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When adopted in black hole spacetimes, geometric-optics approximations imply a mapping between 
the quasinormal mode (QNM) spectrum of black holes in the eikonal limit and black hole images. In 
particular, the real part and the imaginary part of eikonal QNM frequencies are associated with the 
apparent size and the detailed structure of the ring images, respectively. This correspondence could 
be violated when going beyond general relativity. We propose a novel method to test the eikonal 
correspondence via the comparison of two sets of observables from a nonrotating black hole, one 
extracted from QNM spectra and the other from the lensed photon rings on the image plane. Specifically, 
the photon ring observables robustly capture the information of the black hole spacetime itself regardless 
of the surrounding emission models. Therefore, the proposed test of eikonal correspondence can be 
validated in quite broad scenarios.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

With the detection of gravitational waves emitted from binary 
black hole mergers [1] and the observations of the images of su-
permassive black holes [2,3], we have been ushered in a new era in 
which probing strong gravity regimes, such as the spacetime near 
black hole horizons, becomes feasible. These scientific advance-
ments also provide us with the possibility of testing the validity 
of general relativity (GR) on very extreme scales. In particular, one 
could utilize these black hole observations to test the fundamental 
principles or symmetries dictated by GR, such as the black hole no-
hair theorem [4,5], circularity [6–8], reflection symmetry [9–11], 
etc.

One interesting property inherent in GR is the eikonal corre-
spondence between the wave and ray quantities in generic curved 
spacetimes [12,13]. The correspondence can be roughly under-
stood by noting that high-frequency waves propagate in a simi-
lar manner as photons. More precisely, the wave dynamics in the 
so-called geometric-optics approximations, which assume that the 
wavelength of the propagating waves is much shorter than any 
other length scales in the system, resembles that of light rays. 
When applied to black hole spacetimes, the eikonal correspon-
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dence could have implications on the aforementioned two state-
of-the-art black hole observations. More explicitly, the black hole 
quasinormal mode (QNM) frequencies [14–16], which play impor-
tant roles in the post-merger phase of a binary coalescence, can be 
mapped to the properties of photons propagating near the bound 
photon orbits around the black hole [17–20]. This correspondence 
is more justified for QNMs with higher oscillation frequencies, i.e., 
in the eikonal limit, and can be extended further to map to some 
features in the ring-like images cast by the black hole [21–25]. 
Roughly speaking, the real and the imaginary parts of eikonal QNM 
frequencies correspond to the apparent ring size and the detailed 
ring structure on the image plane.

Assuming the fulfillment of the correspondence, its identifica-
tion in different black hole spacetimes typically relies on the exis-
tence of some symmetries of the spacetime [17–20,26], such as the 
separability of the angular and radial sectors in geodesic equations 
and wave equations. Recently, the correspondence for black hole 
spacetimes with less separability has been identified [27]. Some 
natural questions then arise: What if the correspondence is vio-
lated, and can it be tested using black hole observations? In fact, 
the fulfillment of eikonal correspondence is associated with the 
assumption that matter fields are minimally coupled to gravity 
in GR. In the presence of nonminimal couplings between photons 
and other degrees of freedom, photons and those degrees of free-
dom may propagate in a nontrivial manner such that the eikonal 
correspondence is violated [28,29]. However, an explicit example 
studying the charged black holes in nonlinear electrodynamics in 
Ref. [30] illustrates that nonminimal coupling is not a necessary 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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condition for the violation of eikonal correspondence, suggesting 
that the violation is triggered in a more general setting. In fact, 
the violation can also happen in models inspired by some puta-
tive quantum theories of gravity [31–35]. On the other hand, the 
presence of nonminimal coupling does not imply the violation of 
eikonal correspondence either [36]. In any case, the physics behind 
the violation of eikonal correspondence may be much more intri-
cate than one naively expects. Therefore, the possibility of obser-
vationally testing eikonal correspondence deserves to be explored 
[37], not only because of the potential future advancements of the 
observations related to both sides of the correspondence but also 
due to its theoretical relevance at a fundamental level. In short, 
any observational indication of the violation of eikonal correspon-
dence can be a smoking gun of physics beyond GR.

In this paper, we propose a novel method of testing eikonal 
correspondence by observing the QNM spectrum and ring images 
of a black hole. We define a set of QNM observables as the ra-
tio between the real and imaginary parts of QNM frequencies. On 
the other hand, we also define two sets of photon ring observ-
ables that, at this moment, still require significant improvements 
to resolve. Due to the strong lensing effects, photons emitted from 
a light source near a black hole could follow multiple paths and 
orbit the black hole different numbers of times before reaching 
the observer. These photons thus generate on the image plane a 
stack of discrete photon rings [38,39], whose resolution is beyond 
the reach of the current Event Horizon Telescope (EHT) collabo-
ration, but may be partially resolved in the next-generation EHT 
(ngEHT) [40] or future space-based Very-Long-Baseline Interferom-
etry (VLBI) missions [41–43]. The ring observables can be extracted 
from these ring structures and, as we will show, can capture the 
features of the underlying black hole geometry. Most importantly, 
in the presence of eikonal correspondence and considering nonro-
tating black holes as toy models, the QNM and ring observables, 
in their certain limits, always converge to some critical exponent 
from opposite directions. This behavior of convergence seems to 
be insensitive to the emission models and the spacetime metric 
itself under consideration. Therefore, by directly comparing these 
observables, one can test the eikonal correspondence.

2. Setup for the test

In this section, we will describe the basic setup of our black 
hole test. More explicitly, we will first introduce a critical expo-
nent γ which is solely defined by the properties of the spherical 
photon orbits around a black hole. This critical exponent γ de-
pends only on the black hole geometry, i.e., the metric of the black 
hole, not on the emission properties nearby. Then, we will intro-
duce two sets of observables, one is defined via QNM frequencies 
and the other is defined through the structure of photon rings. 
These two sets of quantities are in principle potential observables 
in the future advance of gravitational wave detection and space-
VLBI observations, respectively. The high-order photon ring observ-
ables naturally converge to the critical exponent γ . On the other 
hand, the QNM observables would converge to γ only when the 
eikonal correspondence is satisfied. Although γ itself is not an ob-
servable, the comparison between the two sets of observables still 
enables one to test the eikonal correspondence, as we will demon-
strate later.

We consider a general static and spherically symmetric space-
time:

ds2 = − f (r)dt2 + g(r)

f (r)
dr2 + r2d�2

2 , (2.1)

where the metric functions f (r) and g(r) are functions of the ra-
dial coordinate r. Also, d�2 is the line element on a 2-sphere. A 
2

2

generic black hole spacetime contains the following constant-r sur-
faces: the event horizon rh that satisfies fh = 0, the photon sphere 
rph that satisfies 2 fph = rph f ′

ph, and the innermost stable circular 
orbit (ISCO) rISCO, which can be determined by the root of the fol-
lowing equation[
−3 f f ′/r + 2( f ′)2 − f f ′′]

ISCO
= 0 . (2.2)

The prime denotes the derivatives with respect to r. The subscript 
x indicates that the quantities are evaluated at r = rx . We remind 
that the photon sphere is a collection of spherical photon orbits 
around the black hole, which in the spherically symmetric case, 
has a single radius rph. The ISCO, on the other hand, defines the 
radius of circular timelike orbits on which the circular motion is 
marginally stable. The ISCO is typically regarded as the inner edge 
of accretion disks.

Having defined the radius of photon sphere rph, we can then 
define the Lyapunov exponent λ and the angular velocity of pho-
tons on the photon sphere �ph as follows [17]:

λ = 1√
2

√√√√− r2ph fph

gph

(
f

r2

)′′

ph
, �ph = f 1/2ph

rph
. (2.3)

The critical exponent is defined by their ratio:

γ ≡ λ

�ph
. (2.4)

For a Schwarzschild black hole whose metric functions are g(r) = 1
and f (r) = 1 − 2M/r with its mass M , one can easily check that 
γ = 1.

2.1. QNM observables

The first observable we will consider in this test is defined by 
the black hole QNM frequencies. Being complex-valued, the QNM 
frequencies of black holes can be decomposed into a real part and 
an imaginary part as ω = ωR + iωI . For nonrotating black holes, 
the QNMs can be labeled by multipole numbers l and overtones. 
Here, we will mainly focus on the fundamental modes since they 
have the longest decay time and are more astrophysically relevant. 
We then define our QNM observables as

γ QNM
l ≡ 2l

|ωI |
ωR

, (2.5)

where their dependence on the multipole number l is made ex-
plicitly in the lower index.

The calculations of black hole QNMs can be recast as a 
wave scattering problem around the black hole. For nonrotating 
black holes, the QNM spectrum can be determined by a master 
wave equation after suitable decomposition and field redefinition. 
Generically, the wave equations can be written as

d2ψ

dr2∗
+

[
ω2 − U (r)

]
ψ = 0 , (2.6)

where ψ stands for the fields scattered around the black hole 
and r∗ is the tortoise radius defined by dr/dr∗ = f (r)/g(r)1/2. The 
event horizon r = rh is mapped to r∗ → −∞. The effective po-
tential encodes all the information of the modes, and can be ex-
pressed as [32]

U (r) = f (r)

[
l(l + 1)

2
α(r) − 6M

3
ζ(r)

]
, (2.7)
r r
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where α(r) and ζ(r) are assumed to be independent of the multi-
pole l, but remain undetermined. Note that the spin of the propa-
gating fields is essentially encoded in the function ζ(r). In the rest 
of the discussions, it is fair to assume that the effective potential 
U (r) takes the standard form of an asymptotically flat black hole, 
i.e., it has a single peak and approaches zero toward the bound-
aries r∗ → ±∞.

The QNM frequencies can be evaluated by solving the wave 
equation (2.6) after imposing proper boundary conditions. Their 
analytic expressions are feasible within eikonal approximations.1

Up to the subleading eikonal order, the frequency can be analyti-
cally written as [32]:

ωR =
(
l + 1

2

)√
Ũm + O

(
l−1) , (2.8)

ωI = −1

2

(
dr

dr∗

)
m

√
|Ũ ′′

m|
2Ũm

+ O
(
l−1) , (2.9)

where Ũ (r) = f (r)α(r)/r2, and the subscript m means that the 
quantities are evaluated at the peak of the potential Ũ (r), say, rm . 
Therefore, in the eikonal limit, the QNM observables (2.5) can be 
written as

γ QNM
l ≈

(
2l

2l + 1

)√
− r4m

2gmα2
m

(
f α

r2

)′′

m
. (2.10)

If α(r) = 1, the peak of the potential rm is precisely at rph. In this 
case, we have

γ QNM
l ≈

(
1 − 1

2l

)
γ , (2.11)

implying that γ QNM
l → γ when l → ∞. Note that ζ(r) does not 

contribute to the right-hand side of Eq. (2.10). As a consequence, 
the function α(r) directly controls the eikonal correspondence. If 
α(r) is not a constant, rm would not be located at the photon 
sphere and γ QNM

l would not converge to γ even in the eikonal 
limit.

One important observation from Eq. (2.11) is that even when 
the eikonal correspondence holds, contributions of subleading 
eikonal orders make the QNM observables smaller than the crit-
ical exponent, i.e., γ QNM

l < γ for l < ∞. This observation will be 
supported later by our numerical calculations for different black 
hole models, and will play a crucial role in the validity of our test.

2.2. Photon ring observables

As mentioned in the Introduction, there are multiple photon 
trajectories connecting the observer on the earth to a source emis-
sion located near or behind the black hole. Photons emitted from 
a given light source but reaching the observer along different tra-
jectories, which typically rotate around the black hole different 
numbers of times, would generate a sequence of discrete photon 
rings [38,39]. These photon rings are conveniently labeled by the 
winding number n, which stands for the number of half-orbits the 
photons rotate around the black hole before reaching the observer. 
As n increases, the photon rings on the image plane would expo-
nentially converge to the theoretical critical curve (n = ∞), which 
is the impact parameter of the spherical photon orbits around the 
black hole. The images contributed from direct emission, i.e., n = 0
highly depend on the size of the emission region and its profile. 

1 For convenience, we do not consider the additional branches of large-l modes 
that may appear when either side of the boundaries differs from those of a typical 
asymptotically flat black hole, as recently discussed in Ref. [44].
3

However, in the advancement of the future space-VLBI and ngEHT 
observations, we may hopefully resolve higher-order rings, which 
would be less sensitive to the emission models and encode more 
information about the black hole geometry [45–47].

Consider an optically and geometrically thin disk model and as-
sume that the black hole is being observed face-on. In this case, 
each photon ring appears as a circular ring shape with outer and 
inner radii determined by the impact parameters of photons emit-
ted from the outer and inner edges of the disk, respectively. We 
denote the outer radius and the width of each ring as bn and 
wn , respectively. Then, we can define two photon ring observables 
[48,49]

γ w
n ≡ 1

π
ln

wn

wn+1
, γ b

n ≡ 1

π
ln

bn − bn+1

bn+1 − bn+2
. (2.12)

The first observable γw
n is defined through the width ratio of two 

successive rings. The second observable γ b
n is a variant of the 

one proposed in [48,49] and is determined by the outer radii of 
three successive rings. Note that γ b

n does not require the resolu-
tion of any inner ring radius. As we will show numerically later 
and analytically in appendix A, these two observables converge 
very quickly to γ as n increases. In fact, they are already very 
close to γ at n = 1 for different disk models with various sizes. 
In addition, our numerical calculations seem to indicate that these 
observables would approach from above to γ when increasing n
for various black hole metrics.2 This fact, combined with the fact 
that γ QNM

l < γ , would enable us to test the eikonal correspon-
dence by simply comparing the measurements of γ QNM

l and the 
ring observables.

3. Examples

In this section, we consider some simple models to demonstrate 
how the two sets of observables defined in sec. 2 can be used to 
test eikonal correspondence. We first show how these observables 
change when the spacetime varies from the Schwarzschild one. 
To calculate the ring observables, two different disk models (disk 
modes 1 and 2) are considered. As Eq. (2.12) shows, the photon 
ring observables are defined through the width ratio of two suc-
cessive rings and the outer radii of three successive rings. The disk 
size, which is relevant in defining the ring edges, in disk model 1 is 
assumed to range from the ISCO to r = 100M . On the other hand, 
we assume that disk model 2 has its outer edge at r = 10M and 
extends inward to the event horizon. As for the QNM observables, 
we consider the QNMs of a massless scalar field. The frequencies 
are evaluated using the Wentzel-Kramers-Brillouin method up to 
the 6th order [50–52]. Two specific non-Schwarzschild metrics will 
be considered as examples. After that, the section will end with an 
explicit illustration on how to test the eikonal correspondence us-
ing these observables.

3.1. Reissner-Nordström spacetime

We first consider the standard electrically charged and non-
rotating black hole spacetime, i.e., the Reissner-Nordström (RN) 
spacetime, whose metric reads

f (r) = 1− 2M

r
+ q2

r2
, g(r) = 1 , (3.1)

where 0 ≤ q ≤ M is the charge. In the upper panels of Fig. 1, we 
consider disk models 1 (left) and 2 (right), and show the criti-
cal exponent γ (black), the QNM observables of two different l

2 This can be proven analytically when the black hole metric differs slightly from 
Schwarzschild one. See appendix A.
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Fig. 1. The critical exponent γ (black), ring observables {γw
n , γ b

n }, and the QNM observables γ QNM
l for RN (upper) and KS (lower) spacetimes. Two disk models 1 (left) and 2 

(right) are considered when evaluating the ring observables.
(dash-dotted), the ring observables γw
n with n = 1 (orange) and 

n = 2 (red), and γ b
1 (dashed), with respect to q/M (we shift the 

vertical axis such that the black curve depicted by γ vanishes in 
the Schwarzschild limit at q = 0). One can see that, although the 
quantitative values of ring observables for a given q depend on 
emission models, the observables, including the QNM ones, can all 
capture the qualitative behavior of γ when changing q. In addi-
tion, in the presence of eikonal correspondence, the ring and QNM 
observables converge to γ from opposite directions when n and 
l increase, with the former converging from above and the latter 
from below. Note that the observables γw

2 in both disk models are 
very close to γ . The red curves in the right panel are hardly seen 
because they are so close to the black ones.

3.2. Kazakov-Solodukhin black hole

Then, we consider another non-Schwarzschild black hole space-
time and repeat the same calculations of observables as we just 
did for RN black holes. The black hole metric considered here is 
the Kazakov-Solodukhin (KS) one [53]

f (r) = −2M

r
+

√
r2 − q2

r
, g(r) = 1 , (3.2)

where q controls the deviations from the Schwarzschild metric. 
This spacetime can arise in a string-inspired model and can be 
regarded as a quantum-corrected Schwarzschild spacetime [53]. 
Roughly speaking, the quantum corrections in this model effec-
tively shift the Schwarzschild singularity to a finite radius q. The 
QNMs [54–56] and lensing effects [57,58] of KS black holes have 
already been studied.

We present the results of KS black holes in the lower panels 
of Fig. 1. Although the critical exponent and observables increase 
with q as opposed to the behavior we found in the RN case (up-
per panels), all the previous conclusions hold here. Namely, all the 
observables can capture the behavior of γ , and the QNM ones and 
ring ones converge to γ from opposite directions.

The two examples (RN and KS black holes) shown so far indi-
cate that, if eikonal correspondence is satisfied, the ring observ-
ables should be larger than QNM ones and this result seems to be 
4

insensitive to the specific metrics and emission models under con-
sideration. Therefore, by comparing these two sets of observables, 
the eikonal correspondence can be directly tested. An explicit ex-
ample will be shown in the next subsection.

3.3. Dynamical Chern-Simons gravity

In the previous two subsections, we have shown that although 
the QNM observables γ QNM

l and photon ring observables {γw
n , γ b

n }
all converge to γ in some limits, the former approaches γ from 
below while the other from above. In this subsection, we would 
like to demonstrate how to test the eikonal correspondence by di-
rectly comparing these two sets of observables. For demonstration, 
we will take the dynamical Chern-Simons (dCS) theory of gravity 
as an example. It should be emphasized that the method should be 
applicable generically to test the eikonal correspondence of black 
holes.

The dCS gravity is a modified theory of gravity with a parity-
violating quadratic curvature correction added to the Einstein-
Hilbert action [59]. The theory continually receives great attention 
in recent years due to both its theoretical consistency of funda-
mental origin [60], and, of greater interest for the purpose of this 
work, its parity-violating features. In the dCS gravity, the Chern-
Simons correction is introduced via a nonminimally coupled scalar 
field ϑ with a canonical kinetic term. The Schwarzschild metric 
is still the static and spherically symmetric vacuum solution to the 
theory. Its polar QNMs are the same as those in GR, while the axial 
QNMs are coupled with the scalar degree of freedom contributed 
by ϑ [61]. The coupled equations are

(
d2

dr2∗
+ ω2

)[
�

�

]
=

[
V11 V12
V21 V22

][
�

�

]
, (3.3)

where � stands for the axial metric perturbations, and � repre-
sents the perturbed scalar field. The components of the potential 
matrix are (we will set κ = 1/16π )

V11 = f (r)

[
l(l + 1)

2
− 6M

3

]
,

r r
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Fig. 2. We show the two branches of QNM observables γ ±
l for the Schwarzschild 

black hole in the dCS gravity as a function of 1/(M4β) with � = 2 (gray dashed 
and green dash-dotted) and � = 20 (blue dashed and orange dash-dotted). The ring 
observables γw

1 (red) and γw
2 (black) with disk model 1 are shown for comparison. 

When β decreases, the two branches separate and deviate from their GR values. In 
particular, γ −

l increases and may become larger than the ring observables at some 
β . Any indication of γ ±

l being larger than ring observables is a clear signature of 
the violation of eikonal correspondence. The inset shows the details in the GR limits 
M4β 
 1, in which the thin black line stands for γ = 1.

V22 = f (r)

[
l(l + 1)

r2

(
1+ 36M2

κβr6

)
+ 2M

r3

]
,

V12 = V21 = f (r)

√
(l + 2)!

βκ(l − 2)!
6M

r5
, (3.4)

where f (r) = 1 − 2M/r and β is the dCS coupling constant. In this 
case, the QNM frequencies appear to have two branches labeled 
by + and −, respectively. Up to the subleading eikonal order, the 
frequencies can be analytically expressed as [32]

ω± = ω
(0)
R± + ω

(1)
R± + iωI± + O

(
l−1) (3.5)

with

ω
(0)
R± = l√

2

[
Ṽ (1+ H) ±

√
Ṽ 2(1− H)2 + 4W̃

]1/2
∣∣∣∣∣
rm

,

ω
(1)
R± =

lṼ
[
ω2(1 + H) − 2l2 Ṽ H

]
+ W (1)

2ω(2ω2 − l2 Ṽ (1+ H))

∣∣∣∣∣∣
rm,ω

(0)
R±

,

ωI± = − f (r)

2
√
2ωl

|V ′′
eff(r,ω)|1/2[

Ṽ 2(1 − H)2 + 4W̃
]1/4

∣∣∣∣∣∣∣
rm,ω

(0)
R±

,

(3.6)

where

H = 1+ 36M2

κβr6
, Ṽ = f (r)

r2
,

Veff(r,ω) = l2 Ṽ
[
ω2(1+ H) − l2 Ṽ H

]
+ l4W̃ .

(3.7)

On the above expressions, we have defined W ≡ V12V21 = l4W̃ +
W (1) + O  

(
l2

)
, and rm for each branch satisfies V ′

eff(rm, ω±) = 0. 
Then, the QNM observables in this case can be defined as

γ ±
l ≡ 2l|ωI±|

ω
(0)
R± + ω

(1)
R±

. (3.8)

We choose l = 2 and l = 20, then show the two branches of γ ±
l

with respect to 1/(M4β) in Fig. 2. As M4β 
 1, two branches con-
verge and reduce to their GR values. When β decreases, the two 
branches separate, with the minus branch γ −

l increasing (dashed) 
while γ + decreases (dash-dotted). In this figure, we also show the 
l

5

ring observables γw
1 (red) and γw

2 (black) assuming disk model 1. 
As opposed to γ ±

l , the ring observables are blind to the change 
of β because the spacetime metric and the photon geodesics are 
precisely those of the Schwarzschild spacetime. Any observational 
indication that the QNM observables are larger than the ring ones 
is a clear signature of the violation of eikonal correspondence. If 
the QNM observables were still observed to be smaller than ring 
ones, we can place constraints on the parameters that control the 
violation of eikonal correspondence, e.g. the parameter β in the 
dCS gravity. This test based on the comparison between the QNM 
observables and ring ones is expected to be valid generically to 
test the eikonal correspondence of black holes.

4. Conclusions

The eikonal correspondence between waves and photons, both 
propagating around a black hole, allows one to build a mapping 
between black hole QNMs and the optical appearance of the black 
hole. More explicitly, the real part of eikonal black hole QNMs can 
be mapped to the size of the critical curve in the image, and the 
imaginary part can be mapped to the detailed photon ring struc-
tures. This correspondence could be violated when going beyond 
GR. In this work, assuming the possibility of detecting the ring-
down signals and of partially resolving the photon rings of a black 
hole, we propose a method specifically to test the eikonal corre-
spondence.

The method comprises the comparison of two sets of observ-
ables, the QNM observables (2.5) and the photon ring observ-
ables (2.12). As the winding number n increases, both two ring 
observables rapidly converge from above to the critical exponent 
γ (Eq. (2.4)), which by itself is not an observable while can be 
purely determined by the metric. Considering nonrotating black 
hole spacetimes for illustration, we have shown that the way that 
the ring observables converge to γ is insensitive to the astrophys-
ical configuration around the black hole. On the other hand, if the 
eikonal correspondence is satisfied, the QNM observables converge 
to γ from below when the multipole number l increases.

As we have exemplified using the RN and KS metrics, if the 
eikonal correspondence is fulfilled, all observables clearly cap-
ture the behavior of γ when the spacetime deviates from the 
Schwarzschild one. The fact that they converge to γ from opposite 
directions validates the test of eikonal correspondence simply by 
comparing these two sets of observables. If the QNM observables 
were measured to be larger than any of the ring ones, it could 
indicate the violation of eikonal correspondence. From a conserva-
tive perspective, one can also place constraints on the violation of 
the correspondence even if no ring observable was measured to be 
smaller than QNM ones. Furthermore, we would like to emphasize 
that the test would work even if only low-l modes are extracted 
from gravitational wave signals. As shown in Fig. 1, the low-l QNM 
observables already behave in the same trend as the critical ex-
ponent γ and follow Eq. (2.11) very well. As one can see from 
Fig. 2, the validity of the test does not strictly require the extrac-
tion of eikonal modes. However, certainly, tighter constraints can 
be placed if higher-l modes can be extracted.

In this work, we have only considered the cases in which the 
effective potential U (r) has a single peak. Whether the test pro-
posed here can be extended to the effective potentials with mul-
tiple peaks deserves further investigation. An explicit example in 
Ref. [36] already shows that the presence of multiple peaks with 
an inner global maximum, an outer local maximum, and a local 
minimum in between, would generate additional sets of modes 
in the QNM spectrum. The QNM frequencies corresponding to the 
global maximum would have the same expressions as those in the 
single-peak case given in Eqs. (2.8) and (2.9). If eikonal correspon-
dence holds, these modes would correspond to the inner photon 
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sphere and its associated image features [62,63]. Therefore, we ex-
pect that the eikonal test should be applicable for these modes. 
On the other hand, the local minimum and maximum would lead 
to a set of long-lived modes and sub-long-lived modes [36], re-
spectively, which would contribute to the echos in time domain 
signals [64]. The long-lived modes are not detectable in the eikonal 
limit because of the infinitely high potential barrier. However, the 
real and the imaginary parts of sub-long-lived modes would cor-
respond to the angular velocity and the Lyapunov exponent on the 
outer photon sphere, respectively, although the imaginary part is 
suppressed logarithmically by l [36]. The eikonal test may be ap-
plicable for these sub-long-lived modes, possibly with a refined 
definition of the QNM observables.

So far, as a preliminary development of the test, we have only 
considered the face-on image of a nonrotating black hole lit by a 
thin disk. It is necessary to extend the present work by considering 
arbitrary inclination of the observer and rotating black holes. In 
both scenarios, the photon rings are not circular anymore and a 
more refined definition of ring observables is needed, although we 
do not expect changing inclination is going to alter our general 
conclusion. However, it is known that the Lyapunov exponent of 
bound photon orbits is sensitive to the spin of black holes. The 
validity of our method proposed here for rotating cases will be 
addressed elsewhere.
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Appendix A. Analytic treatments of photon ring observables

In this appendix, we will investigate the photon ring observ-
ables γw

n and γ b
n using analytic treatments. The main goal is to 

show that 1) these observables converge to γ as n increases, and 
2) they converge to γ from above at least when the spacetime 
metric is sufficiently close to the Schwarzschild one.

Without loss of generality, we consider a photon trajectory that 
connects a light source at rs and a detector at rd . The turning point 
where the trajectory is radially closest to the black hole is de-
noted as r0. The consideration of the case without turning points 
is straightforward and we do not report it here. The change of an-
gular coordinate φ along the trajectory can be calculated from the 
integral

�φ =
∑
i=s,d

ri∫
r

√
g

f r2
bdr√
r2 − b2

, (A.1)
0 f

6

where b is the impact parameter of the trajectory, f and g are the 
metric functions defined in Eq. (2.1), and the turning point r0 sat-
isfies b2 − r20/ f0 = 0. The impact parameter of the photon sphere, 
i.e., the radius of the critical curve on the ring image, is defined as 
bc ≡

√
r2ph/ fph.

To proceed with the integration (A.1), we define a new radial 
variable z as [65]

z = 1− bc

√
f

r2
, (A.2)

such that the integral (A.1) can be rewritten as

�φ =
∑
i=s,d

zi∫
a

F (z)√
(2− a − z)(z − a)

dz , (A.3)

where a ≡ 1 − bc/b, i.e., the z at the turning point, and

F (z) ≡
√

g(r(z))

f (r(z))r(z)2
(1− z)

dr

dz
. (A.4)

We then consider the strong deflection limit where the turning 
point is close to the photon sphere, i.e., a → 0+ . Expanding F (z) at 
z = 0, we get

F (z) =
∞∑

n=−1

Fnz
n/2 , (A.5)

where Fn are coefficients. The integral (A.3) can then be expressed 
as

�φ = − √
2F−1 lna −

√
2

8
(3F−1 + 4F1)a lna

+
∑
i=s,d

X(zi) + O (a) , (A.6)

where

X(zi) = F−1√
2

ln (4zi) + F0
√
2zi + F−1 + 4F1

4
√
2

zi + o (zi) . (A.7)

The constant term 
∑

X(zi) depends on the positions of the light 
source and the detector, and, as we will show later, does not con-
tribute to the estimation of γw

n and γ b
n . Therefore, we will only 

focus on the coefficients F−1 and F1 which appear in the first two 
terms on the right-hand side of Eq. (A.6).

Expanding z with respect to r − rph, we get

z ≈ b2c
4r4ph

(
2 fph − r2ph f ′′

ph

)(
r − rph

)2
. (A.8)

Combining this expansion with Eqs. (A.4) and (A.5), we get F−1 =
1/

√
2γ . The expression for F1 depends on higher derivatives of 

metric functions. It is very lengthy and not very informative, so 
we do not report it here.

Bringing in the relation between �φ and the winding number, 
�φ = (n + 1/2)π , one gets the lensing formula:

−γ (n + 1/2)π = lnan + εn − ln Y (zs, zd) , (A.9)

where we have defined

an ≡ 1− bc
bn

, εn ≡
√
2γ

8
(3F−1 + 4F1)an lnan , (A.10)

and Y (zs, zd) ≡ exp[γ ∑
i=s,d X (zi)]. The lensing formula (A.9) is 

for the general metric (2.1), and it recovers those in the litera-
ture up to O (a0n) [66–69]. Here we further extend the formula up 
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to O (an lnan), which, to the best of our knowledge, has not been 
done before. Note that an is a decreasing function of the winding 
number n, and it vanishes when n → ∞. Using the approximation 
an ≈ bn/bc − 1, we have

bn = bc

[
1+ Y (zs, zd) e−γ (n+1/2)π

1+ εn

]
. (A.11)

With Eq. (A.11), we estimate bn − bn+1 and the width of the n-th 
ring as

bn − bn+1 = bcY (zs, zd) e
−γ (n+1/2)π

×
(

1

1+ εn
− e−γπ

1+ εn+1

)
, (A.12)

wn = bc [Y (zso, zd) − Y (zsi, zd)]
e−γ (n+1/2)π

1+ εn
, (A.13)

where zso and zsi indicate that the light sources are located at the 
outer and the inner boundary of the disk, respectively. Then, from 
the above expressions, we can estimate the ring observable γ b

n of 
Eq. (2.12) as follows

γ b
n ≡ 1

π
ln

bn − bn+1

bn+1 − bn+2

≈ γ + 1

π
ln

[
1− εn − e−γπ (1− εn+1)

1− εn+1 − e−γπ (1 − εn+2)

]

= γ + 1

π
ln

[
(1 − e−γπ )

(
1+ e−γπεn+1 − εn

1− e−γπ

)]

− 1

π
ln

[
(1 − e−γπ )

(
1+ e−γπεn+2 − εn+1

1− e−γπ

)]

≈ γ + εn+1 − εn − e−γπ (εn+2 − εn+1)

π
(
1− e−γπ

) . (A.14)

In addition, the observable γw
n can be estimated as

γ w
n ≡ 1

π
ln

wn

wn+1

= γ + 1

π
ln

(
1 + εn+1

1+ εn

)
≈ γ + εn+1 − εn

π
. (A.15)

Recall that an lnan → 0− when n → ∞. Therefore, the two ob-
servables both converge to γ as n increases. In addition, if the 
inequality 3F−1 + 4F1 > 0 holds, such that εn → 0− when n → ∞, 
the observables converge to γ from above. This inequality can 
be proven to be true for the Schwarzschild metric, and even for 
any nonrotating black hole spacetime that differs slightly from the 
Schwarzschild one. More explicitly, assume g(r) = 1 + δg(r) and 
f (r) = 1 − 2M/r + δ f (r). Up to O (δ f (r), δg(r)) we have
√
2γ

8
(3F−1 + 4F1) = 5

18
+ 1

16
[16Mδg′ + 60M2δ f ′′

+ 12M2δg′′ + 96M3δ f ′′′ + 27M4δ f ′′′′]
∣∣∣
r→3M

, (A.16)

which is positive as long as the “non-Schwarzschild” term, i.e., the 
second term on the right-hand side, is sufficiently small. In this 
case, the ring observables always converge to γ from above, in-
dependent of emission models. In fact, our numerical calculations 
suggest that 3F−1 +4F1 is positive not only for RN and KS metrics 
when q ≈ 1, but also for several other nonrotating black hole met-
rics, e.g. it is positive for all the asymptotically flat and nonrotating 
black holes considered in Ref. [70].
7
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