
Eur. Phys. J. C (2023) 83:845
https://doi.org/10.1140/epjc/s10052-023-11996-9

Regular Article - Theoretical Physics

Development of local density perturbation technique to identify
cracking points in f (R, T) gravity

Adnan Malik1,2,a, Attiya Shafaq2,b, M. Koussour3,c, Z. Yousaf4,d

1 School of Mathematical Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
2 Department of Mathematics, University of Management and Technology, Sialkot Campus, Lahore, Pakistan
3 Quantum Physics and Magnetism Team, LPMC, Faculty of Science Ben M’sik, Casablanca Hassan II University, Casablanca, Morocco
4 Department of Mathematics, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan

Received: 18 August 2023 / Accepted: 1 September 2023 / Published online: 22 September 2023
© The Author(s) 2023

Abstract This paper investigate the impacts of local den-
sity perturbations on the stability of self-gravitating com-
pact objects by utilizing cracking technique within the con-
text of f (R, T ) gravity, where R and T represent the Ricci
scalar, and the trace of energy–momentum, respectively. To
achieve this, we developed the hydrostatic equilibrium equa-
tion for spherically symmetric spacetime with anisotropic
matter configuration and subsequently applied the Krori–
Barua spacetime coefficient. Subsequently, the hydrostatic
equilibrium equation of the configuration is perturbed by
employing the local density perturbations to the system,
while considering a barotropic equation of state. To ascer-
tain the validity of the proposed technique, we applied it
to several compact stars, including, Her X-1, SAX J1808.4-
3658, 4U 1820-30, PSR J1614-2230, Vela X-1, Cen X-3, and
RXJ1856-37 and found that all the considered stars exhibit
cracking or overturning. This study conclusively highlights
the significance of the cracking technique in providing valu-
able insights into the stability analysis of self-gravitating
compact objects.

1 Introduction

In the fields of cosmology and astrophysics, the acceler-
ated expansion of the cosmos is of considerable significance,
prompting researchers to present several theories to explain
the underlying causes of this cosmic expansion. The obser-
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vations of galaxy clustering, supernovae experiments, and
variations in the cosmic microwave background are some
of the sources that substantially supported the notion of the
expanding universe. The primary cause of the cosmic expan-
sion is dark energy, which is characterized by strong pressure
and constitutes a substantial portion of the total energy of the
universe. Nonetheless, despite extensive research, the pre-
cise nature of dark energy remains a significant challenge
[1–3]. Einstein’s theory of relativity has made a substan-
tial contribution to revealing the mysteries of the cosmos
and completely transforming our understanding of space,
time, and gravity [4]. Despite its importance to modern
physics, this theory does have limits in terms of understand-
ing strong gravitational fields, explaining cosmic acceler-
ation, and accounting for dark matter. To overcome these
drawbacks, researchers have proposed alternate theories of
gravity that, in some circumstances, provide more satisfac-
tory explanations than the classical theory. As a result, it has
become evident that various modifications are required for
the classical theory to effectively examine cosmic expansion.
As a result, several theories have been proposed by modifying
general relativity (GR), such as the f (R), f (R,G), f (R, T ),
f (Q), f (G), f (R, φ) and f (R, φ, X)theories of gravity [5–
17]. In addition to address the shortcomings of the classical
theory, these theories present new cosmological perspectives
and provide valuable insights into important problems like
dark energy and cosmic acceleration [18–22]. Harko et al.
[23] presented f (R, T ) gravity, by incorporating the trace
of the energy–momentum tensor as an additional term in the
action, by modifying the geometrical aspect of Einstein field
equations. The functional forms f (R) and f (T ) describe
the gravitational components of the total action. The primary
objective of f (R, T ) gravity is to account for certain observa-
tional phenomena that have been difficult to explain through
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GR, including large pulsars [24], dark matter [25], and dark
energy [26]. The f (R, T ) gravity has gained considerable
attention mainly due to its distinctive characteristic of non-
minimal coupling between matter and geometry. Numerous
studies have recently investigated and reported on various
f (R, T ) gravity applications in the literature [27–35].

Compact stars, which emerge during the ultimate stages of
stellar evolution, have been the substantial subject of astro-
physics research [36–43]. Despite the fact that the precise
nature of compact stars is still unknown, significant evidence
suggests that these celestial objects are characterized by high
mass and small radii. Compact objects are divided into many
categories according to their mass-to-radius ratios, such as
neutron stars, white dwarfs, and black holes. The proposal
put forth by Baade and Zwicky [44] suggesting that super-
novae could lead to the formation of highly dense objects
like neutrons, has significantly contributed to advancing our
understanding of compact stars. The discovery of the first
pulsar by Hewish et al. [45] has revolutionized our under-
standing of compact stars. A compact star characterized by a
higher density and smaller radius [46]. Ruderman [47] signif-
icantly advanced astrophysics by identifying the anisotropic
characteristics of stellar structures. In the literature [48], the
stellar structures with anisotropic pressure have been investi-
gated by means of the equation of state (EoS). While studying
compact stars, it is highly appropriate to take into account the
anisotropic form of modified gravity. Kalm et al. [49] used the
Krori and Barua metrics to address the effects of anisotropic
matter on compact objects. Bhar et al. [50] analyzed the pos-
sibility of compact stars in higher dimensions by examining
the noncommutative anisotropic stars. The nature of com-
pact stars can be further investigated through both general
relativity and modified theories of gravity [51–53].

The fluid with anisotropic pressure, characterized by
unequal principal stresses, has been a fundamental consider-
ation in our study. The importance of anisotropic pressure as
a starting point has been discussed, serving as a foundation
for further investigation. Recent advancements in our under-
standing, as highlighted in reference [54], have presented a
new perspective on the justification of anisotropic pressure
in fluid configurations. The results presented in [54] demon-
strate that, even when the initial configuration is assumed to
be isotropic, physical processes fundamental to star evolu-
tion will always tend to produce pressure anisotropy, espe-
cially in relativistic contexts. This insight reinforces the fact
that anisotropic pressure is not only a plausible outcome but
an expected feature in fluid systems undergoing dynamic
changes.The important point to highlight is that equilibrium
states in fluid systems are the outcomes of dynamic stages.
Crucially, any anisotropy acquired during these dynamic
stages persists, no matter how small, as the system reaches
equilibrium. This idea is consistent with the ideas put forth in
[54], where stellar evolution-related physical processes result

in anisotropic pressure that is fundamental to the equilibrium
configuration of the system.

Investigating the stability of compact stars is an essen-
tial aspect of modern astrophysics because it offers signifi-
cant perspectives regarding evolution, and dynamics of the
celestial objects. The stability of these stars relates to their
ability to maintain equilibrium between inward and outward
forces. Within these compact objects, fusion processes pro-
duce energy, generating outward pressure that opposes gravi-
tational collapse. However, when the energy is exhausted, the
inward forces dominate, leading to the collapse and forma-
tion of compact stars. Bondi [55] significantly contributed to
investigate the stability of celestial objects using the adiabatic
criterion. Chandrasekhar [56] made significant contributions
to analyze the stability of compact objects by employing
Bondi’s theoretical framework and incorporating the adia-
batic index. To investigate the impact of dissipation on the
dynamical instability of a fluid with spherically symmet-
ric properties, Herrera et al. [57] conducted an analysis of
both the Newtonian and relativistic regimes. Chan et al. [58]
demonstrated that even slight change in anisotropy in the
unperturbed fluid has a substantial impact on system stabil-
ity in both Newtonian and relativistic limits. In a subsequent
study [59], the same researchers investigated the effects of
shearing forces and viscosity, the effects of shearing forces
and viscosity, contribute to increase the fluid stability in both
the Newtonian and relativistic frameworks.

Perturbation analysis is a crucial technique in stability
analysis of compact stars, wherein perturbations are intro-
duced to the physical variables of a compact object. This tech-
nique effectively explains the evolution of stars through the
analysis of gravitating system fluctuations. The central theme
of perturbation analysis is to comprehend the impact of per-
turbations in physical parameters on the stability of a compact
object. By considering perturbations in physical parameters,
it becomes possible to estimate the different stages of the evo-
lution of stars and identify levels of stability or instability.
This technique provides insights into the underlying phys-
ical processes that govern the behavior of self-gravitating
compact objects. Regge and Wheeler [60] investigated the
stability analysis of relativistic objects by introducing a met-
ric perturbation within the context of general relativity and
offered valuable insights into the behavior and stability of
relativistic objects under various conditions. Hammad [61]
analyzed the effects of density perturbations in the cosmic
microwave background in f (R, φ) model and suggested that
the observed density perturbations can be accurately recov-
ered with high precision naturally.

Herrera [62] first proposed the cracking technique as an
alternative technique for analyzing instabilities within com-
pact objects. This method aims to examine the behavior of
fluid within the compact object when its equilibrium state is
disturbed. Specifically, this method addresses the point where
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non-zero radial forces appear within the configuration. In the
context of this approach, cracking occurs cracking occurs
due to inwardly directed radial forces changing sign at a spe-
cific point ( δ�

δρ
< 0 → δ�

δρ
> 0). Conversely, overturning

refers to a situation, when outwardly directed forces chang-
ing sign from positive to negative ( δ�

δρ
> 0 → δ�

δρ
< 0). Di

Prisco et al. [63] expanded on the cracking method by using
the Raychaudhuri equation to identify the necessary con-
straints for cracking. Herrera and Santos [64] analyzed the
effects of local anisotropy on cracking of compact objects
through a Jeans instability analysis. Herrera and Varela [65]
suggested a technique to examine cracking in non-spherical
systems by introducing axisymmetric disturbances within an
ideal fluid configuration. Prisco et al. [66] analyzed the crack-
ing within self-gravitating compact objects by perturbing the
local anisotropy. Abreu et al. [67] investigated the crack-
ing by employing the perturbations in local anisotropy and
density of compact objects using both local and non-local
EoS. Abreu et al. [68] investigated the presence of crack-
ing and utilizing concepts related to density fluctuations and
sound speeds. Azam et al. [69] investigated the effects of
electromagnetic fields on the stability of charged compact
objects through cracking technique. Investigating the spe-
cific case of PSR J1614-2230, Azam et al. [70] investigated
the cracking phenomena within a quadratic regime in the
presence of electromagnetic fields and concluded that star
exhibits cracking in the presence of charge. Sharif and Sadiq
[71] examined the cracking of charged anisotropic fluid con-
figuration by employing polytropic equations of state while
considering the presence of electromagnetic fields. Gonzalez
et al. [72,73] investigated the cracking phenomena by con-
sidering density-dependent physical parameters and incor-
porating local density perturbations to both anisotropic and
isotropic matter distributions. Azam and Mardan [74] inves-
tigated the effects of density fluctuations by employing the
cracking technique within a linear regime. Mardan and Azam
[75] investigated cracking in charged spherical polytropes by
incorporating perturbations in the physical parameters. Gon-
zalez et al. [76] also examined the cracking in two distinct
types of charged cylindrical polytropes at specific values of
density and other parameters. Sharif and Sadiq [77] inves-
tigated the impacts of density fluctuations on both isotropic
and anisotropic matter configuration employing a barotropic
EoS in the realm of GR. Sharif and Sadiq [78] investigated
the cracking with anisotropic spherically symmetric matter
configurations and demonstrated that models with a spe-
cific form of Chaplygin EoS exhibits cracking and instability
increases with higher charge parameter. Len et al. [79] inves-
tigated the cracking with anisotropic spherically symmetric
matter configurations with a polytropic equation of state by
employing density perturbations in matter variables. Azam
and Nazir [80] discussed the cracking in polytropic compact
objects by analyzing the effects of perturbations in energy

density and local anisotropy, carrying implications for the
diverse astrophysical scenarios. Noureen et al. [81] proposed
a technique to observe cracking points by employing local
density perturbation in f (R) gravity and investigated the sta-
bility of self-gravitating compact objects.

In this manuscript, we aim to analyze the stability of
compact stars in f (R, T ) gravity using the cracking tech-
nique. To accomplish this, we employ local density per-
turbation in spherically symmetric spacetime characterized
by anisotropic matter distribution and examine the config-
uration for cracking and overturning points. The structure
of this paper is as follows: Sect. 2, initiates by presenting
the field equations of f (R, T ) gravity, and subsequently it
establishes the expression for the hydrostatic equilibrium
equation. Within this section, we also employ Krori Barua
spacetime coefficients to the hydrostatic equilibrium equa-
tion. In Sect. 3, we developed the expression of radial forces
to examine cracking within the configuration, by perturbing
all physical variables employing local density perturbation
(LDP). Section 4 outlines the matching conditions neces-
sary to determine constants resulting from the Krori Barua
approach. Section 5, presents the physical analysis via graph-
ical illustrations of radial forces for all considered compact
stars to validate the effectiveness of our developed technique.
Concluding remarks are presented in Sect. 6, along with a list
of references.

2 Development of field equations in f (R, T ) gravity

The Einstein Hilbert (EH) action for f (R, T ) is presented as
[23],

S =
∫

d4x
√−g[ f (R, T ) + Lm], (1)

where Lm refers to the matter Lagrangian, g is the determi-
nant of gξη, R represents the Ricci scalar, and T refers to
trace of energy momentum tensor. The field equations for
f (R, T ) gravity results from varying the EH given in Eq. (1)
with respect to the metric tensor gξη is illustrated as,

Rξη fR − 1

2
f gξη + (gξη∇α∇α − ∇ξ∇η) fR

= Tξη − fT	ξη − fT Tξη, (2)

where fR = ∂ f

∂R
and fT = ∂ f

∂T
, whereas ∇α denotes the

covariant derivation operators. Further, Tξη is the stress–
energy tensor and 	ξη is the tensorial quantity expressed
as,

	ξη = gξηδTξη

δgαβ
= −2Tξη + gξηLm − 2gξη ∂2Lm

∂gαβ∂gξη
. (3)

The source of matter configuration assumed in this study is
anisotropic and can be expressed by the following energy–
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momentum tensor.

Tξη = (ρ + pt )uξuη − pt gξη + (pr − pt )υξυη, (4)

Tξη incorporates the density, tangential, and radial pressures
signified by ρ, pt , and pr respectively. In addition, uξ υη are
the four-velocity vectors given by: uξ = ea/2δ0

ξ and υη =
eb/2δ1

η. By considering Lm = ρ, Eq. (3) can be written as

	ξη = −2Tξη + ρgξη. (5)

The equation of motion Eq. (2) can be stated as follows by
using Eq. (5)

Gξη = Rξη − 1

2
Rgξη = T ef f

ξη , (6)

where,

T ef f
ξη = 1

fR

[
(1 + fT )Tξη − ρgξη fR

+ 1

2
gξη( f − R fR) + (∇ξ∇η − gξη∇α∇α) fR

]
. (7)

For our current analysis, we consider a static spherically sym-
metric spacetime, whose line element reads as

ds2 = ea(r)dt2 − eb(r)dr2 − r2(dθ2 + sin2θdφ2), (8)

here ea(r) and eb(r) signifies metric coefficients. By using the
line element Eq. (8) together with the energy–momentum
tensor Eq. (7), the field equations takes the following form:

G00 = ea

fR

[
ρ + 1

2
f − 1

2
R fR + e−b f ′′

R + e−b
(
b′

2
+ 2

r

)
f ′
R

]
,

(9)

G11 = eb

fR

[
(1 + fT )pr + ρ fT − 1

2
f + 1

2
R fR

− e−b
(
a′

2
+ b′ + 2

r

)
f ′
R

]
, (10)

G22 = r2

fR

[
(1 + fT )pt + ρ fT − 1

2
f + 1

2
R fR − e−b f ′′

R

− e−b
(
a′

2
+ b′

2
+ 1

r

)
f ′
R

]
, (11)

G33 = r2sin2θ

fR

[
(1 + fT )pt + ρ fT − 1

2
f + 1

2
R fR − e−b f ′′

R

− e−b
(
a′

2
+ b′

2
+ 1

r

)
f ′
R

]
. (12)

Here prime (′) signifies the derivatives with respect to radial

coordinate “r”, fR = ∂ f

∂R
and fT = ∂ f

∂T
. Further, after

some manipulations on the field equations Eqs. (9)–(12),

we acquired the hydrostatic equilibrium equation for the
anisotropic stellar configuration expressed as,

dpr
dr

= eb fR
(1 + fT )

[
e−2b

fR

(
f − R fR

2
eb +

(
a′

2
+ b′ + 2

r

)
f ′
R

)]
,1

− ρa′

2
−

(
a′

2
+ 2

r
− f ′

R R
′

fRρ′

)
pr

+ 2pt
r

− e−b

(1 + fT )

(
a′

2
+ 2

r

)
f ′′
R + e−b

(1 + fT )

×
(

3

4
a′b′ + a

′2

4
+ 3b′

r
+ 2

r2 + b
′2
)
f ′
R − b′

(
R fR − f

2(1 + fT )

)

− T ′

(1 + fT )ρ′

(
f ′
T pr + ρ fT

)
− fT

(1 + fT )

(
ρ′ − ρ f ′

R R
′

ρ′ fR

)
,

(13)

which leads to

� = −dpr
dr

+ eb fR
(1 + fT )

×
[
e−2b

fR

(
f − R fR

2
eb +

(
a′

2
+ b′ + 2

r

)
f ′
R

)]
,1

− ρa′

2
−

(
a′

2
+ 2

r
− f ′

R R
′

fRρ′

)
pr

+ 2pt
r

− e−b

(1 + fT )

(
a′

2
+ 2

r

)
f ′′
R + e−b

(1 + fT )

×
(

3

4
a′b′ + a

′2

4
+ 3b′

r
+ 2

r2 + b
′2

)
f ′
R − b′

(
R fR − f

2(1 + fT )

)

− T ′

(1 + fT )ρ′

(
f ′
T pr + ρ fT

)
− fT

(1 + fT )

(
ρ′ − ρ f ′

R R
′

ρ′ fR

)
. (14)

The equilibrium state of the anisotropic compact star is char-
acterized by equation Eq. (14), which we will employ to
discuss cracking and overturning by analyzing its perturbed
form. To accomplish this, we will incorporate the Krori
Barua spacetime coefficients [82,83] in Eq. (14) specified
as, a = Br2 + C and b = Ar2, where A, B, and C are
constants.

� = − dpr
dr

+ eAr
2
fR

(1 + fT )

×
[
e−2Ar2

fR

(
f − R fR

2
e−Ar2 +

(
Br + 2Ar + 2

r

)
f ′
R

)]
,1

− Brρ −
(
Br + 2

r
− f ′

R R
′

fRρ′
)
pr

+ 2pt
r

− eAr
2
fR

(1 + fT )

(
Br + 2

r

)
f ′′
R + eAr

2
fR

(1 + fT )

×
(

3ABr2 + B2r2 + 6A + 4A2r2 + 2

r2

)
f ′
R

− (Ar)

(
R fR − f

(1 + fT )

)
− T ′

(1 + fT )ρ′
(
f ′
T pr + ρ fT

)

− fT
(1 + fT )

(
ρ′ − ρ f ′

R R
′

ρ′ fR

)
. (15)
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After simplifying Eq. (15), we get

� = −dpr
dr

− Brρ −
(
Br + 2

r
− f ′

R R
′

fRρ′

)
pr + 2pt

r

+ e−Ar2

(1 + fT )

(
− Br − 2

r
+ Br R′

ρ′ + 2Ar R′

ρ′ + 2R′

rρ′

)
f ′′
R

+ 1

(1 + fT )

(
− ABr2e−Ar2 + B2r2e−Ar2 − 4A2r2e−Ar2

+ Be−Ar2 − f R′ fR
2 fRρ′

)
f ′
R

−
(
Br + 2Ar + 2

r

)
e−Ar2

( fR′)2R′

fR(1 + fT )ρ′ − T ′

(1 + fT )ρ′

×
(

fT
2

+ f ′
T pr + ρ fT

)
− fT

(1 + fT )

(
ρ′ − ρ f ′

R R
′

ρ′ fR

)
.

(16)

Equation (15) serves as the fundamental equation that will
enable us to investigate stable and unstable regions within
anisotropic stellar configuration in the framework of f (R, T )

gravity by applying local density perturbations.

3 Local density perturbation technique in f (R, T )

This section illustrates the basic formulation of the LDP
technique in the framework of f (R, T ) theory of gravity
to analyze the stability of an anisotropic configuration with
barotropic EoS, i.e., pr = pr (ρ) and pt = pt (ρ). LDP is
employed in the system to perturb all the physical variables,
which are assumed to be density-dependent in this study. Sub-
sequently, the configuration is disturbed from its hydrostatic
equilibrium state due to LDP resulting in the occurrence of
radial forces δ�

δρ
. Our present study focuses on analyzing the

change in the signs of radial forces δ�
δρ

, where cracking occurs
due to inwardly directed radial forces experience a change
from negative to positive values ( δ�

δρ
< 0 → δ�

δρ
> 0), while

outwardly directed forces experience a change from positive
to negative values ( δ�

δρ
> 0 → δ�

δρ
< 0) lead to overturn-

ing within the configuration. To perturb all physical variables
within the configuration, we apply the LDP ρ → ρ + δρ, as
follows

ρ(ρ + δρ) = ρ(ρ) + δρ. (17)

ρ′(ρ + δρ) = ρ′(ρ) + ρ′′

ρ′ δρ. (18)

pr (ρ + δρ) = pr (ρ) + dpr
dρ

δρ. (19)

dpr
dr

(ρ + δρ) = dpr
dr

+
[
d

dr

(
dpr
dρ

)
+ d2ρ

dr2

(
dpr
dρ

)
.
dr

dρ

]
.

(20)

pt (ρ + δρ) = pt (ρ) + dpt
dρ

δρ. (21)

f (ρ + δρ) =
[
R′

ρ′ fR + φ′

ρ′ fφ
]
δρ. (22)

fR(ρ + δρ) = fR(ρ) + R′

ρ′ f
′
Rδρ. (23)

f ′
R(ρ + δρ) = f ′

R(ρ) + R′

ρ′ f
′′
Rδρ. (24)

f ′′
R(ρ + δρ) = f ′′

R(ρ) + R′

ρ′ f
′′′
R δρ. (25)

fT (ρ + δρ) = fT (ρ) + f ′
T

ρ′ δρ. (26)

f ′
T (ρ + δρ) = f ′

T (ρ) + f ′′
T T

′

ρ′ δρ. (27)

R′(ρ + δρ) = R′(ρ) + R′′

ρ′ δρ. (28)

T ′(ρ + δρ) = T ′(ρ) + T ′′

ρ′ δρ. (29)

Further, the perturbed form of Eq. (16) is expressed as,

� = �0

(
ρ, ρ′, pr , p′

r , pt , f, fR,

f ′
R, f ′′

R , fT , f ′
T , R′, T ′

)
+ δ�, (30)

where

δ� = ∂�

∂ρ
δρ + ∂�

∂ρ′ δρ
′ + ∂�

∂pr
δpr + ∂�

∂p′
r
δp′

r + ∂�

∂pt
δpt

+ ∂�

∂ f
δ f + ∂�

∂ fR
δ fR + ∂�

∂ f ′
R

δ f ′
R + ∂�

∂ f ′′
R

δ f ′′
R

+ ∂�

∂ fT
δ fT + ∂�

∂ f ′
T

δ f ′
T + ∂�

∂R′ δR
′ + ∂�

∂T ′ δT
′. (31)

Equation (31) simplifies to

δ�

δρ
= ∂�

∂ρ
+ ∂�

∂ρ′

(
ρ′′(ρ′)−1

)
+ ∂�

∂pr

(
dpr
dρ

)

+ ∂�

∂p′
r

( (
dpr
dρ

)′
+

(
dpr
dρ

)
ρ′′(ρ′)−1

)
+ ∂�

∂pt

(
dpt
dρ

)

× ∂�

∂ f

(
f ′
R R

′

ρ′ + f ′
T T

′

ρ′

)
+ ∂�

∂ fR

(
f ′
R R

′

ρ′

)

+ ∂�

∂ f ′
R

(
f ′′
R R

′

ρ′

)
+ ∂�

∂ f ′′
R

(
f ′′′
R R′

ρ′

)
+ ∂�

∂ fT

(
f ′
T

T ′

ρ′

)

+ ∂�

∂ f ′
T

(
f ′′
T T

′

ρ′

)
+ ∂�

∂R′

(
R′′

ρ′

)
+ ∂�

∂T ′

(
T ′′

ρ′

)
. (32)

The partial derivatives in Eq. (32) are as follows:

∂�

∂ρ
= −Br. (33)
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∂�

∂ρ′ = − f ′
R R

′ pr
fR(ρ′)2 + e−Ar2

(1 + fT )

×
(−Br R′

(ρ′)2 − 2Ar R′

(ρ′)2 − −2R′

r(ρ′)2

)
f ′′
R

+ e−Ar2

(1 + fT )

(
f R′

2 fR(ρ′)2

)
f ′
R

+ e−Ar2
( f ′

R)2R′

fR(1 + fT )(ρ′)2

(
2Ar + Br + 2

r

)

+ T ′

(1 + fT )(ρ′)2

(
fT
2

+ f ′
T pr + ρ fT

)

− fT
(1 + fT )

(
1 + ρ f ′

R R
′

(ρ′)2 fR

)
. (34)

∂�

∂pr
= −

(
Br + 2

r
− f ′

R R
′

f 2
Rρ′

)
− T ′

(1 + fT )ρ′ . (35)

∂�

∂p′
r

= −1. (36)

∂�

∂pt
= 2

r
. (37)

∂�

∂ f
= − e−Ar2

(1 + fT )

(
f ′
R R

′

2 fRρ′

)
. (38)

∂�

∂ fR
= − f ′

R R
′ pr

( fR)2ρ′ + 1

(1 + fT )

(
f R′ f ′

R

2( fR)2ρ′

)

+ e−Ar2
( f ′

R)2R′

( fR)2(1 + fT )ρ′

(
2Ar + Br + 2

r

)

− fT
(1 + fT )

(
ρ f ′

R R
′

ρ′( fR)2

)
. (39)

∂�

∂ f ′
R

= R′ pr
fRρ′ − f R′

2 fR(1 + fT )ρ′ + e−Ar2

(1 + fT )

×
(

− ABr2 + B2r2 − 4A2r2 + B

)

− 2e−Ar2
f ′
R R

′

fR(1 + fT )ρ′

(
Br + 2Ar + 2

r

)

+ fT
(1 + fT )

(
ρR′

ρ′ fR

)
. (40)

∂�

∂ f ′′
R

= e−Ar2

(1 + fT )

(
Br R′

ρ′ + 2Ar R′

ρ′ + 2R′

rρ′ − 2

r
− Br

)
.

(41)

∂�

∂ fT
= − e−Ar2

(1 + fT )2

(
Br R′

ρ′ + 2Ar R′

ρ′ + 2R′

rρ′ − 2

r
− Br

)
f ′′
R

− f f ′
R R

′

2 fR(1 + fT )2ρ′

− e−Ar2

(1 + fT )

(
− ABr2 + B2r2 − 4A2r2 + B

)
f ′
R

+ e−Ar2
( f ′

R)2R′

fR(1 + fT )2ρ′

(
Br + 2Ar + 2

r

)

+ T ′

(1 + fT )ρ′

×
(

− 1 + fT
(1 + fT )

− ρ + ρ fT
(1 + fT )

+ f ′
T pr

(1 + fT )

)
.

(42)

∂�

∂ f ′
T

= − T ′ pr
(1 + fT )ρ′ . (43)

∂�

∂R′ = pr f ′
R

fRρ′ − f f ′
R

2 fR(1 + fT )ρ′ + e−Ar2

(1 + fT )

×
(
Br

ρ′ + 2Ar

ρ′ + 2

rρ′

)
f ′′
R

− e−Ar2
( f ′

R)2

fR(1 + fT )ρ′

(
2Ar + Br + 2

r

)
+ ρ fT f ′

R

fR(1 + fT )ρ′ .

(44)

∂�

∂T ′ = − 1

ρ′(1 + fT )

(
fT + ρ fT + f ′

T pr

)
. (45)

4 Matching conditions

In this section, we aim to estimate the values of A and B
employed in the solution set, determined in the preceding
section. While various options exist for the matching condi-
tions, however for the current study [84–86], we examine the
Schwarzschild external solution. The Schwarzschild metric
is therefore expressed as

ds2 =
(

1 − 2M

r

)
dt2 − 1

1 − 2M

r

dr2 − r2(dθ2

+sin2θdφ2). (46)

To solve the field equations at r = R, it is necessary to apply
the following matching conditions to Eq. (8).

g−
t t = g+

t t , g−
rr = g+

rr ,
∂g−

t t

∂r
= ∂g+

t t

∂r
. (47)

Here, (+) and (−) signify the exterior and interior solutions,
respectively. By using Eq. (47), we ascertain the constants
A, B and C as

A = ln

(
1 − 2M

R

)(−1/R2)

, (48)

B = M

R3 − 2M2

R4 , (49)

C = ln

(
1 − 2M

R

)
−

(
M

R
− 2M2

R2

)
. (50)

Here, R and M signify the Schwarzschild radius and
mass respectively. Consequently, employing the expressions
Eqs. (48)–(50), Table 1 provides the values of A and B for
various compact stars.
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Table 1 Calculated values of A, B, M and R of compact stars

Compact stars MM� R/km α = M/R A (km−2) B (km−2)

Her-XI 0.88 M� 7.7 0.168 0.010906441192 0.0042673646183

SAXJ1808.4-3658 1.435 M� 7.07 0.299 0.01823156974 0.014880115692

4U 1820-30 2.25 M� 10.0 0.332 0.010906441192 0.009880 9523811

PSR J 1614 2230 1.97 M� 10.977 0.1795 0.003689961987 0.002323332389

Vela X-1 1.77 M� 10.654 0.1661 0.003558090580 0.002191967045

Cen X-3 1.49 M� 10.136 0.1471 0.003388625404 0.002026668572

RXJ 1856-37 0.904 M� 6 0.222 0.01630519402 0.01109112709

Fig. 1 Plots of
δ�

δρ
for Her X-1: A = 0.0069062764281 km−2, B = 0.0042673646183 km−2

5 Discussion

This section outlines the occurrence of cracking by inves-
tigating the effects of LDP in the framework of f (R, T )

gravity. Equation (32) signifies the perturbed state of the con-
figuration and will be used to examine the effects of LDP. We
will investigate cracking or overturning points by observing
the change in signs of this perturbed state after employing
LDP. In this work, to illustrate the workability of our devel-

oped technique, we consider the already developed physical
viable model [87] expressed as,

f (R, T ) = R + λT, (51)

where λ is arbitrary constants. We will analyze the cracking
and overturning of Her-XI, SAXJ1808.4-3658, 4U 1820-30,
PSR J 1614 2230, Vela X-1, Cen X-3, and RXJ 1856-37 by

plotting the distribution of forces
δ�

δρ
. The mass, radius, and
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Fig. 2 Plots of
δ�

δρ
for SAXJ1808.4-3658: A = 0.018231569740 km−2, B = 0.014880115692 km−2

values of constant parameters of compact stars are given in
Table 1. Further, Figs. 1, 2, 3, 4, 5, 6 and 7 in the subsequent
subsections exhibit the graphical representation of the radial

forces
δ�

δρ
. A significant point to mention here is that we

carried out our current analysis using the software MATHE-
MATICA.

5.1 Star 1: Her X-1

Her XI was initially observed by Tanabaum et al. [88], which
pulsates every 1.24 s and has an orbital period of 1 d. Deeter
et al. [89] analyzed pulsation cycle of Her X-I by examining
observational data of 7 years. To comprehend the neutron
star’s development, Taam and Van den Heuvel [90] analyzed
the gradual dissipation of magnetic field strength on the sur-
face of a neutron star. Soong et al. [91] investigated the beam-
ing pattern of the Her X-1 by analyzing the radiation emitted
by it. The mass–radius ratio of Her X1 was theoretically cal-
culated by Li et al. [92], who concluded that it matched the
observational data of Her X-1. Kuster et al. [93] observed

the intensity and distribution of X-ray photons emitted by
Her X-1 to investigate its evolution over time. Maurya and
collaborators [94] contributed to enhancing the understand-
ing by developing an anisotropic theoretical framework and
refining the previously known parameters.

The graphical analysis of
δ�

δρ
for Her X-1 is illustrated in

Fig. 1. Figure 1a–c demonstrates that star exhibit overturning
within the interval λ ∈ (0, 0.25), while Fig. 1f–i depicts that
star experiences cracking within the intervals λ ∈ [1.8, 3]
causing instability in the configuration. However, Fig. 1d, e
illustrates that star maintains stability within the interval λ ∈
[0.25, 1.8). Table 2 presents a concise summary of Fig. 1a–i,
highlighting the precise values at which the Her X-1 become
unstable.

5.2 Star 2: SAXJ1808.4-3658

SAXJ1808.4-3658 was initially observed by Zand et al.
[95]. Li et al. [96] analyzed the mass–radius relation of
SAXJ1808.4-3658 relative to the mass–radius relation of
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Fig. 3 Plots of
δ�

δρ
for 4U 1820-30: A = 0.010906441192 km−2, B = 0.0098809523811 km−2

neutron stars and suggested that it is likely a strange star.
Recently, Bult et al. [97] examined the thermal evolution
of SAXJ1808.4-3658 by analyzing data from an X-ray tele-
scope.

The graphical analysis of
δ�

δρ
for SAXJ1808.4-3658 is

illustrated in Fig. 2. The graphs of
δ�

δρ
for SAXJ1808.43658

demonstrate that overturning appears for λ ∈ (0, 0.383),
as shown in Fig. 2a, b. Moreover, Fig. 2f–i depict that star
undergo cracking at λ ∈ [2.2, 3], leading to instability in
the configuration. However, Fig. 2c–e demonstrates that the
star retains stability at λ ∈ [0.383, 2.2). Table 3 summarizes
Fig. 2a–i concisely, highlighting the specific values at which
the SAXJ1808.4-3658 becomes unstable.

5.3 Star 3: 4U 1820-30

Guver et al. [98] estimated the radius and mass of 4U 1820-
30 to be 9.11 ± 0.40km and 1.58 ± 0.06 M�, respectively
by analyzing its spectral data obtained from thermonuclear
bursts. Recently, Suvorov [99] observed the thermonuclear

bursts of 4U 1820-30 and employed numerical simulations,
revealing significant details about the dynamics of a neutron
star.

Figure 3 illustrates the plots of
δ�

δρ
4U 1820-30 for a range

of model parameter λ. Figure 3a demonstrates that 4U 1820-
30 exhibit some disturbances in the form of singularities at
λ ∈ (0.03, 1.1). Notably, Fig. 3b–d illustrate that no crack-
ing or overturning appears, suggesting that the star retains
stability within the interval λ ∈ [1.1, 1.90). For 4U 1820-30,
cracking appears at λ ∈ [1.91, 3], as illustrated in Fig. 3e–
i, resulting in instability within the configuration. However,
no overturning appears in this case. Table 4 presents a con-
cise summary of Fig. 3a–i, highlighting the specific values
at which the 4U 1820-30 becomes unstable.

5.4 Star 4: PSR J 1614-2230

PSR J1614-2230 is a highly magnetized dense pulsar with
a spin period of 3.15 ms and was initially discovered
through Parkes telescope [100]. Demorest et al. [101] ana-
lyzed the physical properties of PSR J1614-2230 utilizing
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Fig. 4 Plots of
δ�

δρ
for PSR J 1614-2230: A = 0.003689961987 km−2, B = 0.002323332389 km−2

the Green Bank Telescope and determined its mass to be
1.97 ± 0.04M�. Further, Gedela et al. [102] developed a
model by employing the Karmarkar condition for PSR J1614-
2230 to determine its mass and radii more precisely.

The graphs representing
δ�

δρ
for PSR J1614-2230 illus-

trate that the star undergoes cracking for a specific range of
parameterλ as shown in Fig. 4. PSR J1614-2230 exhibit some
disturbances in the form of singularities at λ ∈ (0, 1.1) as
shown in Fig. 4a. Notably, Fig. 4b–e illustrate that no crack-
ing or overturning appears, suggesting that the star retains
stability within the interval λ ∈ [1.1, 1.85]. Notably, PSR
J1614-2230 exhibit cracking at λ ∈ [1.86, 3] as illustrated
in Fig. 4f–i. However, no overturning occurs in this case.
Table 5 presents a concise summary of Fig. 4a–i, highlight-
ing the precise values at which the PSR J 1614–2230 becomes
unstable.

5.5 Star 5: Vela X-1

Vela X-1 was initially discovered by Gursky et al. [103] in the
Vela constellation. Nagase et al. [104] investigated the phys-
ical characteristics of Vela X-1 and determined that it consti-
tutes an elliptical orbit and pulsates every 283.4 s. The mass
and radius of Vela X-1 were initially estimated by Quaintrell
et al. [105] through Doppler spectroscopy and spectroscopic
data of nearby orbiting stars. Later, Kalam et al. [106] used
the stiff equation of state and precisely determined the radius
of Vela X-1 to be (9.92−10.31) km.

The plots Fig. 5 illustrating perturbed force
δ�

δρ
for Vela

X-1 demonstrate that cracking appear for a particular range
of parameter λ, suggesting instability within the configura-
tion. Vela X-1 exhibit some disturbances in the form of sin-
gularities at λ ∈ (0, 1.1) as shown in Fig. 5a, b. Notably,
Fig. 5c, d illustrate that no cracking or overturning appears,
suggesting that the star retains stability within the interval
λ ∈ [1.1, 1.86]. The cracking for Vela X-1 is observed at
λ ∈ [1.87, 3] as illustrated in Fig. 5e–i, whereas no over-
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Fig. 5 Plots of
δ�

δρ
for Vela X-1: A = 0.003558090580 km−2, B = 0.002191967045 km−2

turning is observed in this case. Table 6 presents a concise
summary of Fig. 5a–i, illustrating the specific values at which
the Vela X-1 becomes unstable.

5.6 Star 6: Cen X-3

Cen X-3 was initially reported by Chodil et al. [107], in 1967
during the analysis of the X-ray profile obtained by sound
rocket. Giacconi et al. [108] made further observations in
this context and discovered that it pulsates every 4.84 s.

The plots Fig. 6 demonstrate the behavior of radial forces
δ�

δρ
for specific values of model parameter λ. Cen X-3 exhibit

some disturbances in the form of singularities at λ ∈ (0, 1.1)

as shown in Fig. 6a, b. Notably, no cracking or overturning
is observed within the interval λ ∈ [1.1, 1.85] , implying
stability within the configuration as shown in Fig. 6c, d. The
cracking for Cen X-3 is observed at λ ∈ [1.86, 3] as illus-
trated in Fig. 6e–i, whereas no overturning is observed in
this case. Table 6 presents a concise summary of Fig. 6a–

i, illustrating the specific values at which the configuration
becomes unstable.

5.7 Star 7: RXJ 1856-37

Walter et al. [109] first discovered RX J1856-37 as a neu-
tron star and estimated its radius to be around 14 km based
on observational data. Further studies by Pons et al. [110]
suggested its mass and radius to be 0.9M� and 6 km respec-
tively, however these suggested mass and radius were incom-
patible with equation of state (EoS). Drake et al. [111] sug-
gested that a quark matter EoS is more appropriate for study-
ing it because of its extremely small radius and high degree
of compactness. Predictions made by Walter et al. [112], sug-
gested that the age of RX J1856-37 should be roughly 0.5106
years. The most accurate mass (0.98M�) and radius (6.7 km)

for RX J1856-37 was determined by Singh et al. [113] by
formulating a mathematical framework for compact object,
incorporating with an anisotropic inner fluid configuration
within the context of embedding class one.
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Fig. 6 Plots of
δ�

δρ
for Cen X-3: A = 0.003388625404 km−2, B = 0.002026668572 km−2

The graphical analysis of
δ�

δρ
for RXJ 1856-37 is illus-

trated in Fig. 7. The graphs of
δ�

δρ
for RXJ 1856-37 demon-

strate that overturning appears at λ ∈ (0, 0.57), as shown in
Fig. 7a, b. RXJ 1856-37 exhibit some disturbances in the form
of singularities at λ ∈ (0.57, 1.1) as illustrated in Fig. 7c.
However, Fig. 7d, e demonstrates that the star retains stabil-
ity at λ ∈ (1, 2.2). Notably, Fig. 7f–i depict that star undergo
cracking at λ ∈ [2.2, 3], leading to instability within the con-
figuration. Table 8 summarizes Fig. 7a–i concisely, highlight-
ing the specific values at which the RXJ 1856-37 becomes
unstable.

6 Conclusion

In this manuscript, we analyzed the stability of anisotropic
compact stars within the framework of f (R, T ) gravity by
employing the cracking technique. For this purpose, we con-
sidered the anisotropic spherically symmetric matter con-
figuration and developed a set of modified field equations
Eqs. (7)–(11) within the framework of f (R, T ) gravity. Sub-
sequently, we developed the hydrostatic equilibrium equation
Eq. (32) by employing energy conservation law and subse-
quently employed Krori and Barua metric potentials [82,83].
Furthermore, by employing LDP technique to the system
with a barotropic equation of state, we perturbed all the
physical variables within the configuration and developed the
mathematical expression for the distribution of radial forces.
Subsequently, we analyzed the perturbed state of configu-
ration Eq. (32), to identify cracking or overturning points
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Fig. 7 Plots of
δ�

δρ
for RXJ 1856-37: A = 0.01109112709 km−2, B = 0.0148801157 km−2

by investigating the changes in the signs of radial forces
in a perturbed state. Specifically, we observed the cracking
of Her X-1, SAXJ1808.4-3658, 4U 1820-30, PSR J 1614-
2230, Vela X-1, Cen X-3, and RXJ 1856-37. Further, to
illustrate the workability of our developed technique, we con-
sider the already developed physically viable model [87] i.e.,
f (R, T ) = R + λT .

Subsequently, we plotted the distribution of radial forces
δ�

δρ
at perturbed state to analyze cracking for each star illus-

trated by Figs. 1, 2, 3, 4, 5, 6 and 7 in the preceding section.
Tables 2, 3, 4, 5, 6, 7 and 8 presents a concise summary of
Figs. 1, 2, 3, 4, 5, 6 and 7, highlighting the precise values of
the model parameters at which cracking and overturning is
observed for each star. In brief, we summarize our analysis
as

• Her X-I undergoes overturning at λ ∈ (0, 0.25), while
cracking occurs at λ ∈ [1.8, 3], leading to unstable
configuration for certain range of model parameter λ.
Nonetheless, the configuration remains stable at λ ∈
[0.25, 1.8) as shown in Fig. 1.

• For SAXJ1808.4-3658, overturning is observed at λ ∈
(0, 0.383) and cracking at λ ∈ [2.2, 3], resulting in insta-
bility within the configuration. However, exhibits stable
behavior at λ ∈ [0.383, 2.2) as illustrated in Fig. 2.

• 4U 1820-30 exhibit some disturbances in the form of
singularities at λ ∈ (0.03, 1.1). For 4U 1820-30, cracking
appears at λ ∈ [1.91, 3], resulting in instability within
the configuration. Nonetheless, at λ ∈ [1.1, 1.90) star
exhibits stable behavior, as illustrated in Fig. 3.

• PSR J1614-2230 exhibit some disturbances in the form of
singularities at λ ∈ (0, 1.1). Notably, PSR J 1614-2230
exhibits cracking at λ ∈ [1.86, 3], while retains stability
within the interval λ ∈ [1.1, 1.85] as shown in Fig. 4.

• Vela X-1 exhibit some disturbances in the form of sin-
gularities at λ ∈ (0, 1.1). Vela X-1 exhibits cracking at
λ ∈ [1.87, 3], however at λ ∈ [1.1, 1.86] configuration
retains stability, as illustrated in Fig. 5.

• Cen X-3 exhibit some disturbances in the form of sin-
gularities at λ ∈ (0, 1.1). For Cen X-3, the instability
is observed within the configuration caused by cracking
at λ ∈ [1.86, 3], whereas no overturning is observed in
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Table 2 Cracking and overturning points in Her X-1

λ Cracking points (r(km)) Overturning points (r(km))

0.01 No cracking occurs r = 0.5041078

0.095 No cracking occurs r = 0.4680623

0.24 No cracking occurs r = 0.4425177

1.1 No cracking occurs No overturning occurs

1.75 No cracking occurs No overturning occurs

1.95 r = 5.8674411 No overturning occurs

2.25 r = 3.6595295 No overturning occurs

2.55 r = 2.8768659 No overturning occurs

2.99 r = 1.9518999 No overturning occurs

Table 3 Cracking and overturning points in SAXJ1808.4-3658

λ Cracking points (r(km)) Overturning points (r(km))

0.01 No cracking occurs r = 0.4964491

0.382 No cracking occurs r = 0.4223565

1.55 No cracking occurs No overturning occurs

2.1 No cracking occurs No overturning occurs

2.2 r = 3.6897642 No overturning occurs

2.35 r = 3.7228606 No overturning occurs

2.45 r = 3.2595106 No overturning occurs

2.85 r = 2.0018465 No overturning occurs

3 r = 1.8529125 No overturning occurs

Table 4 Cracking and overturning points in 4U 1820-30

λ Cracking points (r(km)) Overturning points (r(km))

0.99 No cracking occurs No overturning occurs

1.1 No cracking occurs No overturning occurs

1.65 No cracking occurs No overturning occurs

1.85 No cracking occurs No overturning occurs

1.99 r = 6.9509646 No overturning occurs

2.10 r = 6.1083399 No overturning occurs

2.39 r = 3.2293721 No overturning occurs

2.55 r = 2.5974036 No overturning occurs

2.95 r = 1.9420288 No overturning occurs

this case. However, at λ ∈ [1.1, 1.85] the configuration
remains stable as illustrated in Fig. 6.

• RXJ 1856-37 undergoes overturning at λ ∈ (0, 0.57),
while cracking occurs at λ ∈ [2.2, 3], leading to unstable
configuration for a certain range of model parameter λ.
Notably, RXJ 1856-37 exhibit some disturbances in the
form of singularities at λ ∈ (0.57, 1.1). Nonetheless, the
configuration remains stable at λ ∈ (1, 2.2) as illustrated
in Fig. 7.

These results imply that cracking and overturning occur when
a system experiences a disturbance that causes it to leave its

Table 5 Cracking and overturning points in PSR J 1614-2230

λ Cracking points (r(km)) Overturning points (r(km))

0.95 No cracking occurs No overturning occurs

1.15 No cracking occurs No overturning occurs

1.2 No cracking occurs No overturning occurs

1.56 No cracking occurs No overturning occurs

1.85 No cracking occurs No overturning occurs

2.15 r = 5.4451245 No overturning occurs

2.35 r = 3.6659347 No overturning occurs

2.75 r = 2.3007957 No overturning occurs

2.89 r = 2.1232896 No overturning occurs

Table 6 Cracking and overturning points in Vela X-1

λ Cracking points (r(km)) Overturning points (r(km))

0.65 No cracking occurs No overturning occurs

0.95 No cracking occurs No overturning occurs

1.1 No cracking occurs No overturning occurs

1.75 No cracking occurs No overturning occurs

1.95 r = 8.02752405 No overturning occurs

2.25 r = 4.7262183 No overturning occurs

2.40 r = 3.5326693 No overturning occurs

2.67 r = 2.4406990 No overturning occurs

2.88 r = 2.0854233 No overturning occurs

Table 7 Cracking and overturning points in Cen X-3

λ Cracking points (r(km)) Overturning points (r(km))

0.89 No cracking occurs No overturning occurs

1 No cracking occurs No overturning occurs

1.11 No cracking occurs No overturning occurs

1.81 No cracking occurs No overturning occurs

1.90 r = 8.3763854 No overturning occurs

2.12 r = 5.9646174 No overturning occurs

2.70 r = 2.3945115 No overturning occurs

2.81 r = 2.2253918 No overturning occurs

2.98 r = 1.9837921 No overturning occurs

hydrostatic equilibrium state. In our case, cracking occurs
within the configuration for all the considered stars for a par-
ticular range of model parameter λ, resulting in instability
within the configuration. Notably, our stability analysis illus-
trates that even a small perturbation can significantly influ-
ence the radial forces, resulting in instability. Moreover, our
developed technique is quite suitable to examine the stable
and unstable regions within the configuration, as this tech-
nique refines the stability analysis of the system.
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Table 8 Cracking and overturning points in RXJ 1856-37

λ Cracking points (r(km)) Overturning points (r(km))

0.03 No cracking occurs r = 0.5097648

0.56 No cracking occurs r = 0.3506800

1 No cracking occurs No overturning occurs

1.15 No cracking occurs No overturning occurs

2.15 No cracking occurs No overturning occurs

2.25 r = 3.0892104 No overturning occurs

2.55 r = 2.6117230 No overturning occurs

2.75 r = 2.3448919 No overturning occurs

2.95 r = 2.0218857 No overturning occurs
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