]
and deflation of the Dirac matrix for the low lying modes followed by sloppy solution with bias correction for the residual
matrix consisting predominately of the high frequency modes [893,894].

A number of other variance reduction methods are also being used and developed. These include deflation with hierarchi-
cal probing for disconnected diagrams [895,896], the coherent source sequential propagator method [897,898], low-mode
averaging [899,900], the hopping-parameter expansion [901,902] and partitioning [903] (also known as dilution [904]).

The final choice is of the interpolating operator used to create and annihilate the nucleon state, and of the operator used to
calculate the matrix element. Along with the choice of the interpolating operator (or operators if a variational method is used)
one also chooses a “smearing” of the source used to construct the quark propagator. By tuning the width of the smearing,
one can optimize the spatial extent of the nucleon interpolating operator to reduce the overlap with the excited states. Two
common smearing algorithms are Gaussian (Wuppertal) [905] and Jacobi [906] smearing.

Having made all the above choices, for which a reasonable recipe exists, one calculates a statistical sample of correlation
functions from which the desired ground state nucleon matrix element is extracted. Excited states, unfortunately, contribute
significantly to nucleon correlation functions in present studies. To remove their contributions, calculations are performed
with multiple source-sink separations t and fits are made to the correlation functions using their spectral decomposition as
discussed in the next section.

10.1.2 Controlling excited-state contamination

Nucleon matrix elements are determined from a combination of two- and three-point correlation functions. To be more
specific, let B*(X,t) denote an interpolating operator for the nucleon. Placing the initial state at time slice t = 0, the
two-point correlation function of a nucleon with momentum p reads

Cpir) =Y P By (B 0 B (.0), (415)
x5y

where the projector PP selects the polarization, and «, B denote Dirac indices. The three-point function of two nucleons and a
quark bilinear operator Or is defined as

ClGrn =) 7DDy, (B, 7) OrG 0 B (,0)), (416)
X,5.Z

where p, p’ denote the momenta of the nucleons at the source and sink, respectively, and § = p’ — p is the momentum
transfer. The bilinear operator is inserted at time slice 7, and t denotes the source-sink separation. Both C, and Cg can be
expressed in terms of the nonperturbative quark propagators, D~!(y, x), where D denotes the lattice Dirac operator.

The framework for the analysis of excited-state contamination is based on spectral decomposition. After inserting complete
sets of eigenstates of the transfer matrix, the expressions for the correlators C, and Cg read

R 1 — _
C(Fi) = 75 Z Ppe (2B |n) (n|B”|2) e Er7, (417)
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i} 1 B Bty -
CY@G:1.7) = 75 D Bpa (Q1B%In) (n] Orm) (m[B"|2) e~ F1 =) &= F, 418)
n,m

where |2) denotes the vacuum state, and E, represents the energy of the n'M eigenstate |n) in the nucleon channel. Here we
restrict the discussion to vanishing momentum transfer, i.e., the forward limit ¢ = 0, and label the ground state by n = 0.
The matrix element of interest gr = (0| Or|0) can, for instance, be obtained from the asymptotic behaviour of the ratio
Retry = GU=00D eemnz L an maeen oar) (419)
Ca(p=0;7)
where A = E| — E denotes the energy gap between the ground state and the first excitation. We also assume that the bilinear
operator Or is appropriately renormalized (see Sect. 10.1.3).

Excited states with the same quantum numbers as the nucleon include resonances such as a Roper-like state with a mass
of about 1.5GeV, or multi-particle states consisting of a nucleon and one or more pions [907,908]. The latter can provide
significant contributions to the two- and three-point correlators in Egs. (415) and (416) or their ratios (419) as the pion mass
approaches its physical value. Ignoring the interactions between the individual hadrons, one can easily identify the lowest-
lying multi-particle states: they include the Nm state with all three particles at rest at ~ 1.2GeV, as well as N states
with both hadrons having nonzero and opposite momentum. Depending on the spatial box size L in physical units (with the
smallest nonzero momentum equal to 277 /L), there may be a dense spectrum of N states before the first nucleon resonance is
encountered. Corrections to nucleon correlation functions due to the pion continuum have been studied using chiral effective
theory [907-910] and Liischer’s finite-volume quantization condition [911].

The well-known noise problem of baryonic correlation functions implies that the long-distance regime, ¢, (v —t) — 00,
where the correlators are dominated by the ground state, is difficult to reach. Current lattice calculations of baryonic three-
point functions are typically confined to source-sink separations of T < 1.5fm, despite the availability of efficient noise
reduction methods. In view of the dense excitation spectrum encountered in the nucleon channel, one has to demonstrate that
the contributions from excited states are sufficiently suppressed to guarantee an unbiased determination of nucleon matrix
elements. There are several strategies to address this problem:

e Multi-state fits to correlator ratios or individual two- and three-point functions;
e Three-point correlation functions summed over the operator insertion time ¢;
e Increasing the projection of the interpolator B* onto the ground state.

The first of the above methods includes excited state contributions explicitly when fitting to the spectral decomposition of the
correlation functions, Eqs. (417, 418) or, alternatively, their ratio (see Eq. (419)). In its simplest form, the resulting expression
for Rr includes the contributions from the first excited state, i.e.,

Rr(t,t) =gr+core ™ +croe ) feppe® 4. (420)

where co1, c10, c11 and A are treated as additional parameters when fitting R (¢, t) simultaneously over intervals in the
source-sink separation 7 and the operator insertion timeslice . Multi-exponential fits become more difficult to stabilize for a
growing number of excited states, since an increasing number of free parameters must be sufficiently constrained by the data.
Therefore, a high level of statistical precision at several source-sink separations is required. One common way to address
this issue is to introduce Bayesian constraints, as described in [912]. Alternatively, one may try to reduce the number of free
parameters, for instance, by determining the energy gap A from nucleon two-point function and/or using a common gap for
several different nucleon matrix elements [102].

Ignoring the explicit contributions from excited states and fitting R (¢, 7) to a constant in ¢ for fixed T amounts to applying
what is called the “plateau method”. The name derives from the ideal situation that sufficiently large source-sink separations
T can be realized, which would cause Rr (¢, ) to exhibit a plateau in ¢ independent of 7. The ability to control excited-state
contamination is rather limited in this approach, since the only option is to check for consistency in the estimate of the plateau
as t is varied. In view of the exponential degradation of the statistical signal for increasing 7, such stability checks are difficult
to perform reliably.

Summed operator insertions, originally proposed in Ref. [913], have also emerged as a widely used method to address the
problem of excited-state contamination. One way to implement this method [914,915] proceeds by summing Rr (¢, T) over
the insertion time 7, resulting in the correlator ratio Sr(7),
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T—a

Sr(r) = Z Rr(t, 7). (421)

t=a

The asymptotic behaviour of St (7), including sub-leading terms, for large source-sink separations T can be easily derived
from the spectral decomposition of the correlators and is given by [916]

Se(r) ZHY K+ (t—a)gr+ (t—a)e Adp + e A g (422)

where KT is a constant, and the coefficients dr and fr contain linear combinations of transition matrix elements involving
the ground and first excited states. Thus, the matrix element of interest gr is obtained from the linear slope of Sr(r) with
respect to the source-sink separation t. While the leading corrections from excited states e ~7 are smaller than those of
the original ratio Rr (¢, 7) (see Eq. (419)), extracting the slope from a linear fit to Sr(7) typically results in relatively large
statistical errors. In principle, one could include the contributions from excited states explicitly in the expression for Sr (7).
However, in practice it is often difficult to constrain an enlarged set of parameters reliably, in particular if one cannot afford
to determine Sr(7) except for a handful of source-sink separations.

The original summed operator insertion technique described in Refs. [905,913,917,918] avoids the explicit summation
over the operator insertion time ¢ at every fixed value of t. Instead, one replaces one of the quark propagators that appear in
the representation of the two-point correlation function C»(#) by a “sequential” propagator, according to

D™'(y.x) = Di'(y.x) =) D'y D' (z. x). (423)

In this expression, the position z = (Z, t) of the insertion of the quark bilinear operator is implicitly summed over, by inverting
the lattice Dirac operator D on the source field rp-! (z, x). While this gives access to all source-sink separations 0 < 7 < T,
where T is the temporal extent of the lattice, the resulting correlator also contains contact terms, as well as contributions from
T <t < T that must be controlled. This method’? has been adopted recently by the CalLat collaboration in their calculation
of the isovector axial charge [99,882].

As in the case of explicitly summing over the operator insertion time, the matrix element of interest is determined from
the slope of the summed correlator. For instance, in Ref. [99], the axial charge was determined from the summed three-point
correlation function, by fitting to its asymptotic behaviour [919] including sub-leading terms.

In practice, one often uses several methods simultaneously, e.g., multi-state fits and the summation method based on
Eq. (422), in order to check the robustness of the result. All of the approaches for controlling excited-state contributions
proceed by fitting data obtained in a finite interval in t to a function that describes the approach to the asymptotic behaviour
derived from the spectral decomposition. Obviously, the accessible values of T must be large enough so that the model function
provides a good representation of the data that enter such a fit. It is then reasonable to impose a lower threshold on t above
which the fit model is deemed reliable. We will return to this issue when explaining our quality criteria in Sect. 10.2.

The third method for controlling excited-state contamination aims at optimizing the projection onto the ground state in
the two-point and three-point correlation functions [869,898,922,923]. The RQCD collaboration has chosen to optimize the
parameters in the Gaussian smearing procedure, so that the overlap of the nucleon interpolating operator onto the ground
state is maximized [869]. In this way it may be possible to use shorter source-sink separations without incurring a bias due
to excited states.

The variational method, originally designed to provide detailed information on energy levels of the ground and excited
states in a given channel [924-927], has also been adapted to the determination of hadron-to-hadron transition elements
[916]. In the case of nucleon matrix elements, the authors of Ref.[922] have employed a basis of operators to construct
interpolators that couple to individual eigenstates in the nucleon channel. The method has produced promising results when
applied to calculations of the axial and other forward matrix elements at a fixed value of the pion mass [898,922,923,
928]. However, a more comprehensive study aimed at providing an estimate at the physical point has, until now, not been
performed.

The investigation of excited-state effects is an active subfield in NME calculations, and many refinements and extensions
have been implemented since the previous edition of the FLAG report. For instance, it has been shown that the previously

73 In Ref.[919] it is shown that the method can be linked to the Feynman—Hellmann theorem. A direct implementation of the Feynman—Hellmann
theorem by means of a modification of the lattice action is discussed and applied in Refs. [920,921].
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observed failure of the axial and pseudoscalar form factors to satisfy the PCAC relation linking them could be avoided by
including the enhanced contribution of Nz excitations, either by including additional information on the nucleon excitation
spectrum extracted from the three-point function of the axial current [864], or with guidance from chiral effective field theory
analyses of nucleon three-point functions [850].

The variety of methods that are employed to address the problem of excited-state contamination (ESC) has greatly improved
our understanding of and control over excited-state effects in NME calculations. However, there is still room for further
improvement: For instance, dedicated calculations of the excitation spectrum using the variational method could replace the
often rudimentary spectral information gained from multi-state fits to the two- and three-point functions used primarily for the
determination of the matrix elements. In general, the development of methods to explicitly include multi-particle states, such
as Nz and N with appropriate momentum configurations, coupled with the determination of the associated (transition)
matrix elements, is needed to significantly enhance the precision of a variety of nucleon matrix elements. Such approaches
would, to some extent, eliminate the need to extend the source-sink separation 7 into a regime that is currently inaccessible
due to the noise problem.

Since the ongoing efforts to study excited-state contamination are producing deeper insights, we have decided to follow
a more cautious approach in the assessment of available NME calculations. This is reflected in a modification of the quality
criterion for excited-state contamination that is described and discussed in Sect. 10.2.

10.1.3 Renormalization and Symanzik improvement of local currents

In this section we discuss the matching of the normalization of lattice operators to a continuum reference scheme such as
MS, and the application of Symanzik improvement to remove O(a) contributions. The relevant operators for this review are
the axial (A,,), tensor (7},,,) and scalar (S) local operators of the form Or = gI'q, with I" = y, 5, ioy,, and 1, respectively,
whose matrix elements are evaluated in the forward limit. The general form for renormalized operators in the isovector flavour
combination, at a scale u, reads

OMS(p) = Z?’Lan(ua, 1) [Or (a) + abomOr(a) + acoo}mp(a)] + 0@, (424)

where Z I\O/IS’Lan (ua, gz) denotes the multiplicative renormalization factor determined in the chiral limit,m — 0, and the second

and third terms represent all possible quark-mass dependent and independent Symanzik improvement terms, respectively, at
O(a).” The chiral properties of overlap, domain-wall fermions (with improvement up to O(ml,,) where my is the residual
mass) and twisted-mass fermions (at maximal twist [933,934]) mean that the O(a) improvement terms are absent, while for
nonperturbatively improved Sheikholeslami—Wohlert-Wilson (nonperturbatively-improved clover) fermions all terms appear
in principle. For the operators of interest here there are several mass dependent terms but at most one dimension-four Oifnp;
see, e.g., Refs. [935,936]. However, the latter involve external derivatives whose corresponding matrix elements vanish in
the forward limit. Note that no mention is made of staggered fermions as they are not, currently, widely employed as valence
quarks in nucleon matrix element calculations.

In order to illustrate the above remarks we consider the renormalization and improvement of the isovector axial current. This

current has no anomalous dimension and hence the renormalization factor, Z4, = Z %s’Latt (g%),is independent of the scale. The

factor is usually computed nonperturbatively via the axial Ward identity [937] or the Rome—Southampton method [420] (see
Sec. A.3 of FLAG 19 [4] for details). In some studies, the ratio with the corresponding vector renormalization factor, Z4/Zy,
is determined for which some of the systematics cancel. In this case, one constructs the combination Z4g4/(Zy gy ), where
Zyvgy = 1 and g4 and gy are the lattice forward matrix elements, to arrive at the renormalized axial charge [881]. For
domain-wall fermions the ratio is employed in order to remove O(amys) terms and achieve leading discretization effects
starting at O(a?) [8]. Thus, as mentioned above, O(a) improvement terms are only present for nonperturbatively-improved
clover fermions. For the axial current, Eq. (424) takes the explicit form,

AN () = ZYS (@) [ (14 abamua + 3abamsea) A(@) +acady P@)]| + 0@, (425)

74 Here a(g?) refers to the lattice spacing in the chiral limit, however, lattice simulations are usually carried out by fixing the value of g2 while varying
the quark masses. This means a = a(g%) where g2 = g>(1 + bgam) [929,930] is the improved coupling that varies with the average sea-quark
mass m,. The difference between the Z factors calculated with respect to g% and g can effectively be absorbed into the be coefficients [931,932].

@ Springer



869 Page 192 of 296 Eur. Phys. J. C (2022) 82:869

where myy and mge, are the average valence- and sea-quark masses derived from the vector Ward identity [930,936,937],
and P is the pseudoscalar operator gysq. The matrix element of the derivative term is equivalent to g, (N (p')| P|N (p)) and
hence vanishes in the forward limit when the momentum transfer g, = 0. The improvement coefficients b4 and b 4 are known
perturbatively for a variety of gauge actions [935,938,939] and nonperturbatively for the tree-level Symanzik-improved gauge
action for N y =2 + 1 [940].

Turning to operators for individual quark flavours, these can mix under renormalization and the singlet and nonsinglet
renormalization factors can differ. For the axial current, such mixing occurs for all fermion formulations just like in the
continuum, where the singlet combination acquires an anomalous dimension due to the U4 (1) anomaly. The ratio of singlet
to nonsinglet renormalization factors, ro = Z¢/Zg* for O = A differs from 1 at (’)(af) in perturbation theory (due to quark
loops), suggesting that the mixing is a small effect. The nonperturbative determinations performed so far findr4 ~ 1[843,875],
supporting this. For the tensor current the disconnected diagram vanishes in the continuum due to chirality and consequently
on the lattice r7 = 1 holds for overlap and DW fermions (assuming ms = 0 for the latter). For twisted-mass and clover
fermions the mixing is expected to be small with rr = 1 + (9(043 ) [941] and this is confirmed by the nonperturbative studies
of Refs. [877,942].

The scalar operators for the individual quark flavours, gg, are relevant not only for the corresponding scalar charges, but
also for the sigma terms o, = m,(N|gq|N) when combined with the quark masses m,. For overlap and DW fermions
rs = 1, like in the continuum and all gq renormalize multiplicatively with the isovector Zg. The latter is equal to the inverse
of the mass renormalization and hence m,qq is renormalization group (RG) invariant. For twisted-mass fermions, through
the use of Osterwalder—Seiler valence fermions, the operators m 4 (uu + dd) and m5s are also invariant [943].7> In contrast,
the lack of good chiral properties leads to significant mixing between quark flavours for clover fermions. Nonperturbative
determinations via the axial Ward identity [707,870] have found the ratio rg to be much larger than the perturbative expectation

1+ O(asz) [941] may suggest. While the sum over the quark flavours which appear in the action Z;V 4 mgqq is RG invariant,
large cancellations between the contributions from individual flavours can occur when evaluating, e.g., the strange sigma
term. Note that for twisted-mass and clover fermions there is also an additive contribution @31 (or  pa21) to the
scalar operator. This contribution is removed from the nucleon scalar matrix elements by working with the subtracted current,
qq — (qq), where (gq) is the vacuum expectation value of the current [936].

Symanzik improvement for the singlet currents follows the same pattern as in the isovector case with O(a) terms only
appearing for nonperturbatively-improved clover fermions. For the axial and tensor operators only mass dependent terms
are relevant in the forward limit while for the scalar there is an additional gluonic operator Og" = Tr(F,, Fy,) with a
coefficient of O () in perturbation theory. When constructing the sigma terms from the quark masses and the scalar operator,
the improvement terms remain and they must be included to remove all O(a) effects for nonperturbatively-improved clover
fermions, see Ref. [936] for a discussion.

10.1.4 Extrapolations in a, My and M, L

To obtain physical results that can be used to compare to or make predictions for experiment, all quantities must be extrapolated
to the continuum and infinite-volume limits. In general, either a chiral extrapolation or interpolation must also be made to the
physical pion mass. These extrapolations need to be performed simultaneously since discretization and finite-volume effects
are themselves dependent upon the pion mass. Furthermore, in practice it is not possible to hold the pion mass fixed while
the lattice spacing is varied, as some variation in a occurs when tuning the quark masses at fixed gauge coupling. Thus, one
performs a simultaneous extrapolation in all three variables using a theoretically motivated formula of the form,

gMy,a, L) = 8phys + M, + 84 + 6L, (426)

where gphys is the desired extrapolated result, and 8y, , 84, 6, are the deviations due to the pion mass, the lattice spacing, and
the volume, respectively. Below we outline the forms for each of these terms.

75 Note that for twisted-mass fermions the pseudoscalar renormalization factor is the relevant factor for the scalar operator. The isovector (isosinglet)
scalar current in the physical basis becomes the isosinglet (isovector) pseudoscalar current in the twisted basis. Perturbatively rp = 1+ O(af) and
nonperturbative determinations have found rp ~ 1 [877].
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All observables discussed in this section are dimensionless, therefore the extrapolation formulae may be parameterized by
a set of dimensionless variables:

€ = ——, M, L, €, = Nqa. 427)

Here, A, ~ 1GeV is achiral symmetry breaking scale, which, for example, canbe setto A, = 4x F;, where F;; = 92.2 MeV
is the pion decay constant, and A, is a discretization scale, e.g., A, = ﬁ, where wy is a gradient-flow scale [114].

Effective field theory methods may be used to determine the form of each of these extrapolations. For the single nucleon
charges, Heavy-Baryon xPT (HBxPT) is a common choice [944,945], however, other variants, such as unitarized [946]
or covariant y PT [947,948], are also employed. Various formulations of HB x PT exist, including those for two- and three-
flavours, as well as with and without explicit A baryon degrees of freedom. Two-flavour HB x PT is typically used due to
issues with convergence of the three-flavour theory [872,949-952]. The convergence properties of all known formulations
for baryon x PT, even at the physical pion mass, have not been well-established.

To 0(63[), the two-flavour chiral expansion for the nucleon charges is known to be of the form [953],

g =280+ g1€x + 8262 + 3262 1In (6,2,) , (428)

where g1 = 0 for all charges g except g?d. The dimensionless coefficients go 1.2, g2 are assumed to be different for each of the
different charges. The coefficients in front of the logarithms, g5, are known functions of the low-energy constants (LECs), and
do not represent new, independent LECs. Mixed action calculations will have further dependence upon the mixed valence-sea
pion mass, 1.

Given the potential difficulties with convergence of the chiral expansion, known values of the g» in terms of LECs are not
typically used, but are left as free fit parameters. Furthermore, many quantities have been found to display mild pion mass
dependence, such that Taylor expansions, i.e., neglecting logarithms in the above expressions, are also often employed. The
lack of a rigorously established theoretical basis for the extrapolation in the pion mass thus requires data close to the physical
pion mass for obtaining high precision extrapolated/interpolated results.

Discretization effects depend upon the lattice action used in a particular calculation, and their form may be determined
using the standard Symanzik power counting. In general, for an unimproved action, the corrections due to discretization
effects §, include terms of the form,

8a =creq +cre2 4o, (429)

where c¢1 2 are dimensionless coefficients. Additional terms of the form ¢, (ex€,)", where n is an integer whose lowest
value depends on the combined discretization and chiral properties, will also appear. Improved actions systematically remove
correction terms, e.g., an O(a)-improved action, combined with a similarly improved operator, will contain terms in the
extrapolation ansatz beginning at 63 (see Sect. 10.1.3).

Finite volume corrections §; may be determined in the usual way from effective field theory, by replacing loop integrals
over continuous momenta with discrete sums. Finite volume effects therefore introduce no new undetermined parameters
to the extrapolation. For example, at next-to-leading order, and neglecting contributions from intermediate A baryons, the
finite-volume corrections for the axial charge in two-flavour HB x PT take the form [954],

1= 84(L) ~ 84(00) = 36 [ Fy (Ma L) + g0F3 (Mx )], (430)
where
Fi(mL) = % [Ko (mLnl) - %ﬂ“')] ,
F; (mL):—%é%ﬁler, (431)
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and K, (z) are the modified Bessel functions of the second kind. Some extrapolations are performed using the form for
asymptotically large M, L,

e*Z
Ko(z) —> 7 (432)
and neglecting contributions due to K. Care must, however, be taken to establish that these corrections are negligible for all
included values of M, L. The numerical coefficients, for example, 8/3 in Eq. (430), are often taken to be additional free fit
parameters, due to the question of convergence of the theory discussed above.

Given the lack of knowledge about the convergence of the expansions and the resulting plethora of possibilities for
extrapolation models at differing orders, it is important to include statistical tests of model selection for a given set of data.
Bayesian model averaging [955] or use of the Akaike Information Criterion [956] are common choices which penalize
over-parameterized models.

10.2 Quality criteria for nucleon matrix elements and averaging procedure

There are two specific issues that call for a modification and extension of the FLAG quality criteria listed in Sect. 2. The first
concerns the rating of the chiral extrapolation: The FLAG criteria reflect the ability of x PT to provide accurate descriptions
of the pion mass dependence of observables. Clearly, this ability is linked to the convergence properties of x PT in a particular
mass range. Quantities extracted from nucleon matrix elements are extrapolated to the physical pion mass using some variant
of baryonic xPT, whose convergence is not well established as compared to the mesonic sector. Therefore, we have opted
for stricter quality criteria, 200 MeV < My min < 300 MeV, for a green circle in the chiral extrapolation of nucleon matrix
elements, i.e.,

Y Mz min < 200 MeV with three or more pion masses used in the extrapolation
or two values of M, with one lying within 10 MeV of 135 MeV (the physical neutral
pion mass) and the other one below 200 MeV
0 200 MeV < My min < 300 MeV with three or more pion masses used in the extrapolation;
or two values of M with My min < 200 MeV;
or a single value of M, lying within 10 MeV of 135MeV (the physical neutral pion mass)
m Otherwise

In Sect. 10.1.2 we have discussed that insufficient control over excited-state contributions, arising from the noise problem in
baryonic correlation functions, may lead to a systematic bias in the determination of nucleon matrix elements. We therefore
introduce an additional criterion that rates the efforts to suppress excited-state contamination in the final result. As described in
Sect. 10.1.2, the applied methodology to control excited-state contamination is quite diverse. Since a broad consensus on the
question which procedures should be followed has yet to emerge, our criterion is expressed in terms of simulation parameters
that can be straightforwardly extracted on the basis of publications. Furthermore, the criterion must also be readily applicable
to a variety of different local operators whose matrix elements are discussed in this chapter. These requirements are satisfied
by the source-sink separation 7, i.e., the Euclidean distance between the initial and final nucleons. The discussion at the end
of Sect. 10.1.2 shows that there is room for improvement in the ability to control excited-state contamination. Hence, we have
reverted to a binary system, based on the range of source-sink separations of a given calculations. While we do not award
the highest category — a green star — in this edition, we stress that the adoption of the modified ESC criterion has not led to a
situation where calculations that were previously rated with a green star are now excluded from FLAG averages. The rating
scale concerning control over excited-state contributions is thus

o Three or more source-sink separations t, at least two of which must be above 1.0 fm.
m Otherwise

We will continue to monitor the situation concerning excited-state contamination and, if necessary, adapt the criteria further
in future editions of the FLAG report.

As explained in Sect. 2, FLAG averages are distinguished by the sea-quark content. Hence, for a given configuration of
the quark sea (i.e., for Ny =2,2+ 1,2+ 1+ 1,0r 1 + 1+ 1 + 1), we first identify those calculations that pass the FLAG
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and the additional quality criteria defined in this section, i.e. excluding any calculation that has a red tag in one or more of
the categories. We then add statistical and systematic errors in quadrature and perform a weighted average. If the fit is of bad
quality (i.e., if Xl%lin /dof > 1), the errors of the input quantities are scaled by +/ x2/dof. In the following step, correlations
among different calculations are taken into account in the error estimate by applying Schmelling’s procedure [163].

10.3 Isovector charges

The axial, scalar and tensor isovector charges are needed to interpret the results of many experiments and phenomena mediated
by weak interactions, including probes of new physics. The most natural process from which isovector charges can be measured
is neutron beta decay (n — p*e~V,). At the quark level, this process occurs when a down quark in a neutron transforms into
an up quark due to weak interactions, in particular due to the axial current interaction. While scalar and tensor currents have
not been observed in nature, effective scalar and tensor interactions arise in the SM due to loop effects. At the TeV and higher
scales, contributions to these three currents could arise due to new interactions and/or loop effects in BSM theories. These
super-weak corrections to standard weak decays can be probed through high precision measurements of the neutron decay
distribution by examining deviations from SM predictions as described in Ref. [957]. The lattice-QCD methodology for the
calculation of isovector charges is well-established, and the control over statistical and systematic uncertainties is becoming
robust.

The axial charge gZ_d is an important parameter that encapsulates the strength of weak interactions of nucleons. It enters
in many analyses of nucleon structure and of SM and BSM physics. For example, it enters in (i) the extraction of V,,4 and tests
of the unitarity of the Cabibbo—Kobayashi-Maskawa (CKM) matrix; (ii) the analysis of neutrinoless double-beta decay, (iii)
neutrino-nucleus quasi-elastic scattering cross-section; (iv) the rate of proton-proton fusion, the first step in the thermonuclear
reaction chains that power low-mass hydrogen-burning stars like the Sun; (v) solar and reactor neutrino fluxes; (vi) muon
capture rates, etc. The current best determination of the ratio of the axial to the vector charge, g4 /gv, comes from measurement
of neutron beta decay using polarized ultracold neutrons by the UCNA collaboration, 1.2772(20) [958,959], and by PERKEO
11, 1.2761‘_”}‘7‘ [960]. Note that, in the SM, gy = 1 up to second-order corrections in isospin breaking [961,962] as a result of
the conservation of the vector current. Given the accuracy with which gf,f\_d has been measured in experiments, the goal of
lattice-QCD calculations is to calculate it directly with O(1%) accuracy.

Isovector scalar or tensor interactions contribute to the helicity-flip parameters, called b and B, in the neutron decay
distribution. By combining the calculation of the scalar and tensor charges with the measurements of b and B, one can put
constraints on novel scalar and tensor interactions at the TeV scale as described in Ref. [957]. To optimally bound such scalar
and tensor interactions using measurements of b and B parameters in planned experiments targeting 10~ precision [963-965],
we need to determine gg_d and g;_d at the 10% level as explained in Refs. [881,957]. Future higher-precision measurements
of b and B would require correspondingly higher-precision calculations of the matrix elements to place even more stringent
bounds on these couplings at the TeV-scale.

One can estimate gg_d using the conserved vector current (CVC) relation, gs/gv = (Mpeutron — Mproton)QCD /(mg —
mL,)QCD, as done by Gonzalez-Alonso et al. [966]. In their analysis, they took estimates of the two mass differences on the
right-hand side from the global lattice-QCD data [2] and obtained gz_d = 1.02(8)(7).

The tensor charge g;_d can be extracted experimentally from semi-inclusive deep-inelastic scattering (SIDIS) data [967—
970]. A sample of these phenomenological estimates is shown in Fig. 45, and the noteworthy feature is that the current
uncertainty in these phenomenological estimates is large.

10.3.1 Results for g~

Calculations of the isovector axial charge have a long history, as can be seen from the compilation given in Table 69 and
plotted in Fig. 43. The issue of excited-state contamination received little if any attention before 2010. As a consequence, the
range of source-sink separations employed in many of the early calculations prior to that year was rather limited, offering
little control over this important systematic effect. This concerns, in particular, the calculations by LHPC 05 [974], LHPC 10
[897], RBC 08 [975], RBC/UKQCD 08B [883], RBC/UKQCD 09B [884] and QCDSF 06 [867]. Since the last edition of
the FLAG report, no new results in two-flavour QCD have been published. An exception is the calculation ETM 19 [971],
which reanalyzed two ensembles with Ny = 2 around the physical pion mass to study finite-volume effects, while the
main result is quoted from a calculation with Ny = 2 + 1 + 1. These two-flavour calculations still do not qualify for
inclusion in the FLAG average (see Table 69). We thus refrain from providing a detailed discussion of the results in Refs.
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Table 69 Overview of results for gif(d

S
s S
s & & S
N S & s &
$ $ 5 S § $
.\é; § %@ @A é§ .&1?
. $ § o § & 5 -

Collaboration Refs. Ny < @ O & 87 L g4 d
CalLat 19 [100] 2+1+1 C o) * * * o) 1.2642(93)
ETM 19 [971] 2+1+1 A [ o) * * o 1.286(23)
PNDME 184 [98]  2+1+1 A H* * * * o 1.218(25)(30)
CalLat 18 [99]  2+1+1 A o) * * * o) 1.271(10)(7)
CalLat 17 [882] 2+1+1 P o) * * * o) 1.278(21)(26)
PNDME 16“ [881] 2+1+1 A of * * * o) 1.195(33)(20)
NME 21¢ [972] 2+1 P o# * * * o L.31(6)(5)
LHPC 19 [851] 2+1 A mt e e * o 1.265(49)
Mainz 19 [102] 2+l A * o * * o) 1.242(25)(*) 430
PACS 18A [849]  2+1 A m * * * o) 1.273(24)(5)(9)
PACS 18 [847] 2+l A m n * * m 1.163(75)(14)
xQCD 18 [101]  2+1 A o * * * o) 1.254(16)(30)°
JLQCD 18 [890] 2+1 A [ o o * o 1.123(28)(29)(90)
LHPC 12A% [973]1 2+1 A mt * * * 0 0.97(8)
LHPC 10 [897] 2+1 A m o n * m 1.21(17)
RBC/UKQCD 09B  [884]  2+1 A m n o * m 1.19(6)(4)
RBC/UKQCD 08B [883]  2+1 A m n o * m 1.20(6)(4)
LHPC 05 [974]  2+1 A m n e * m 1.226(84)
Mainz 17 8711 2 A * * * * . 1.278(68)(*) o57)
ETM 17B [875] 2 A m o o) * o 1.212(33)(22)
ETM 15D [873] 2 A n o o * o 1.242(57)
RQCD 14 [869] 2 A o * * * m 1.280(44)(46)
QCDSF 13 [369] 2 A o * n * n 1.29(5)(3)
Mainz 12 [868] 2 A * o o * . 1.233(63)(F)030)
RBC 08 [9751 2 A | ] ] * | 1.23(12)
QCDSF 06 [867] 2 A o m m * m 1.31(9)(7)

“The improvement coefficient in the valence quark action is set to its tadpole-improved tree-level value

bThe quark action is tree-level improved

#The rating takes into account that the action is not fully O(a) improved by requiring an additional lattice spacing
$For this partially quenched analysis the criteria are applied to the unitary points

[369,867-869,871,873,875,975] and refer the reader to the corresponding chapter in the previous edition of the FLAG
report.

Estimates for the axial charge with Ny = 2+1 have been published by many collaborations, i.e., LHPC [851,897,973,974],
RBC/UKQCD [883,884], JLQCD 18 [890], xQCD 18 [101], PACS 18/PACS 18A [847,849], Mainz 19 [102] (superseding
the previously listed result in [976]) and NME 21 [972].

The calculations in LHPC 05 [974] and LHPC 10 [897] were based on a mixed-action setup, combining domain-wall
fermions in the valence sector with staggered (asqtad) gauge ensembles generated by MILC. Although the dependence of
the results on the source-sink separation was studied to some extent in LHPC 10, excited-state effects are not sufficiently
controlled according to our quality criteria described in Sect. 10.2. A different discretization of the quark action was used
in their later studies (LHPC 12A [973] and LHPC 19 [851]), employing tree-level improved Wilson fermions with smeared
gauge links, both in the sea and valence sectors. While this setup does not realize full O(a) improvement, it was found
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Fig. 43 Lattice results and FLAG averages for the isovector axial charge gff\_d for Ny = 2,2+ 1and 2 + 1 + 1 flavour cal