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Abstract The flavor changing neutral current decays t →
cX (X = γ, g, Z , H ) and t → c�̄� (� = μ, τ ) are stud-
ied in a renormalizable scalar leptoquark (LQ) model with no
proton decay, where a scalar SU (2) doublet with hypercharge
Y = 7/6 is added to the standard model, yielding a non-chiral
LQ Ω5/3. Analytical results for the one-loop (tree-level) con-
tributions of a scalar LQ to the fi → f j X ( fi → f j f̄m fl )
decays, with fa = qa, �a , are presented. We consider the
scenario where Ω5/3 couples to the fermions of the second
and third families, with its right- and left-handed couplings
obeying λ

�ui
R /λ

�ui
L = O(ε), where ε parametrizes the relative

size between these couplings. The allowed parameter space
is then found via the current constraints on the muon (g−2),
the τ → μγ decay, the LHC Higgs boson data, and the direct
LQ searches at the LHC. For mΩ5/3 = 1 TeV and ε = 10−3,
we find that the t → cX branching ratios are of similar size
and can be as large as 10−8 in a tiny area of the parameter
space, whereas Br(t → cτ̄ τ ) [Br(t → cμ̄μ)] can be up to
10−6 (10−7).

1 Introduction

The conjecture that lepton number is the fourth color quan-
tum number was put forward long ago in the context of an
SU (4)R×SU (4)L ×SU (4′) theory [1,2], which requires the
presence of new gauge and scalar bosons carrying both lep-
ton and baryon number. Such particles, dubbed leptoquarks
(LQs) since transform leptons into quarks and vice versa,
appear naturally in grand unified theories [3–7], but they
are also predicted in other well motivated theories, such as
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technicolor [8–10], models with composite fermions [11–
13], superstring-inspired E6 models [14,15], models with
extended scalar sectors [16,17], etc. However, LQs with lep-
ton and baryon number violating interactions can give rise to
dangerous effects such as large lepton flavor violating inter-
actions (LFV) or tree-level-induced proton decay. The lat-
ter implies that, unless an extra symmetry is invoked to for-
bid diquark couplings, LQ masses must be as heavy as the
Planck scale, thereby rendering unobservable effects on low
energy processes. Therefore, only those theories with renor-
malizable lepton and baryon number conserving LQ interac-
tions are phenomenologically appealing. LQ phenomenol-
ogy and low-energy constraints on the parameter space of
the most representative LQ models have been widely dis-
cussed (see [18] for instance). For a more up-to-date review
on LQ physics we refer the reader to Ref. [19]. It turns out
that vector LQ masses and couplings are tightly constrained
by experimental data, therefore the study of scalar LQs has
been favored in the literature. In this work we are interested
in a simple renormalizable LQ model with no proton decay
where the presence of relatively light scalar LQs can still be
compatible with low energy constraints from experimental
data [17,20,21]. In such a model, scalar LQs are introduced
in the standard model (SM) via a doublet of SU (2).

In the SM flavor changing neutral currents (FCNCs) can
arise up to the one-loop level or higher orders of perturba-
tion theory, but are additionally suppressed by the so-called
Glashow–Iliopoulos–Maiani (GIM) mechanism. On the oth-
er hand, the SM forbids LFV effects at any order, though
experimental evidences hint that neutrinos are massive, there-
by implying that LFV effects should be present in nature
indeed. No evidences of large FCNCs transitions have yet
been experimentally observed, so the search for this class of
effects is a must in the physics program of any particle col-
lider. While FCNC transition between fermions of the second
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and first family are considerably constrained by experimen-
tal data, transitions involving the fermions of the third and
second generation have no such strong restrictions. In this
regard, FCNC top quark transitions stand out among the most
widely studied processes at the CERN LHC. This stems from
the fact that in spite of having negligible rates in the SM, they
can have a considerable enhancement in beyond the SM the-
ories and could be at the reach of detection.

The scalar particle discovered at the LHC in 2012 seems
to be consistent with the SM Higgs boson, but several of
its properties remain to be tested more accurately, such as
its couplings to light fermions. The LHC also offers great
potential to search for some exotic Higgs decay channels that
are highly suppressed or forbidden in the SM. Along these
lines, there has been considerably interest in the study of the
LFV Higgs boson decay H → �̄i� j , which was first studied
in [22,23] and has been the focus of great attention recently.
Although an apparent excess of the H → τμ branching
ratio, with a significance of 2.4 σ , was observed at the LHC
Run 1 [24], it was not confirmed in Run-2 data. The LFV
Higgs boson decay H → �̄i� j has been widely studied in
several extension models. In particular, in the LQ model of
Ref. [21], the H → τμ rate is predicted to be at the reach
of experimental detection in some regions of the allowed
parameter space. On the other hand, in the quark sector, apart
from the FCNC Higgs boson decay into light quarks H →
qq ′, the FCNC top quark decay t → cH has also been widely
studied along with other decays such as t → cγ , t → cZ
and t → cg.

At hadron colliders, the dominant top quark production
mechanisms are gluon fusion and quark annihilation. The
former is the main top quark production process at the LHC
(about 90 % at

√
s = 14 TeV), with a small percentage due to

quark annihilation. The millions of yearly top quark events at
the LHC would allow experimentalist to search for its FCNCs
decays such as t → cX (X = g, γ, Z , H ), whose rates are
negligibly small in the SM [25–27]:

BrSM(t → cg) = 10−8, (1)

BrSM(t → cγ ) = 10−10, (2)

BrSM(t → cZ) = 10−13, (3)

BrSM(t → cH) = 10−13. (4)

These rates however can be several orders of magnitude lar-
ger in several SM extensions, such as two-Higgs doublet
models [25,28], supersymmetric models [29–32], left-right
supersymmetric models [33], extra dimensions [34], models
with an extra neutral gauge boson [35], 331 models [36], etc.
Therefore, any experimental evidence of these FCNCs top
quark and Higgs boson decay channels may shed light on the
underlying fundamental theory of particle interactions.

In this work we focus on the study of the FCNC decays
t → cX (X = γ, g, Z , H ) in a simple renormalizable
scalar LQ model in which there is no proton decay induced
via tree-level LQ exchange, where these processes arise at
one-loop level at the lowest order of perturbation theory. As
a by-product, we present the exact results for the one-loop
LQ scalar contribution to the H → f̄ j fi decay width, which
follows easily from the fi → f j H decay width by crossing
symmetry. For completeness, we also consider in our study
the tree-level FCNC decay t → c�̄� (� = μ, τ ), which in fact
can have larger branching ratios than those of the one-loop
induced decays.

The rest of this presentation is as follows. In Sect. 2 we
briefly discuss the framework of the LQ model we are inter-
ested in. Section 3 is devoted to present the general calcula-
tion of the FCNC decay amplitudes and decay widths. For
the one-loop induced decays we express the amplitudes in
terms of both Passarino–Veltman scalar functions and Feyn-
man parameter integrals. We present a discussion on the
constraints on the LQ couplings from experimental data in
Sect. 5, followed by the numerical analysis of the FCNCs
Higgs boson transitions in Sect. 6. The conclusions and out-
look are presented in Sect. 7. Finally, a few lengthy formulas
for the loop integrals are presented in the Appendices.

2 A simple scalar LQ model

Rather than considering a specific theory, a convenient strat-
egy to study the LQ phenomenology is via a model-indepen-
dent approach through an effective lagrangian. One can thus
focus on the low energy LQ interactions and, without loss of
generality, disregard the complex framework of the ultravi-
olet completion, which is not relevant for the phenomenol-
ogy below the TeV scale. The most general dimension-four
SU (3)c × SU (2)L × U (1)Y -invariant effective interactions
of scalar and vector LQs, respecting both lepton and baryon
number was first presented in [37] and has been analyzed
recently in [19]. In this work we consider a simple renormal-
izable LQ model in which it is not necessary to invoke an
extra symmetry to forbid the proton decay. A single SU (2)

doublet with hypercharge 7/6 is added to the SM, giving rise
to two LQs with electric charges 5/3e and 2/3e. The former
one is a non-chiral LQ that couples to up quarks and charged
leptons, thereby giving rise to FCNC top quark and Higgs
boson decays at the one-loop level, but also to the t → c�̄�
decay at the tree-level. The phenomenology of this model
was studied in [17] and bounds on its couplings to a lepton-
quark pairs from the experimental constraints on the muon
anomalous magnetic dipole moment and the LFV tau decay
τ → μγ were obtained in [38]. We first start by discussing
the corresponding LQ couplings to quarks and leptons and
afterwards we discuss the remaining interactions.
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In the model we are interested in, a scalar LQ represen-
tation R2 with SU (3) × SU (2) × U (1) quantum numbers
(3, 2, 7/6) is introduced. This LQ doublet has the following
renormalizable zero-fermion-number interactions [37]

LF=0 = hi j2L R
T
2 ū

i
Riτ2L

j
L + hi j2R Q̄

i
Le

j
R R2 + H.c., (5)

where Li
L and Qi

L are SU (2)L left-handed lepton and quark
doublets, whereas eiR and qiR are singlets, with i and j being
generation indices.

After rotating to the LQ mass eigenstates Ω5/3 and Ω2/3,
where the subscript denotes the electric charge in units of e,
we obtain the following interaction Lagrangian

LF=0 = ēi
(
λ
i j
L PL + λ

i j
R PR

)
u jΩ∗

5/3

+ ēiηi jR PRd
jΩ∗

2/3 + H.c., (6)

where PL ,R are the chiral projection operators. We are inter-
ested in the effects of the non-chiral LQ Ω5/3 on the FCNC
decays of the top quark and the Higgs boson. Since there are
stringent constraints on the LQ couplings to the fermions of
the two first families, in our study below we will consider
that Ω5/3 only couples to the second and third generation
fermions.

Apart from the LQ interaction to up quarks and charged
lepton pairs, which follow easily from the above expression,
for our calculation we also need the LQ couplings to both the
photon and the Z gauge boson, which are extracted from the
LQ kinetic terms:

LS = 1

2
(DμR2)

†DμR2, (7)

where the SU (2)L ×U (1)Y covariant derivative is given by

DμR2 =
(

∂μ + ig
τ i

2
Wi + ig′ 7

6
Bμ

)
R2. (8)

Therefore, in the mass eigenstate basis we have

LS ⊃ i
5e

3
Ω5/3

←→
∂μ Ω∗

5/3A
μ − ig

cW
gZΩ5/3Ω5/3Ω5/3

←→
∂μ Ω∗

5/3Z
μ

+H.c., (9)

where gZΩ5/3Ω5/3 = 1/2 − 5/3s2
W .

Finally, we consider the following renormalizable effec-
tive LQ interactions to the SM Higgs doublet Φ

L =
(
M2

R2
+ λR2Φ

†Φ
) (

R†
2R2

)
, (10)

where MR2 is the LQ mass. From here we obtain the Higgs
boson coupling to Ω5/3:

L ⊃ λΩ5/3vHΩ∗
5/3Ω5/3. (11)

For easy reference, we also present the SM Feynman rules
for the interaction of the photon and the Z gauge boson with
a fermion-antifermion pair:

uj

ηij
L PL + ηij

RPR

�i

χ1/3

uj

λij
LPL + λij

RPR

�i

Ω5/3

S(p)

S(p′)

Aμ [Zμ]

−ieQS

[
−i g

cW
gZSS

]
(p′ − p)μvλS

S

S

H

Fig. 1 Feynman rules necessary for the calculation of the contribution
of the scalar LQ Ω5/3 to the t → cX (X = γ, Z , H ) decays. For
completeness we also include the Feynman rules for the LQ singlet
χ1/3 of the model discussed in [21] as our results are also valid for
its contribution, thus S stands for Ω5/3 and χ1/3, with gZSS = 1

2 −
10
3 s2

W (− 2
3 s

2
W ) for S = Ω5/3 (χ1/3)

f̄ f Aμ : −ieQ f γμ, (12)

f̄ f Zμ : −i
g

2cW
γμ(g f

L PL + g f
R PR), (13)

where g f
L = 2T 3

f −2Q f s2
W and g f

R = −2Q f s2
W , with T 3

f =
1/2(−1/2) for up (down) fermions and Q f the fermion char-
ge in units of that of the positron.

The corresponding Feynman rules follow straightforwar-
dly from the above Lagrangians and are shown in Fig. 1.
Below we present the calculation of the FCNC t → cX and
t → c�̄� decays.

3 LQ contribution to the FCNC t → cX decays

We now discuss the calculation of the FCNC t → cX decays,
which in our scalar LQ model proceed at the one-loop level
at the lowest order of perturbation theory. For the sake of
completeness we present the most general expressions for
the fi → f j X decays with X = γ, Z , H and fi, j quarks
or leptons. From our result for the qi → q jγ decay, that for
the qi → q j g decay will follow easily as discussed below.

For the calculation of the loop integrals, we use both the
Feynman parameter technique and the Passarino–Veltman
reduction scheme, which allows one to cross-check the
results. For the algebra we used the Mathematica software
routines along with the FeynCalc package [39]. It is worth
mentioning that our results are also valid for the contribution
of the LQ singlet χ1/3 of the model of Ref. [21], where the
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fi

V

fjS(i−k)

fk

fk

(a) (b)

(c) (d)

Fig. 2 LQ contribution to the decay fi → f j V (V = γ, Z ) , where
fi and f j are charged leptons (quarks) and fk is a quark (lepton). Here
Qi−k is the LQ charge in units of e. Analogue diagrams give rise to the
fi → f j H decay with the V gauge boson replaced by the Higgs boson.
As far as the qi → q j g decay is concerned, there is only contribution
from diagrams b) to d) as the internal fermion is a lepton

LQ contribution to the H → μτ was discussed. The Feyn-
man rules for such a LQ are of Majorana-like type (there are
two fermion-flow arrows clashing into a vertex as shown in
Fig. 1) and they require a special treatment. We have fol-
lowed the approach of Ref. [40] and found that the results
for the contribution of LQ Ω5/3 to the fi → f j X decays are
also valid for the contributions of LQ χ1/3 after replacing the
respective coupling constants. A similar result was found for
the contribution of single and doubly charged scalars to the
muon anomalous MDM [40].

3.1 fi → f j V (V = γ, Z ) decays

This decay proceeds at the lowest order via the Feynman dia-
grams of Fig. 2, where the internal fermion is a lepton (quark)
provided that the external fermions are quarks (leptons).

The ultraviolet divergences cancel out when summing
over all the partial amplitudes. The most general invariant
amplitude can be written as

M ( fi → f j V ) = f̄ j
( i LV

mi
σμν PLq

ν + i RV

mi
σμν PRq

ν

+L
′V γ μPL + R

′V γ μPR

)
fiε(q)μ,

(14)

where the monopole terms L
′γ and R

′γ vanish for the
fi → f jγ decay due to gauge invariance: the bubble dia-
grams only give contributions to the monopole terms, which
are canceled out by those arising from the triangle diagrams.
The corresponding LV , RV , L

′Z , and R
′Z form factors are

presented in terms of Passarino–Veltman scalar functions in
Appendix A.

igS(p′ − p)μT a
ij

S(p)

S(p′)

a, μ

qα,i

qβ,j

a, μ

igSγμδαβT
a
ij

Fig. 3 Feynman rules that are required for the calculation of the con-
tribution of a scalar LQ to the t → cg decay. Here T a are the SU (3)c
generators in the fundamental representation

After averaging (summing) over polarizations of the initial
(final) fermion and gauge boson, we use the respective two-
body decay width formula, which reduces to

Γ ( fi → f j V ) = λ1/2(m2
i ,m

2
V ,m2

j )

32πm3
i

(
fi j

(
|LV |2 + |RV |2

)

+ gi j
(
|L ′V |2 + |R′V |2

)

+ 3
(
m2

j − m2
i + m2

V

) (
L

′V RV∗ + LV R
′V∗)

+ 3m j

mi

(
m2

i − m2
j + m2

V

) (
LV L

′V∗ + RV R
′V∗)

− 3m jm2
V

mi
Re

(
LV RV∗)

− 12mim jRe
(
L

′V R
′V∗)

)
, (15)

with fi j = 1
m2
i
(2(m2

i − m2
j )

2 − (m2
i + m2

j )m
2
V − m4

V ) and

gi j = 1
m2

V
((m2

i − m2
j )

2 + (m2
i + m2

j ))m
2
V − 2m4

V ). The so-

called triangle function is given by

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). (16)

For the fi → f jγ decay, Eq. (15) reduces to

Γ ( fi → f jγ ) = mi

16π

(
1 −

(
m j

mi

)2
)3 (

|Lγ |2 + |Rγ |2
)

.

(17)

3.2 qi → q j g decay

This one-loop FCNC process is induced by Feynman dia-
grams similar to those shown in Fig. 2, except that there is
no contribution from Feynman diagram of type a) as the inter-
nal fermion is a lepton. The Feynman rules necessary for the
calculation are presented in Fig. 3.
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The qi → q j g amplitude can be written as

M (qi → q j g) = q̄ j T
a
( i Lg

mi
σμν PLq

ν + i Rg

mi
σμν PRq

ν
)
qi

× ε(q)μ, (18)

where the Lg and Rg coefficients can be obtained from Eqs.
(A.11) and (A.30) of Appendix A once the replacements
Qk → 0, QS → 1, and Nce → gs are done. After aver-
aging (summing) over initial (final) polarizations and colors,
we obtain the average square amplitude and thereby the cor-
responding decay width, which has the same form of Eq.
(17), though we must multiply the right-hand side by the
color factor CF = 4/3.

3.3 fi → f j H decay

We now present the invariant amplitude for the LQ contribu-
tion to the fi → f j H decay, which is induced at the one-loop
level by Feynman diagrams analogue to those shown in Fig. 2,
but with the gauge boson V replaced by the Higgs boson H .
We have found that while the amplitude of Feynman diagram
(d) is ultraviolet finite, that of Feyman diagram (a) has ultra-
violet divergences, but they are canceled out by those arising
from the bubble diagrams (b) and (c). After some algebra,
the invariant amplitude can be cast in the form

M ( fi → f j H) = f̄ j (FL PL + FR PR) fi , (19)

where the FL and FR form factors are presented in Appendix
B in terms of Passarino–Veltman scalar functions and Feyn-
man parameter integrals.

After summing (averaging) over the polarizations of the
final (initial) fermion, we plug the average squared amplitude
into the two-body decay width formula to obtain

Γ ( fi → f j H) =
λ1/2(m2

i ,m
2
H ,m2

j )

8m3
i π

( (
|FL |2 + |FR |2

)
pi · p j

+ 2mim jRe
(
FL F

∗
R
) )

, (20)

with pi · p j = (m2
i + m2

j − m2
H )/2.

3.4 H → f̄ j fi decay

As a by-product we present the H → f̄ j fi decay width,
which follows straightforwardly from the above results by
crossing symmetry. Although the scalar LQ contribution to
the LFV decay H → τμ has been already presented in the
zero lepton mass approximation [21,55–57], we now present
the exact one-loop calculation for the H → f̄ j fi decay
width. It reads

fi

fl

S

fj

f̄m

Fig. 4 Feynman diagram for the tree-level FCNC decay fi → f j f̄m fl
induced by a scalar LQ. Here fl and fm are leptons (quarks) if fi and
f j are quarks (leptons)

Γ (H → fi f j ) =
λ1/2(m2

H ,m2
i ,m

2
j )

16πm3
H

( (
|FL |2 + |FR |2

)
pi · p j

− 2mim jRe(FL F
∗
R)

)
, (21)

where Γ (H → fi f j ) = Γ (H → f̄i f j ) + Γ (H → f̄ j fi ).
Also p j · p j = (m2

H − (m2
i + m2

j ))/2, and the FL and FR

form factors are the same as those presented in Appendix B
for the fi → f j H decay as discussed in Appendix C.

4 Three-body tree-level decay fi → f j f̄m fl

Finally we discuss the calculation of the three-body decay
t → c�̄�. Following our calculation approach, we consider
the general decay fi → f j f̄m fl , where fl and fm are leptons
(quarks) if fi and f j are quarks (leptons). This process is
induced by a scalar LQ at the tree-level via the Feynman
diagram of Fig. 4. We denote the four-momentum of fermion
fa (a = i, j, l,m) by pa . The corresponding decay width can
be written as

Γ ( fi → f j f̄m fl) = mi

256π3

∫ x j f

x ji

∫ xl f

xli
|M |2dx jdxl . (22)

In the center-of-mass frame of the decaying fermion, the
scaled variables xa (a = j, l,m) are given as xa = 2Ea/ma .
From energy conservation, these variables obey x j + xl +
xm = 2. The kinematic limits in Eq. (22) are in turn

x j f = 2
√

μ j , (23)

x ji = 1 + μ j − μl − μm − 2
√

μlμm , (24)

xli,l f = 1

2(1 − x j + μ j )

[
(2 − x j )(1 + μ j + μl − μm − x j )
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∓
√
x2
j − 4μ jλ

1/2(1 + μ j − xi , μl , μm)
]
, (25)

where μa = m2
a/m

2
i (a = j, l,m).

The square average amplitude can be expressed as

|M |2 =
2
(
p j · pm(|λ jm

L |2 + |λ jm
R |2) − 2mmm jλ

jm
L λ

jm
R

)

(
m2

m + m2
j − m2

S − 2p j · pm
)2

×
((

m2
l + pl · pm + p j · pl

)(
|λilL |2 + |λilR |2

)

+ 2mimlλ
il
LλilR

)
, (26)

where the scalar products can be written as

pl · pm = m2
i

2
(1 + μ j − μl − μm − x j ), (27)

p j · pm = m2
i

2
(1 − μ j + μl − μm − xl), (28)

p j · pl = m2
i

2
(1 − μ j + μm − μl − xm). (29)

The integration of Eq. (22) can be performed numerically.

5 Constraints on the parameter space of the scalar LQ
models

We now consider the LQ model introduced above and pre-
sent an analysis of the constraints on the LQ couplings to
SM fermions and the Higgs boson. While the LQ couplings
to fermions can be obtained from the muon anomalous MDM
and LFV tau decays, the LQ coupling to a Higgs boson pair
can be extracted from the constraint on the Hγ γ and Hgg
couplings obtained by the ATLAS and CMS collaborations
[41].

5.1 Constraints on scalar LQ masses

The phenomenology of the scalar LQ doublet R2 has been
long studied in the literature [17,18,38,42–44], and con-
straints on their mass and couplings have been derived from
the Z → bb̄ decay, the muon anomalous MDM, and LFV
decays. Since low energy physics strongly constrains the
LQ couplings to the first-generation fermions, it is usually
assumed that the only non-negligible couplings are those to
the fermions of the second and third generations. The most
stringent current constraint on the mass of the scalar LQ dou-
blet R2 masses is mΩ2/3 � 1 TeV, which was obtained by the
ATLAS [45] and CMS [46] collaborations from the LHC data
at

√
s = 13 TeV under the assumption that Ω2/3 is a third-

generation LQ that decays mainly as Ω2/3 → τ̄b, though
such a bound relaxes up to 800 GeV when it is assumed that
Ω2/3 decays into both the τ̄b and tντ channels. Also, the LQ
search via pair production [47] gives a very stringent upper

bound of 1500 GeV on the mass of second-generation LQs,
which we do not consider here as we are interested in a LQ
that couples to both second and third-generation fermions.
We will then assume the less stringent bound mΩ5/3 ≥ 800
GeV in our analysis below since mΩ2/3 and mΩ5/3 are mass
degenerate, cf. Eq. (10). In fact, a non-degenerate scalar LQ
doublet could give dangerous contributions to the oblique
parameters [48].

5.2 Constraints from the LHC data on the Higgs boson

LHC data indicate that the 125 GeV Higgs boson couplings
are compatible with those predicted by the SM, which pro-
vides a useful approach to constrain the parameter space of
SM extension models by means of the so-called Higgs boson
coupling modifiers, which are defined as

κ2
i = Γ (H → i)

Γ SM(H → i)
, (30)

where Γ SM(H → i) is the SM Higgs boson decay width and
Γ (H → i) is the one including new physics effects. Bounds
on the Higgs boson coupling modifiers were obtained by
fitting the combined data of the ATLAS and CMS collabo-
rations [41]. Since LQs contribute at the one-loop level to
the H → γ γ and H → gg decays, to constrain the LQ
couplings to a Higgs boson pair HΩ5/3Ω5/3, we use κγ and
κg , which are given as [19]

κγ 


∣∣∣∣∣F1 (τW ) + 4
3 F1/2 (τt ) + ∑

i

3Q2
Si

λSi υ
2

2m2
Si

F0(τSi )

∣∣∣∣∣
∣∣F1 (τW ) + 4

3 F1/2 (τt )
∣∣ ,

(31)

and

κg 


∣∣∣∣∣
1
2 F1/2 (τt ) + ∑

i

λSi υ
2

4m2
Si

F0
(
τSi

)
∣∣∣∣∣

∣∣ 1
2 F1/2 (τt )

∣∣ , (32)

where the sum is over the LQs Si , τa = 4m2
H/m2

a , and the
Fs(τa) function is given by

Fs(τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2τ(1 + (1 − τ) f (τ )) s = 1/2,

2 + 3τ + 3τ(2 − τ) f (τ ) s = 1,

τ (1 − τ f (τ )) s = 0,

(33)

where

f (x) =

⎧⎪⎨
⎪⎩

[
arcsin

(
1√
x

)]2
x ≥ 1,

− 1
4

[
log

(
1+√

1−x
1−√

1−x

)
− iπ

]2
x < 1.

(34)
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Although in our model FCNCs top quark decays receive
contribution from Ω5/3 only, Ω2/3 also contribute to the
decays H → γ γ and H → gg. As already mentioned,
these LQs are mass degenerate: mΩ5/3 = mΩ2/3 . We show in
the left plot of Fig. 5 the area allowed by the experimental
constraints on κγ and κg in the λΩ5/3 vs λΩ2/3 plane for two
values of mΩ5/3 . In general, values of the order of O(10) are
allowed for either λΩ2/3 or λΩ5/3 , with the largest allowed
values obtained for either large mΩ5/3 or λΩ2/3 = −λΩ5/3 .
We also show the allowed area in the mΩ5/3 vs λΩ5/3 plane
in several λΩ2/3 scenarios. We observe that for a particu-
lar mΩ5/3 value, the strongest constraints are obtained when
λΩ2/3 = λΩ5/3 , whereas the less stringent constraints are
obtained when λΩ2/3 = −λΩ5/3 .

In summary the κγ and κg constraints are satisfied for
λΩ5/3 of the order of O(10), with the largest values allowed
for a heavy LQ. In our analysis below we will use however
the conservative value λΩ5/3 
 1 as a very large value would
violate the perturbativity of the LQ coupling.

5.3 Constraints from the muon anomalous magnetic
moment and the LFV decay τ → μγ

The experimental bounds on the muon anomalous magnetic
dipole moment (MDM) aμ and the LFV tau decays provide
an useful tool to constrain LFV effects [49]. In particular, aμ

can be useful to constrain the LQ couplings λ
μui
L ,R (ui = c, t),

whereas the decay τ → μγ allow us to constrain the λ
τui
L ,R

ones.

5.3.1 Muon anomalous magnetic dipole moment

Currently there is a discrepancy between the experimental
and theoretical values of the muon anomalous MDM Δaμ =
aTheo.
μ −aExp.

μ = 268 (63) (43)×10−11 [49]. We assume that
this discrepancy is due to the LQ contribution, though such a
puzzle could be settled in the future once new experimental
measurements and more accurate evaluations of the hadronic
contributions were available.

The contribution of scalar LQs Ω5/3 to the muon anoma-

lous magnetic dipole moment aLQ
μ arises at the one-loop level

from the triangle diagrams of Fig. 2 with f j = fi = μ and
fk = uk . It can be written as [38]

aLQ
μ = −

∑
uk=c, t

3
√
xμ

32π2

(√
xμ

(∣∣λμuk
L

∣∣2 + ∣∣λμuk
R

∣∣2)
F

(
xμ, xuk

)

+ 2
√
xuk Re

(
λ
μuk
L λ

μuk
R

∗)
G

(
xμ, xuk

) )
, (35)

where xa = m2
a/m

2
Ω5/3

. The F(x, y) and G(x, y) functions
are presented in Appendix D in terms of Feynman parame-

ter integrals and Passarino–Veltman scalar functions. Since
xμ � xuk , we have the following approximate expression

aLQ
μ 
 −

∑
uk=c, t

3
√
xμ

√
xuk

16π2 Re
(
λ

μuk
L λ

μuk
R

∗)
G

(
xμ, xuk

)
,

(36)

Since Ω2/3 is a chiral LQ, its contribution to aμ is pro-
portional to the muon mass and is thus subdominant. We
now consider that the Δaμ discrepancy is due to the LQ

contribution aLQ
μ and show in Fig. 6 the allowed area in

the Re
(
λ

μc
L λ

μc
R

)
vs Re

(
λ

μt
L λ

μt
R

)
plane for three values of

mΩ5/3 . We note that a positive contribution from LQs to aμ

is required to explain the discrepancy, therefore there are
three possible scenarios:

1. Re
(
λ

μc
L λ

μc
R

)
and Re

(
λ

μt
L λ

μt
R

)
< 0.

2. Re
(
λ

μc
L λ

μc
R

)
< 0 and Re

(
λ

μt
L λ

μt
R

)
> 0.

3. Re
(
λ

μc
L λ

μc
R

)
> 0 and Re

(
λ

μt
L λ

μt
R

)
< 0.

In the first scenario (left plot of Fig. 6) we observe that while
Re

(
λ

μc
L λ

μc
R

)
can range between 10−4 and 10−3 for negli-

gible Re
(
λ

μc
L λ

μc
R

)
, the latter can range between 10−3 and

10−2 for negligible Re
(
λ

μt
L λ

μt
R

)
, with the largest allowed

values corresponding to heavy mΩ5/3 . On the other hand,
more large values of the LQ couplings are allowed when

Re
(
λ

μc
L λ

μc
R

)
and Re

(
λ

μt
L λ

μt
R

)
are of opposite sign (right

plot) as there is a cancellation between the contributions of
the c and t quarks. In particular, there is a very narrow band

where Re
(
λ

μc
L λ

μc
R

) 
 O(10) and Re
(
λ

μt
L λ

μt
R

)

 O(1).

5.3.2 Decay τ → μγ

The LQ couplings λ
τui
L ,R and λ

μui
L ,R can be constrained by the

experimental bound on the LFV tau decay τ → μγ , which
can receive the contributions of loops withΩ5/3 accompanied
by the up quarks. Such contributions follow straightforwardly
from our result for the fi → f jγ decay width given in Eq.
(15) after the proper replacements are made. The result is in
agreement with previous calculations of the �i → � jγ decay
width [38].

If the LQ couples to both the c and t quarks, the τ → μγ

decay width acquires the form

Γ (τ → μγ ) ∼
∥∥∥

∑
ui=c,t

(
α

μui
LL λ

μui
L λ

τui
L + α

μui
RR λ

μui
R λ

τui
R

+ α
μui
LR λ

μui
L λ

τui
R

) ∥∥∥
2 + (L ↔ R) , (37)

where α
μui
LL , etc. stand for the loop integrals. To simplify our

analysis we assume the scenario where λ
�ui
R /λ

�ui
L = O(ε)
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Fig. 5 Allowed regions with 95 % C.L. of the parameter space of our
LQ model from the experimental bounds on the Higgs boson multipliers
κγ and κg for mΩ2/3 = mΩ5/3 . The left plot shows the allowed region in
the λΩ5/3 vs λΩ2/3 plane for three values of mΩ5/3 : 1000 GeV (solid-line
boundary), and 1500 GeV (dashed-line boundary). The right plot shows

the allowed area in the λΩ5/3 vsmΩ5/3 plane in the following scenarios of
λΩ2/3 : λΩ2/3 = λΩ5/3 (solid-line boundary) and λΩ2/3 = −λΩ5/3 (dot-
dashed-line boundary). The vertical and horizontal lines correspond to
the bounds from perturbativity |λΩ2/3, 5/3 | ≤ 4π

(� = μ, τ ), with ε = 10−3(predominantly left-handed cou-
plings), 10−1 (small right handed-couplings), and 1 (purely
scalar couplings). We do not analyze the case when ε > 1 as a
similar situation is observed as in the ε < 1 case but with λ

�ui
L

replaced by λ
�ui
R . Thus the parameter ε is a measure of the

relative size between the right and left-handed LQ couplings.
Under this assumption, the τ → μγ decay width becomes
a function of the products λ

μc
L λτc

L and λ
μt
L λτ t

L . We thus show
in Fig. 7 the allowed area in the λ

μc
L λτc

L vs λ
μt
L λτ t

L plane for
three values of mΩ5/3 . We observe that for mΩ5/3 = 1000
GeV the largest allowed area is obtained in the scenario with
ε = 10−3, which allow λ

μui
L λ

τui
L values as large as O(10−1),

whereas the smallest area is obtained when ε = 1, which
allows λ

μui
L λ

τui
L values of the order of O(10−4). Such bounds

are slightly relaxed when mΩ5/3 increases up to 2 TeV.

As far as constraints on the |λ�ui
L ,R | couplings from direct

LQ searches at the LHC via the Drell–Yan process [50], sin-
gle production [51], and pair production [47], an up-to-date
discussion is presented in Ref. [52]. A restricted scenario
(minimal LQ model) is considered where each LQ is allowed
to couple to just one lepton-quark pair. In particular, a 95%
C.L. limit on |λμc| of the order of O(1) is obtained for a
LQ with a mass above the 1 TeV level from the Drell–Yan
process [50], whereas the bounds obtained from the LHC
Run 1 and Run 2 data on single production [51] yield less
stringent bounds. Although such limit could be relaxed in a
more general scenario where the LQ is allowed to couple to
more than one fermion pair, below we assume a conservative
scenario and consider the bound |λμc| ≤ O(1), whereas for
the remaining couplings we impose the |λμt

L ,R |, |λτui
L ,R | < 4π

bound to avoid the breakdown of perturbativity.

We are interested in the region of the parameter space
where the largest t → cX and t → c�̄� branching ratios can
be reached, which is the area where either λτ t

L λτc
L or λ

μt
L λ

μc
L

reaches their largest allowed values. Again we consider the
scenario with λ

�ui
R /λ

�ui
L = O(ε), with four ε values, and per-

form a scan of (λ
μc
L , λ

μt
L , λτc

L , λτ t
L ) points consistent with

both the Δaμ discrepancy (Fig. 6) and the constraint on the
τ → μγ decay (Fig. 7) for two values of mΩ5/3 : we consider
a large mass splitting to observe how the LQ couplings get
constrained by the experimental data. As already discussed,
we also impose the bound |λμc

L ,R | ≤ O(1) from the direct LQ
search at the LHC and, to avoid perturbativity violation, we
impose the extra constraint |λμt

L ,R |, |λτui
L ,R | < 4π . The cor-

responding allowed areas in the λ
μt
L λ

μc
L vs λτ t

L λτc
L plane are

shown in Fig. 8. We observe that, for mΩ5/3 = 1000 GeV,
the scenario with ε = 10−3 (top left plot) allows values of
λτc
L λτ t

L as large as O(1) for λ
μt
L λ

μc
L of the order of 10−1, but

values of the order of O(1) are allowed for λ
μc
L λ

μt
L for λτ t

L λτc
L

of the order of 10−2. For fixed ε, the allowed area expands
slightly when the LQ mass increases, which is expected as the
loop functions become suppressed for large LQ mass, thereby
allowing larger couplings. On the other hand, for fixedmΩ5/3 ,

the allowed areas shrink significantly in the λ
μt
L λ

μc
L direc-

tion and slightly in the λτ t
L λτc

L direction as ε increases. For
instance, in the scenario when ε = 1 (bottom right plot), the
largest allowed λ

μt
L λ

μc
L values for mΩ5/3 = 1000 GeV are of

the order of O(10−3) for small λτ t
L λτc

L , whereas the latter can
be as large as O(10−1) for very small λ

μt
L λ

μc
L . We conclude

that the scenario with predominantly dominant left-handed
couplings (ε = 10−3) is the one that allows the largest values
of the LQ couplings.
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Fig. 6 Allowed regions with 95 % C.L. of the parameter space of our
LQ model assuming that the contributions of LQ Ω5/3 along with the c
and t quarks are responsible for the muon anomalous MDM discrepancy

Δaμ. We show the allowed region in the Re
(
λ

μc
L λ

μc
R

)
vs Re

(
λ

μt
L λ

μt
R

)

plane for two values of mΩ5/3 : 1000 GeV (solid-line boundary), 1500

GeV (dashed-line boundary), and 2000 GeV (dot-dashed-line bound-
ary). In the left plot we assume that both Re

(
λ

μc
L λ

μc
R

)
< 0 and

Re
(
λ

μt
L λ

μt
R

)
< 0, whereas in the right plot we consider that they are

of opposite sign

Fig. 7 Allowed area with 95% C.L. in the λ
μc
L λτc

L vs λ
μt
L λτ t

L plane from the experimental bound on the τ → μγ decay for three values of mΩ5/3 in

the scenario with λ
�ui
R /λ

�ui
L = O(ε), for ε = 10−3 (solid-line boundary), ε = 0.1 (dashed-line boundary), and ε = 1 (dot-dashed-line boundary)

6 Numerical analysis of the t → cX and t → c�̄�
branching ratios

We now turn to analyze the behavior of the t → cX and
t → c�̄� branching ratios in the allowed area of the parameter
space. For the numerical evaluation of the one-loop induced
decays t → cX we have made a cross-check by evaluating
the Passarino–Veltman scalar functions via the LoopTools
package [53,54] and then comparing the results with those

obtained by numerical integration of the parametric integrals.
For the tree-level induced decay t → c�̄� we have used the
Mathematica numerical integration routines to solve the two-
dimensional integral of Eq. (22).

6.1 t → cX branching ratios

We first consider two ε values and present in Table 1 a few
sets of allowed (λ

μc
L , λμt

L , λτc
L , λτ t

L ) points where the t → cX

123
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Fig. 8 Allowed areas with 95% C.L. in the λ
μt
L λ

μc
L vs λτ t

L λτc
L plane

consistent with both the Δaμ discrepancy and the experimental bound
on the τ → μγ decay for mΩ5/3 = 1000 (dark points) and 5000 GeV

(light points) in the scenarios where λ
�ui
R /λ

�ui
L = O(ε), for four ε val-

ues. For the λμc coupling we use the constraint |λμc| ≤ O(1) from
direct searches at the LHC [52], whereas for the remaining couplings
we use the additional constraint |λ�ui

L ,R | ≤ 4π to avoid perturbativity
violation. Here � = μ, τ and ui = c, t

decays can reach their largest branching ratios for three LQ
masses. In the scenario where ε = 10−3 we observe that there
is a small area where all of the t → cX branching ratios can
be as large as 10−9 − 10−8 for mΩ5/3 = 1000 GeV, though
they get suppressed by one order of magnitude when mΩ5/3

increases up to 2000 GeV. In such an area, the LQ couplings
λ

μui
L are rather small, whereas the λτ t

L one is very close to the
perturbative limit, which means that this possibility would
require a large amount of fine-tuning. As for the ε = 10−1

scenario, we observe that the t → cX branching ratios are
much smaller than in the ε = 10−3 scenario: they can be of
the order of 10−9 − 10−10 at most for mΩ5/3 = 1000 GeV,
and decrease by one order of magnitude as mΩ5/3 increases
up to 2000 GeV. We refrain from presenting the results for
the ε = 1 scenario as the t → cX branching ratios are two
orders of magnitude than in the ε = 10−3 scenario.

We also observe in Table 1 that all the branching ratios
Br(t → cX) are of similar order of magnitude, with Br(t →
cZ) slightly larger. It seems surprising that Br(t → cg) is
about the same size than Br(t → cγ ), whereas in the SM and
other of its extensions it is one or two orders of magnitude

larger. To explain this result, let us examine the case of the
SM, where the t → cγ decay proceeds via a Feynman dia-
gram where the photon emerges off a down-type quark and
so the squared amplitude for the analogue t → cg diagram
has an enhancement factor of cF [gS/(−1/3e)]2 
 O(102),
where cF = 4/3 is the color factor. On the other hand, in
our LQ model the photon emerges off the charge 5/3e LQ,
which means that the enhancement factor for the squared
t → cg amplitude is just cF [gS/(5/3e)]2 
 O(1). Fur-
thermore, in our LQ model the Feynman diagram where
the photon emerges off the LQ gives a smaller contribution
than that where it emerges off the lepton, which is absent
in the t → cg decay. These two facts conspire to yield
Br(t → cg) � Br(t → cγ ). It is also worth mentioning
that the t → cH decay receives its main contribution from
the diagram where the Higgs boson is emitted off the LQ line,
and thus its decay width is very sensitive to the magnitude of
the λΩ5/3 coupling.

Finally we show in Fig. 9 the contours of the t → cX
branching ratios in the allowed area of the λ

μt
L λ

μc
L vs λτ t

L λτc
L
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Table 1 Branching ratios of the t → cX decays for a few
(λ

μc
L , λ

μt
L , λτc

L , λτ t
L ) points inside the area allowed by the Δaμ discrep-

ancy and the experimental bound on the τ → μγ decay. We consider
the scenario where λ�u

R /λ
�ui
L = O(ε) for ε = 10−3 and 10−1. For the

coupling of the Higgs boson to a LQ pair we use λΩ5/3 = 1. The t → cX

branching ratios are given in units of 10−8 for ε = 10−3 and 10−9 for
ε = 10−1

mΩ5/3 (GeV) λ
μc
L λ

μt
L λτc

L λτ t
L γ g Z H

λ�u
R /λ

�ui
L = O(10−3)

1000 2.54 × 10−4 7.8 × 10−1 2.39 × 10−1 9.48 0.416 0.665 1.02 0.68

1.48 × 10−4 6.54 × 10−1 2.06 × 10−1 7.87 0.212 0.339 0.521 0.347

2.52 × 10−5 1.02 1.72 × 10−1 7.86 0.147 0.236 0.362 0.241

1.25 × 10−5 7.68 × 10−1 1.28 × 10−1 9.97 0.132 0.212 0.325 0.216

8.47 × 10−5 6.48 × 10−1 2.54 × 10−1 4.97 0.129 0.207 0.318 0.211

1500 1.31 × 10−3 1.0 3.49 × 10−1 6.52 0.0819 0.131 0.246 0.135

3.45 × 10−4 9.21 × 10−1 2.56 × 10−1 8.46 0.0741 0.119 0.222 0.122

1.02 × 10−5 1.04 2.58 × 10−1 8.04 0.0678 0.109 0.203 0.111

2.17 × 10−6 1.21 2.89 × 10−1 6.89 0.0624 0.1 0.187 0.103

1.65 × 10−4 1.13 2.5 × 10−1 6.84 0.0462 0.074 0.138 0.0758

2000 2.16 × 10−5 1.1 4.48 × 10−1 7.39 0.0543 0.0872 0.186 0.0894

7.69 × 10−6 1.29 3.29 × 10−1 9.86 0.0524 0.0841 0.179 0.0862

2.59 × 10−3 1.07 3.69 × 10−1 8.71 0.0512 0.082 0.175 0.0843

6.09 × 10−3 1.07 3.05 × 10−1 8.34 0.0323 0.0514 0.111 0.0532

3.9 × 10−4 1.69 2.73 × 10−1 8.98 0.0298 0.0478 0.102 0.049

λ�u
R /λ

�ui
L = O(10−1)

1000 2.54 × 10−4 7.8 × 10−1 2.39 × 10−1 9.48 4.51 6.73 10.2 6.92

1.48 × 10−4 6.54 × 10−1 2.06 × 10−1 7.87 2.3 3.43 5.21 3.53

2.52 × 10−5 1.02 1.72 × 10−1 7.86 1.6 2.39 3.62 2.45

1.25 × 10−5 7.68 × 10−1 1.28 × 10−1 9.97 1.44 2.14 3.25 2.2

8.47 × 10−5 6.48 × 10−1 2.54 × 10−1 4.97 1.4 2.09 3.17 2.15

1500 1.31 × 10−3 1.0 3.49 × 10−1 6.52 0.893 1.33 2.45 1.37

3.45 × 10−4 9.21 × 10−1 2.56 × 10−1 8.46 0.809 1.2 2.22 1.24

1.02 × 10−5 1.04 2.58 × 10−1 8.04 0.739 1.1 2.03 1.13

2.17 × 10−6 1.21 2.89 × 10−1 6.89 0.681 1.01 1.87 1.04

1.65 × 10−4 1.13 2.5 × 10−1 6.84 0.504 0.749 1.38 0.772

2000 2.16 × 10−5 1.1 4.48 × 10−1 7.39 0.595 0.883 1.86 0.911

7.69 × 10−6 1.29 3.29 × 10−1 9.86 0.574 0.851 1.79 0.878

2.59 × 10−3 1.07 3.69 × 10−1 8.71 0.561 0.83 1.75 0.859

6.09 × 10−3 1.07 3.05 × 10−1 8.34 0.354 0.52 1.11 0.542

3.9 × 10−4 1.69 2.73 × 10−1 8.98 0.326 0.484 1.02 0.5

plane in the scenario with λ
�ui
R /λ

�ui
L = O(10−3), where the

largest values of the t → cX branching ratios are reached. As
already noted, when mΩ5/3 = 1000 GeV the largest t → cX
branching ratios, of the order of 10−9 − 10−8, are obtained
in a tiny area where λ

μt
L λ

μc
L is very small and λτ t

L λτc
L reaches

its largest allowed values (top-left corner of the upper plots),
but they decrease as the allowed area expands. It means that
the largest branching ratios are obtained in the region where
the main contribution arises from the loops with an internal
tau lepton, which is due to the fact that the LQ couplings to

the tau lepton are less constrained than those to the muon.
We also observe that the t → cX branching ratios decrease
by one or two orders of magnitude as mΩ5/3 reaches the 2
TeV level, where they can be as large as 10−9–10−10. The
behavior of the t → cX branching ratios in the scenarios
with ε = 10−1 and ε = 1 is rather similar to that observed
in Fig. 9, but they are one or two orders of magnitude below:
they can only be as large as 10−9 for ε = 10−1 and 10−10

for ε = 1.
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Fig. 9 Contours of the branching ratios of the t → cX decays for
mΩ5/3 = 1000 (top plots) and 2000 GeV (bottom plots) in the λ

μt
L λ

μc
L

vs λτ t
L λτc

L plane for (λ
μc
L , λ

μt
L , λτc

L , λτ t
L ) values inside the area allowed

by the Δaμ discrepancy and the experimental bound on the τ → μγ

in the scenario with λ�u
R /λ

�ui
L = O(10−3)

6.2 t → c�̄� branching ratios

We now perform the corresponding analysis for the t →
c�̄� (� = μ, τ ) branching ratios in the area allowed by the
experimental constraints discussed above. In Fig. 10 we show
the contours of Br(t → c�̄�) in the λ�t

L vs λ�c
L plane in the

scenario with λ
�ui
R /λ

�ui
L = O(10−3) for two values of the LQ

mass. We observe that for mΩ5/3 = 1000 GeV, Br(t → cτ̄ τ )

can be of as large as 10−6, whereas Br(t → cμ̄μ) is one
order of magnitude below, which is due to the fact that the
λ

μq
L couplings are more constrained than the λ

τq
L ones. When

mΩ5/3 increases up to 2000 GeV, the t → c�̄� branching
ratios decrease by about one order of magnitude. As for the
t → cμ̄τ decay, its branching ratio is also suppressed as
involves the λ

μq
L couplings. In conclusion, the three-body

tree-level decay t → c�̄� can have larger branching ratios
than the two-body one-loop decays t → cX .

7 Summary and outlook

The FCNC decays of the top quark t → cX (X =
γ, g, Z , H ) and t → c�̄� (� = μ, τ ) were calculated in
a simple LQ model with no proton decay, where the SM is
augmented by a SU (2) scalar LQ doublet with hypercharge
Y = 7/6. In such a model there is a non-chiral LQ with elec-

tric charge Q = 5/3e that couples to charged leptons and up
quarks and contribute to the FCNC decays of the top quark.

As far as the analytical results are concerned, we perform a
general calculation of the FCNC fermion decays fi → f j X
and fi → f j f̄m fl . The loop amplitudes of the fi → f j X
decays are presented in terms of both Passarino–Veltman
scalar functions and Feynman parameter integrals, which can
be useful to calculate the contributions of other scalar LQs.
On the other hand, an analytical expression is presented for
the fi → f j f̄m fl decay width, which can be numerically
evaluated.

As for the numerical analysis, to obtain bounds on the
parameter space of the model we assumed that the LQ only
couples to the fermions of the last two families and used
the experimental constraints on the LHC Higgs boson data,
the muon anomalous magnetic dipole moment aμ, the LFV
decay of the tau lepton τ → μγ , as well as the direct LQ
searches at the LHC via the Drell–Yan process, single pro-
duction, and double production. For the LQ couplings to
charged leptons and up quarks λ

�ui
L ,R , a scenario was con-

sidered where λ�u
R /λ

�ui
L = O(ε), with ε being a measure of

the relative size between the right- and left-handed LQ cou-
plings. Afterwards, the t → cX and t → c�̄� branching
ratios were evaluated in the allowed region of the parameter
space. In particular, we find that in the scenario where the
LQ couplings are predominantly left-handed, ε = O(10−3),
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Fig. 10 Contours of the branching ratios of the t → cτ̄ τ and t → cμ̄μ

decays for mΩ5/3 = 1000 GeV (left plots) and 2000 GeV (right plots)

in the λ�t
L vs λ�c

L plane for (λ
μc
L , λ

μt
L , λτc

L , λτ t
L ) values inside the area

allowed by the Δaμ discrepancy and the experimental bound on the

τ → μγ in the scenario with λ�u
R /λ

�ui
L = O(10−3)

there is a tiny region of the parameter space where the branch-
ing ratios of the one-loop induced t → cX decay can be as
large as 10−8 for mΩ5/3 = 1000 GeV, with the main con-
tribution arising from the loops with an internal tau lepton,
although a large amount of fine-tuning between the LQ cou-
plings would be required. However, for ε = 10−1 (ε = 1),
the main part of the allowed region yields t → cX branching
ratios of the order of 10−9 (10−10) at most. FormΩ5/3 ≥ 2000
GeV, the largest t → cX branching ratios are of the order of
10−10 in all the scenarios analyzed in this work. Although
the t → cX branching ratios are larger in our LQ model
than in the SM, such contributions would be out of the reach
of detection in the near future. As for the tree-level induced

decays t → c�̄�, the t → cτ̄ τ branching ratio can be as
large as 10−6 for mΩ5/3 = 1000 GeV in the scenario with
ε = O(10−3), but Br(t → cμ̄μ) is one order of magnitude
below. These branching ratios decrease by about one order
of magnitude when the LQ mass increases up to 2000 GeV.

It is worth noting that experimental constraints on the LQ
mass and couplings obtained from the direct search at the
LHC are very stringent, but they rely on several assumptions
and may be relaxed, which would yield a slight enhancement
of the LQ contribution to the top quark FCNC top quark
decays. The magnitude of the t → cX branching ratios is
similar to that recently found for the contributions from a
scalar LQ with charge −1/3e, which arises in a model with a
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scalar LQ singlet [55]. We do not consider this scenario in our
analysis as we are interested in LQ models where no further
symmetries must be invoked to forbid the proton decay [17].
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Appendix A: Loop integrals for the fi → f j V decay

We now present the contribution of the scalar LQ S to the
fi → f j V loop amplitudes. Although in these Appendices S
will stand for the Ω5/3 LQ, as already explained, our results
are also valid for the contribution of any other scalar LQ.

Appendix A.1: Passarino–Veltman results

We first define the following sets of ultraviolet finite
Passarino–Veltman scalar function combinations

Δ0 = B0(m
2
Z ,m2

k,m
2
k) − B0(m

2
j ,m

2
k,m

2
S), (A.1)

Δ1 = B0(m
2
Z ,m2

k,m
2
k) − B0(0,m2

k,m
2
S), (A.2)

Δ2 = B0(m
2
i ,m

2
k,m

2
S) − B0(m

2
j ,m

2
k,m

2
S), (A.3)

Δ3 = B0(m
2
j ,m

2
k,m

2
S) − B0(0,m2

k,m
2
S), (A.4)

Δ4 = B0(0,m2
k,m

2
k) − B0(0,m2

S,m
2
S), (A.5)

Δ5 = B0(0,m2
S,m

2
S) − B0(0,m2

k,m
2
S), (A.6)

CkSk = m2
SC0(m

2
i ,m

2
j , 0,m2

k,m
2
S,m

2
k), (A.7)

CSkS = m2
SC0(m

2
i ,m

2
j , 0,m2

S,m
2
k,m

2
S), (A.8)

CZkSk = m2
SC0(m

2
i ,m

2
j ,m

2
Z ,m2

k,m
2
S,m

2
k), (A.9)

CZSkS = m2
SC0(m

2
i ,m

2
j ,m

2
Z ,m2

S,m
2
k,m

2
S). (A.10)

The form factors of Eq. (14) are given in terms of these
ultraviolet-finite functions as follows.

Appendix A.1.1: fi → f jγ decay

There are only dipole form factors as the monopole ones must
vanish due to electromagnetic gauge invariance. Although

each Feynman diagram has ultraviolet divergences, they can-
cel out when summing over all the contributions. The results
read

Lγ = Nce

16π2

√
xiξi j
8

(
λikL λ

k j
L√

xi

(
xi (QS − Qk)

+ 1

ξi j

(
QS

(
xi

(
x j − 2ξk

) + x jξk
)

− Qk
(
xi

(
x j + 2ξk

) − x jξk
))

Δ2

− ξk (Qk + QS)Δ3 − 2xi (QkxkCkSk − QSCSkS)
)

+ λikR λ
k j
R√

x j

( x j
ξi j

(Qk (ξk + xi ) + QS (ξk − xi ))Δ2

+ 2ξk (Qk + QS)Δ3 + 2x j (QkxkCkSk

− QSCSkS) + x j (Qk − QS)
)

−
√
xkλ

k j
L λikR

ξ3
i j

(
ξi j (Qk + QS) Δ2

+ Qk

(
x2
j − xi

(
η jk + ξ jk

) + x2
i

)
CkSk

))
, (A.11)

where Nc is the color number of the internal fermion and we
introduced the following definitions xa = m2

a/m
2
S , ξab =

xa − xb, ηab = xa + xb, ξa = xa − 1, and ηa = xa + 1. In
addition, the right handed form factors can be obtained from
the left-handed ones as follows

Rγ = Lγ
(
λlmL ↔ λlmR , QS → −QS

)
. (A.12)

Appendix A.1.1.2: fi → f j Z decay

The amplitude for this decay contains both dipole and
monopole form factors. Again the ultraviolet divergences
cancel when summing over partial contributions. The LZ

and L
′Z form factors are too lengthy and can be written as a

sum of partial terms arising from each contributing diagram
as follows

LZ = Ncg

32π2cW

√
xi

8

∑
j=a,b

3∑
i=1

L(j)
i , (A.13)

and

L
′Z = Ncg

32π2cW

√
xi

8

∑
j=a,b,cd

3∑
i=1

L
′(j)
i , (A.14)

where the superscript stands for the Feynman diagram of
Fig. 2 out of which the corresponding term arises, with (cd)
standing for the sum of the contributions of diagrams (c) and
(d).
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The contributions of diagram (a) are given by

L(a)
1 =

√
x j gkRλikR λ

k j
R

2δ2

((
x3
Z + x2

Z

(
4xi − 2x j − 6ξk

)

− ξi j xZ
(
x j + 6ξk + 5xi

) )
Δ1

+
(
x2
Z (ξk − 5xi ) + 2xZ

(
2xiηi j + 5xiξk − x jξk

)

+ ξ2
i j (ηik − 1)

)
Δ2

+ 1

x j

(
x3
Z
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1 − η jk

)

+ x2
Z

(
xi

(
3ξk − 4x j

) + x j
(
2x j + 7ξk

))

+ ξi j xZ
(
xi

(
5x j − 3ξk

)

+ x j
(
x j + 5ξk

)) + ξ3
i jξk

)
Δ3

+ 2
(
x3
Z (ξik + 2) + x2

Z

(
xi

(
x j − 3xk + 2

)

+ x j (xk − 4) + 3ξk
2 − 2x2

i

)

+ ξi j xZ
(
xi

(
2x j + 3xk − 4

)

− x j (xk + 2) + 3ξk
2 + x2

i

)
+ ξ3

i j xk
)
CZkSk

+ δ
(
ξi j + xZ

) )
, (A.15)
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2 = gkLλikL λ

k j
L

2
√
xi δ2
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Z

− 2x2
Z

(
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) + ξi j xZ
(
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) )
Δ1

+
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x3
Z (1 − ηik) + (

x j + 2xi
)
(3ξk + xi ) x

2
Z
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(
x2
i

(
8x j + 3ξk

)

− xi x j
(
x j − 2ξk

) + 3x2
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i

)

− ξ2
i j
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(
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− ξi j xZ
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i j xk
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CZkSk + δxi
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xZ − ξi j
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, (A.16)

L(a)
3 =

√
xkλ

k j
L λikR

δ
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gkL

((
xZ − ξi j

)
Δ0

+
(
ηi j − xZ
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( (
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xZ + ξi j

(
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CkSk
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, (A.17)

L
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k j
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where δ = x2
i −2(x j+xZ )xi+(x j−xZ )2. The contributions

of diagram (b) are
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L
′(b)
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L
′(b)
3 = gV SS
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(A.26)

Finally Feynman diagrams (c) and (d) only contribute to
monopole terms. The corresponding contribution of both dia-
grams is
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(A.27)

We can observe that the ultraviolet divergent term BkS ≡
B0(0,m2

k,m
2
S), which appears only in the monopole terms,

is canceled out when summing over all the contributions.
Furthermore, the form factors associated with the right-

handed terms are given by

RZ = LZ
(
λlmL ↔ λlmR , gZSS → −gZSS

)
, (A.28)

and

R
′Z = −L

′Z
(
λlmL ↔ λlmR , gZSS → −gZSS

)
. (A.29)

Appendix A.2: Feynman parameter results

Appendix A.2.1: fi → f jγ decay

The Lγ form factor of Eq. (14) is ultraviolet finite and is
given in terms of Feynman parameter integrals as follows

Lγ = Ncg2e
√
xi

62c2
Wπ2

1

2

∫ 1

0
dx

∫ 1−x

0
dy

(
Qk

ζ1

(
xy

√
xiλ

ik
L λ

k j
L

− λikR

(
x
√
x j (x + y − 1)λ

k j
R + (x − 1)

√
xkλ

k j
L

))

+ QS

ζ2
(x + y − 1)

(
x
√
xiλ

ik
L λ

k j
L + y

√
x jλ

ik
R λ

k j
R + √

xkλ
k j
L λikR

) )
,

(A.30)

where

ζ1 = x
(
yξ j i + x j (x − 1) − ξk

) + xk, (A.31)

ζ2 = xyηi j − x (ηik − 1) + x2xi − y
(
η jk − yx j

) + xk + y.
(A.32)

The Rγ form factor is given by Eq. (A.12), whereas
monopole terms L

′γ and R′γ are zero as already mentioned
(one must consider electric charge conservation).

Appendix A.2.2: fi → f j Z decay

The dipole terms of Eq. (A.13), which only arise from dia-
grams (a) and (b), are ultraviolet finite and are given by

L(a) =
∫ 1

0
dx

∫ 1−x

0
dy

1

ζ ′
1

(
xy

√
xi g

k
LλikL λ

k j
L

− x
√
x j (x + y − 1)gkRλikR λ

k j
R

+√
xkλ

k j
L λikR

(
ygkL − (x + y − 1)gkR

))
, (A.33)

L(b) = gV SS

∫ 1

0
dx

∫ 1−x

0
dy

(x + y − 1)

ζ ′
2

(
x
√
xiλ

ik
L λ

k j
L

+ y
√
x jλ

ik
R λ

k j
R + √

xkλ
k j
L λikR

)
, (A.34)

whereas the partial contributions to the monopole terms of
Eq. (A.14) are ultraviolet divergent and read

L
′(a) =

∫ 1

0
dx

∫ 1−x

0
dy

1

ζ ′
1

(
x(y − 1)

√
xi

√
x j g

k
LλikL λ

k j
L

+ (y − 1)
√
xi

√
xkg

k
LλikL λ

k j
R

+ λikR λ
k j
R

(
gkR

(
(x + y − 1)

(
y(xZ − ξi j ) + xx j

)

+ ζ ′
1

(
1 + log

(
ζ ′

1

))) − xkg
k
L

)

+ √
x j

√
xkλ

ik
R λ

k j
L

(
(x + y − 1)gkR − xgkL

))

− gkR
2

λikR λ
k j
R ΔUV, (A.35)

L
′(b) = gV SS

2ζ ′
2

∫ 1

0
dx

∫ 1−x

0
dy(2x − 1)

(√
xiλ

ik
L

(√
x j (x + y)λk jL + √

xkλ
k j
R

)

+ λikR

((
xxi + yx j + 2ζ ′

2

2x − 1
log

(
ζ ′

2

))
λ
k j
R

+√
x j

√
xkλ

k j
L

) )
− gV SS

2
λikR λ

k j
R ΔUV, (A.36)

L
′(cd) =

∫ 1

0
dx

g j
L

ξi j

( (√
xiλ

ik
L

(
x
√
x jλ

k j
L + √

xkλ
k j
R

)

+√
x j

√
xkλ

k j
L λikR

) (
log

(
ζ ′

32

) − log
(
ζ ′

31

))

+ xλikR λ
k j
R

(
x j log

(
ζ ′

32

)

− xi log
(
ζ ′

31

)) )
+ g j

L

2
λikR λ

k j
R ΔUV. (A.37)
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where ΔUV stands for the ultraviolet divergence, which can-
cels out when summing over the partial contributions as it is
proportional to gkL − g j

R − gV SS . We also have defined the
following functions

ζ ′
1 = xy

(
xZ − ξi j

) + x2x j − x
(
η jk − 1

)

+ xk + (y − 1)yxZ ,

ζ ′
2 = x2xi + xy

(
ηi j − xZ

) − x (ηik − 1)

− y
(
η jk − yx j

) + xk + y,

ζ ′
3a = x2xa − x (ηak − 1) + xk . (A.38)

Appendix B: Loop integrals for the fi → f j H decay

The FL and FR form factors of Eq. (20) are given by

FL ,R = NcgmS

32π2mW

3∑
k=(a),(b),(c)

f (k)
L ,R + 3

16π2

λSv

mS
f (d)
L ,R,

(B.39)

with f (k)
L ,R (k = a, b, c, d) being the contributions of the Feyn-

man diagram analogue to the diagram (k) of Fig. 2, with the V
gauge boson replaced by the Higgs boson. Again we present
our results in terms of Passarino–Veltman scalar functions
and Feynman parameter integrals.

Appendix B.1: Passarino–Veltman results

The sum of the contributions of the triangle and bubble dia-
grams (a), (b) and (c) is ultraviolet finite and reads

∑

k=(a),(b),(c)

f (k)
L = 1

2χ

(√
xi

(
2xk(xH + ξ j i )(ξH j − xi − 2ξk)C

′
1

+ (ζ x j xi (x j + ξk) − 8x j xk)Δ
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1

+ (4xk(xi − ξH j ) − ζ x2
j (xi + ξk))Δ

′
2

+ ζ x j ξ j i ξkΔ
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3

)
λ
k j
L λikL

+ √
x j
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2xk(xH − ξ j i )(ξH j − xi − 2ξk)C
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1

+ (4xk(xi − ξH j ) + ζ x2
i (x j + ξk))Δ

′
1

− (ζ x j xi (xi + ξk) + 8xi xk)Δ
′
2

+ ζ xi ξ j i ξkΔ
′
3

)
λ
k j
R λikR

+ 2
√
xk

( (
xk

(
2ξ2

j i + x2
H − 3xH ξi j

)

+ xH (xH + x j (2xi − 1) − xi )
)
C ′

1

+ (ζ xi − x j (xH − ξ j i ))Δ
′
1

− (ζ x j + xi (xH + ξ j i ))Δ
′
2

)
λ
k j
L λikR

+ 2
√
x j

√
xi

√
xk

(
xH (ξH j − xi − 2ξk)C

′
1

− (ξ j i + xH − ζ )Δ′
1 + (

ξ j i − xH − ζ
)
Δ′

2

)
λ
k j
R λikL

)
, (B.40)

whereas the contribution of triangle diagram (d), which is
ultraviolet finite by itself, can be written as

f (d)
L = 1

χ

(√
xi

(
(xH (x j + ξk) − ξ j i (ξik + 1))C ′

2

− 2x jΔ
′
1 + (xi − ξH j )Δ

′
2 + (xH + ξ j i )Δ

′
4

)
λ
k j
L λikL

+ √
x j

(
(xH (xi + ξk) + ξ j i (ξik + 1))C ′

2

+ (xi − ξH j )Δ
′
1 − 2xiΔ

′
2 + (xH − ξ j i )Δ

′
4

)
λ
k j
R λikR

− √
xkχC

′
2λ

k j
L λikR

)
, (B.41)

where we have introduced the auxiliary variable χ = ξ2
j i +

x2
H − 2xH ξi j , and ζ = χ/(x j xiξ j i ). As for the C ′

j and Δ′
j

functions, they are given by

Δ′
1 = B0(m

2
j ,m

2
k,m

2
S) − B0(m

2
H ,m2

k,m
2
k), (B.42)

Δ′
2 = B0(m

2
i ,m

2
k,m

2
S) − B0(m

2
H ,m2

k,m
2
k), (B.43)

Δ′
3 = B0(0,m2

k,m
2
S) − B0(m

2
H ,m2

k,m
2
k), (B.44)

Δ′
4 = B0(m

2
H ,m2

S,m
2
S) − B0(m

2
H ,m2

k,m
2
k), (B.45)

C ′
1 = m2

SC
′
0(m

2
H ,m2

j ,m
2
i ,m

2
k,m

2
k,m

2
S), (B.46)

C ′
2 = m2

SC
′
0(m

2
H ,m2

j ,m
2
i ,m

2
k,m

2
k,m

2
S). (B.47)

It is thus evident that ultraviolet divergences cancel out. As
far as the right-handed terms are concerned, they obey

f (k)
R = f (k)

L (L ↔ R) (k = a, b, c, d). (B.48)

Appendix B.2: Feynman parameter results

Feynman parametrization yield the following results for the
f (k)
L ,R coefficients:

f (a)
L = √

xk

∫ 1

0
dx

∫ 1−x

0
dy

1

�1

(√
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√
xk(2y − 1)λ

k j
L λikL

+ √
x j

√
xk(1 − 2(x + y))λk jR λikR

−
(

2�1 log (�1) + xy(ξ j i + xH ) + (x − 1)xx j

+ �1 + xH y(y − 1) + xk
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λ
k j
L λikR

− x
√
x j

√
xiλ

k j
R λikL

)

+ √
xkλ

k j
L λikR ΔUV, (B.49)
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∑
k=(b),(c)

f (k)
L = 1

ξ j i

∫ 1

0
dx

(√
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√
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(
x

(√
x jλ

k j
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k j
R λikR
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+√
xkλ
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R λikL

)
(log(�2 j ) − log(�2i ))

+ √
xk(x j log(�2 j ) − xi log(�2i ))λ

k j
L λikR +

)

− √
xkλ

k j
L λikR ΔUV, (B.50)

where it is evident that the ultraviolet divergenceΔUV cancels
out when summing over the partial contributions. We also use
the following auxiliary variables

�1 = x2x j + x(y(xH + ξ j i ) + ξk j + 1) + xH (y − 1)y + xk ,

and

�2a = xxa(x − 1) − x(xk − 1) + xk .

As far as the contribution of Feynman diagram (d) is con-
cerned, it is given by

f (d)
L =

∫ 1

0
dx

∫ 1−x

0
dy

1

�3

(√
xkλ

k j
L λikR

−√
xi (x + y − 1)λ

k j
L λikL + √

x j yλ
k j
R λikR

)
, (B.51)

with

�4 = x2xi + x(y(xH − ξ j i ) + ξki − 1) + xH (y − 1)y + 1.

(B.52)

Appendix C: Loop integrals for the H → f̄ j fi decay

As already mentioned, the form factors FL and FR for the
fi → f j H decay width are also valid for the H → f j fi
decay width given in (21). It is interesting to obtain the
approximate results in the limit of small x j and xi . In the
case of the Passarino–Veltman results Δ′

1 → Δ′
3 + O(x j )

and Δ′
2 → Δ′

3 +O(xi ) for small xi and x j , which means that
in the limit of vanishing external fermion masses we have

∑
k=(a),(b),(c)

f (k)
L 
 λ

k j
L λikR

√
xk

(
(xk + 1)C ′

1 − Δ′
3

)
, (C.53)

and

f (d)
L = −λ

k j
L λikR

√
xkC

′
2, (C.54)

which means that in this scenario the H → fi f j decay width
can be written as

Γ (H → fi f j ) 
 mH

32π

(
|λk jL λikR |2

+|λk jR λikL |2
)

| f (mk,mS,mi ,m j )|2. (C.55)

where

f (mk,mS,mi ,m j ) 
 3mk

16π2mS((
(m2
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2
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2
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2
k)
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− m2
SC0(m

2
H , 0, 0,m2
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2
k,m

2
S)

)
, (C.56)

This result agrees with the one presented in [21,55–57].
As far as the Feynman parameter results, in the vanishing

limit of m j and mi one can obtain

f (a)
L = −√

xk

∫ 1

0
dx

∫ 1−x

0
dy

1

�′
1

(
2�′

1 log(�′
1)

+ xH y(x + y − 1) + �′
1 + xk

)
λ
k j
L λikR

+ √
xkλ

k j
L λikR ΔUV, (C.57)

∑
k=(b),(c)

f (k)
L = √

xk

∫ 1

0
dx log(�′

2)λ
k j
L λikR − √

xkλ
k j
L λikR ΔUV,

(C.58)

and

f (d)
L = √

xk

∫ 1

0
dx

∫ 1−x

0
dy

1

�′
3
λ
k j
L λikR , (C.59)

with

�′
1 = x(xk + 1) + xH y(x + y − 1) + xk, (C.60)

�′
2 = xk − x(xk − 1), (C.61)

�′
3 = x(xk − 1) + xH y(x + y − 1) + 1. (C.62)

AppendixD: Lepton anomalousmagnetic dipolemoment

The F and G functions of Eq. (35) read

F(z1, z2) = QkF1(z1, z2) + QSF2(z1, z2), (D.63)

G(z1, z2) = Q jG1(z1, z2) + QSkG2(z1, z2), (D.64)

123



700 Page 20 of 21 Eur. Phys. J. C (2019) 79 :700

with the Fa and Ga functions given in terms of Feynman
parameter integrals by

Fa(z1, z2) = 2
∫ 1

0

(1 − x)xξa(x)

(1 − x)(z2 − xz1) + x
dx, (D.65)

Ga(z1, z2) = 2
∫ 1

0

(1 − x)ξa(x)

(1 − x)(z2 − xz1) + x
dx, (D.66)

where ξ1(x) = 1 − x and ξ2(x) = x . The integration is
straightforward in the limit of a light external fermion and
heavy internal fermion and LQ: xi � xk

F(xi 
 0, xk) = Qk

3(1 − xk)4

(
2 + 3xk − 6x2

k + x3
k + 6xk log(xk)

)
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(D.67)

G(xi 
 0, xk) = − Qk
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3 − 4xk + x2

k + 2 log(xk)
)

+ QS

(1 − xk)3

(
1 − x2

k + 2xk log(xk)
)

. (D.68)

For completeness we also present the results in terms of
Passarino–Veltman scalar functions:

F1(z1, z2) = − 1

z2
1ζ(z1, z2)

(2z2 (2z1 + ζ(z1, z2)) Δ6(z1, z2)

− 2 (z1 (1 − z1 + z2) + ζ(z1, z2)) Δ7(z1, z2)

+ z1 (4z2 + ζ(z1, z2) − 4) + 2 (z2 − 1) ζ(z1, z2) + 4z2
1

)
, (D.69)
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(
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)
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(
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)
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)
, (D.70)

G1(z1, z2) = − 1

z1ζ(z1, z2)

(
2

(
z2

1 − (2z2 + 1) z1

+ (z2 − 1) z2) Δ6(z1, z2) + 2 (z1 − z2 + 1) Δ7(z1, z2)

+ 2 (z1 − z2 + 1) 2
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, (D.71)

G2(z1, z2) = − 1

z1ζ(z1, z2)
(2 (z1 − z2 + 1) z2Δ6(z1, z2)

+ 2 (z1 + z2 − 1) Δ7(z1, z2) + 2
(
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1 − (z2 − 1) 2
))

, (D.72)

with

Δ6(x, y) = B0(0, y m2
S, y m

2
S) − B0(x m

2
S, y m

2
S,m

2
S),

(D.73)

Δ7(x, y) = B0(0,m2
S,m

2
S) − B0(x m

2
S, y m

2
S,m

2
S),

(D.74)

and ζ(x, y) = (1 + y − x)2 − 4y.
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