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1 Introduction

Starting from an unentangled product state, a chaotic Hamiltonian or circuit generates
entanglement between different parts of the system, and eventually leads to a state with
volume-law entanglement at late time. On the contrary, local measurements extract
information and diminish the entanglement between the measured qubits and the rest of
the system. The competition between these two effects leads to a transition in the degree
of entanglement in the long-time steady state, the so-called measurement-induced phase
transition [1–5].

Following this realization, there has been a surge of investigations of this transition and
of related phenomena [6–24]. In principle, one can diagnose transitions in entanglement
properties by introducing replicas and using them to compute the n-th Rényi entropy of the
long-time steady state. In this context, it was found that the entanglement transition can
be understood as an unbreaking transition of replica symmetry [6, 8, 9, 14]. Nevertheless,
as the von Neumann entanglement entropy is obtained in the n→ 1 limit, where n is the
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number of replicas, how the replica symmetry unbreaking defined for n ≥ 2 interplays with
the replica limit n → 1 is still an outstanding question. Part of the difficulty lies in the
hardness of analytical continuation. In the context of Haar random hybrid circuits, the
transition can be effectively mapped to a statistical model in the replica space, which in
the limit of infinite local Hilbert space dimension is described by bond percolation [3, 8, 9],
and the replica limit n → 1 is notoriously subtle even in this limit. In this paper, we fill
this gap by introducing a monitored Brownian SYK model [21, 25–33], and calculating the
von Neumann entanglement entropy using the replica trick.

This model, which features continuous weak monitoring, admits a path integral rep-
resentation, and consequently allows saddle-point analysis in the large-N limit. We show
explicitly how summing over a class of replica symmetry broken solutions can correctly
produce the Page value [34] of the entanglement entropy in the absence of monitoring.
A crucial step in the calculation is a mapping of part of the saddle point evaluation to
the evaluation of a transition amplitude of a quantum mechanical model. Turning on
measurement decreases the degree of replica symmetry breaking and eventually leads to
its unbreaking. We then take the n→ 1 limit based on the cyclic symmetric solution and
extract the behavior of the entanglement entropy per site as a function of measurement
strength. The transition in the von Neumann entropy density in the n→ 1 limit coincides
with the unbreaking transition of replica symmetry for n ≥ 2.

The paper is organized as follows. In section 2, we define the quasi entropy of a
monitored system [35]. Because of the non-unitary nature of measurements, a proper
density matrix needs to be normalized after each measurement. This leads to difficulties in
analytical calculations as the normalization is a nonlinear procedure that depends on the
measurement outcome. The quasi entropy is the Rényi entropy of the unnormalized density
matrix weighted such that it vanishes for a pure state. The quasi entropy has two crucial
properties: it admits a path integral representation and, like the Rényi entropy, the n→ 1
limit gives the von Neumann entanglement entropy averaged over quantum trajectories.

In section 3, we introduce our model which contains both a chaotic unitary part and a
measurement part. The unitary part is given by two independent Brownian SYK chains.
The Brownian SYK Hamiltonian is able to efficiently generate entanglement among different
parts of the chain. The measurement part amounts to weakly projecting onto the Fermi
parity of the complex fermions formed by the left-right pair of Majoranas at each site.
Importantly, it is a local measurement that extracts information about a single site of
the left-right coupled system, and its dark state corresponds to a product state between
different sites with definite Fermi parity. Therefore, the competition between the two parts
will result in a measurement-induced entanglement transition.

In section 4, we first study a simpler version of our model that only consists of the
unitary part. It is given by two coupled Brownian SYK clusters. After properly defining
the initial state, the entanglement entropy between the two clusters can be obtained via a
large-N path integral in the replica space. We find a class of saddle points that are described
by permutation matrices. The permutation structure has appeared in the entanglement
entropy of Haar random circuits, too [36]. The calculation of the onshell action can be done
by decomposing the permutation into cycles, and then mapping each cycle to a transition
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amplitude of a Kitaev chain [37]. An interesting point arising in the calculation is that
the Pfaffian effectively counts the number of cycles in the solution given by a general
permutation matrix. Then, by summing over this class of saddle points, we get a result
that predicts maximal entanglement at leading order with subleading corrections consistent
with the Page value [34] and the symmetry of the model.

In section 5, we generalize the calculation into two Brownian SYK chains with a
measurement that couples the two chains. The aforementioned class of saddle points
that saturate the Page value are changed in the presence of the measurement. When the
measurement rate gets larger than a critical value, all saddle points reduce to a diagonal
solution where no correlation between different replica exists, i.e., the replica symmetry is
restored. The calculation of quasi entropy now involves two coupled Kitaev chains, where
the hopping within each chain is given by the correlation between different replicas, and the
coupling between two chains is proportional to the measurement rate. After the coupling
increases to a critical point, the hopping within each chain vanishes, and the eigenmodes
become local. We take an analytical continuation of the cyclic symmetric solution to get
the von Neumann entanglement entropy. The entropy density is obtained, and it shows a
continuous phase transition right at the point where the replica symmetry is restored.

We conclude the paper in section 6, where we also study the Landau-Ginzburg theory.
We leave the technical details of the permutation operator that is used to calculate the
quasi entropy, the explicit saddle-point solution for n = 2, and the product of special
trigonometric functions that is used to evaluate the transition amplitude to the appendices.

2 Quasi entropy and trajectory averaged entanglement entropy

We consider time evolution generated by unitary evolution and measurements, and are
interested in the entanglement entropy of the long-time steady state. The state itself is
not steady in a microscopic sense, but its entanglement structure is expected to stabilize
at long times. Importantly, to really assess the entanglement properties of the resulting
state, one needs to keep track of each measurement record. A specific evolution with given
measurement outcomes forms a quantum trajectory. Ultimately, we will calculate the von
Neumann entanglement entropy averaged over quantum trajectories.

As the unitary evolution part of the evolution is well known, here we focus on the
measurement part. The measurement is described by a set of Kraus operator {Kν},∑
ν K

†
νKν = 1 [8, 38], where ν numerates possible measurement outcomes. Starting from

an initial density matrix ρ, given a sequence of measurement outcomes ν = ν1ν2 . . . νm, the
corresponding quantum trajectory is

ρ̃ν = Kνm . . .Kν2Kν1ρK
†
ν1K

†
ν2 . . .K

†
νm . (2.1)

Note that ρ̃ν is an unnormalized density matrix, whose trace gives the probability of the
measurement ourcome ν. Summing the probabilities of all possible measurement outcomes
gives unity, i.e.,

∑
ν Tr(ρ̃ν) = 1. We are interested in calculating the quasi entropy of

bipartite system AĀ [35],

S
(n)
A = 1

1 − n
log

∑
ν Tr[(ρ̃ν)⊗nMcyc(A)]∑

ν(Tr[ρ̃ν ])n , (2.2)
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where Mcyc(A) is the cyclic permutation operator acting on the subsystem A of the n
replicas. Note that the summation over quantum trajectories appears both in the numerator
and denominator.

Although the quasi entropy is distinct from the Rényi entropy of the normalized state
with measurement outcome ν, the limit n → 1 of the quasi entropy converges to the
averaged von Neumann entanglement entropy of the normalized state. To show this, recall
that the Rényi entropy of subsystem A for a given quantum trajectory ν is

S
(n)
A (ν) = 1

1 − n
log Tr[(ρ̃ν)⊗nMcyc(A)]

(Tr[ρ̃ν ])n . (2.3)

The von Neumann entanglement entropy can be obtained by analytically continuing the
Rényi entropy to n→ 1, i.e., SA(ν) = limn→1 S

(n)
A (ν). We have the following relation

Tr[(ρ̃ν)⊗nMcyc(A)]
(Tr[ρ̃ν ])n ≈ 1 + (1 − n)SA(ν) + O

(
(n− 1)2

)
. (2.4)

Using this relation, we can take n→ 1 limit of the quasi entropy defined in (2.2),

lim
n→1

S
(n)
A = lim

n→1

1
1 − n

log
∑

ν(1 + (1 − n)SA(ν))(Tr[ρ̃ν ])n∑
ν(Tr[ρ̃ν ])n

= lim
n→1

1
1 − n

log
∑

ν

(1 + (1 − n)SA(ν)) Tr[ρ̃ν ]

= lim
n→1

1
1 − n

log
(

1 + (1 − n)
∑

ν

Tr[ρ̃ν ]SA(ν)
)

=
∑

ν

Tr[ρ̃ν ]SA(ν), (2.5)

where in the first step we use (2.4) and in the second step and third step we use
∑

ν Tr[ρ̃ν ] = 1.
Therefore, the n → 1 limit of the quasi entropy is the quantum trajectory averaged von
Neumann entanglement entropy. In the following, we will calculate the quasi entropy for
arbitrary n, and then take the n→ 1 limit to get the von Neumann entanglement entropy.

3 Model and setup

Our model consists of two coupled Brownian SYK chains, with a unitary part and non-
unitary monitoring part. The unitary evolution is governed by the following Brownian SYK
Hamiltonian describing left (L) and right (R) chains,

H(ψ) =∑
x;a=L,R

(∑
i<j

iJx
a,ij(t)ψx,a,iψx,a,j +

∑
j1,...,jq

iq/2Ux,x+1
a,j1...jq

(t)ψx,a,j1 . . .ψx,a,jq/2ψx+1,a,jq/2+1 . . .ψx+1,a,jq

)
,

(3.1)
where ψx,a,i i = 1, . . . , N denotes i-th of N Majorana fermions at each site x = 1, . . . , L of
the a = L,R chains, {ψx,a,j , ψx′,a′,j′} = δxx′δaa′δjj′ . L is the number of sites (it should not
be confused with the L chain), and periodic boundary conditions in real space are assumed
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in this paper. Jxa,ij is two Majorana coupling within each site, and Uxa,j1,...,jq is q Majorana
interaction between nearest-neighbor sites. Here we consider q = 4k, k ∈ Z+ (Z+ denotes
positive integers) to conserve local Fermi parity. The couplings in the left and right chains
are independent Gaussian variables with mean zero and variances

Jxa,ij(t1)Jx′a′,ij(t2) = 4J
N
δ(t12)δaa′δx,x

′
, (3.2)

Ux,x+1
a,j1...jq

(t1)Ux
′,x′+1

a′,j1...jq
(t2) = 2q(q/2)!2U

qN q−1 δ(t12)δaa′δx,x
′
, (3.3)

where t12 = t1 − t2. The Dirac δ function δ(t12) indicates the Brownian nature of the
couplings. In the unitary evolution, the left and right chains do not couple, but the evolution
does scramble information over the entire individual chains [23].

To describe the monitoring part, we first divide the continuous time into infinitesimal
steps and define proper Kraus operators, then we take the continuum limit to get an
effective action description. In each infinitesimal time step δt, we consider the following
measurement. The local measurement operator couples the L annd R fermions at each site,
as described by the Kraus operators [21]

{Kx,i
1 ,Kx,i

2 } =
{
π−x,i +

√
1 − s2π+

x,i, sπ
+
x,i

}
, (3.4)

where π±x,i = 1
2(1 ∓ i2ψx,L,iψx,R,i) is the projection onto one of the Fermi parity eigenstates

and 0 ≤ s ≤ 1 is the measurement strength. We will see in the following that the
appropriate continuous monitoring strength should be s ∝

√
δt. The Kraus operators satisfy

the nomralization condition
∑2
j=1(Kx,i

j )†Kx,i
j = 1.

During a single time step in δt, the evolution of the unnormalized density matrix for a
quantum trajectory with measurement outcome νx,i for each flavor at each site is

ρ̃ν = (⊗x,iKνx,i)ρ(⊗x,iK
†
νx,i), (3.5)

where on the right-hand side we suppress the superscript for the flavor and site in Kraus
operators Kx,i

j as they can be inferred from the measurement outcome. The quasi entropy
requires n replicas, i.e.,

ρ̃⊗nν = ⊗n
α=1(⊗x,iK

α
νx,i)ρ

α(⊗x,iK
α†
νx,i), (3.6)

where we have introduced a new superscript Greek letter α = 1, . . . , n to denote different
replicas (it should not be confused with the original superscript of the Kraus operator that is
used to denote site and flavor). We will use the superscript Greek letter as the replica index
throughout the paper. According to the definition of quasi entropy, we can change the order
of the trajectory average and the trace over the density matrix, and consider the trajectory
average first, namely,

∑
ν Tr[(ρ̃ν)⊗n · · · ] = Tr[

∑
ν(ρ̃ν)⊗n · · · ] for any · · · independent of ν.

The effect of the monitoring operator on the replicas is given by the following operator,∑
ν

⊗n
α=1(⊗x,iK

α
νx,i) ⊗ (⊗x,iK

α†
νx,i)

= ⊗x,i

∑
νx,i=1,2

⊗n
α=1 ⊗s=± K

α
νx,i,s, (3.7)
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where we have introduced a Keldysh-like contour index s = ± to denote Kα
νx,i,+ = Kα

νx,i ,
and Kα

νx,i,− = Kα†
νx,i . Finally, the average over measurement outcomes is [21]

⊗x,i

∑
νx,i=1,2

⊗α,sK
α
νx,i,s ≈ ⊗x,i

(
1 − s2

2

n∑
α=1

∑
s=±

π+,α
x,i,s

)

≈ ⊗x,i exp
(
−s2

2
∑
α,s

π+,α
x,i,s

)

= exp

δtµ
2

∑
x,i,α,s

iψαx,L,i,sψ
α
x,R,i,s

 , (3.8)

in which we have used the relation π+
x,a,j + π−x,a,j = 1 and assumed s ≪ 1 and kept orders

up to O(s2).1 In the last line, we introduce µ = s2

δt as the effective monitoring strength.
When the continuum limit δt→ 0 is taken, µ is kept fixed. This means that the appropriate
measurement strength is s ∝

√
δt. Constants are neglected because they will not affect the

dynamics. After taking the continuum limit, we arrive at the following action description
of the monitoring,

−Iµ =
∫
dt
iµ

2
∑
x,i,α,s

ψαx,L,i,s(t)ψαx,R,i,s(t), (3.9)

where the summation over time steps results in an integral in the continuum limit.
Since our model contains not only trajectory average but also disorder average due to

the Brownian coupling, we generalize the quasi entropy to also include disorder average,

S
(n)
A = 1

1 − n
log ETr[(ρ̃ν)⊗nMcyc(A)]

E(Tr[ρ̃ν ])n , (3.10)

where E denotes both the trajectory average and the disorder average in (3.2).

4 Entanglement entropy in two coupled Brownian SYK clusters

Before we consider the full calculation of entanglement entropy with monitoring, let us
first consider a simpler case without measurement: two coupled Brownian SYK clusters,
considered as a single chain with only two sites called x = 1, 2. Because the R chain plays
no role in this calculation, we will suppress the chain index in this section, so the relevant
fermions are ψx,j = ψx,L,j . We will divide the system into two parts, with all fermions at
site x = 1 in A and all fermions at site x = 2 in the complement Ā, and refer to x = 1 as
x ∈ A, or simply A, and x = 2 as x ∈ Ā or simply Ā.

4.1 Rényi entropy of a time-evolved EPR state

We consider the following setup: starting from the tensor product of thermofield double
(TFD) states in each of the clusters (x = 1, 2), we compute the quasi entropy between

1In this limit, the results from the second measurement operator are neglected. So it is effectively a
postselection on the first measurement outcome. Actually for replica number n ≤ 2, the second measurement
operator dominates. Thus, the calculation of the von Neumann entropy is for the scenario of postselection,
and the transition is the forced measurement-induced phase transition.
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the two clusters at late time [32, 39–41]. Because Brownian random interactions do not
conserve energy, we simply consider an infinite temperature TFD state or, equivalently, a
fermionic EPR state for each cluster. To describe such a state, we double the Hilbert space
by introducing two copies of the fermions, the original fermions ψx,j and copies χx,j , for
both clusters x = 1, 2. The initial density matrix is given by

ρ = |EPR⟩⟨EPR|, (ψx,j + iχx,j)|EPR⟩ = 0, (4.1)

∀x = 1, 2, ∀j = 1, . . . , N . The time evolution is generated by the sum of ψ and χ

Hamiltonians, H(ψ) and H(−iχ). This choice implies that H(ψ)|EPR⟩ = H(−iχ)|EPR⟩.
The time evolved density matrix becomes

ρ(T ) = U(T )ρU †(T ), (4.2)

where U(T ) = T e−i
∫ T/2

0 dt(H(ψ)+H(−iχ)), T denotes time ordering. This joint ψ-χ evolution
of the EPR state for time T/2 is equivalent to just evolving with Uψ(T ) = T e−i

∫ T
0 dtH(ψ) or

Uχ(T ) = T e−i
∫ T

0 dtH(−iχ) for time T by virtue of the identity H(ψ)|EPR⟩ = H(−iχ)|EPR⟩.
Without measurement, the quasi entropy is same as annealed average of the Rényi

entropy,
S

(n)
A = 1

1 − n
logETr[ρ⊗nMcyc(A)]. (4.3)

For the EPR state, this quantity is related to the two-point function of cyclic permutation
operators. Notice that the cyclic permutation operator factorizes, Mcyc(A) = Mψ

cyc(A) ⊗
Mχ

cyc(A) for the doubled Hilbert space, where each of them is given by (see appendix A)

Mψ
cyc(A) =

∏
x∈A

N∏
j=1

e
π
2ψ

1
x,jψ

2
x,je

π
2ψ

3
x,jψ

4
x,j . . . e

π
2ψ

n−3
x,j ψn−2

x,j e
π
2ψ

n−1
x,j ψnx,j , (4.4)

where the superscript denotes replica index, and the same for the χ fermions. Then the
trace can be cast into

Tr[ρ(T )⊗nMcyc(A)]

= ⟨EPR|⊗nU †
χ(T )⊗n[Mψ

cyc(A) ⊗Mχ
cyc(A)]Uχ(T )⊗n|EPR⟩⊗n

= ⟨EPR|⊗nMχ†
cyc(A)U †

χ(T )⊗nMχ
cyc(A)Uχ(T )⊗n|EPR⟩⊗n

= 2−nN/2Tr[Mχ†
cyc(A)U †

χ(T )⊗nMχ
cyc(A)Uχ(T )⊗n], (4.5)

where in the first line we use ρ(T ) = Uχ(T )|EPR⟩⟨EPR|U †
χ(T ), in the second line we note

Mχ
cyc(A)|EPR⟩⊗n = Mψ†

cyc(A)|EPR⟩⊗n, and in the last line because the operators contain
only ψ fields, we can trace over the χ Hilbert space. As is seen from the last expression, the
quasi entropy of the EPR state at time T is given by the averaged two-point correlation
function of the cyclic permutation operators. If T = 0, it is easy to see the trace is one,
consistent with the initial state being a pure state.

To get a path integral representation of the trace, it is useful to write it as

Tr[ρ(T )⊗nMcyc(A)] = ⟨EPR|⊗nMχ†
cyc(A)[U †

χ(T ) ⊗ Uψ(T )]⊗nMχ
cyc(A)|EPR⟩⊗n. (4.6)
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If there were not permutation operators, then the trace would be one since these two time
evolutions cancel for the EPR state. One then recognizes Uψ(T ) and U †

χ(T ) as the forward
and backward evolution in Keldysh contour language. Indeed, the boundary conditions for
the fields in conventional Keldysh field theory are [42]

ψαx,j,+(0) = −ψαx,j,−(0), ψαx,j,+(T ) = ψαx,j,−(T ), (4.7)

∀j = 1, . . . , N , ∀α = 1, . . . , n, where the minus sign at time t = 0 is from the fermionic
coherent state path integral. Recall that for an EPR state,

(ψαx,j + iχαx,j)|EPR⟩⊗n = 0, ⟨EPR|⊗n(ψαx,j − iχαx,j) = 0, (4.8)

∀j = 1, . . . , N , ∀α = 1, . . . , n, which suggests that by taking ψαx,j → ψx,j,+ and iχαx,j →
ψαx,j,−, we can write the trace as a n-replicated Keldysh field theory with a total of 2n
contours. In the following, we will use notation like ψ+, ψ− for Keldysh fields, while notation
like ψ, χ for operators defined in EPR states.

The presence of the permutation operator then changes the boundary conditions for
the fermions in subsystem A, for x ∈ A,

ψαx,jM
χ
cyc(A)|EPR⟩⊗n = Mχ

cyc(A)(−iχαx,j)|EPR⟩⊗n

= Mχ
cyc(A)(−iχαx,j)Mχ†

cyc(A)Mχ
cyc(A)|EPR⟩⊗n

=
∑
β

sgn(α− β)δα+1,β(−iχβx,j)M
χ
cyc(A)|EPR⟩⊗n. (4.9)

In the last line, when α = n, the symbol means δn+1,β = δ1,β . The n-replicated Keldysh field
theory is coupled through boundary conditions due to the permutation operator. We can
redefine the fields in the backward contours to have the conventional boundary conditions,
and so bring the effect of the twisted boundary conditions to the bulk action, i.e.,∑

β

sgn(α− β)δα+1,βψβx,j,− → ψαx,j,−, (4.10)

∀x ∈ A, ∀α = 1, . . . , n, ∀j = 1, . . . N .
With this field redefinition, we can derive the path integral, ETr[ρ⊗nMcyc(A)] =∫

DGDΣe−I , where the G-Σ action reads [21, 32, 39]

− I

N
=
∑
x=1,2

[
log Pf[Ŝ∂t − Σ̂x] +

∫
dt1dt2

(
−1

2Σαβ
x,ss′G

αβ
x,ss′ + J

8 δ(t12)css′(2Gαβx,ss′(t1, t2))2
)]

+ U

2q

∫
dt1dt2δ(t12)css′(2Gαβ1,ss′(t1, t2))q/2Mαγ

s Mβδ
s′ (2Gγδ2,ss′(t1, t2))q/2, (4.11)

where t12 ≡ t1 − t2, and s = ± is introduced to denote the forward and backward evolution.
S++ = 1, S−− = −1, S+− = S−+ = 0, and c++ = c−− = −1, c+− = c−+ = 1 capture
the structure of the forward and backward evolutions. The summation over the replica
indices and the contour indices is implicit. The M matrix is defined as Mαβ

+ = δαβ,
Mαβ

− = ϵαβ, where ϵαβ ≡ δα+1,β is the cyclic permutation matrix originating from the
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redefinition in (4.10). Because our model conserves the local Fermi parity, the sign from
the redefinition (4.10) disappears. The boundary conditions are the same as (4.7). In the
large-N action, there is an emergent SO(N) symmetry among the flavors of Majorana ψαx,j,s,
j = 1, . . . , N . For simplicity, we will often talk about the Majorana fermions simply as ψαx,s
without referring to each individual flavor.

4.2 Saddle-point solutions given by permutations

The saddle-point equations following from (4.11) are

Ĝ−1
x = Ŝ∂t − Σ̂x, (4.12)

Σαβ
x,ss′ = css′δ(t12)

[
J(2Gαβx,ss′) (4.13)

+ U(2Gαβx,ss′)
q/2−1[M(x)]αγs [M(x)]

βδ
s′ (2Gγδx̄,ss′)

q/2
]
,

where we have defined [M(1)]αβs = Mαβ
s , [M(2)]αβs = Mβα

s , and 1̄ = 2, 2̄ = 1. Because we are
interested in the steady state in the long-time limit, we assume the solution depends only
on the time difference. Then the first equation can be solved by Fourier transform,

Ĝ−1
x (ω) = −iωŜ − Σ̂x(ω), (4.14)

where Ĝx(t1, t2) =
∫ dω

2π Ĝx(ω)eiωt12 , Σ̂x(t1, t2) =
∫ dω

2π Σ̂x(ω)eiωt12 , with t12 = t1 − t2. The
Fourier transform is over the continuous frequency as we take T → ∞. Moreover, because
the self energy is proportional to a Dirac δ function, δ(t12), in frequency space it is just a
constant, Σ̂x(ω) = Σ̂x. In the following, we will always use Σ̂x without argument to denote
the constant self energy in frequency space.

An inspection of the self energy equation of motion,

Σαβ
1,−+ = J(2Gαβ1,−+)+

U(2Gαβ1,−+)q/2−1∑
γ

ϵαγ(2Gγβ2,−+)q/2, (4.15)

Σαβ
2,−+ = J(2Gαβ2,−+)+

U(2Gαβ2,−+)q/2−1∑
γ

(ϵT )αγ(2Gγβ2,−+)q/2, (4.16)

suggests that the solution is given by permutation matrices. Let τ denote a general
n-by-n permutation matrix. It is easy to check for any pairs of permutation matrices,
(τA, τĀ), satisfying τA = ϵτĀ, there is a solution given by the Green’s function, ĜA(t1, t2) =
Ĝ(t1, t2, τA), Σ̂A = Σ̂(τA), and ĜĀ(t1, t2) = Ĝ(t1, t2, τĀ), Σ̂Ā = Σ̂(τĀ), where the functions
are defined by

Ĝ(t1, t2, τ) = e−Λ|t12|

2

(
sgn(t12) −τT

τ −sgn(t12)

)
, (4.17)

Σ̂(τ) = Λ
(

0 −τT

τ 0

)
, (4.18)

where t12 = t1 − t2, Λ = J + U , the solution is written in the Keldysh space and τ is a
n-by-n permutation matrix in the replica space.
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To show these are the center-of-mass time invariant solutions, we take the transpose
of the first equation and use the antisymmetric property of the bilocal field ĜT = −Ĝ to
get [33]

∂t1ŜĜx(t1, t2) + ∂t2Ĝx(t1, t2)Ŝ = [Σ̂x(t1, t2), Ĝx(t1, t2)]. (4.19)

For the Brownian model, we have further Σ̂x(t1, t2) = Σ̂x(t1)δ(t1 − t2). Setting t1 = t2, the
differential equation for center-of-mass time is

∂tŜĜx(t, t)Ŝ = [Σ̂x(t), Ĝx(t, t)]. (4.20)

The right-hand side vanishes for the saddle-point solutions (4.17).
The solution given by (4.17) is onshell in the bulk 0 < t < T , but does not satisfy

the boundary condition. The full dynamics set by the equation of motion (4.20) with the
boundary condition (4.7) is a complicated problem for general n, involving multiple-variable
non-linear differential equations for which a general solution does not exist. The solution
given by a permutation matrix (4.17) is actually a fixed point of the equation of motion in
the long-time limit. We show in appendix B that the real onshell solution in the long-time
limit is given by (4.17) in the bulk, with deviations from it near the boundary to account
for the correct boundary conditions. The deviation is exponentially suppressed as time
moves away from the boundary, with a time scale set by 1√

U(2J+U)
. In the following, we

will see that the solution (4.17) gives an essential contribution to the entanglement of the
steady state. In appendix B, we also argue that the solution (4.17) correctly captures the
time-independent part of the onshell action at the late time. There are two further remarks
on the solution given by (4.17) being the relevant one. First, summing over these solutions
correctly leads to the Page value in the long-time limit. If there were a contribution due
to the deviation near the boundary, the Rényi entropy would have involved microscopic
parameters like U/J , which is not reasonable for a scrambling system at late time. Second,
it is reasonable to expect that when the n → 1 limit is taken, the effect of the boundary
conditions on the solutions vanishes as there is nothing to permute at n = 1. This is similar
to the vanishing of backreaction in the gravity setup [39, 43].

Actually, for any choice of sαβx = ±, α ̸= β (we define sααx = 1 for completeness),
there is a center-of-mass time invariant solution given by the modified permutation matrix
ταβx ≡ sαβx ταβ, namely, Gx∈A = G(t1, t2, τA,x), Gx∈Ā = G(t1, t2, τĀ,x), where we have
referred to x = 1 as x ∈ A, and x = 2 as x ∈ Ā. The emergence of these solutions is
due to the Fermi parity symmetry. The theory (3.1) has Fermi parity conservation at
each site, whose transformation law is ψx,j → −ψx,j , j = 1, . . . , N . When we extend the
theory to n replicas, the symmetry is also extended to independent transformation in each
replica, namely, ψαx,± → −ψαx,± in terms of the Keldysh field.2 The solutions given by ταβx
can be divided into classes that within each class they are related to each other via these
transformations. There are inequivalent classes of solutions distinguished by,

Px =
n∏

α=1
(2iχαxψαx ). (4.21)

2Note that the large-N action has an emergent SO(N) symmetry, and we can talk about ψψx,j,s without
referring to an individual j.
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Because of the SO(N) symmetry, the Fermi parity is conserved for each individual flavor.
Thus, for each site there are two distinct classes of solutions for each permutation matrix
τx distinguished by Px = ±1.

Put it in another way, the saddle-point solution spontaneously breaks the local Fermi
parity symmetry, and the parity transformation can bring one solution to the other. Those
solutions that can be connected by the transformation is distinguished by Px = ±1 in (4.21),
i.e., there are two inequivalent classes for each site. Since the initial state is a product EPR
state between each site where for each site, the Fermi parity is Px = 1, ∀x, there is a unique
class of solutions that is allowed by the initial state.

4.3 Summing over all saddle points

Let us now compute the onshell action (4.11) by plugging in the saddle-point solution. First
notice that the forward and backward evolution cancels because of css′ ,∫

dt
∑
x

J

8 css
′(2Gαβx,ss′(t, t))

2+ U

2q css
′(2Gαβ1,ss′(t, t))

q/2Mαγ
s Mβδ

s′ (2Gγδ2,ss′(t, t))
q/2 = 0.

(4.22)
There is also an exponential decaying part,

exp
(
−1

2

∫
dt
∑
x

Σαβ
x,ss′G

αβ
x,ss′(t, t)

)
= exp(−nΛT ). (4.23)

We discuss the Pfaffian in detail. The evaluation of the Pfaffian can be mapped to a Kitaev
chain problem. Because the large-N action (4.11) has an SO(N) symmetry, the Pfaffian at
each site (we first suppress the site index, and later restore it when we are familiar with
the evaluation for a single site) is equivalent to a transition amplitude of an EPR state of
an effective single flavor Majorana fermion for two contours of each replica, ψα±. The EPR
state is (ψα + iχα)|EPR⟩ = 0, ∀α = 1, . . . , n, and the Pfaffian is

Pf
[
Ŝ∂t − Σ

]
= ⟨EPR|eTH |EPR⟩, (4.24)

H = 1
2(ψ, χ)

(
1 0
0 i

)
Σ
(

1 0
0 i

)(
ψ

χ

)
. (4.25)

Here the self-energy Σ is given by some n-by-n permutation matrix.
Now, all permutations of n elements can be decomposed into cyclic permutations (or

cycles) with length nτ̌(i) such that
∑
i nτ̌(i) = n. We use a check over the letter, τ̌ , to denote

cycles. Here since the problem is quadratic, we can indeed simplify the Hamiltonian by
taking the permutation matrix τ into block diagonal individual cycles τ = ⊕iτ̌(i), and for
each of these cycles, we can bring them to the following canonical form,

τ̌αβ(i) =

δα+1,β , nτ̌(i) = odd
sgn(β − α)δα+1,β , nτ̌(i) = even

, (4.26)

where we defined δn+1,β = δ1,β. Note that for the even length cycles, it has an additional
minus sign to be consistent with the even Fermi parity Px = 1.
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Now the Hamiltonian decomposes into individual cycles. Let us consider a cycle τ̌ in
the canonical form with length nτ̌ . We define

H(τ̌) = Λ
2 (ψ, χ)

(
0 −iτ̌T

iτ̌ 0

)(
ψ

χ

)
, (4.27)

which is nothing but a Kitaev chain [37] with length nτ̌ . Using the complex fermion,

cα = ψα + iχα√
2

, c†α = ψα − iχα√
2

, (4.28)

satisfying {cα, c†β} = δαβ , we can bring the Hamiltonian into

H(τ̌) = Λ
2

nτ̌∑
α=1

[(c†αcα+1 + cαcα+1 + h.c.) + ((−1)nτ̌+1cnc
†
1 + h.c.)]

= Λ
∑
k

(c†k, c−k)
(
− cos k −i sin k
i sin k cos k

)(
ck
c†−k

)
+ mod(nτ̌ , 2)Λ

(
c†0c0 + 1

2

)
, (4.29)

where we have the BdG Hamiltonian [42] in the second line. The choice of momentum needs
some explanation because the odd and even lengths have different boundary conditions.
When nτ̌ is an odd integer, the fermion satisfies periodic boundary condition, k = 2jπ

nτ̌
, and

the summation is over j = 1, . . . , nτ̌−1
2 . When nτ̌ is an even integer, the fermion satisfies

anti-periodic boundary condition, k = (2j−1)π
nτ̌

, and the summation is over j = 1, . . . , nτ̌2 .
The last term with zero momentum in the second line appears only for odd integer nτ̌
because it is allowed under periodic boundary conditions.

It is easy to diagonalize the Hamiltonian with the Bogoliubov quasiparticle operators,

d−,k = −i cos k2 ck + sin k2 c
†
−k (4.30)

d+,k = i sin k2 ck + cos k2 c
†
−k, (4.31)

such that

H(τ̌) = Λ
∑
k

(d†+,kd+,k − d†−,kd−,k)

+ mod(nτ̌ , 2)Λ
(
c†0c0 + 1

2

)
. (4.32)

Each of the eigenmodes is independent for the choice of momentum discuss in above, and
the exponential of the Hamiltonian is given by

eTH(τ̌) = emod(nτ̌ ,2) Λ
2
(
1 + (eΛT − 1)c†0c0

)
(4.33)

×
∏
k

(
1 + (eΛT − 1)d†+,kd+,k + 1 + (e−ΛT − 1)d†−,kd−,k

)
∋ emod(nτ̌ ,2) Λ

2
∏
k

eΛT cos2 k

2 ckc
†
k, (4.34)

where because the EPR state is the vacuum of a complex fermion (4.28), we express the
Bogoliubov quasiparticle using the complex fermion and show the largest nonvanishing
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component for each k in the second line. Then it is straightforward to evaluate the transition
amplitude of the EPR state,

⟨EPR|eTH(τ̌)|EPR⟩ = e
nτ̌
2 ΛT ∏

k

cos2 k

2 = e
nτ̌
2 ΛT 2−nτ̌+1, (4.35)

where the range of product of k is the same as the summation we discussed before.
We now know the contribution for a cycle τ̌ . It is time to discuss the full solution

including different sites. For the full solution, recall that the solution in x ∈ A and
x ∈ Ā are related by the cyclic permutation ϵ, namely, τA = ϵτĀ. Suppose that they can be
decomposed into mcyc number cycles, i.e., those two permutation matrices can be built using
τ̌(i), i = 1, 2, . . . ,mcyc. The sum of the length of each cycles should satisfy

∑mcyc
j=1 nτ̌(j) = 2n.

Then the Pfaffian becomes∏
x=1,2

Pf
[
Ŝ∂t − Σx

]
= ⟨EPR|eT

∑mcyc
i=1 H(τ̌(i))|EPR⟩ (4.36)

=
mcyc∏
i=1

e
nτ̌
2 ΛT 2−nτ̌+1 (4.37)

= enΛT 2−2n+mcyc . (4.38)

Because n is the number of replicas, it is natural to expect the action to have a factor of n.
What is interesting is that the Pfaffian depends on the number of cycles in the solution,
mcyc, and does not depend on other details of the permutation matrix.

For a pair of permutations, (σ, τ), that are related by σ = ϵτ , it is known that the
maximal possible number of cycles that can be decomposed from them is mcyc = n+1 [44, 45].
Then we have ∏

x=1,2
Pf
[
Ŝ∂t − Σx

]
= ⟨EPR|eT

∑n+1
i=1 H(τ̌(i))|EPR⟩ (4.39)

= enΛT 2−n+1. (4.40)

The exponential growing in time part cancels the decaying part in (4.23), and the onshell
action becomes e−Ionshell = e(1−n)N log 2.

For those pairs with less cycles, the contribution will be exponentially suppressed,
i.e., 2Nmcyc , so we ignore them. There are Cn pairs of permutation matrices, (σ, τ), that
are related by σ = ϵτ , having the maximal number of cycles, where Cn is the Catalan
number [44, 45]. In addition to that, we have also a degeneracy coming from the local Fermi
parity symmetry ψαj → −ψαj , j = 1, . . . , N independently for each replica α = 1, . . . , n,
which leads to a number

∏
j(1

2 ×2nτ̌j ) = 2n−1.3 Taking into account these degenerate saddle
points, the steady state Rényi entropy is given by

S
(n)
A = (N − 2) log 2 + 1

1 − n
logCn. (4.41)

3The 1/2 inside the parentheses is due to the fact that the Fermi parity of the initial state is even at
each site, so that only half of solutions are allowed.
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To get the von Neumann entanglement entropy, it is useful to represent the Catalan number
as Cn = 1

2π
∫ 4

0 dxx
n−1√(4 − x)x. We can analytically continue the number to n→ 1, and

this leads to

lim
n→1

1
1 − n

logCn

= lim
n→1

1
1 − n

log
( 1

2π

∫ 4

0
dx
√

(4 − x)x

− (1 − n) 1
2π

∫ 4

0
dx log x

√
(4 − x)x

)
(4.42)

= lim
n→1

1
1 − n

log
(

1 − 1
2(1 − n)

)
= −1

2 , (4.43)

so the von Neumann entanglement entropy is SA = N log 2 − 2 log 2 − 1
2 . The first 1/N

is due to the Fermi parity symmetry, i.e., starting from an EPR state the steady state
can explore half of the total Hilbert space at each site [32]. The second 1/N correction is
consistent with the Page value in the limit of large Hilbert space dimension [34].

We can do better than just calculating the von Neumann entanglement entropy. This
explicit form (4.41) allows us to calculate the entanglement spectrum density of states. This
is done by considering the resolvant of reduced density matrix of subsystem A [39],

R(λ) = 1
λ− ρA

= 1
λ

+
∞∑
k=1

ρkA, ρA = TrĀρ. (4.44)

The entanglement spectrum density of states is given by the resolvant through4

D(λ) = 1
2πi lim

δ→0
(Tr[R(λ− iδ)] − Tr[R(λ+ iδ)]). (4.45)

The trace of resolvant can be obtained by the saddle-point action,

Tr[R(λ)] = 1
λ

2N−1 +
∞∑
k=1

Tr[ρkA(λ)]
λk+1 (4.46)

= 1
λ

2N−1 +
∞∑
k=1

Tr[ρ⊗kMcyc(A)]
λk+1 (4.47)

= 1
λ

2N−1 +
∞∑
k=1

Cke
(1−k)(N−1) log 2

λk+1 (4.48)

= 22(N−1)−1

1 −

√
1 − 22−(N−1)

λ

 , (4.49)

where in the third equality we used the saddle-point results and in the last equality we
performed the summation. The density of state function becomes

D(λ) = 22(N−1)−1

π

√22−(N−1)

λ
− 1

 , (4.50)

4As we know the steady state can only explore the Hilbert space with even Fermi parity at each site, we
restrict the trace to that subspace, e.g., Tr[1] = 2N−1.
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which is equivalent to the result of a random pure state [34] in the subsector accessible from
the initial EPR state. It is expected since unitary evolution generated from the Brwonian
SYK Hamiltonian approaches the Haar random unitary at late time [23, 33]. This result
strongly supports that the saddle-point solutions given by the permutation matrix (4.17)
play an essential role in late-time entanglement entropy.

If there is no cyclic permutation operator in the path integral, we are just calculating
the n-th power of the trace of a density matrix. In this case, the solutions described by
the permutation matrix also exists. However, the relation between solution in A and Ā

changes to τA = τĀ, so the maximal decomposition to cycles is given by the identity matrix,
where each diagonal element is a trivial cycle with length one. Taking τA and τĀ to be the
identity matrix where the number of cycles is mcyc = 2n in total, we have from (4.36)∏

x=1,2
Pf
[
Ŝ∂t − Σx

]
= enΛT . (4.51)

The exponential growing part gets cancelled exactly by (4.23), so we get one, which is n-th
power of the trace of a density matrix.

Finally, although here we only consider two coupled clusters, it is straightforward to
generalize the calculation to the half-chain quasi entropy of a chain with L sites. The
calculation is the same: the solution in A and Ā are given by pairs of permutation matrices,
(τA, τĀ) with τA = ϵτĀ, where now A is half of the chain and Ā is the rest. Taking into
account the length of the chain and of the subregion A, the half-chain entanglement is given
by SA = NL

2 log 2− L
2 log 2− 1

2 , where the first 1/N is due to the Fermi parity symmetry at
each site, i.e., starting from the EPR state, the steady state can only explore the subspace
of even Fermi parity at each site.

5 Entanglement phase transition in the monitored Brownian SYK chains

In this section, we will consider the monitored Brownian SYK chains introduced in section 3.
We focus on the effect of the measurement on the saddle-point solutions and thus the quasi
entropy. Then we take analytical continuation n→ 1 to get the von Neumann entanglement
entropy for the cyclic symmetric solution.

5.1 Saddle-point analysis

To generalize the story in the coupled Brownian SYK clusters into monitored Brownian
SYK chains, we double the degrees of freedom into left and right chains, and add the
effective action description (3.9) for continuous monitoring. Similar to the unitary case, we
will consider EPR initial states. It is described by two copies of the fermions, denoted by
ψx,a,j and χx,a,j at every site in both chains. The initial density matrix is given by

ρ = |EPR⟩⟨EPR|, (ψx,a,j + iχx,a,j)|EPR⟩ = 0, (5.1)

∀x = 1, . . . , L, a = L,R, j = 1, . . . , N . We divide the chain into A and Ā, and compute the
quasi entropy of the steady state (3.10). The only modification of the quasi entropy is the
presence of monitoring, and we have shown that the effect of monitoring part is described
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by (3.9). Note that the redefinition (4.10) will not change the form of the effective action (3.9).
It is then straightforward to get the G-Σ action for ETr[ρ̃⊗nMcyc(A)] =

∫
DGDΣe−I(A),

− I(A)
N

=

logPf[Ŝ∂t−Σ̂x]+
∫
dt1dt2

(
−1

2Σαβ
x,ab,ss′G

αβ
x,ab,ss′ +

J

8 δ(t12)δabcss′(2Gαβ
x,ab,ss′(t1, t2))2

)
+ U

4q

∫
dt1dt2δ(t12)δabcss′(2Gαβ

x,ab,ss′(t1, t2))q/2Mαγ
s (x,x+1)Mβδ

s′ (x,x+1)(2Gγδ
x+1,ab,ss′(t1, t2))q/2

+ iµ

2

∫
dt1dt2δ(t12)δss′δαβ(δaLδbR−δaRδbL)Gαβ

x,ab,ss′(t1, t2), (5.2)

where the summation over the site indices, the chain indices, the replica indices, and the
contour indices, x, a, b, α, β, γ, δ, s, s′, is implicit. The third line is the monitoring part
from (3.9). In the second line, Ms(x, y) is the cyclic permutation operator at the boundary
of intervals A and Ā, Mαβ

+ (x, y) = δαβ , and

Mαβ
− (x, y) =


δαβ x, y ∈ A or x, y ∈ Ā

ϵαβ x ∈ A and y ∈ Ā

ϵβα x ∈ Ā and y ∈ A

, (5.3)

which is only nontrivial when x and y are located at different subsystems, and is introduced
to calculate the quasi entropy between A and Ā. We assume the length of A and Ā are
equal and given by L/2. The boundary conditions of the fields are similar to (4.7) with a
trivial extension to left and right chains.

The equations of motion from the action read and

Ĝ−1
x = Ŝ∂t − Σ̂x, (5.4)

Σαβ
x,ab,ss′ = δ(t12)

[
Jδabcss′(2Gαβx,ab,ss′) + iµδss′δ

αβ(δaLδbR − δaRδbL)

+ U

2 δabcss
′

(
(2Gαβx,ab,ss′)

q/2−1Mαγ
s (x, x+ 1)Mβδ

s′ (x, x+ 1)(2Gγδx+1,ab,ss′)
q/2

+ (2Gγδx−1,ab,ss′)
q/2Mγα

s (x− 1, x)M δβ
s′ (x− 1, x)(2Gαβx,ab,ss′)

q/2−1
)]
. (5.5)

We assume that the solutions are uniform in A and Ā up to the parity transformation. The
invariant quantity that distinguishes different classes of solutions now becomes the total
Fermi parity of left and right Majorana fermions at each site, Px,LPx,R. In the presence
of measurement, only the total parity of left and right Majorana fermions at each site is
conserved, i.e., the theory (5.2) is invariant under transformation that acts on both left and
right Majorana fermoins, ψαx,L/R,± → −ψαx,L/R,±.

The solution is now modified by the presence of the monitoring. Similar to the
discussion in the previous section, it is easy to check that the ansatz Gx∈A = G(t1, t2, τA,x),
Σx∈A(t1, t2) = Σ(τA,x), and Gx∈Ā(t1, t2) = G(t1, t2, τĀ,x), Σx∈Ā = Σ(τĀ,x) solves the
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Figure 1. The phase diagram as a function of measurement strength for q = 4. The phase boundary
is determined by (5.8). The solid line indicates a continuous transition, while the dashed line
indicates a first-order transition5.

equation of motion, with τA = ϵτĀ, where G(t1, t2, τ) and Σ(τ) are now given by

G(t1, t2, τ) = e−Λ|t12|

2

×


sgn(t12) −i sin θ − cos θ τT 0
i sin θ sgn(t12) 0 − cos θ τT

cos θ τ 0 −sgn(t12) −i sin θ
0 cos θ τ i sin θ −sgn(t12)

 , (5.6)

and

Σ(τ) =


0 iµ −ΛτT 0

−iµ 0 0 −ΛτT

Λτ 0 0 iµ

0 Λτ −iµ 0

 . (5.7)

The solution is written in the
(
ψαL,+, ψ

α
R,+, ψ

α
L,−, ψ

α
R,−

)
basis, and for the Green’s function,

we have introduced tan θ = µ
Λ , such that when θ = 0, it reduces to the unmeasured case.

Recall that ταβx = sαβx ταβ is the permutation matrix that characterizes the correlation
between different replicas. The EPR initial state allows the solutions with Px,LPx,R = 1,
but only the permutation solution for Px,L = Px,R = 1 can smoothly connect to the zero
measurement limit. Note that in the non-measurement case, the Fermi parity at two
chains is conserved separately. So, we consider this sector of solutions, which includes
(2n/2)L = 2L(n−1),6 degenerate solutions from the parity transformation.

In the presence of measurement, the parameter Λ satisfies

Λ = U
(

Λ√
Λ2 + µ2

)q−1

+ J
Λ√

Λ2 + µ2 . (5.8)

5Near the transition point, Λ = 0, we can expand (5.8) to get Λ = (U − 2J)
(

Λ
µ

)3 + J Λ
µ

. When U > 2J ,
there is no real solutions near Λ = 0. Hence, it is a first order transition.

6Because the parity transformation acts simultaneously on left and right Majorana fermions, we have a
similar degeneracy as before.
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For small interaction strength U ≪ J , Λ is given by

Λ = J

(
1 − µ2

J2

) 1
2

+ U
(

1 − µ2

J2

) q−3
2

+ O
(
U2
)
. (5.9)

Λ vanishes at µ = J . At this point θ = π
2 , and the correlation between left and right chains

is maximal while the correlation between different replicas vanishes. The solution restores
the replica symmetry. We will see in the following section that this corresponds to an
entanglement transition, namely, when the replica symmetry is broken, the von Neumann
entanglement entropy satisfies a volume law, while when the replica symmetry is unbroken,
the von Neumann entanglement entropy satisfies an area law. A plot of the phase diagram
for q = 4 as a function of the monitoring rate is shown in figure 1.

5.2 Quasi entropy by summing over all saddle points

Now we evaluate the onshell action on the above solution. Due to the presence of monitoring,
the forward and backward evolution no longer cancel,∫

dt

[
U

4q δabcss
′(2Gαβx,ab,ss′(t, t))

q/2Mαγ
s (x, x+ 1)Mβδ

s′ (x, x+ 1)(2Gγδx+1,ab,ss′(t, t))
q/2

+ J

8 δabcss
′(2Gαβx,ab,ss′(t, t))

q
]

=

J
2

( Λ√
Λ2 + µ2

)2

− 1

+ U

q

[(
Λ√

Λ2 + µ2

)q
− 1

]nLT. (5.10)

From this expression, we can check that when the monitoring strength is zero, µ = 0, the
contributions from the forward and backward evolution do cancel. The monitoring part
itself also leads to a contribution,∫

dt
iµ

2 δss
′δαβ(δaLδbR − δaRδbL)Gαβx,ab,ss′(t, t)

= − µ2√
Λ2 + µ2nLT. (5.11)

Similar to the unitary case, we have also the following contribution,

−1
2

∫
dtΣαβ

x,ab,ss′G
αβ
x,ab,ss′(t, t) = −

√
Λ2 + µ2nLT. (5.12)

In the unitary case, this exponential decaying part is cancelled by the Pfaffian. We will
see that it is also true for monitoring case. Nevertheless, the other parts (5.10) and (5.11)
cannot be canceled. This is consistent with ρ̃ν being an unnormalized density matrix.

The evaluation of the Pfaffian can again be mapped to a transition amplitude of
Kitaev chains, but now we have two coupled Kitaev chains. Similarly, because the large-N
action (5.2) has an SO(N) symmetry, the Pfaffian is equivalent to the transition amplitude
of an EPR state of an effective single flavor Majorana fermion for two contours of each
replica, ψαx,a,s. The EPR state is (ψαx,a + iχαx,a)|EPR⟩ = 0, ∀x = 1, . . . , L, ∀α = 1, . . . , n,
and ∀a = L,R. The Pfaffian is given by the following transition amplitude,

L∏
x=1

Pf
[
Ŝ∂t − Σx

]
= ⟨EPR|eT

∑L

x=1 Hx |EPR⟩, (5.13)
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with the Hamiltonian given by

Hx =
∑

a=L,R

1
2(ψx,a, χx,a)

(
1 0
0 i

)
Σx

(
1 0
0 i

)(
ψx,a
χx,a

)
. (5.14)

Similar to the unitary case, the self-energy Σx is given by some permutation matrix which
can be decomposed into cycles with length nτ̌(i) such that

∑
i nτ̌(i) = n, and for each of

cycles, we can bring them to the canonical form (4.26).
Consider a cyclic permutation τ̌ at one site (so we suppress the site index), by extending

the previous calculation to left and right chains, the Pfaffian can be mapped to the amplitude
of EPR state with the following Hamiltonian

H(τ̌) = 1
2(ψL, χL, ψR, χR)

×


0 −iΛτ̌T iµ 0
iΛτ̌ 0 0 −iµ
−iµ 0 0 −iΛτ̌T

0 iµ iΛτ̌ 0



ψL
χL
ψR
χR

 . (5.15)

Using the complex fermion,

ca,α = ψαa + iχαa√
2

, c†a,α = ψαa − iχαa√
2

, (5.16)

satisfying {ca,α, cb,β} = δabδαβ , we can bring the Hamiltonian to

H(τ̌) = Λ
2
∑
a,α

(c†a,αca,α+1+ca,αca,α+1+h.c.)+µ

2
∑
α

(icL,αcR,α+ic†L,αc
†
R,α+h.c.) (5.17)

=
∑
k

(c†L,k, cL,−k, c
†
R,k, cR,−k)


−Λcosk −iΛsink 0 iµ

iΛsink Λcosk iµ 0
0 −iµ −Λcosk −iΛsink

−iµ 0 iΛsink Λcosk




cL,k
c†L,−k
cR,k
c†R,−k

 .
(5.18)

Because the odd and even length have different boundary conditions, the choice of momentum
is: when nτ̌ is an odd integer, the fermion satisfies periodic boundary condition, k = 2jπ

nτ̌
, and

the summation is over j = 0, 1, . . . , nτ̌−1
2 . When nτ̌ is an even integer, the fermion satisfies

anti-periodic boundary condition, k = (2j−1)π
nτ̌

, and the summation is over j = 1, . . . , nτ̌2 .
The Bogoliubov quasiparticle annihilation operators [42] are given by

dL,−,k = cos θ2

(
icos k2 cL,k−sin k2 c

†
L,−k

)
+sin θ2

(
isin k2 cR,k+cos k2 c

†
R,−k

)
, (5.19)

dR,−,k = sin θ2

(
isin k2 cL,k+cos k2 c

†
L,−k

)
+cos θ2

(
−icos k2 cR,k+sin k2 c

†
R,−k

)
, (5.20)

dL,+,k = cos θ2

(
−isin k2 cL,k−cos k2 c

†
L,−k

)
+sin θ2

(
−icos k2 cR,k+sin k2 c

†
R,−k

)
, (5.21)

dR,+,k = sin θ2

(
−icos k2 cL,k+sin k2 c

†
L,−k

)
+cos θ2

(
isin k2 cR,k+cos k2 c

†
R,−k

)
, (5.22)
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where tan θ = µ
Λ , and in terms of these operators, the Hamiltonian becomes diagonal,

H(τ̌) =
√

Λ2 + µ2
∑

a=L,R;k>0
(d†a,+,kda,+,k − d†a,−,kda,−,k)

+ mod(nτ̌ , 2)
√

Λ2 + µ2(d†L,+,0dL,+,0 − d†R,−,0dR,−,0). (5.23)

Note that only the odd nτ̌ can have zero momentum mode because even nτ̌ should satisfies
the anti-periodic boundary condition. With the help of the Bogoliubov quasiparticle
operator, the exponential of the Hamiltonian can be simplified by

eT H(τ̌)

=
(

1+
(
e
√

Λ2+µ2T −1
)
d†L,+,0dL,+,0+1+

(
e−

√
Λ2+µ2T −1

)
d†R,−,0dR,−,0

)mod(nτ̌ ,2)

×
∏

a=L,R;k>0

(
1+
(
e
√

Λ2+µ2T −1
)
d†a,+,kda,+,k +1+

(
e−

√
Λ2+µ2T −1

)
d†a,−,kda,−,k

)
(5.24)

∋
(
e
√

Λ2+µ2T cos2 θ
2cL,0c

†
L,0

)mod(nτ̌ ,2) ∏
a=L,R;k>0

e
√

Λ2+µ2T
(

cos2 θ
2 cos2 k

2 +sin2 θ
2 sin2 k

2

)
ca,kc

†
a,k,

(5.25)
where in the first line we explicit show the contribution of k = 0 sector that is present
for odd nτ̌ only. Remember the transition amplitude is between the vacuum state of the
original complex fermion (5.16), so we only show the dominant contribution for each k in
the second equality. Therefore, the transition amplitude for a cycle τ̌ becomes

⟨EPR|eTH(τ̌)|EPR⟩ = enτ̌
√

Λ2+µ2T
∏
k

(
cos2 θ

2 cos2 k

2 + sin2 θ

2 sin2 k

2

)
. (5.26)

Here the choice of momentum in the product is that for an odd nτ̌ , k = 2jπ
nτ̌

, with
j = −nτ̌−1

2 , . . . ,−1, 0, 1, . . . , nτ̌−1
2 , and for an even nτ̌ , k = (2j−1)π

nτ̌
, with j = −nτ̌

2 +
1, . . . ,−1, 0, 1, . . . , nτ̌2 , by noticing each term in the product is an even function of k. The
product is evaluated to be (see appendix C)∏

k

(
cos2 θ

2 cos2 k

2 +sin2 θ

2 sin2 k

2

)
=
∏
k

1
2 (1+cosθ cosk) (5.27)

= 21−2nτ̌ cosnτ̌ θ

[
2F1

(
nτ̌ ,−nτ̌ ,

1
2; 1

2(1−secθ)
)

+1
]
,

where 2F1(a, b, c; z) is the Gaussian hypergeometric function.
We now know the contribution from a cycle τ̌ , which can be used to obtain the

result of the full solution. Again, the solution in A and Ā are related by the cyclic
permutation ϵ, τA = ϵτĀ. As we discussed before, the maximal number of cycles is n+ 1,
i.e., τ̌(i), i = 1, . . . , n+ 1, where the sum of the length of each cyclic permutation satisfies∑n+1
j=1 nτ̌(j) = 2n. Thus we have

L∏
x=1

Pf
[
Ŝ∂t − Σx

]
=
(
⟨EPR|eT

∑n+1
i=1 H(τ̌(i))|EPR⟩

)L/2

=
[
e2n

√
Λ2+µ2T 21−3n cos2n θ

×
n+1∏
i=1

[
2F1

(
nτ̌(i) ,−nτ̌(i) ,

1
2; 1

2(1 − sec θ)
)

+ 1
]]L/2

, (5.28)

– 20 –



J
H
E
P
1
1
(
2
0
2
3
)
2
2
1

where in the first line we take a L/2 power as there are L/2 contributions for the half-chain
quasi entropy, i.e., both A and Ā have L/2 number of sites.

Due to the presence of the measurement, we have to consider the denominator in quasi
entropy (3.10), ETr[ρ̃⊗n]. The calculation is paralleled to ETr[ρ̃⊗nMcyc(A)]. The difference
is that the relation between τA and τĀ should be modified from τA = ϵτĀ to τA = τĀ, and
as we discussed around (4.51) in the previous section, to maximize the number of cycles,
it is given by the identity matrix. So taking τA and τĀ to be the identity which have 2n
cycles in total, we have gotten the Pfaffian as follows,

L∏
x=1

Pf
[
Ŝ∂t − Σx

]
=
(
⟨EPR|eT

∑2n
i=1 H(1)|EPR⟩

)L/2

=
[
e
√

Λ2+µ2T 2−1cos θ
[
2F1

(
1,−1, 1

2; 1
2(1 − sec θ)

)
+ 1

]]nL
= en

√
Λ2+µ2TL

(
cos θ2

)2nL
, (5.29)

where H(1) in the first line denotes (5.15) with trivial cycle τ̌ = 1. On the other hand,
the calculation of (5.10), (5.11) and (5.12) is the same as before. Thus, all the time
dependent contributions cancel when we take the ratio between these two quantities,
namely, ETr[ρ̃⊗nScyc(A)]

ETr[ρ̃⊗n] . And finally, we get the quasi entropy,

e(1−n)S(n)
A = 2L(n−1)

Cn∑
µ=1

21−3n cos2n θ
∏n+1
i=1

[
2F1

(
nτ̌µ(i)

,−nτ̌µ(i) ,
1
2 ; 1

2(1−secθ)
)

+1
]

cos4n θ
2


NL/2

,

(5.30)
where {τ̌µ(i)}, i = 1, . . . , n + 1, is the cycle decomposition of the solution τµA and τµ

Ā
, and

there are Cn number of such solutions, µ = 1, . . . , Cn. Cn is the Catalan number. In the
prefactor we also include the degeneracy coming from the local Fermi parity symmetry.

Without measurements, i.e., θ = 0, (5.30) reduces to two decoupled unitary chains
discussed at the end of section 4. With the measurement, we are not able to evaluate the
product explicitly. It is however clear that as θ → π

2 , the different saddle-point solutions
tend to the same form with no correlation between replicas, because Λ = 0 in (5.6). And
according to

lim
θ→π

2

cosn θ
[

2F1

(
nτ̌µ(i)

,−nτ̌µ(i) ,
1
2; 1

2(1 − sec θ)
)

+ 1
]

= 2n−1ei2πn, (5.31)

we have e(1−n)S(n)
A =

(
21−3n2n−1ei2πn

(1/
√

2)4n

)NL/2
= 1 from (5.30) where all degeneracy disappears

as the replica symmetric solution is unique, for any integer n ≥ 2. This implies that the
quasi entropy of any order vanishes at θ = π

2 in the large-N limit. In the next section, we
will consider a special solution, the cyclic symmetric one, and analytically continue the
solution to n→ 1 to show the von Neumann entanglement entropy transition.

5.3 von Neumann entanglement entropy from replica trick

Among the Cn different permutation that satisfy τA = ϵτĀ and have the maximal number
of cycles, there is a cyclic symmetric one, where τĀ is identity, and τA is itself a cyclic
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Figure 2. The plot of von Neumann entanglement entropy per site per flavor σ(θ) as a function of
the monitoring rate θ = arctan µ

Λ .

permutation of length n.7 So the number of cycles is maximal, n + 1. This is the only
nontrivial solution when n = 2, i.e., C2 = 1, and we expect it to dominate for n < 2 in the
replica limit. Focusing on the contribution of this special solution, we make the following
analytic continuation,

e(1−x)S(x)
A =


(
cos2 θ

2

)x ( cosx θ
22x−1

[
2F1

(
x,−x, 1

2 ; 1
2(1 − sec θ)

)
+ 1

])
cos4x θ

2

NL/2

, (5.32)

where x is a real number.8 In the numerator inside the parentheses, the first factor is the
contribution from identity ταβ

Ā
= δαβ, and the second factor is the contribution from the

cyclic permutation ταβA = ϵαβ. We expand the result near x = 1 to get the von Neumann
entanglement entropy

SA = lim
x→1

1
1 − x

log [1 + (1 − x)σ(θ)]NL/2 = σ(θ)NL2 , (5.33)

where the von Neumann entanglement entropy per site per flavor is

σ(θ) =
(

log 2(1 + sec θ) + tan θ2 log(sec θ − tan θ)
)
, (5.34)

tan θ = µ
Λ . A plot of this function is shown in figure 2. At θ = 0, we recover the maximal

von Neumann entanglement entropy SA = NL log 2. The von Neumann entanglement
entropy density vanishes smoothly at θ = π

2 , where the von Neumann entanglement entropy
becomes area-law. It shows clearly that the measurement-induced phase transition occurs
at the unbreaking point of replica symmetry. Near the transition, we can expand the von
Neumann entanglement entropy to get

SA = NL

2

[
log

(
π

2 − θ

)
− log 2e

](
π

2 − θ

)
. (5.35)

7In the gravity setup [39], a similar type of solution is considered in taking the n→ 1 limit.
8We neglect the degeneracy from the Fermi parity transformation since it is O(1) contribution, and we

are interested in O(N) contribution.
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Thus, by noticing the relation between θ and Λ in (5.9), the entanglement density vanishes
as (1 − µ

J )1/2 log(1 − µ
J ) near the critical point µ = J . This result differs from the known

universality classes.
It is instructive to consider a more general case for LA ̸= LĀ. When LA < LĀ, the

solution is given by the identity in LĀ and the replica symmetric permutation matrix in
LA, because the identity is onshell in the bulk and satisfies the boundary condition (see
appendix B). Then the von Neumann entanglement entropy for this solution is

e(1−n)S(n)
A =

(
cos2n θ

2

)NLĀ [ cosn θ
22n−1

[
2F1

(
n,−n, 1

2 ; 1
2(1 − sec θ)

)
+ 1

]]NLA
(
cos2n θ

2

)N(LA+LĀ) . (5.36)

It is clear that the numerator has two factors, the first one from LĀ and the second one
from LĀ. Taking a similar analytic continuation, we get the same result, SA = σ(θ)NLA.

6 Conclusion and discussion

To conclude, we introduced a large-N model in which the von Neumann entropy can
be calculated analytically. We obtained the Rényi entropy by summing over a class of
solutions related to the permutation group for the non-measured case, and we analytically
established a von Neumann entanglement entropy transition using the replica trick in
the meansured case. The result in section 4 strongly suggests that the late-time von
Neumann entanglement entropy of a chaotic unitary system is dominated by saddle points
that connect different replicas. Interestingly, the degeneracy of these replica non-diagonal
solutions play an important role in determining the entanglement entropy, and a single
replica non-diagonal solution can lead to an inaccurate density spectrum density of state.
For instance, if we neglected the degeneracy given by the Catalan number, we would get
D(λ) = 2N−2δ(λ − 2−N+2). This would imply that all Rényi entropies are given by the
same value, similar to stabilizer states generated by Clifford circuits. It would be interesting
to understand if there is any larger significance to this observation, for example, related to
a path integral representation of Clifford dynamics.

The continuous transition between replica symmetry broken and unbroken solutions
studied in section 5 should be contrasted with the discontinuous transition between two
similar large-N solutions in the unitary time evolution of Rényi entropy [32]. As the
replica non-diagonal solution is closely related to the replica wormhole observed in the
context of black hole information paradox [39, 43], it is worth speculating about the
physics of a monitored black hole. In the current setup, the monitoring is implemented
on the full system and causes the restoration of replica symmetry. We expect that by
increasing the monitoring of the black hole and its environment at late time, the replica
wormhole continuously disappears. Because the so-called entanglement island is obtained
by continuing the cyclic symmetric wormhole [39], it should also disappear with sufficiently
frequent measurements. An interesting question is to monitor the environment, and study
the effect of such measurements on the black hole. Though the measurement destroys
the entanglement between black hole and radiation, the state remaining in black hole is
expected to be maximally scrambled. We leave this exploration as a future work.
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More broadly, the approach of mapping the path integral of multi-replicas to the
transition amplitude of quantum states provides a general tool in evaluations of entropy
related quantities. We expect generalization of such an approach to other models that admit
saddle-point analysis to be straightforward. For example, it is of value to generalize and
utilize this tool in bosonic models [20]. In this case, the emergent transition amplitude will
governed by a spin model living in the replica space. The transition amplitude for a general
n might be complicated, but we expect that a similar cyclic symmetric replica non-diagonal
solution dominates near n ≈ 1, which could be analysed in detail.

Finally, the model defined by the action (5.2) is distinct from the model we considered
previously in ref. [21]. The major distinction lies in that the action (3.1) conserves local
Fermi parity, whereas the model studied in ref. [21] breaks the local Fermi parity by two
Majorana hopping between sites. If we consider n = 2, the Landau-Ginzbug action for
q = 4 would be

Ieff
N

=
∫
dtdx

(1
2
[
(∂tϕ⃗)2+ϕ2

1(∂xϕ1)2+ϕ2
2(∂xϕ2)2]+rϕ⃗2+λ|ϕ⃗|4+λ′(ϕ4

1+ϕ4
2)
)
, (6.1)

where ϕ⃗ = (ϕ1, ϕ2) is a two-dimensional order parameter related to rotations between
two replicas. The space derivative appears in the forth order term, and it leads to a
distinct universality class. It will be interesting to derive the Landau-Ginzburg action in
the limit n→ 1.

Acknowledgments

We would like to thank Pengfei Zhang, Zhuo-Yu Xian and Tianci Zhou for useful discussions.
This work is supported by the Simons Foundation via the It From Qubit Collaboration. The
work of BGS is also supported in part by the AFOSR under grant number FA9550-19-1-0360.

A Permutation operator for fermionic state

Consider a Hilbert space consisting of N Majorana fermions, ψ1, . . . , ψN , {ψi, ψj} = δij ,
and N is an even integer. It is convenient to double the Hilbert space and work in a state
language. To do that, we introduce another set of Majoran fermion called χ1, . . . , χN ,
{χi, χj} = δij , and the maximally entangled state between these two sets of Majrana
fermions, |EPR⟩, defined by

(ψj + iχj)|EPR⟩ = 0, ∀j = 1, . . . , N. (A.1)

Then any operator acting on the ψ Hilbert space can be uniquely mapped to a state in the
doubled Hilbert space by acting it on the EPR state Oψ → Oψ|EPR⟩.

Let us first consider a simpler case with N = 2. By pairing the two Majorana into
a single complex fermion, cψ = ψ1+iψ2√

2 , c†ψ = ψ1−iψ2√
2 and cχ = iχ1−iχ2√

2 , c†χ = −iχ1+iχ2√
2 the

Hilbert space is spanned by

{|00⟩, |10⟩ = c†ψ|00⟩, |01⟩ = c†χ|00⟩, |11⟩ = c†ψc
†
χ|00⟩}, (A.2)
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with the EPR state expressed as |EPR⟩ = |00⟩+|11⟩√
2 . It is convenient to label it as

|EPR⟩ = |00̄⟩+|11̄⟩√
2 =

∑
a

|aā⟩√
2 . For arbitrary even integer N , we have the similar expression

|EPR⟩ =
∑
a

|aā⟩
2N/2 .

We take n copies of the doubled Hilbert space, and denote the Majorana operators as
ψαi , χ

α
i , i = 1, 2, . . . , N , α = 1, 2, . . . , n. The cyclic permutation operator is defined to take

Mcyc|a1ā1a2ā2a3ā3 . . . anān⟩ → |a1āna2ā1a3ā2 . . . anān−1⟩, (A.3)

and it is trivial to show that

Tr[ρn] = ⟨EPR|⊗nρ⊗nMcyc|EPR⟩⊗n, (A.4)

|EPR⟩⊗n = 2−nN/2 ∑
a1,...,an

|a1ā1a2ā2a3ā3 . . . anān⟩. (A.5)

It is also easy to show that the following operator gives (A.3),

Mcyc =
N∏
i=1

e
π
2 χ

n
i χ

n−1
i e

π
2 χ

n−1
i χn−2

i . . . e
π
2 χ

3
iχ

2
i e

π
2 χ

2
iχ

1
i . (A.6)

In terms of the operator in the ψ Hilbert space, the cyclic permutation becomes

Mcyc =
N∏
i=1

e
π
2ψ

1
i ψ

2
i e

π
2ψ

2
i ψ

3
i . . . e

π
2ψ

n−2
i ψn−1

i e
π
2ψ

n−1
i ψni , (A.7)

with the action on the ψαi field

Mcycψ
α
i M

†
cyc =

∑
β

sgn(α− β)δα+1,βψβi , ∀i = 1, . . . , N, (A.8)

where we define δn+1,β = δ1,β when α = n. Thus, (A.8) is the cyclic permutation operator
for fermionic states, and is used in section 4.

B Saddle-point solutions

The equations of motion and boundary conditions for the saddle-point analysis given in the
following for general n is a complicated dynamical problem,

∂tŜĜx(t, t)Ŝ= [Σ̂x(t), Ĝx(t, t)], (B.1)

Σαβ
x,ss′(t) = css′

[
J(2Gαβx,ss′)+U(2Gαβx,ss′)

q/2−1[M(x)]αγs [M(x)]
βδ
s′ (2Gγδx̄,ss′)

q/2
]
, (B.2)

ψαx,+(0) =−ψαx,−(0), ψαx,+(T ) =ψαx,−(T ), ∀α= 1, . . . ,n. (B.3)

One can show that there is a conserved quantity for each site, given by

Tr(ŜĜxŜĜx) = const, (B.4)
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where the constant is set by the boundary condition. This follows from

d

dt
Tr(ŜĜxŜĜx) = 2Tr

(
d(ŜĜxŜ)

dt
Ĝx

)
(B.5)

= 2Tr
(
[Σx, Gx]Ĝx

)
(B.6)

= 0. (B.7)

Except for this conserved quantity, in general, the problem becomes a coupled nonlinear
differential equation that has no general solution. For n = 2, we explicitly write down the
equations of motion

dx1
dt

= 4Jx2z1 + 2Ux2z1(y2
1 + w2), (B.8)

dx2
dt

= −4Jx1z1 − 2Ux1z1(y2
2 + w2), (B.9)

dz1
dt

= 2Ux1x2(y2
1 − y2

2), (B.10)

dy1
dt

= 4Jy2w1 + 2Uy2w1(x2
1 + z2), (B.11)

dy2
dt

= −4Jy1w1 − 2Uy1w1(x2
2 + z2), (B.12)

dw1
dt

= 2Uy1y2(x2
1 − x2

2), (B.13)

where the coefficients are defined via

GA(t, t) = 1
2

 n∑
k=1

xk(t)Xk +
[n2 ]∑
m=1

zm(t)Zm

 , (B.14)

GĀ(t, t) = 1
2

 n∑
k=1

yk(t)Xk +
[n2 ]∑
m=1

wm(t)Zm

 , (B.15)

with

Xk =
(

0 −σ−k

σk 0

)
, k = 1, . . . , n, (B.16)

Zm = 1
2

(
σm − σ−m 0

0 σ−m − σm

)
, m = 1, . . . ,

[
n

2

]
. (B.17)

Here
[
n
2
]

is the largest integer that is less than n
2 , and σαβ = sgn(α − β)δα+1,β is the

permutation matrix with a proper sign to be consistent with the even Fermi parity. When
α = n, the symbol means δn+1,β = δ1,β .

Although we have only explicitly write down the equation for n = 2, it can be seen
from the definition of the matrices that these type of coefficients form a closed set of
dynamical variables. It reduces the number of variable from ∼ n2 to ∼ n. For n = 2, this
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representation actually captures all independent variables. In terms of this set of variables,
the conserved quantity is given by

n∑
k=1

x2
k −

[n2 ]∑
m=1

z2
m = const, (B.18)

n∑
k=1

y2
k −

[n2 ]∑
m=1

w2
m = const. (B.19)

To further simplify the problem, we assume that in Ā the conserved quantity is given by
y2

1 + y2
2 −w2

1 = 1 (as we discuss in the following, this is required to have a time-independent
action), and since the boundary condition is y2 = −1, it uniquely determines the steady
solution y1 = w1 = 0 and y2 = −1. The equations of motion reduce to

dx1
dt

= 4Jx2z1, (B.20)

dx2
dt

= −(4J + 2U)x1z1, (B.21)

dz1
dt

= −2Ux1x2, (B.22)

and x2
1 + x2

2 − z2
1 is conserved. There is a discrete symmetry given by multiplying any two

of the three variables x1, x2, z1 by a minus one, leading to four-fold degenerate nontrivial
solutions. Among these solutions, half of them are determined by the initial value of x2, i.e.,
by the boundary condition, and given the boundary condition, there are still two solutions
related by the Fermi parity transformation discussed in the main text. In the following, we
will discuss one explicit solution.

These differential equations can be solved via Jacobi elliptic functions,

x1 =
√
c1sn

(
2
√

U(2J + U)c2(t− t0), c1
c2

)
, (B.23)

x2 = −

√
(2J + U)c1

2J

(
1 − sn

(
2
√

U(2J + U)c2(t− t0), c1
c2

))1/2
, (B.24)

z1 = −

√
Uc2
2J dn

(
2
√

U(2J + U)c2(t− t0), c1
c2

)
, (B.25)

where sn(u, c) and dn(u, c) are the Jacobi elliptic functions. c1, c2, t0 are integral constants
to be determined below. t0 is the shift of time argument, and c1, c2 are related to the
conserved quantity by x2

1 + x2
2 − z2

1 = c1 + U
2J (c1 − c2).

The conserved quantity is related to the time dependence of the onshell action. Because
the action is dimensionless, it can only depend on JT and UT . Taking the derivative with
respect to T , we have
dI(JT,UT )

dT
= J

T

∂I

∂J
+U

T

∂I

∂U

=−css′
∫
dt

[
J

8T
∑
x

(2Gαβx,ss′(t, t))
2+ U

8T (2Gαβ1,ss′(t, t))
2Mαγ

s Mβδ
s′ (2Gγδ2,ss′(t, t))

2
]

=−
∫
dt

[
J

2T (x1(t)2+x2(t)2−z1(t)2−1)+ U

2T (x1(t)2−1)
]
, (B.26)
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where we have plugged in y1 = w1 = 0 and y2 = −1. In the third line, the first term in
parentheses is given by the conserved quantity. To have a time-independent result, the
conserved quantity should be x1(t)2 + x2(t)2 − z1(t)2 = 1. The second term vanishes at
long times when x1(t) → 1. With these two facts, c1, c2 can be determined to be c1 = 1
and c2 = 1 as T → ∞. The boundary condition at t = 0 fixes t0 = 1

4
√

U(2J+U)
cosh−1 J+U

J

such that x2(0) = −1. An example is shown in figure 3, where we allow c2 to be slightly
less than 1 to capture the boundary condition at t = T . As c2 approaches 1, the time T
approaches ∞. In the long-time limit, the solution becomes,

x1 = tanh
(

2
√

U(2J + U)(t− t0)
)
, (B.27)

x2 = −

√
2J + U

2J
1

cosh
(
2
√

U(2J + U)(t− t0)
) , (B.28)

z1 = −

√
U

2J
1

cosh
(
2
√

U(2J + U)(t− t0)
) , (B.29)

where indeed the solution in the bulk takes the form of (4.17), and the effect of the boundary
conditions decreases exponentially fast into the bulk. Now in the long-time limit, the onshell
action tends to a constant determined by the ratio U/J because it is the only dimensionless
quantity when T → ∞. The long-time onshell action cannot depend on U(2J + U), so
we can take this advantage to send U(2J + U) → ∞ without changing the onshell action.
In this case, the solution is given by (4.17). Therefore, although (4.17) does not satisfy
the boundary condition in any finite U(2J + U), the action evaluated via (4.17) gives the
correct answer in the long-time limit. The argument implicitly states

lim
E→∞

I [Gexact,Σexact] = I

[
lim
E→∞

Gexact, lim
E→∞

Σexact

]
= I [G,Σ] , (B.30)

where E is a microscopic energy scale in the model, i.e., U = uE, J = jE.9 In the above
limit, U/J = u/j is kept fixed. Gexact and Σexact denote the exact saddle-point solution
satisfying the boundary condition, and G and Σ in the last equality is the solution given
in (4.17). This must be true because the long-time limit of the Rényi entropy and von
Neumann entanglement entropy of the Brownian SYK clusters saturate to a constant set
by the dimension of Hilbert space and the symmetry of the model independent of any
microscopic energy scale [23, 33, 34]. And the evaluation of the von Neumann entanglement
entropy from the permutation solution (4.17) correctly gives the Page value (see section 4).

For general n, we expect the same situation happens. The conserved quantity (B.18)
is given by 1, and the bulk is dominated by one of the permutation matrix Xk given
by (B.16) to have a time-independent onshell action. When the measurement is turned on,
the addition of (3.9) is an integration over the Green’s function, for which we expect (B.30)
still holds. Thus, in section 5, we consider a generalization of solutions of the form (4.17)
to the measurement case, cf. (5.6), and study how the measurement affects the solution
and causes the entanglement transition.

9This is same as taking T → ∞, because the action is dimensionless and depends on TE only.
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Figure 3. A plot of the solution of x1, x2, z1. We choose J = 1, U = 0.4, c1 = 1, c2 = 1 − 10−7.

C Finite products of trigonometric functions

In this section we first show that the following identity holds and then use it to derive (5.27),

2(Tn(a) + 1) =


∏n

2
k=−n

2 +1

(
2a+ 2 cos (2k+1)π

n

)
, n = even,

∏n−1
2

k=−n−1
2

(
2a+ 2 cos 2kπ

n

)
, n = odd.

(C.1)

for k being integers, where Tn(a) is the Chebyshev polynomial of the first kind, namely,
Tn(cosϕ) = cosnϕ. For an even integer n, note that (C.1) is equivalent to

xn + x−n + 2 cosnφ =
n
2∏

k=−n
2 +1

[
x+ x−1 − 2 cos

(
φ+ (2k − 1)π

n

)]
, (C.2)

by setting φ = π and x = eiϕ. The left-hand side of (C.2) has the roots,

x = ei
(
φ+ (2k−1)π

n

)
, k ∈ {−n2 + 1,−n2 + 2, . . . , n2 }. (C.3)

By noticing

x+ x−1 = 2 cos
(
φ+ (2k − 1)π

n

)
, (C.4)

we arrive the right-hand side of (C.2). The proof for an odd integer n is similar. (C.1) is
equivalent to

xn + x−n − 2 cosnφ =
−n−1

2∏
k=−n−1

2

[
x+ x−1 − 2 cos

(
φ+ 2kπ

n

)]
, (C.5)

by setting φ = π and x = eiϕ. The left-hand side of (C.5) has the roots,

x = ei(φ+ 2kπ
n ), k ∈ {−n− 1

2 ,−n− 1
2 + 1, . . . , n− 1

2 }. (C.6)
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Then by noticing
x+ x−1 = 2 cos

(
φ+ 2kπ

n

)
, (C.7)

we get the right-hand side of (C.2).
Using the identity (C.1), we can derive (5.27). The derivation is simply given here. For

even integers n,
n
2∏

k=−n
2 +1

1
2 (1 + cos θ cos k)

= 2−2n cosn θ
n
2∏

k=−n
2 +1

( 2
cos θ + 2 cos k

)
= 21−2n cosn θ(Tn(sec θ) + 1)

= 21−2ncosn θ
[

2F1

(
n,−n, 1

2; 1
2(1 − sec θ)

)
+ 1

]
, (C.8)

and for odd integers n,
n−1

2∏
k=−n−1

2

1
2 (1 + cos θ cos k)

= 2−2n cosn θ
n−1

2∏
k=−n−1

2

( 2
cos θ + 2 cos k

)

= 21−2n cosn θ(Tn(sec θ) + 1)

= 21−2ncosn θ
[

2F1

(
n,−n, 1

2; 1
2(1 − sec θ)

)
+ 1

]
, (C.9)

where in the last step of the derivation, we use the fact that the Chebyshev polynomial is
equal to the Gaussian hypergeometic function,

Tx(cosϕ) = 2F1

(
x,−x, 1

2; 1
2(1 − cosϕ)

)
, (C.10)

for integer x. Then we use the fact that the Gaussian hypergeometric function is defined
for real number x to make analytical continuations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] Y. Li, X. Chen and M.P.A. Fisher, Quantum Zeno effect and the many-body entanglement
transition, Phys. Rev. B 98 (2018) 205136 [arXiv:1808.06134] [INSPIRE].

[2] Y. Li, X. Chen and M.P.A. Fisher, Measurement-driven entanglement transition in hybrid
quantum circuits, Phys. Rev. B 100 (2019) 134306 [arXiv:1901.08092] [INSPIRE].

– 30 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevB.98.205136
https://arxiv.org/abs/1808.06134
https://inspirehep.net/literature/1704599
https://doi.org/10.1103/PhysRevB.100.134306
https://arxiv.org/abs/1901.08092
https://inspirehep.net/literature/1759754


J
H
E
P
1
1
(
2
0
2
3
)
2
2
1

[3] B. Skinner, J. Ruhman and A. Nahum, Measurement-Induced Phase Transitions in the
Dynamics of Entanglement, Phys. Rev. X 9 (2019) 031009 [arXiv:1808.05953] [INSPIRE].

[4] M.J. Gullans and D.A. Huse, Dynamical Purification Phase Transition Induced by Quantum
Measurements, Phys. Rev. X 10 (2020) 041020 [arXiv:1905.05195] [INSPIRE].

[5] A. Chan, R.M. Nandkishore, M. Pretko and G. Smith, Unitary-projective entanglement
dynamics, Phys. Rev. B 99 (2019) 224307 [arXiv:1808.05949] [INSPIRE].

[6] R. Vasseur, A.C. Potter, Y.-Z. You and A.W.W. Ludwig, Entanglement Transitions from
Holographic Random Tensor Networks, Phys. Rev. B 100 (2019) 134203 [arXiv:1807.07082]
[INSPIRE].

[7] S. Choi, Y. Bao, X.-L. Qi and E. Altman, Quantum Error Correction in Scrambling Dynamics
and Measurement-Induced Phase Transition, Phys. Rev. Lett. 125 (2020) 030505
[arXiv:1903.05124] [INSPIRE].

[8] C.-M. Jian, Y.-Z. You, R. Vasseur and A.W.W. Ludwig, Measurement-induced criticality in
random quantum circuits, Phys. Rev. B 101 (2020) 104302 [arXiv:1908.08051] [INSPIRE].

[9] Y. Bao, S. Choi and E. Altman, Theory of the phase transition in random unitary circuits with
measurements, Phys. Rev. B 101 (2020) 104301 [arXiv:1908.04305] [INSPIRE].

[10] A. Zabalo et al., Critical properties of the measurement-induced transition in random quantum
circuits, Phys. Rev. B 101 (2020) 060301 [arXiv:1911.00008] [INSPIRE].

[11] M.J. Gullans and D.A. Huse, Scalable Probes of Measurement-Induced Criticality, Phys. Rev.
Lett. 125 (2020) 070606 [arXiv:1910.00020] [INSPIRE].

[12] Y. Li, X. Chen, A.W.W. Ludwig and M.P.A. Fisher, Conformal invariance and quantum
non-locality in critical hybrid circuits, Phys. Rev. B 104 (2021) 104305 [arXiv:2003.12721]
[INSPIRE].

[13] J. Iaconis, A. Lucas and X. Chen, Measurement-induced phase transitions in quantum
automaton circuits, Phys. Rev. B 102 (2020) 224311 [arXiv:2010.02196] [INSPIRE].

[14] A. Nahum, S. Roy, B. Skinner and J. Ruhman, Measurement and entanglement phase
transitions in all-to-all quantum circuits, on quantum trees, and in Landau-Ginsburg theory,
PRX Quantum 2 (2021) 010352 [arXiv:2009.11311] [INSPIRE].

[15] Y. Li and M.P.A. Fisher, Statistical mechanics of quantum error correcting codes, Phys. Rev.
B 103 (2021) 104306 [INSPIRE].

[16] S. Sang and T.H. Hsieh, Measurement-protected quantum phases, Phys. Rev. Res. 3 (2021)
023200 [arXiv:2004.09509] [INSPIRE].

[17] A. Lavasani, Y. Alavirad and M. Barkeshli, Measurement-induced topological entanglement
transitions in symmetric random quantum circuits, Nature Phys. 17 (2021) 342
[arXiv:2004.07243] [INSPIRE].

[18] M. Ippoliti et al., Entanglement Phase Transitions in Measurement-Only Dynamics, Phys. Rev.
X 11 (2021) 011030 [INSPIRE].

[19] Y. Bao, S. Choi and E. Altman, Symmetry enriched phases of quantum circuits, Annals Phys.
435 (2021) 168618 [arXiv:2102.09164] [INSPIRE].

[20] G.S. Bentsen, S. Sahu and B. Swingle, Measurement-induced purification in large-N hybrid
Brownian circuits, Phys. Rev. B 104 (2021) 094304 [arXiv:2104.07688] [INSPIRE].

– 31 –

https://doi.org/10.1103/PhysRevX.9.031009
https://arxiv.org/abs/1808.05953
https://inspirehep.net/literature/1688878
https://doi.org/10.1103/PhysRevX.10.041020
https://arxiv.org/abs/1905.05195
https://inspirehep.net/literature/1827421
https://doi.org/10.1103/PhysRevB.99.224307
https://arxiv.org/abs/1808.05949
https://inspirehep.net/literature/1742425
https://doi.org/10.1103/PhysRevB.100.134203
https://arxiv.org/abs/1807.07082
https://inspirehep.net/literature/1683129
https://doi.org/10.1103/PhysRevLett.125.030505
https://arxiv.org/abs/1903.05124
https://inspirehep.net/literature/1724813
https://doi.org/10.1103/PhysRevB.101.104302
https://arxiv.org/abs/1908.08051
https://inspirehep.net/literature/1750670
https://doi.org/10.1103/PhysRevB.101.104301
https://arxiv.org/abs/1908.04305
https://inspirehep.net/literature/1749293
https://doi.org/10.1103/PhysRevB.101.060301
https://arxiv.org/abs/1911.00008
https://inspirehep.net/literature/1781882
https://doi.org/10.1103/PhysRevLett.125.070606
https://doi.org/10.1103/PhysRevLett.125.070606
https://arxiv.org/abs/1910.00020
https://inspirehep.net/literature/1757049
https://doi.org/10.1103/PhysRevB.104.104305
https://arxiv.org/abs/2003.12721
https://inspirehep.net/literature/1788763
https://doi.org/10.1103/PhysRevB.102.224311
https://arxiv.org/abs/2010.02196
https://inspirehep.net/literature/1839411
https://doi.org/10.1103/PRXQuantum.2.010352
https://arxiv.org/abs/2009.11311
https://inspirehep.net/literature/1818865
https://doi.org/10.1103/PhysRevB.103.104306
https://doi.org/10.1103/PhysRevB.103.104306
https://inspirehep.net/literature/1854867
https://doi.org/10.1103/PhysRevResearch.3.023200
https://doi.org/10.1103/PhysRevResearch.3.023200
https://arxiv.org/abs/2004.09509
https://inspirehep.net/literature/1868269
https://doi.org/10.1038/s41567-020-01112-z
https://arxiv.org/abs/2004.07243
https://inspirehep.net/literature/1958519
https://doi.org/10.1103/PhysRevX.11.011030
https://doi.org/10.1103/PhysRevX.11.011030
https://inspirehep.net/literature/1847050
https://doi.org/10.1016/j.aop.2021.168618
https://doi.org/10.1016/j.aop.2021.168618
https://arxiv.org/abs/2102.09164
https://inspirehep.net/literature/1847421
https://doi.org/10.1103/PhysRevB.104.094304
https://arxiv.org/abs/2104.07688
https://inspirehep.net/literature/1861847


J
H
E
P
1
1
(
2
0
2
3
)
2
2
1

[21] S.-K. Jian et al., Measurement-Induced Phase Transition in the Monitored Sachdev-Ye-Kitaev
Model, Phys. Rev. Lett. 127 (2021) 140601 [arXiv:2104.08270] [INSPIRE].

[22] Y. Li, S. Vijay and M.P.A. Fisher, Entanglement Domain Walls in Monitored Quantum
Circuits and the Directed Polymer in a Random Environment, PRX Quantum 4 (2023) 010331
[arXiv:2105.13352] [INSPIRE].

[23] S.-K. Jian et al., Quantum error as an emergent magnetic field, arXiv:2106.09635 [INSPIRE].

[24] Z.-C. Yang, Y. Li, M.P.A. Fisher and X. Chen, Entanglement phase transitions in random
stabilizer tensor networks, Phys. Rev. B 105 (2022) 104306 [arXiv:2107.12376] [INSPIRE].

[25] A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, April 7, 2015,
http://online.kitp.ucsb.edu/online/entangled15/kitaev/.

[26] A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, May 27, 2015,
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.

[27] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg
magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

[28] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94
(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[29] P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity,
arXiv:1806.06840 [INSPIRE].

[30] C. Sünderhauf et al., Quantum chaos in the Brownian SYK model with large finite N: OTOCs
and tripartite information, JHEP 11 (2019) 038.

[31] C. Liu, P. Zhang and X. Chen, Non-unitary dynamics of Sachdev-Ye-Kitaev chain, SciPost
Phys. 10 (2021) 048 [arXiv:2008.11955] [INSPIRE].

[32] S.-K. Jian and B. Swingle, Note on entropy dynamics in the Brownian SYK model, JHEP 03
(2021) 042 [arXiv:2011.08158] [INSPIRE].

[33] D. Stanford, Z. Yang and S. Yao, Subleading Weingartens, JHEP 02 (2022) 200
[arXiv:2107.10252] [INSPIRE].

[34] D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007]
[INSPIRE].

[35] J.C. Napp et al., Efficient Classical Simulation of Random Shallow 2D Quantum Circuits,
Phys. Rev. X 12 (2022) 021021 [arXiv:2001.00021] [INSPIRE].

[36] T. Zhou and A. Nahum, Emergent statistical mechanics of entanglement in random unitary
circuits, Phys. Rev. B 99 (2019) 174205.

[37] A. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp. 44 (2001) 131
[cond-mat/0010440] [INSPIRE].

[38] H.M. Wiseman, Quantum trajectories and quantum measurement theory, J. Opt. B: Quantum
Semiclassical Opt. 8 (1996) 205 [quant-ph/0302080].

[39] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole
interior, JHEP 03 (2022) 205 [arXiv:1911.11977] [INSPIRE].

[40] Y. Gu, A. Lucas and X.-L. Qi, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP
09 (2017) 120 [arXiv:1708.00871] [INSPIRE].

– 32 –

https://doi.org/10.1103/PhysRevLett.127.140601
https://arxiv.org/abs/2104.08270
https://inspirehep.net/literature/1933190
https://doi.org/10.1103/PRXQuantum.4.010331
https://arxiv.org/abs/2105.13352
https://inspirehep.net/literature/2645578
https://arxiv.org/abs/2106.09635
https://inspirehep.net/literature/1869079
https://doi.org/10.1103/PhysRevB.105.104306
https://arxiv.org/abs/2107.12376
https://inspirehep.net/literature/1893613
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
https://doi.org/10.1103/PhysRevLett.70.3339
https://arxiv.org/abs/cond-mat/9212030
https://inspirehep.net/literature/342314
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/literature/1452588
https://arxiv.org/abs/1806.06840
https://inspirehep.net/literature/1678263
https://doi.org/10.1007/jhep11(2019)038
https://doi.org/10.21468/SciPostPhys.10.2.048
https://doi.org/10.21468/SciPostPhys.10.2.048
https://arxiv.org/abs/2008.11955
https://inspirehep.net/literature/1813696
https://doi.org/10.1007/JHEP03(2021)042
https://doi.org/10.1007/JHEP03(2021)042
https://arxiv.org/abs/2011.08158
https://inspirehep.net/literature/1830479
https://doi.org/10.1007/JHEP02(2022)200
https://arxiv.org/abs/2107.10252
https://inspirehep.net/literature/1889547
https://doi.org/10.1103/PhysRevLett.71.1291
https://arxiv.org/abs/gr-qc/9305007
https://inspirehep.net/literature/354244
https://doi.org/10.1103/PhysRevX.12.021021
https://arxiv.org/abs/2001.00021
https://inspirehep.net/literature/1773884
https://doi.org/10.1103/physrevb.99.174205
https://doi.org/10.1070/1063-7869/44/10S/S29
https://arxiv.org/abs/cond-mat/0010440
https://inspirehep.net/literature/1236700
https://doi.org/10.1088/1355-5111/8/1/015
https://doi.org/10.1088/1355-5111/8/1/015
https://arxiv.org/abs/quant-ph/0302080
https://doi.org/10.1007/JHEP03(2022)205
https://arxiv.org/abs/1911.11977
https://inspirehep.net/literature/1767458
https://doi.org/10.1007/JHEP09(2017)120
https://doi.org/10.1007/JHEP09(2017)120
https://arxiv.org/abs/1708.00871
https://inspirehep.net/literature/1614340


J
H
E
P
1
1
(
2
0
2
3
)
2
2
1

[41] Y. Chen, X.-L. Qi and P. Zhang, Replica wormhole and information retrieval in the SYK
model coupled to Majorana chains, JHEP 06 (2020) 121 [arXiv:2003.13147] [INSPIRE].

[42] A. Altland and B. Simons, Condensed matter field theory, Cambridge University Press (2006)
[INSPIRE].

[43] A. Almheiri et al., Replica Wormholes and the Entropy of Hawking Radiation, JHEP 05 (2020)
013 [arXiv:1911.12333] [INSPIRE].

[44] Sur le genre d’une paire de substitutions, Comptes Rendus de l’Académie des Sciences, Paris
267 (1968) 625.

[45] S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebr.
Comb. 8 (1998) 169.

– 33 –

https://doi.org/10.1007/JHEP06(2020)121
https://arxiv.org/abs/2003.13147
https://inspirehep.net/literature/1788701
https://inspirehep.net/literature/728118
https://doi.org/10.1007/JHEP05(2020)013
https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://inspirehep.net/literature/1767472
https://doi.org/10.1023/a:1008689811936
https://doi.org/10.1023/a:1008689811936

	Introduction
	Quasi entropy and trajectory averaged entanglement entropy
	Model and setup
	Entanglement entropy in two coupled Brownian SYK clusters
	Rényi entropy of a time-evolved EPR state
	Saddle-point solutions given by permutations
	Summing over all saddle points

	Entanglement phase transition in the monitored Brownian SYK chains
	Saddle-point analysis
	Quasi entropy by summing over all saddle points
	von Neumann entanglement entropy from replica trick

	Conclusion and discussion
	Permutation operator for fermionic state
	Saddle-point solutions
	Finite products of trigonometric functions

