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1 Introduction

The Quark-Gluon Plasma (QGP) is a deconfined, chirally symmetric phase of nuclear matter
as described by Quantum Chromodynamics (QCD). The QGP is actively investigated through
heavy-ion collisions. Disentangling the properties of this short-lived state from the shower
of particles in the detectors requires an interplay of observables in the two main classes of
bulk properties and hard probes. The former pertain to the collective properties of the many
lower-energy particles, while the latter refer to the few energetic and/or feebly-coupled ones
which are not expected to equilibrate.

Jets are one of the most important hard probes — see [1–3] for recent reviews. These
self-collimated showers of hadrons are seeded by highly-energetic partons, in a regime where
perturbative QCD should be applicable. Whether that remains true as these partons cross the
QGP is still an open question, thus influencing the methods that one should apply to describe
jets in medium. If the jet and the medium are weakly coupled — which does not necessarily
imply a weakly-coupled medium — then the main theory ingredient in jet modification in
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the QGP is medium-induced radiation. These modifications are sourced by the jet partons
undergoing frequent exchanges of transverse momentum with the medium through elastic
scatterings, encoded in the transverse scattering kernel C(b⊥). The jet partons can also
undergo forward scattering, whereby they are first scattered off their original momentum
state and then back into it, thus shifting the dispersion relation by an amount named m∞,
the asymptotic mass.

The transverse scattering kernel C(b⊥) andm∞ are the most important medium-dependent
ingredients in the description of medium-induced radiation, see e.g. [4]. In this paper, we
continue our investigations of m∞, started in [5, 6]. We recall that these mass shifts are
written in terms of the gauge condensate Zg and the fermion condensate Zf [7]

m2
∞,q = g2CF

(
Zg + Zf

)
, m2

∞,g = g2CAZg + 2g2TFNFZf , (1.1)

where m2
∞,q applies for quarks and m2

∞,g applies for gluons. Here CF = (N2
c − 1)/(2Nc) is

the quadratic Casimir of the quark representation, CA = Nc is the adjoint Casimir, NF is
the number of light (Dirac) quark species, and TF = 1

2 .
Eq. (1.1) can be understood as arising from integrating out the energy scale of the jet

E ≫ T and truncating at first order in T/E. The matching coefficients are determined at
first order in g — we will return to this issue later. If the scale of the hard parton is E ≳ T

rather than E ≫ T , higher orders in the T/E expansion become relevant. This also makes
clear that ours is a distinct problem from the one recently tackled in [8–11], namely the
two-loop and power corrections to Hard Thermal Loops and their relation to the asymptotic
mass for quasiparticles obeying T ≫ p ≫ gT .

The condensates Zg and Zf are non-local and have a gauge-invariant definition in terms
of the correlators in the Hard Thermal Loop (HTL) action [7, 12]

Zf ≡
1

2dR

〈
ψ
vµγ

µ

v ·D
ψ
〉
, (1.2)

Zg ≡ 1
dA

〈
vαF

αµ 1
(v ·D)2 vνF

ν
µ

〉
, (1.3)

where vµ = (1,v) is the light-like four-velocity of the hard particle, dR is the dimension of
the fermion, dA the dimension of the adjoint representation, and the expectation value ⟨. . . ⟩
denotes a thermal expectation value. Appendix A specifies our conventions.

All operators in thermal QCD are sensitive not just to the contribution of thermal
modes, with momenta of the order of the temperature T . There exist also soft modes, with
momenta p ∼ gT , and gluonic ultrasoft modes, with momenta of O(g2T ). The former cause
the perturbative expansion to be in g rather than αs and are largely responsible for its slow
convergence. The latter, at an operator-dependent order, cause the loop expansion to fail [13].
Moreover, for bosons these infrared (IR) modes are dominated by classical field dynamics, as
their occupation numbers are nB(p) ≈ T/p≫ 1, with nB the Bose-Einstein distribution.

Soft modes first contribute to Zg at relative O(g), whereas Zf is first expected to receive
soft corrections at higher orders [7], i.e.

Zg = ZLO
g + δZg = T 2

6 − TmD

2π +O(g2) , Zf = ZLO
f + δZf =

T 2

12 + 0 +O(g2) , (1.4)
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where m2
D is the leading-order Debye mass, given by [14]

m2
D = g2T 2

3 (CA + TFNF) +O(g4) . (1.5)

The next-to-leading order (NLO) correction, δZg, is negative and, for values of the coupling
corresponding to QGP temperatures, of comparable magnitude to the leading-order (LO)
contribution ZLO

g . The main motivation for [5, 6] and for the present paper is then to use
an interplay of lattice and perturbation theory to determine the classical IR contribution
to all orders. This can also allow to extend the applicability of the evaluation of the mass
shift to lower temperatures, since it uses perturbation theory for the thermal modes only,
which still have αs as expansion parameters.

At the technical level, this has been made possible by developments introduced by
Caron-Huot in [7, 15]. These papers showed how, for a hard, light-like parton interacting with
the QGP, this classical contribution can be treated in Electrostatic QCD (EQCD) [16–20], a
dimensionally-reduced Effective Field Theory (EFT) of QCD. This allows for non-perturbative
evaluations of the EQCD contribution to C(b⊥) and Zg through lattice EQCD. We refer
to [21–23] for the evaluation of C(b⊥) in EQCD, its merging with the T -scale contribution
and its impact on medium-induced radiation.

For m∞, one can rely on the equivalence between inverse covariant derivatives and
integrals over Wilson lines to rewrite eq. (1.3) as an integral over the light-like separation
of the two field strengths, inserted over light-like Wilson lines — see eq. (2.1). In [5, 6] its
EQCD counterpart was measured on the lattice as a function of the separation. To perform
the separation integration, ref. [6] also provided a NLO perturbative determination in EQCD,
to be used at distances shorter than the lattice spacing. There, in addition to discretisation,
one faces another conceptual obstacle: the ultraviolet (UV) of EQCD is not, by construction,
the UV of 4D thermal QCD. This is made manifest by the emergence of power-law and
log-divergences from the integration of the LO (one-loop) and NLO (two-loop) perturbative
EQCD at short separations. The super-renormalizable nature of EQCD prevents further
UV divergences at higher orders.

In [6] the separation integral could then be carried out by subtracting the LO and NLO
UV-divergent behaviors. For the power-law divergent LO term, this only amounts to avoiding
double counting with the soft limit of the T -scale LO contribution ZLO

g . For the log-divergent
NLO term, this subtraction introduces a cutoff scale Lmin. Physically, it signals an expected
IR logarithmic divergence from thermal modes in 4D QCD at two-loop order.

The goal of this paper is precisely to determine the contribution to Zg from thermal
modes in QCD at two-loop level. In so doing, we will recover the expected IR divergence,
evaluate it in dimensional regularisation (DR) together with the aforementioned subtraction,
thus lifting the dependence on the cutoff scale Lmin and providing an expression for Zg
that is two-loop accurate for the T -scale modes and, when combined with the lattice results
from [6], all-order accurate for the classical IR modes. We anticipate that we shall also find
new ultraviolet and collinear divergences, signaling the emergence, at this loop order, of new
regions of phase space and a potential sensitivity to one-loop corrections to the matching
coefficients in eq. (1.1). Part of our main results have been anticipated in [24, 25]. We also
address which part of our results here and in [5, 6] remains valid when the energy of the

– 3 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
1

Figure 1. Diagrams contributing the QCD force-force correlator Zg (2.1) at leading and next-to-
leading order. An external gray shaded vertex denotes an F−⊥ insertion; internal 2-point blobs the
respective self-energy; a solid line a Wilson line; and a curly line a gauge boson (Aµ).

parton becomes of the order of the temperature, which is the relevant regime for calculations
of transport coefficients and production rates.

The paper is organised as follows. Section 2 summarises the setup of the problem, the
EQCD evaluation and the subtraction procedure for the UV divergences introduced in [6].
In section 3 we present our two-loop calculation of the T -scale contribution in 4D QCD,
showing how, in addition to expected IR and vacuum UV divergences, we find extra ones
and discuss their origin. In section 4, we show how the IR divergences cancel against the
UV ones, leading to a finite, regulator-independent result for the classical, non-perturbative
contribution. In section 5, we summarise our main findings and draw our conclusions. The
appendices are dedicated to the conventions and technical details of our calculations.

2 Background

As we anticipated, Zg can be rewritten as the following integral over light-like separated
field-strength insertions on a light-like Wilson line

Zg = 1
dRCR

∫ ∞

0
dx+ x+Tr

〈
UR(−∞;x+)vµF

µν(x+)UR(x+; 0)vρF
ρ
ν (0)UR(0;∞)

〉
, (2.1)

where the Wilson line itself reads

UR(x+; 0) = P exp
(
ig

∫ x+

0
dy+A−a(y+)T a

R

)
, (2.2)

after having fixed vµ = (1, 0, 0, 1) — see appendix A. The Wilson lines stretch from and
back to negative light-cone infinity. They descend from the relation to the density matrix
of the hard parton, which is defined in the asymptotic past.

At leading order, the Wilson lines source no gluons and one just connects the two
field-strength tensors with a free thermal gluon propagator, as in diagram (a) of figure 1.
It yields [26–28]

ZLO
g = (D − 2)

∫
Q
[θ(q0) + nB(|q0|)]2πδ(Q2) = (D − 2)

∫
Q
nB(|q0|)2πδ(Q2)

D=4= 2
∫

q

nB(q)
q

= T 2

6 , (2.3)

where nB(q0) ≡ (exp(q0/T )− 1)−1 is the Bose-Einstein distribution. Dimensional regularisa-
tion in D = 4−2ϵ (d = 3−2ϵ for the spatial dimensions) has been used to remove the scale-free
vacuum contribution proportional to θ(q0). See appendix A and eq. (A.2) for our conventions.
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2.1 Power counting and hierarchy of scales in jet-medium interactions

The LO contribution to Zg arises from the scale T as seen in eq. (2.3). In the infrared nB(q) ≈
T/q, so that eq. (2.3) has an order-g sensitivity to the soft scale gT , viz.

∫
q∼gT

T
q2 ∼ gT 2.

Indeed, that is where the NLO correction in eq. (1.4) appears. We can then summarise the
perturbative expansion of Zg as follows [6]

scaleT scale gT scale g2T

Zg =
[

T 2

6 −Tµh
π2

]
(2.4)

+
[

−TmD

2π +Tµh
π2

]
(2.5)

+
[

cln
hard ln

T

µh
+cT +cln

hard ln
µh
mD

+cln
soft ln

mD

µs
+cgT +cln

soft ln
µs
g2T

+cgT 2

]
(2.6)

+O(g3) . (2.7)

We highlight the contributions from different orders of the coupling g row by row and from
different scales column by column. The T -scale contribution at O(g0) from eq. (2.3) is
displayed in (2.4) and the first O(g) correction from soft modes in (2.5). At the next order,
all scales contribute: the completely non-perturbative color-magnetic scale g2T , as well as the
soft modes of the color-electric scale gT , and the thermal modes from T . The coefficients cln

hard
and cln

soft were determined as a byproduct of [6], whose main aim was the non-perturbative,
all-order determination of the classical soft and ultrasoft contribution. As we anticipated, the
procedure used there introduced an artificial dependence on a cutoff Lmin: for the moment
we have kept the notation in eqs. (2.4)–(2.6) generic, with µh and µs taken as placeholders for
an arbitrary scheme used to separate the thermal, soft and ultrasoft scales. The coefficients
on eq. (2.6) are then to be understood as scheme-depedent. For reasons that will become
evident later, knowing all coefficients in (2.4), (2.5), and (2.6) does not yield a self-contained
estimate of m∞ at O(g2), yet.

Consequently, our main aim is to connect the scheme used to remove the unphysical
EQCD UV from the EQCD results in [6], giving rise to Lmin dependence, to dimensional
regularisation. We will also compute the T -scale contribution in eq. (2.6), cln

hard and cT ,
in that same scheme. To this end, we first briefly review the determination of the EQCD
contribution to Zg from [5, 6].

2.2 EQCD setup

One starts from the EQCD continuum action,

SEQCD =
∫

x

{1
2TrFijFij +Tr [Di,Φ][Di,Φ] +m2

DTrΦ2 + λE(TrΦ2)2
}
, (2.8)

where Φ is the adjoint, massive scalar arising from dimensional reduction of the A0 gauge
field. One then derives the non-unitary EQCD analog of eq. (2.1)

ŨR(L; 0) = P exp
(
ig3d

∫ L

0
dz (Aa

z(z) + iΦa(z))T a
R

)
. (2.9)
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Since the field operators are classical in EQCD, they commute and allow us to write

1
dRCR

Tr⟨ŨR(−∞;L)Oa(L)T a
R ŨR(L; 0)Ob(0)T b

RŨR(0;−∞)⟩ = TR

dRCR
⟨Oa(L)Ũab

A (L; 0)Ob(0)⟩ .
(2.10)

Thus, the EQCD equivalent of Zg reads, given rotational invariance in the transverse plane

Z3d
g =−(d−1)T

dA

∫ ∞

0
dLL

〈(
F a

xz(L)+i(DxΦ(L))a
)
Ũab

A (L;0)
(
F b

xz(0)+i(DxΦ(0))b
)〉
,

(2.11)
where we used dRCR/TR = dA. At LO in perturbative EQCD, we can connect the operators
with EQCD propagators to find [7]

Z3d
g LO = T

∫
q

1
(qz + iε)2

[
− q2

⊥
q2 +m2

D
+ q2

⊥
q2 + (d− 1)q2

z

q2

]
= −TmD

2π , (2.12)

where the massive propagator is the Φ propagator. Here we used DR to get to a finite result:
in so doing, a linearly-UV divergent term gets discarded. It is instructive to note that this
term would be (d − 1)

∫
q

T
q2 , which corresponds precisely to the IR sensitivity of eq. (2.3),

as argued in the previous subsection, and to the linear terms in µh in eqs. (2.4) and (2.5).
Thus, dimensional regularisation corresponds to subtracting off that (d− 1)

∫
q

T
q2 bare, soft

limit from the resummed result in eq. (2.12). As we shall now see, this does not happen
automatically in the scheme that follows from the lattice computation.

For that end, it is more convenient to set d = 3 and to work with the quantities

⟨EE⟩ ≡ 1
2
〈
(DxΦ(L))a Ũab

A (L, 0) (DxΦ(0))b〉 , (2.13)

⟨BB⟩ ≡ 1
2
〈
F a

xz(L) Ũab
A (L; 0)F b

xz(0)
〉
, (2.14)

i⟨EB⟩ ≡ i

2
〈
(DxΦ(L))a Ũab

A (L; 0)F b
xz(0)

〉
+ i

2
〈
F a

xz(L) Ũab
A (L; 0) (DxΦ(0))b〉 , (2.15)

which leaves us with

Z3d
g = −4T

dA

∫ ∞

0
dLL

(
− ⟨EE⟩+ ⟨BB⟩+ i⟨EB⟩

)
= 4T
dA

∫ ∞

0
dLL ⟨FF ⟩ , (2.16)

where we have implicitly defined ⟨FF ⟩ ≡ ⟨EE⟩ − ⟨BB⟩ − i⟨EB⟩.
In [5, 6] continuum-extrapolated lattice EQCD determinations of the three components of

⟨FF ⟩ have been performed for distances 0.25 < g2
3dL < 3.0 at four values of the temperature.

To integrate over all separations, this lattice determination must be complemented at both
long and short distances to provide a finite result for the all-order classical contributions from
the soft and ultrasoft scales. In more detail, the IR region is addressed with a fitting ansatz,
intended to reproduce the expected exponential falloff from electrostatic and magnetostatic
screening, since one cannot reach arbitrarily large distances on the lattice. As for the UV, the
lattice approach becomes impractical at short distances due to associated discretisation effects.
However, at the shortest available separations, where mDL ≪ 1, the lattice determination
agrees well with the perturbative NLO EQCD determination, as expected. This then
suggests a switch to the perturbative EQCD determination at short distances. Yet, the
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naive integration down to zero separation of the perturbative EQCD result would result in
power-law and log divergences, as we mentioned.

But how does this divergent behavior manifest itself? Because of the super-renormaliza-
bility of EQCD, in the UV, it is natural to expect from dimensional analysis that

⟨FF ⟩mDL≪1 = c0
L3 + c2g

2
3d

L2 + c4g
4
3d

L
+ . . . . (2.17)

The first and second terms above are divergent when inserted into eq. (2.16). If integrated
down to a Lmin > 0, the former gives rise to a c0/Lmin contribution. In this position-space
scheme, this corresponds to the linear term in µh in eq. (2.5). As the previous discussion
should have made clear, such a term corresponds to the soft limit of the bare LO calculation
in eq. (2.3); as it is already included there, it should be subtracted off from the EQCD
calculation, as per [5].

The coefficient c2 was computed in [6] and, being a logarithmic divergence, shows up
also in DR. To arrive at a determination for Z3d

g , [6] merged together the perturbative,
intermediate and IR regions as follows

Z3d
g
∣∣merge = 4T

dA

{∫ Lmin

0
dLL

[
⟨FF ⟩NLO − c0

L3 − c2g
2
3d

L2

]
+
∫ Lmax

Lmin
dLL

[
⟨FF ⟩lat −

c0
L3

]
+
∫ ∞

Lmax
dLL

[
⟨FF ⟩tail −

c0
L3

]}
, (2.18)

where [5, 6]

c0 = dA

4π , c2 = CAdA

(4π)2 . (2.19)

The shortest and longest separations for which lattice data is available are Lmin = 0.25/g2
3d

and Lmax = 3.0/g2
3d.1 Between these two separations, the lattice-determined ⟨FF ⟩lat is used.

At asymptotically large distances the modeled IR tail ⟨FF ⟩tail is used and at short distances
the NLO perturbative EQCD result ⟨FF ⟩NLO is integrated. As we mentioned, the c0 term
must be subtracted off everywhere, whereas the c2-term is only subtracted in the perturbative
region. Eq. (2.18) thus introduces an artificial logarithmic dependence on its boundary Lmin.

In section 4 we will show how this subtraction can be recast in dimensional regularisation.
The resulting UV pole cancels against an opposite IR one from computing the two-loop
contribution to Zg in thermal 4D QCD, which shall be carried out in the next section. This
is then our main motivation, as their sum provides a finite result for the non-perturbative
contribution, with the artificial cutoff, Lmin, lifted. Such a calculation is evidently also in
line with our ultimate goal of determining all O(g2) corrections to Zg.

3 Thermal modes at O(g2)

We embark on the calculation of the T -scale contribution to Zg at NLO. In principle, this
requires the computation of the two-loop diagrams (b)–(j) in figure 1. As we are dealing with

1The ⟨EB⟩ contribution was only available for L > 0.5/g2
3d in [6]. This is irrelevant from the standpoint of

c2 subtraction, since only ⟨EE⟩ is logarithmically divergent at small L.
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the temperature scale, there is no need to or benefit in using any IR-resummed propagators
and vertices in the real-time formalism. The unresummed nature of the propagators can
be used to our advantage to greatly simplify the calculation.

In a nutshell, all but diagrams (c), (f), (g) only contain terms that are proportional to
either

〈
A−A−〉 or

〈
A−Ax

〉
, both of which vanish in Feynman gauge. Furthermore, following

an argument to be given in section 3.1, we will see that only diagram (c) needs to be computed.
The remainder of the section is then devoted to the splitting up and the computation of the
different contributions: quark and gauge (gluon and ghost) in the polarisation tensor.

3.1 Equations of motion of the light-like Wilson line

Looking at eq. (2.1), we can write

Zg = −1
dRCR

∫ ∞

0
dx+x+ Tr

〈
UR(−∞;x+)F−⊥(x+)UR(x+; 0)F−⊥(0)UR(0;−∞)

〉
, (3.1)

where F−⊥F−⊥ = F−xF−x + F−yF−y. Continuing onwards, let us recast eq. (3.1) as a
double integral, using translation invariance

Zg =
−1
dRCR

∫ ∞

0
dx+

∫ x+

0
dy+

×Tr
〈
UR(−∞;x++y+)F−⊥(x++y+)UR(x++y+;y+)F−⊥(y+)UR(y+;−∞)

〉
,

= −1
dRCR

∫ ∞

0
dx+

∫ x+
2

0
dy+Tr

〈
UR(−∞;x+)F−⊥(x+)UR(x+;y+)F−⊥(y+)UR(y+;−∞)

〉
,

(3.2)

where we have shifted x+ in going to the second line. We now rewrite Zg as

Zg ≡ Z⊥⊥
g + Z⊥−

g + Z−⊥
g + Z−−

g , (3.3)

with the index labelling to be elaborated on momentarily. By calling on a method introduced
in [29], we rewrite

F−⊥ = −∂⊥A− + [D−, A⊥] . (3.4)

The equation of motion of the Wilson line, D−
x+U(x+; y+) = 0 can then be used to rewrite

the commutator as a total derivative, i.e.

UR(a;x+)
[
D−, A⊥(x+)

]
UR(x+; b) = d

dx+
[
UR(a;x+)A⊥(x+)UR(x+; b)

]
. (3.5)

This should shed light on the labelling in eq. (3.3): the indices there denote whether the
−∂⊥A− (⊥) or the [D−, A⊥] component (−) of the field strength tensor has been taken.

We start with the first term from eq. (3.3),

Z⊥⊥
g = − 1

dRCR

∫ ∞

0
dx+x+ Tr

〈
UR(−∞;x+)∂⊥A−(x+)UR(x+; 0) ∂⊥A−(0)UR(0;−∞)

〉
.

(3.6)
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For the second term, we have, employing eq. (3.5)

Z⊥−
g = 1

dRCR

∫ ∞

0
dx+ Tr

〈
UR(−∞;x+)∂⊥A−(x+)UR(x+;x+/2)

×
[
A⊥(x+/2)UR(x+/2; 0)− UR(x+/2; 0)A⊥(0)

]
UR(0;−∞)

〉
. (3.7)

Translation invariance dictates that for the first part,
〈
UR(−∞;x+)∂⊥A−(x+)UR(x+;x+/2)A⊥(x+/2)UR(x+/2;−∞)

〉
=
〈
UR(−∞;x+/2)∂⊥A−(x+/2)UR(x+/2; 0)A⊥(0)UR(0;−∞)

〉
, (3.8)

so that, by aptly redefining the integration variable, one finds, including its counterpart, that

Z⊥−
g = 1

dRCR

∫ ∞

0
dx+ Tr

〈
UR(−∞;x+)∂⊥A−(x+)UR(x+; 0)A⊥(0)UR(0;−∞)

〉
, (3.9)

Z−⊥
g = −1

dRCR

∫ ∞

0
dx+ Tr

〈
UR(−∞;x+)A⊥(x+)UR(x+; 0) ∂⊥A−(0)UR(0;−∞)

〉
, (3.10)

where we used the fact that, in a non-singular gauge, A⊥(∞) = 0 and we applied translation
invariance and relabeled y+ into x+. Finally, for the term with both commutators, we find

Z−−
g = 1

dRCR
Tr
〈
UR(−∞; 0)A⊥(0)A⊥(0)UR(0;−∞)

〉
, (3.11)

where we have again set the boundary term at infinity to zero.
At two-loop level, eq. (3.6) can only receive a contribution from diagram (c) in Feynman

gauge; terms with an A− pulled from the Wilson line cannot contribute, as there is no triple
A− vertex. Moreover, there cannot be a contribution of the form of diagram (g) as the
gA−A⊥ part of the covariant derivative has been removed from the correlator through the
previous manipulations. Similar arguments can be safely applied to eqs. (3.9) and (3.10):
they only receive a “mixed” contribution from diagram (c); this relies on the observation
that no vertex with two A− gluons exists.

Eq. (3.11) is the only piece of the decomposition that does not vanish at LO in Feynman
gauge; it corresponds precisely to diagram (a). Eq. (3.11) also receives an NLO contribution
from (c). It also contains the only contribution directly involving the Wilson lines, as either
of them can source an A− gluon that can connect with a three-gluon vertex to the two A⊥

ones. However, that would give rise to the following colour structure

C = fabcA⊥ aA⊥ bA− c , (3.12)

which vanishes, due to the symmetric (anti-symmetric) nature of A⊥ aA⊥ b (fabc). Therefore,
through this reorganisation, we conclude that all of the NLO corrections to Zg come from
diagram (c). We arrive at the same conclusion from an explicit real-time computation of
diagrams (f) and (g), whose contributions end up cancelling each other [25].
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3.2 Decomposition of the gluon self-energy

We thus dive straight into the computation of diagram (c)

Z(c)
g =−(D−2)

dRCR

∫ ∞

0
dx+x+Tr

〈
(∂−Ax(x+)−∂xA−(x+))(∂−Ax(0)−∂xA−(0))

〉
, (3.13)

where we have used rotational invariance in the transverse plane. As the field-strength
insertions are at positive time separation, there is indistinguishably a forward Wightman
or time-ordered one-loop propagator stretching between them

Z(c)
g = −(D − 2)

∫ ∞

0
dx+

∫
Q
x+e−iq−x+[(q−)2Gxx

> (Q)− 2qxq−Gx−
> (Q) + (qx)2G−−

> (Q)
]

= (D − 2)
∫

Q

1 + nB(q0)
(q− − iε)2 (FR(Q)− FA(Q)) , (3.14)

where we have used the Kubo-Martin-Schwinger (KMS) relation to write the forward Wight-
man > propagator in terms of the statistical function 1 + nB(q0) and the one-loop spectral
function FR(Q) − FA(Q). Its retarded and advanced components read

FR/A(Q) = i

(Q2 ± iεq0)2

[
(q−)2Πxx

R/A(Q)− 2qxq−
(
Π0x

R/A(Q)−Πzx
R/A(Q)

)
+ (qx)2

(
Π00

R/A(Q) + Πzz
R/A(Q)− 2Πz0

R/A(Q)
)]
, (3.15)

when written in terms of the one-loop self-energies, given in appendix B. It is then useful to
decompose the self-energies in terms of their longitudinal (L) and transverse (T ) components
(with respect to the three-momentum), which can also be found in appendix B

ΠR/A
µν (Q) = PL

µν(Q)ΠR/A
L (Q) + P T

µν(Q)ΠR/A
T (Q) (3.16)

where PL
µν and P T

µν are given in eqs. (B.1)–(B.2).
We can then rewrite eq. (3.15) as

FR/A(Q) = i

(Q2 ± iεq0)2

[
(q−)2ΠR/A

T (Q) + (qx)2Q2

q2

(
ΠR/A

L (Q)−ΠR/A
T (Q)

)]
, (3.17)

which leaves us with the decomposition

Z(c)
g =

∫
Q

1+nB(q0)
(q−−iε)2

{
i

(Q2+iεq0)2

[
(D−2)(q−)2ΠR

T (Q)+ q2
⊥Q

2

q2

(
ΠR

L(Q)−ΠR
T (Q)

)]
−adv.

}
=Z

(c)
g,q−2+Z(c)

g,L-T , (3.18)

where adv. stands for the advanced part while Z(c)
g,q−2 corresponds to the (q−)2- and Z

(c)
g,L-T

to the ΠL − ΠT -proportional terms

Z
(c)
g,q−2 =

∫
Q
[1 + nB(q0)]

{
i(D − 2)ΠR

T (Q)
(Q2 + iεq0)2 − adv.

}
, (3.19)

Z
(c)
g,L-T =

∫
Q

1 + nB(q0)
(q− − iε)2

{
i

(Q2 + iεq0)
q2
⊥
q2

(
ΠR

L(Q)−ΠR
T (Q)

)
− adv.

}
. (3.20)

The strategy adopted for the remainder of this section is to compute O(g2) corrections to
Zg according to the above decomposition. Rather than wading through technical details
(which can be found in appendix C), we instead focus on highlighting and discussing the
physical relevance of the various divergences that we encounter.
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3.3 Z
(c)
g,q−2 contribution

For the computation of Z(c)
g,q−2 , we can resort to standard Euclidean techniques. We start from

Z
(c)
g,q−2 = i(D − 2)

∫
Q

(1
2 + nB(q0)

)[ ΠR
T (Q)

(Q2 + iεq0)2 − ΠA
T (Q)

(Q2 − iεq0)2

]
, (3.21)

where we have kept the even-in-q0 part of the integrand only. By analyticity, we have

Z
(c)
g,q−2 = −(D − 2)

∑∫
QE

ΠE
T (QE)
Q4

E
. (3.22)

Here, Q2
E ≡ q2

0 + q2 is the Euclidean four-momentum squared, with q0 = 2πnT a bosonic
Matsubara frequency and Σ

∫
QE the standard sum-integral, see eq. (A.2). Likewise, ΠE

T (QE) is
the transverse Euclidean polarisation tensor, given in appendix B. The integrations can then
be carried out using standard Euclidean techniques, as detailed in appendix C.1.

The contribution of a gluon and ghost loop reads (cf. eq. (C.18))

Z
(c)
g,q−2,B,n ̸=0 = g2CAT

2

96π2

[11
3

(1
ϵ
+ 4 ln µ̄

T

)
+ 8 lnA− 4γE + 61

9 + 10
3 ln π − 52

3 ln 2 + 4
3 ×

[
0.299378

]]
, (3.23)

where B stands for bosonic, γE is the Euler-Mascheroni constant and A ≈ 1.28243 is the
Glaisher constant. Here and in all following formulae we truncate the expansion in D = 4−2ϵ to
the order-ϵ0 term included. We have further subtracted off the q0 = 0 zero-mode contribution
associated with the QE sum-integral. This IR-divergent zero-mode contribution can be found
in section 4 (see eq. (4.1)), where we cancel its divergence with an opposite one from the
EQCD subtraction term discussed in and after eq. (2.18).

The fermionic contribution from the quark loop reads — see eq. (C.19)

Z
(c)
g,q−2,F = −g

2TFNFT
2

96π2

[4
3

(1
ϵ
+ 4 ln µ̄A

3

4πT

)
+ 4γE + 26

9 − 10
3 ×

[
0.199478

]]
. (3.24)

In this case, the QE zero mode is included, as its contribution is finite as expected from the
purely non-Abelian nature of the c2 subtraction in eqs. (2.18)–(2.19).

Upon summing eqs. (3.23) and (3.24), we find

Z
(c),IR safe
g,q−2 =Z

(c)
g,q−2,B,n ̸=0+Z

(c)
g,q−2,F

= g2T 2

96π2

[(11
3 CA−

4
3TFNF

)(1
ϵ
+4ln µ̄

T

)
+CA

(
8lnA−4γE+

61
9 +10

3 lnπ− 52
3 ln2+4

3×
[
0.299378

])
−TFNF

(
16lnA+4γE+

26
9 − 16

3 ln(4π)− 10
3 ×

[
0.199478

])]
. (3.25)

The attentive reader will have noticed that eqs. (3.23) and (3.24) are divergent. The very
attentive reader will also have noticed that the divergent term in eq. (3.25) is proportional to
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the first coefficient of the QCD β function. Indeed, the divergence is of ultraviolet origin:
it arises from the thermal part of a bosonic loop integral multiplying the vacuum part of
the other loop integral. This divergence is then removed by charge renormalisation. In
more detail, let us consider the standard relation between bare and renormalised coupling
at one-loop level, viz.

g2
bare = g2(µ̄)

[
1− g2b0

(4π)2ϵ

]
+O(g6) , where b0 = 11

3 CA − 4
3TFNF . (3.26)

Let us then go back to the leading-order term in eq. (2.3), recalling that, as per eq. (1.1),
m2

∞ is obtained by multiplying Zg by g2.2 Hence, if that g2 is replaced by eq. (3.26), the
O(g4) term there generates the counterterm

ZLO,ct
g = −(d− 1) g2b0

(4π)2ϵ

∫
q

nB(q)
q

= g2T 2

96π2

(11
3 CA − 4

3TFNF

)[
− 1
ϵ
− 2 ln µ̄A

12

4πT + 1
]
, (3.27)

when multiplying the LO term in eq. (2.3). Upon adding eqs. (3.25) and (3.27), we find3

Z
(c),IR/UVsafe
g,q−2 =Z

(c),IRsafe
g,q−2 +ZLO,ct

g

= g2T 2

96π2

{(11
3 CA−

4
3TFNF

)
2ln µ̄UV

T

+CA

[
−80lnA−4γE+

94
9 +32

3 lnπ− 8
3 ln2+

4
3×

[
0.299378

]]
+TFNF

[
16lnA−4γE−

38
9 +8

3 ln(4π)+
10
3 ×

[
0.199478

]]}
. (3.28)

Here, we relabeled µ̄→ µ̄UV to distinguish it from other occurrences of µ̄, which are to
be understood as factorisation scales, whereas µ̄UV is a genuine renormalisation scale. When
merging the perturbative and lattice data, we will fix g2 to the values that correspond to
those chosen in the various lattice ensembles, as explained in appendix D.

3.4 Z
(c)
g,L-T contribution

In this subsection, differently from the previous one, we rely on real-time methods: as detailed
in appendix C.2.2, standard Euclidean techniques are not applicable for this class of integrals,
due to the (q− − iε)2 denominator in eq. (3.20). We thus set up everything so that the
integration over K, the loop momenta running through the self-energy blob is done in four
dimensions. We choose this scheme to avoid having to consider the D-dimensional equivalents
of the one-loop self-energies listed in appendix B. The integration over Q, the momentum
picked up during the forward scattering, is instead done in D = 4− 2ϵ dimensions. As we
shall see, this contribution will present divergences showing sensitivity to hard, collinear and
soft regions of phase space. When dealing with these regions one then needs to adopt the
same scheme, as we shall do in section 4 for the L− T part of the soft contribution.

2We are following the notation originally introduced in [7]; arguably, moving g2 into the definition of Zg

would be preferable, as it would make this operator scheme-independent.
3The fermionic piece of the expression below has also been determined using real-time methods such as

those employed in the next subsection, see [25]. The two determinations agree within numerical uncertainty.
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The fermionic and bosonic L−T contributions are computed in appendix C.2.1 and C.2.2,
respectively. Furthermore, as the vacuum contribution of the longitudinal and transverse
self-energies is identical by Lorentz invariance, no charge renormalisation is needed in this
case; indeed, the counterterm (3.27) was fully absorbed by the (q−)2 contribution.

Our result then comes from the sum of eqs. (C.69) and (C.78), viz.

Z
(c)
g,L-T ,n ̸=0 = m2

D

(4π)2

{ 2
ϵ2

+ 2
ϵ

(
ln µ̄e

γE− 1
2

2πT + ln µ̄A
12e−

1
2

8πT
)

(3.29)

+ 2 ln2 µ̄e
γE− 1

2

2πT − 4γ1 +
π2

4 − 2γ2
E + 3

2 − 2(ln 2− 1)2

+ 2 ln2 µ̄A
12e−

1
2

8πT + 1
2 ln2(2)− 2(ln ζ2)′2 +

2ζ ′′2
ζ2

+ 1
2Li2

(2
3
)
+ 1

4Li2
(3
4
)
− 1

2 − 1
4 ln(3) ln 4

3

}
+ g2CAT

2

48π2

{
0.145277− 5.13832

}

− g2TFNFT
2

48π2

{2 ln 2
ϵ

+ 4 ln(2) ln µ̄A
12e−

1
2

8πT + 2 ln2(2) + 0.438129− 1.97382
}
,

where ζs = ζ(s) is the Riemann zeta function, (ln ζs)′ = ζ ′(s)/ζ(s) and γ1 is the first Stieltjes
constant. For the CA-proportional gauge contribution, we have again subtracted off the
zero-mode associated with the Q integration. Its value is given in eq. (4.2). The parts that
have been obtained numerically have not been summed, to highlight their origin from the
various contributions listed in appendix C.2.1 and C.2.2. What remains contains a 1/ϵ2 pole,
which signals the presence of double logarithmic divergences not of vacuum origin. These
divergences originate from a pole term and a cut term. The former denotes the contribution
to eq. (3.20) where the discontinuity implied in the “retarded minus advanced” spectral
structure comes from the pole in the 1/Q2 propagator. The latter instead acquires spectral
weight from the imaginary parts of the polarisation tensor.

To clarify the physical origin of these divergences, we now inspect these divergent terms,
deferring their precise evaluation to appendix C.2.1 and C.2.2. For what concerns the pole
term, it arises from eq. (C.53) and its bosonic equivalent, yielding

Z
(c)
g,L-T ,pole = −m

2
D

2

∫
Q

1
2 + nB(|q0|)
(q− − iε)2

q2
⊥
q2 2πδ(Q

2) = −m
2
D

2

∫
q

1 + 2nB(q)
2q3

q2
⊥ + 2q2

z

q2
⊥

. (3.30)

While the vacuum term would be scale-free and vanishing in DR, it physically corresponds
to a UV divergence for qz → ∞, which is accompanied by a collinear divergence. This
shows up for qz ≫ q⊥ → 0, i.e.4

Z
(c)
g,L-T ,pole div = −m2

D

∫
q

1
2|qz|

1
q2
⊥

∣∣∣∣
qz≫q⊥

. (3.31)

While we leave the proper analysis of this divergence to future work, we think it is safe to
speculate that it will be absorbed by properly dealing with the small q⊥ and large qz regions.

4There is in addition a power-law divergent zero-mode term from the T/q0 infrared limit of the Bose-Einstein
distribution. This is not unexpected: it corresponds to the O(m2

D) term in the q ≫ mD expansion of eq. (2.12).
It too needs subtracting, as it is already included there. DR takes care of this automatically.
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The former will require systematic resummation of the asymptotic mass and of multiple soft
scattering effects, likely relating this double-logarithmic divergence to the ones observed in the
transverse-momentum broadening coefficient in [30, 31] and systematised for a weakly-coupled
QGP in [32].5 The large-qz region is instead likely related to the emergence of the qz ∼ E

region, with E ≫ T the large light-cone energy of the hard jet parton, thus relating this
divergence to the possible loop corrections to the matching coefficients in eq. (1.1).

Let us now inspect the cut term. As detailed in appendix C.2.1 and C.2.2, the divergence
arises again from the vacuum part, i.e. θ(q0), in the 1 + nB(q0) prefactor. As explained there,
it is convenient to make the integrand explicitly even in q0, leading to

Z
(c)
g,L-T ,cut div = g2

16π

∫ ∞

0
dk f(k)

∫ ∞

0

dq0

2π

∫
q

q2
⊥
q5

[ 1
(q0 − qz − iε)2 + 1

(q0 + qz + iε)2

]
× θ(q − 2k)

[ (
3(2k − q0)2 − q2

)
θ(q + 2k − q0)θ(q0 − q)

−
(
3(2k + q0)2 − q2

)
θ(q0 − q + 2k)θ(q − q0)

]
, (3.32)

where
f(k) ≡ 2TFNFnF(k) + CAnB(k) , (3.33)

and nF(k) ≡ (exp(k/T ) + 1)−1 is the Fermi-Dirac distribution. Eq. (3.32) arises from
appropriately combining eqs. (C.55) and (C.65), together with their bosonic counterparts
like eq. (C.74). We only consider here the θ(q − 2k) part of eqs. (C.65) and (C.74) as it
is the divergent one.

Let us consider for illustration the simplest part of the above, the q2-proportional piece
in 3(2k − q0)2 − q2) in the time-like slice q0 > q. The main message will not be altered
by including the other terms. It reads∫ ∞

0
dk f(k)

∫
q

∫ q+2k

q

dq0

2π
q2
⊥
q3

[ 1
(q0 − qz)2 + 1

(q0 + qz)2

]
θ(q − 2k)

= 2
∫ ∞

0
dk k f(k)

∫
q

2(kq + q2
z) + q2

⊥
πq3(q2

⊥ + 4kq + 4k2)
θ(q − 2k) (3.34)

=
∫ ∞

0
dk k f(k)

∫
q⊥

4q2
⊥

π2(q2
⊥ + 4k2)2

[
ln q⊥2k +O(1) +O(k/q⊥)

]
, (3.35)

where the arising logarithmic term is what causes the double pole in DR. Its k-dependent
argument is what is responsible for the different arguments of the logarithms in the fermionic
and bosonic case, see the NF-proportional ln 2 term in eq. (3.29). Moreover, the ln(q⊥/(2k))
must come from two regions of the qz integral in eq. (3.34), once we take the asymptotic
UV expansion q⊥ ≫ k. Indeed, we have a first region for qz ∼ q⊥ ≫ k and a second region
for qz ∼ q2

⊥/k ≫ q⊥ — we are exploiting evenness in qz to consider twice the positive
range only. We then have, by appropriately expanding the integrand in the two regions

5It also remains to be understood how such a long-duration collinear process could be used as an ingredient
in the determination of an equally long-duration (formation time) medium-induced radiation. This question
too is left for future work.
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Figure 2. EQCD equivalent of diagram (c). The labelling is identical to that from figure 1 except
that here, curly lines represent spatial gauge bosons, double lines are adjoint Wilson lines and solid
lines are adjoint scalars.

and separating them by a cutoff µ∫ µ

0

dqz

π

2q2
z+q2

⊥
πq3q2

⊥
=

ln 4µ2

q2
⊥
−1

π2q2
⊥

, and
∫ ∞

µ

dqz

π

2
πqz(q2

⊥+4kqz)
=

ln q4
⊥

16k2µ2

π2q2
⊥

, (3.36)

which reproduces the q⊥ ≫ k limit of eq. (3.35).
This then clarifies that the cut term has a double-logarithmic UV divergence, which we

can again speculate to be related to the emergence of the q+ ∼ E region. Its proper handling
is also left to future work. We conclude by remarking that in the real-time calculation of
Z

(c)
g,q−2 (cf. [25]) there is a cancellation between a double-log akin to that in eq. (3.35) and

an opposite one arising from a pole contribution which is very different from the simple one
in eq. (3.31). The collinear sensitivity of the latter and its absence in Z

(c)
g,q−2 — see [25] —

might explain why no such cancellation happens for Z(c)
g,L-T .

4 Cancellation of IR QCD divergences with UV EQCD divergences

As we explained around eq. (2.18), the EQCD evaluation in [6] relied on a subtraction of
the c2-proportional UV-log divergent term from NLO perturbative EQCD in eq. (2.18),
which introduced a logarithmic dependence on the Lmin regulator. The Q zero modes in
the perturbative QCD evaluation of the previous section, on the other hand, introduced
an IR log-divergence, viz.

Z
(c)
g,q−2,B,n=0 = 3g2NcT

2

64π2

[
− 1
ϵ
− 4 ln

(
µ̄

2T

)
− 5

3

]
, (4.1)

Z
(c)
g,L-T ,B,n=0 = g2CAT

2

32π2

[
−1
ϵ
− 2 ln

(
µ̄

4T

)
+ 2

]
, (4.2)

which have been obtained from eqs. (C.17) and (C.71).
Our goal in this section is to add back a DR version of the NLO subtraction in eq. (2.18).

The resulting UV poles in 1/ϵ should cancel against those in eqs. (4.1) and (4.2). To this end,
we note that [6] used Feynman gauge for the 3D gauge field of EQCD. From the arguments
of section 3.1 we then know that this c2-proportional UV divergence must come from the
EQCD analogue of diagram (c), shown in figure 2. This suggests that

Zmatch
g ≡ Z

(c)
g,q−2,B,n=0 + Z

3d (c)
g,q−2,c2

+ Z
(c)
g,L-T ,B,n=0 + Z

3d (c)
g,L-T ,c2 , (4.3)

where Z3d (c)
g,q−2,c2

is the (q−)2 and Z
3d (c)
g,L-T ,c2 the L− T piece of the UV divergence, evaluated in

DR. When adding eq. (4.3) to (2.18), we will undo the c2 subtraction and thus arrive at

Znon-pert class
g = Z3d

g
∣∣merge + Zmatch

g , (4.4)

which is a finite, Lmin-independent result for the non-perturbative evaluation of the classical
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contribution. The best-available determination of Zg is then

Znon-pert class+NLO T
g = ZLO

g + δZnon-pert class+NLO T
g , (4.5)

δZnon-pert class+NLO T
g = Znon-pert class

g + Z
(c),IR/UV safe
g,q−2 + Z

(c)
g,L-T ,n ̸=0 , (4.6)

where δZnon-pert class+NLO T
g incorporates the classical modes to all orders and the thermal

modes to NLO. The final two terms in eq. (4.6) have been given in eqs. (3.28) and (3.29).
Let us now begin the determination of Z3d (c)

g,q−2,c2
and Z

3d (c)
g L-T ,c2 , starting from the former.

With respect to the decomposition defined in eq. (2.16), we first take the ⟨BB⟩ contribution
from appendix A.3 of [6] (cf. eq. (A.14))

⟨BB⟩(c)
div = 1

4

∫
q

eiLqz

q4 (q2
⊥ + (d− 1)q2

z)δab
(
−ΠT

Aa
i Ab

j div(q)
)
, (4.7)

where ΠT

Aa
i Ab

j div is the EQCD transverse gluon polarisation tensor in the massless limit. As
we are investigating a UV divergence on the EQCD side, the q ≫ mD limit is the appropriate
one. It can be extracted either from the mD → 0 limit of eq. (A.10) in [6] or from the
zero-mode contribution to eq. (B.4). We find

ΠT

Aa
i Ab

j div(q) = δab 3g2
3dCA

(4π)
d
2

Γ
(
1− d

2
)
Γ
(

d
2
)2

Γ
(
d− 1

) µ3−dqd−2 , (4.8)

d=3−2ϵ= −δab 3g2
3dCAq

16 , (4.9)

where we have denoted the d = 3 limit for future use.
The second term in eq. (4.7), proportional to (d − 1)q2

z , corresponds to the Z3d (c)
g,q−2,c2

contribution. To obtain it, we must then integrate in L up to the cutoff while performing the
q integration in DR, so that its Zmatch

g contribution undoes the corresponding piece of the
c2 subtraction. Looking at eq. (2.16) and using eq. (4.8), we then find

Z
3d (c)
g,q−2,c2

= −4T
dA

∫ Lmin

0
dLL ⟨BB⟩q−2 div = 3g2

3dCAT

128πd

(
d− 1

)(
2d− 5

)(
d− 3

) Γ
(

d
2 − 2

)
Γ
(

d
2 − 1

)(
Lminµ

)2d−6

= 3g2
3dCAT

64π2

[1
ϵ
− 7 + 4γE + 4 ln(Lminµ̄)

]
. (4.10)

Since g2
3d = g2T + O(g4), the 1/ϵ term cancels against the one from eq. (4.1).

As for the L− T piece, we need the q2
⊥-proportional piece of eq. (4.7) together with the

contribution from the ⟨EE⟩ correlator. We extract this from eq. (A.8) of [6] and expand
towards the UV to arrive at

ΠΦaΦb(q) = δab g
2
3dCAmD

16π

(
−4− 6CF − CA

6CA

λE

g2
3d

− 8q
2 −m2

D

qmD
arctan q

mD

)
q≫mD≈ −δab g

2
3dCAq

4 ≡ ΠΦaΦb div(q) . (4.11)

As the corresponding IR pole has been obtained using the mixed scheme described at the
beginning of section 3.4, we stick to the same scheme here and have evaluated eq. (4.11)
in d = 3. From eq. (A.13) of [6], we then write

⟨EE⟩(c)
div = 1

4

∫
q

eiLqz

q4 q2
⊥δ

ab
(
−ΠT

ΦaΦb div(q)
)
. (4.12)
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To get the full ΠL −ΠT EQCD contribution, we need to add to this its ⟨BB⟩ counterpart.
It arises from the q2

⊥-proportional piece in eq. (4.7) with the d = 3 polarisation tensor in
eq. (4.9). We then evaluate the Fourier transform in DR and carry out the L integration,
as in eq. (4.10). This yields — see again eq. (2.16)

Z
3d (c)
g L-T c2 = 4T

dA

∫ Lmin

0
dLL

(
⟨EE⟩(c)

div − ⟨BB⟩(c)
q2
⊥ div

)
= g2

3dCAT

(4π)
d+1

2

Γ
(

d+1
2
)(

3− d
)(Lminµ

2

)3−d

= g2
3dCAT

32π2

[1
ϵ
− 1 + 2γE + 2 ln Lminµ̄

2

]
, (4.13)

which, reassuringly contains a 1/ϵ pole that cancels exactly against the one from eq. (4.2). We
note that, if the Fourier transforms in eqs. (4.7) and (4.12) are carried out in three dimensions,
the former vanishes, whereas the latter gives ⟨EE⟩(c)

div d=3 = CAdAg
2
3d/(4πL)2, from which the

value of c2 in eq. (2.19) is extracted. We have split our calculation in a (q−)2 part and a L−T
part, rather than a ⟨EE⟩ and a ⟨BB⟩ one, to check the explicit cancellation of 1/ϵ poles in
each of the former two parts and to account for our mixed scheme in the L− T contribution.

We can finally insert eqs. (4.1), (4.2), (4.10) and (4.13) into eq. (4.3), together with the
LO EQCD matching g2

3d = g2T , to find

Zmatch
g = g2CAT

2

8π2

[
2 ln(2LminT ) + 2γE − 3

]
. (4.14)

Note that in computing Znon-pert class
g , the lnLmin above cancels against the −

∫ dL
L c2g

2
3d term

in eq. (2.18), as we originally set to show.
We conclude by noting that eq. (4.14) is somewhat arbitrary: a firm necessity of the

cancellation of the Lmin dependence of Z3d
g
∣∣merge through the IR divergence of the thermal

scale contribution is the ln(LminT ) term. The non-logarithmic parts, on the other hand,
can freely be shuffled between eq. (4.14) and eqs. (3.28) and (3.29) by redefining the scheme
used to separate the IR-divergent part from the remainder in section 3. This is of course
irrelevant once these three equations are summed in eq. (4.6). However, in the next section
we shall not include the Z(c)

g L-T n ̸=0 contribution, as it contains extra divergences signaling
sensitivities to new regions of phase space we have left to future work. Hence, to present
a first estimate of the impact of neglecting Z(c)

g L-T n ̸=0, let us determine what would happen
to eq. (4.14) if we were to omit the finite parts associated with the L− T contribution. By
dropping them from eqs. (4.2) and (4.13) we find

Zmatch
g,no L-T finite parts = Zmatch

g − g2CAT
2

32π2

[
1 + 2 ln 2 + 2γE

]
. (4.15)

The numerical impact of eqs. (4.14) and (4.15) will be discussed in the next section.

5 Summary and discussion

In section 3, we determined the contribution to Zg of the temperature scale at order g2: it
is given by eqs. (3.28) and (3.29) for the two contributions in which it has naturally been
split; see eq. (3.18). In section 4, we analyzed the IR divergences of the T -scale contribution
and showed how they cancel against the UV divergences from EQCD found in [6] when they
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are consistently evaluated in the same DR scheme. In eq. (4.4), we explain how to add the
lattice result of [6] with the finite remainder, eq. (4.14), of the cancellation of the divergences,
lifting the artificial dependence on the UV cutoff introduced in [6].

To evaluate the numerical impact of our work, we should in principle use our best
available result, summing the NLO T -scale contribution with the all-order non-perturbative
evaluation. This is given by eq. (4.6), which, after inserting all ingredients, gives rise to

δZnon-pert class+NLO T
g =Z3d

g
∣∣merge+ g2CAT

2

8π2

[
2ln(2LminT )+2γE−3

]
+ g2T 2

96π2

{(11
3 CA−

4
3TFNF

)
2ln µ̄UV

T

+CA

[
−80lnA−4γE+

94
9 +32

3 lnπ− 8
3 ln2+

4
3×

[
0.299378

]]
(5.1)

+TFNF

[
16lnA−4γE−

38
9 +8

3 ln(4π)+
10
3 ×

[
0.199478

]]}

+ m2
D

(4π)2

{ 2
ϵ2

+2
ϵ

(
ln µ̄e

γE− 1
2

2πT +ln µ̄A
12e−

1
2

8πT
)

+2ln2 µ̄e
γE− 1

2

2πT −4γ1+
π2

4 −2γ2
E−1+4ln2

+2ln2 µ̄A
12e−

1
2

8πT − 3
2 ln

2(2)−2(lnζ2)′2+
2ζ ′′2
ζ2

+1
2Li2

(2
3
)
+1
4Li2

(3
4
)
− 1
4 ln(3) ln

4
3

}
+ g2T 2

48π2

{
CA

[
0.145277−5.13832

]

−TFNF

[2ln2
ϵ

+4ln(2) ln µ̄A
12e−

1
2

8πT −2ln2(2)+0.438129−1.97382
]}
.

The one outstanding roadblock is that our evaluation of the “longitudinal minus transverse”
Z

(c)
g,L-T n ̸=0 contribution in eq. (3.29) contains yet uncancelled double-logarithmic divergences

from the sensitivity to the collinear (q⊥ ∼ m∞) and hard (q+ ∼ E ≫ T ) regions of phase
space. We have left their understanding and cancellation to future work. Here, we present
a numerical analysis of the impact of the other corrections, namely the (q−)2 contribution,
Z

(c),IR/UV safe
g,q−2 , given in eq. (3.28) and the classical contribution determined from lattice and

perturbative EQCD in [6] complemented by the cancellation of the logarithmic sensitivity
achieved through eqs. (4.3) and (4.14). More precisely, let us define

δZfinite
g ≡ Znon-pert class

g + Z
(c),IR/UV safe
g,q−2 (5.2)

= Z3d
g
∣∣merge + g2CAT

2

8π2

[
2 ln T

2g2
3d

+ 2γE − 3
]

+ g2T 2

96π2

{(11
3 CA − 4

3TFNF

)
2 ln

(
4πe−γE exp −Nc + 4 ln(4)NF

22Nc − 4NF

)
+ CA

[
− 80 lnA− 4γE + 94

9 + 32
3 ln π − 8

3 ln 2 + 4
3 ×

[
0.299378

]]
+ TFNF

[
16 lnA− 4γE − 38

9 + 8
3 ln(4π) + 10

3 ×
[
0.199478

]]}
, (5.3)
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T
Znon-pert class

g
T 2

δZfinite
g
T 2

δZfinite
g,Eq. (4.15)

T 2
Z3d

g,LO

T 2

250MeV −0.513(138)(45)(7) −0.340(138)(45)(7) −0.465(138)(45)(7) −0.376
500MeV −0.619(99)(39)(3) −0.491(99)(39)(3) −0.584(99)(39)(3) −0.324

1GeV −0.462(71)(9)(7) −0.356(71)(9)(7) −0.430(71)(9)(7) −0.305
100GeV −0.327(16)(5)(2) −0.274(16)(5)(2) −0.310(16)(5)(2) −0.223

Table 1. Values for our main results. δZfinite
g,Eq. (4.15) is defined by replacing eq. (4.14) with eq. (4.15)

in Znon-pert class
g and Z3d

g,LO is given by eq. (2.12). See appendix D for details on the renormalisation
scale and the values of the coupling. We recall that these values are to be added to the LO value
ZLO

g = T 2/6, as per eq. (4.5).

which is obtained by summing eqs. (3.28) and (4.3). We also set µ̄UV to eq. (D.1), in keeping
with the renormalisation scale used in the EQCD matching, and Lmin = 1/(4g2

3d), the value
used in Z3d

g
∣∣merge in [6]. To further motivate our choice of looking, for the time being, at this

partial subset of O(g2) corrections, let us remark that Z(c) IR/UV safe
g,q−2 comes from the same

(q−)2 structure as the LO term — compare eq. (2.3) and (3.19). It is thus fundamentally
different from Z

(c)
g,L-T ,n ̸=0, which indeed contains a new structure and new divergences.

In table 1, we collect the numerical values for our main results. We refer to appendix D
for the coupling prescriptions and the EQCD data for Z3d

g
∣∣merge from [6]. δZfinite

g Eq. (4.15) is
defined by replacing eq. (4.14) with eq. (4.15) in Znon-pert class

g , thus giving a first, very rough
estimate of the error associated with the lack of inclusion of the L − T contribution. The
quoted uncertainties are inherited from [6]. They come from statistical errors in lattice EQCD
(first bracket), from the integration of the IR tail in eq. (4.3) (second bracket) and from
the quadrature of the lattice data (third bracket).

As we see, our results for δZfinite
g are negative and, in magnitude, larger than ZLO

g = T 2/6
(see eq. (2.3)), to which they are to be added, as per eq. (4.5). With the exception of the
highest temperature, within errors they are however compatible with the O(g) correction
only, i.e. the leading-order contribution in perturbative EQCD given by Z3d

g,LO in the last
column of the table. Recall that Z3d

g,LO is obtained in eq. (2.12), which in turn clarifies why a
negative contribution arises: it comes from removing the incorrect, unscreened IR of bare
QCD and replacing it with the correct, screened IR of EQCD. As the screened contribution
is necessarily smaller than the bare unscreened one, negativity sets in.

This large negative contribution, resulting in an overall negative Zg, may appear prob-
lematic. However, until the divergences of the L− T contributions are addressed by properly
including collinear and hard modes, we refrain from making definite statements on the
convergence of EQCD factorisation for this observable. Already by simply reshuffling the
finite parts associated with the cancellation of IR and UV divergences in the L− T channel

— the δZfinite
g,Eq. (4.15) column — we see a significant variation. Fully understanding these extra

regions of phase space may give rise to even larger contributions, due to potentially large
double logarithms.

These potentially enhanced double logarithms would relate the T -scale physics in eqs. (5.1)
and eq. (3.29) with hard, q+ ∼ E ≫ T physics related to the EFT matching implicit in
eq. (1.1), as we commented there. They would also include collinear physics, with effects
such as the quantum-mechanical interference of multiple soft scatterings, as we mentioned
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in section 3.4 after eq. (3.31). At the moment we do not speculate further on these matters
and leave them to future work.

As a final remark, we comment on the expansion undergirding the factorisation of the
asymptotic mass into the operators Zg and Zf described by eq. (1.1). It requires the parton
energy E to be E ≫ T when the T -scale contribution to these operators is considered. If the
soft contribution is considered, the expansion becomes E ≫ mD, so that, in the weak-coupling
regime, it remains applicable for E ∼ T . This also holds for eqs. (4.4) and (4.14), as the
latter is obtained from the soft limit of the T -scale contribution.6 This has then the very
important consequence that our values for Znon-pert class

g , tabulated in table 1, are valid
also when considering partons with thermal energies. This then makes them applicable for
corrections to observables such as the thermal photon rate or transport coefficients, where
they could be used to complement the existing NLO determinations [33–35].
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A Conventions

Our sign for the covariant derivative is

Dµ = ∂µ − igAµ ,

which fixes the sign of the three gluon vertex to be positive. Moreover, we employ the “mostly
minus” (+,−,−,−) metric. Uppercase letters denote four-momenta, lowercase letters the
modulus of the three-momenta. When using light-cone coordinates

p+ ≡ p0+pz

2 = v̄ ·P , p−≡ p0−pz = v ·P , P ·Q= p+q−+p−q+−p⊥ ·q⊥ , (A.1)

where the two light-like reference vectors are defined as

v̄µ ≡ 1
2(1, 0, 0,−1) , vµ ≡ (1, 0, 0, 1) .

This asymmetric convention for the + and − components of the light-cone coordinates has
two advantages: it has unitary Jacobian, i.e. dp0dpz = dp+dp−, in scalings where p− ≪ p+

it then implies p0 ≈ pz ≈ p+.
6We remark that, even in this regime, our results remain different from those of [8–11]. These papers

determine the two-loop and power-suppressed one-loop contributions from the hard thermal scale to the
self-energy for soft external modes, to then take the asymptotic mass limit. It then corresponds to first
expanding for P ≪ Qi ∼ T , where P is the external momentum and Qi the loop momenta, to then take
the P ≫ mD limit. Our calculation, on the other hand, corresponds to taking a P ≫ Qi ∼ T expansion to
then take the P → T ≫ mD limit from above. Indeed, our calculation in this limit sees IR divergences given
by eqs. (4.1)–(4.2) which are then absorbed by EQCD, whereas the results of [8–11] are finite after charge
renormalization, further highlighting their difference.
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The emergent momenta integrals are often regularised in d = D − 1 = 3− 2ϵ, employing
the MS renormalisation scale µ̄2 = 4πe−γEµ2. Denoting spatial momenta as p = (p⊥, pz),
this allows to use the shorthand∑∫

PE

≡ T
∑
n∈Z

∫
p

∣∣∣
p0=2nπT

,

∫
P
≡ µ3−d

∫ dDP

(2π)D
,

∫
p
≡ µ3−d

∫ ddp
(2π)d

,

∑∫
{PE}

≡ T
∑
n∈Z

∫
p

∣∣∣
p0=(2n−1)πT

,

∫
p⊥

≡ µ3−d
∫ dd−1p⊥

(2π)d−1 . (A.2)

B One-loop self-energies and projectors

We document in this appendix the self energies that are needed for the computation of
diagram (c) in section 3. We start by providing the transverse and longitudinal projectors
(with respect to the three-momentum) that are used to arrive at the decomposition eq. (3.18)

Pµν
L (Q) = −gµν + qµqν

Q2 − Pµν
T (Q) , (B.1)

Pµν
T (Q) = −gµν + uµuν − qµqν − (Q · u)qµuν − (Q · u)qνuµ + (Q · u)2uµuν

q2 , (B.2)

(uµ) = (1, 0, 0, 0) . (B.3)

The main ingredient for the Euclidean evaluation of the (q−)2 contribution is the Feynman-
gauge transverse Euclidean polarisation tensor, which can be obtained from, e.g. [36]. It reads

ΠE
T (Q) = g2Nc

∑∫
KE

(D − 2)K2
E −Q2

E − 1
2

Q2
E

q2 (Q2
E + 2k2 − 2k2

0)
K2

E(QE −KE)2

− 2g2TFNF
∑∫
{KE}

2K2
E − D−4

D−2Q
2
E − Q2

E
(D−2)q2 (Q2

E + 2k2 − 2k2
0)

K2
E(QE −KE)2 . (B.4)

For the L− T contribution, we need instead the difference between the retarded longitu-
dinal and transverse part, which appears in eq. (3.20). Its gauge contribution (gluon and
ghost) and its quark contribution can be read off from [37], viz.

ΠR
L(Q)B−ΠR

T (Q)B = g2CA

(4π)2q3

∫ ∞

0
dknB(k)

[
−8kq(3q2

0−q2)

+Q2
(
12k2−q2+3q2

0

)[
ln q

0+q−2k+iε
q0−q−2k+iε+ln q

0−q+2k+iε
q0+q+2k+iε

]
+12kq0Q2

[
2ln q

0+q+iε
q0−q+iε+ln q

0−q+2k+iε
q0+q+2k+iε−ln q

0+q−2k+iε
q0−q−2k+iε

]]
,

(B.5)

ΠR
L(Q)F−ΠR

T (Q)F =
2g2TFNF

(4π)2q3

∫ ∞

0
dknF(k)

[
−8kq(3q2

0−q2)

+Q2
(
12k2−q2+3q2

0

)[
ln q

0+q−2k+iε
q0−q−2k+iε+ln q

0−q+2k+iε
q0+q+2k+iε

]
+12kq0Q2

[
2ln q

0+q+iε
q0−q+iε+ln q

0−q+2k+iε
q0+q+2k+iε−ln q

0+q−2k+iε
q0−q−2k+iε

]]
,

(B.6)
where B and F stand for bosonic and fermionic.
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C Diagram (c) computation: technical details

C.1 Euclidean evaluation of Zg,q−2

We start from eq. (3.22). Upon inserting eq. (B.4) into eq. (3.22), we encounter the following
class of sum-integrals

Iα1α2
s0;s1s2s3 =

∑∫
QEKE

1
[q2]s0

qα1
0 kα2

0
[Q2

E]s1 [K2
E]s2 [(QE −KE)2]s3

, (C.1)

Îα1α2
s0;s1s2s3 =

∑∫
QE{KE}

1
[q2]s0

qα1
0 kα2

0
[Q2

E]s1 [K2
E]s2 [(QE −KE)2]s3

, (C.2)

where I00
0;s1s2s3 = Is1s2s3 and fermionic momenta are denoted by curly brackets. The integrals

that appear in eq. (B.4) are

J1 = I201 =
∑∫

QEKE

1
Q4

EK
2
E
= I1I2 , (C.3)

J2 = I111 = 0 , (C.4)

J3 = I1;011 =
∑∫

QEKE

1
Q2

EK
2
E(q − k)2 = T 2

192π2

[1
ϵ
− 4 ln 32πT

µ̄A12 + 6
]
, (C.5)

J4 = I1;101 =
∑∫

QE

1
q2

0

[ 1
q2 − 1

Q2
E

]∑∫
KE

1
K2

E
= 2

(d− 2)I1I2 , (C.6)

J5 = I01
1;111 = T 2

288π2

[1
ϵ
+ 4 ln µ̄A

3

4πT + 3γE + 95
12 − 0.299378

]
, (C.7)

and the fermionic counterparts Ĵi obtained by summing over odd {KE}. We used the
one-loop bosonic and fermionic master integrals

Is =
∑∫

PE

1
[P 2

E ]s
= µ3−d2T [2πT ]d−2s

(4π)
d
2

Γ
(
s− d

2
)

Γ
(
s
) ζ2s−d , (C.8)

Îs =
∑∫
{PE}

1
[P 2

E ]s
= (22s−d − 1)Is , (C.9)

where ζs = ζ(s) is the Riemann zeta function. J2 vanishes identically, as shown with
integration-by-parts (IBP) methods [38]. The integrals J3 in eq. (C.5) and J5 in eq. (C.7)
need to be evaluated independently due to absence of collinearity in the integral [39]. Details
on their evaluation are provided below in appendix C.1.1.

The fermionic counterparts read

Ĵ1 = Î201 =
∑∫

QE{KE}

1
Q4

EK
2
E
= Î1I2 , (C.10)

Ĵ2 = Î111 =0 , (C.11)

Ĵ3 = Î1;011 =
∑∫

{QEKE}

1
Q2

EK
2
E(q−k)2 = −T 2

96π2

[1
ϵ
−4ln 8πT

µ̄A12 +ln4
]
, (C.12)
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Ĵ4 = Î1;101 =
∑∫

QE

1
q2

0

[ 1
q2 −

1
Q2

E

]∑∫
{KE}

1
K2

E
= 2

(d−2) Î1I2 , (C.13)

Ĵ5 = Î01
1;111 =− 5T 2

1152π2

[1
ϵ
+4ln µ̄

πT
+6
5γE+

8
3+

168
5 lnA+46

5 ln2−0.199478
]
. (C.14)

We used the one-loop fermionic master integrals (C.9) and that Ĵ2 too vanishes identically,
see e.g. [40]. Details on Ĵ3 and Ĵ5 are provided below in section C.1.1.

From eq. (3.22), eq. (B.4) and the definitions of the master integrals, we have

Z
(c)
g,q−2 = −(D − 2)g2

[
Nc

(
(D − 2)J1 − J2 −

J3
2 − J4 + 2J5

)
− 2TFNF

(
2Ĵ1 −

D − 4
D − 2 Ĵ2 −

Ĵ3
D − 2 − 2Ĵ4

D − 2 + 4Ĵ5
D − 2

)]
. (C.15)

The bosonic part gives

Z
(c)
g,q−2,B = 5g2NcT

2

576π2

[
− 1
ϵ
− 4 ln µ̄

4πT + 48
5 lnA− 8

5 ×
[
−0.299378

]
− 24

5 γE − 13
15 − 36

5 ln 2
]
, (C.16)

Z
(c)
g,q−2,B,n=0 = 3g2NcT

2

64π2

[
− 1
ϵ
− 4 ln

(
µ̄

2T

)
− 5

3

]
, (C.17)

where the last line is the QE zero-mode part of the Ji integrals, before any QE shift has
been performed. It gives rise to the soft IR divergence and can be evaluated relatively
straightforwardly (cf. e.g. eq. (C.44) and [41]).

After subtracting this zero-mode from the bosonic contribution — which we shall match
with EQCD later — we find the bosonic and fermionic parts of eq. (C.15)

Z
(c)
g,q−2,B,n ̸=0 = Z

(c)
g,q−2,B − Z

(c)
g,q−2,B,n=0

= g2NcT
2

96π2
11
3

[1
ϵ
+ 4 ln µ̄

T
+ 24

11 lnA− 4
11 ×

[
−0.299378

]
− 12

11γE + 61
33 + 10

11 ln π − 52
11 ln 2

]
, (C.18)

Z
(c)
g,q−2,F = −g

2TFNFT
2

72π2

[1
ϵ
+ 4 ln µ̄A

3

4πT + 5
2 ×

[
−0.199478

]
+ 3γE + 13

6

]
. (C.19)

C.1.1 Evaluation of J3 and J5 and their fermionic counterparts

For the bosonic J3 and fermionic Ĵ3, we first perform the Matsubara sums and drop the
scale-free vacuum × vacuum term, i.e.

J3 =
∑∫

QEKE

1
Q2

EK
2
E(q−k)2 =

∫
qk

[1+2nB(q)][1+2nB(k)]
4qk(q−k)2 =

∫
qk

nB(q)[1+nB(k)]
qk(q−k)2 , (C.20)

Ĵ3 =
∑∫

{QEKE}

1
Q2

EK
2
E(q−k)2 =−

∫
qk

nF(q)[1−nF(k)]
qk(q−k)2 , (C.21)
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where we have used the q ↔ k symmetry of the integrand. We can now split the vacuum
and thermal parts in k. The former can be treated as follows

J
(0)
3 = +

∫
qk

[
nB(q)

qk(q − k)2 − nB(q)θ(k − q)
qk3 + nB(q)θ(k − q)

qk3

]
, (C.22)

Ĵ
(0)
3 = −

∫
qk

[
nF(q)

qk(q − k)2 − nF(q)θ(k − q)
qk3 + nF(q)θ(k − q)

qk3

]
. (C.23)

The sum of the first two terms in both cases is now finite and can be treated in d = 3,
whereas the third term is doable in DR. We then find

J
(0)
3 = T 2

24π2 + T 2

48π2

[1
ϵ
− 4 ln 4πT

µ̄A12

]
, (C.24)

Ĵ
(0)
3 = − T 2

48π2 − T 2

96π2

[1
ϵ
− 4 ln 8πT

µ̄A12

]
, (C.25)

where the first term comes from the finite part and the second from the DR part.
We now turn to the thermal k contribution. There we need to subtract its zero mode

only for the bosonic integral and treat it separately in DR, i.e.

J
(T )
3 =

∫
qk

[
nB(q)nB(k)
qk(q−k)2 − nB(q)T

qk2(q−k)2 +
nB(q)T

qk2(q−k)2

]
, Ĵ

(T )
3 =

∫
qk

nF(q)nF(k)
qk(q−k)2 . (C.26)

Once again, the sum of the first two terms is finite. It can be treated numerically in three
dimensions. The third term is dealt with in DR, using standard vacuum techniques for the
k integration followed by the q one. We find

J
(T )
3 = T 2

64π2

[
− 3.25532− 1

ϵ
− 4 ln µ̄

T
− 2

]
. (C.27)

Using the position-space method of [40, 42], the numerical part can be integrated analytically
with full agreement, finding

J
(T )
3 = T 2

48π2

[
1 + 3 ln 2π

A12

]
+ T 2

64π2

[
− 1
ϵ
− 4 ln µ̄

T
− 2

]
, (C.28)

Ĵ
(T )
3 = T 2

48π2

[
1− ln 2

]
. (C.29)

Hence

J3 = J
(0)
3 + J

(T )
3 = T 2

192π2

[1
ϵ
− 4 ln 32πT

µ̄A12 + 6
]
, (C.30)

Ĵ3 = Ĵ
(0)
3 + Ĵ

(T )
3 = − T 2

96π2

[1
ϵ
− 4 ln 8πT

µ̄A12 + ln 4
]
. (C.31)

To evaluate J5, we employ again the positon-space methods of [42] and write J5 as

J5 =
∑∫

QEKE

k2
0

Q2
Eq

2K2
E(QE +KE)2 =

∑∫
QE

1
Q2

Eq
2Π(QE) , (C.32)
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where we can separate the vacuum and thermal contribution to Π(Q)

Π(QE) ≡
∑∫

KE

k2
0

K2
E(QE +KE)2 = Π(0)(QE) + Π(T )(QE) . (C.33)

The vacuum contribution is obtainable by replacing the Matsubara sum over k0 with a
Euclidean

∫
dk0/(2π). Employing standard DR methods and inserting the result into

eq. (C.32), yields

J
(0)
5 = µ6−2d ((d− 2)d− 1)T 2d−4

(4π)d+1π
7
2−2d

Γ
(5

2 − d
)
Γ
(
d− 3

)
Γ
(

d
2
)
Γ
(

d+2
2
) ζ5−2d = − T 2

576π2

[1
ϵ
+ 4 ln µ̄A

12

4πT + 2
3

]
.

(C.34)
For Π(T ), we instead proceed in position space, i.e.

Π(QE) =
∑∫

KE

k2
0

K2
E(QE +KE)2 =

∫
d3r

∑∫
KEPE

k2
0βδp0−k0−q0

K2
EP

2
E

eir·(p+q+k)

= T
∑
k0

∫
d3rk

2
0e

−|k0|re−|q0+k0|r

(4πr)2 eiq·r , (C.35)

where δp0 = δp0,0 and in the last step we took the three-dimensional Fourier transforms. One
can also work out the Matsubara sum, finding

Π(QE) = T 3
∫
d3re

−|q̄0|r̄eiq·r

12r2

[
|q̄0|3 +

3
2
(
q̄2

0 coth(r̄) + csch2(r̄)
(
|q̄0|+ coth(r̄)

))
+ |q̄0|

2

]
,

(C.36)
where q̄0 ≡ q0/(2πT ) and r̄ ≡ 2πTr. To get Π(T ), we must subtract the vacuum contribution,
again obtained by replacing the sum with the integral. We then find

Π(T )(QE) = T 3
∫
d3re

−|q̄0|r̄eiq·r

24r2

[
3
(
q̄2

0

(
coth(r̄)− 1

r̄

)
+ |q̄0|

(
csch2(r̄)− 1

r̄2

)
+ csch2(r̄) coth(r̄)− 1

r̄3

)
+ |q̄0|

]
. (C.37)

In principle, we should naively insert this into eq. (C.32). We would find that

1) Since the Fourier transform

∫
q

eiq·r

q2Q2
E
= 1− e−|q0|r

4πq2
0r

(1− δq0) , (C.38)

is only defined in 3D for the non-zero modes, we need to treat the QE zero mode
separately.

2) If we use eqs. (C.37) and (C.38) together, perform the nonzero q0 sum, we are then
faced with a dr/r UV logarithmic divergence. As per [42], we must then subtract off
the QE ≫ T limit of eq. (C.37) in position space and add it back in momentum space
in DR.
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We then find

Π(T )(QE ≫ T ) = T 3
∫
d3re

−|q̄0|r̄eiq·r

24r2 q̄2
0 r̄ + . . . , (C.39)

where the dots stand for higher-order terms in the expansion for r̄ ≪ 1 with r̄q̄0 ∼ 1. In
momentum space the analogue expansion can be made by having either of the KE and
QE +KE denominators in eq. (C.32) be much larger than T . The leading term comes from
the former, yielding

Π(T )(QE ≫ T ) = q2
0
Q2

E

∑∫
KE

1
K2

E
+O

(
T 4

Q2
E

)
. (C.40)

By splitting J
(T )
5 into three terms and noting that primed sum-integrals exclude the

zero mode, we obtain

J
(T )
5 =

∑∫ ′

QE

[Π(T )(QE)
Q2

Eq
2 − Π(T )(QE ≫ T )

Q2
Eq

2

]
+
∑∫ ′

QE

q2
0

Q4
Eq

2
∑∫

KE

1
K2

E
+
∑∫

QEKE

δq0k
2
0

q4K2
E(QE +KE)2

= J
(T ) finite
5 + J

(T ) div.
5 + J

(T ),q0=0
5 . (C.41)

For the first term we proceed in position space. After using eq. (C.38) and performing
the q0 sum, we have

J
(T )finite
5 =T 4 ∑

q0 ̸=0

∫
d3r(1−e

−|q̄0|r̄)e−|q̄0|r̄

4πq2
0r

1
8r2

[(
csch2(r̄)coth(r̄)− 1

r̄3

)
+|q̄0|

(
csch2(r̄)− 1

r̄2 +
1
3
)
+|q̄0|2

(
coth(r̄)− 1

r̄
− r̄

3
)]

= T 5

8

∫
d3r

{[
Li2

(
e−r̄

)
−Li2

(
e−2r̄

)](coth(r̄)csch2(r̄)
r̄3 − 1

r̄6

)
+ln

(
e−r̄+1

)(csch2(r̄)
r̄3 + 1

3r̄3 −
1
r̄5

)
+ csch(r̄)

6r̄2

(3coth(r̄)
r̄

−1− 3
r̄2

)}

=
[
−0.0997928

]
× T 2

96π2 , (C.42)

where the integration is finite and has been carried out numerically.7

For the divergent piece we find, using IBP

J
(T ) div.
5 =

∑∫ ′

QE

q2
0

Q4
Eq

2
∑∫

KE

1
K2

E
=
[4− d

2
∑∫

QE

1
Q2

Eq
2

]
I1 = −d− 4

d− 2I1I2

= T 2

192π2

[1
ϵ
+ 4 ln µ̄A

6

4πT + 2γE + 4
]
. (C.43)

7An analytical evaluation could be possible by using IBP: ln(1+e−r̄) = ln(1−e−2r̄)− ln(1−e−r̄), and these
two terms are related to the derivatives of the polylogarithms. The non-logarithmic and non-polylogarithmic
term can be done using the methods of [40, 42], giving

T 5

8

∫
d3rcsch(r̄)

6r̄2

(
3 coth(r̄)

r̄
− 1 − 3

r̄2

)
= T 2

96π2

[
ln A12

8 − 1
2 − γE

]
.
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Finally, the zero mode can be computed using Feynman parametrisation and the series
expansion for the Riemann zeta function. Below, we list the bosonic [43] and fermionic results

Zα
s1s2s3 =

∑∫
QEKE

δq0
(k2

0)α

[Q2
E]s1 [K2

E]s2 [(QE −KE)2]s3

= µ6−2dΓ
(

d
2 − s1

)
Γ
(
s12 − d

2
)
Γ
(
s13 − d

2
)
Γ
(
s123 − d

)
(4π)dΓ

(
d
2
)
Γ
(
s2
)
Γ
(
s3
)
Γ
(
s1123 − d

) 2T 2ζ2s123−2α−2d

(2πT )2s123−2α−2d
, (C.44)

Ẑα
s1s2s3 =

∑∫
QE{KE}

δq0
(k2

0)α

[Q2
E]s1 [K2

E]s2 [(QE −KE)2]s3
= (22s123−2α−2d − 1)Zα

s1s2s3 , (C.45)

where s{i} =
∑

j∈{i} sj . The two special cases relevant for our computation

Z1
211

d=3−2ϵ= J
(T ) q0=0
5 = T 2

128π2 , (C.46)

Ẑ1
211

d=3−2ϵ= Ĵ
(T ) q0=0
5 = 0 , (C.47)

can also be read from eqs. (D2) and (D5) of [41]. Summing up eqs. (C.34), (C.42), (C.43)
and (C.46) we find eq. (C.7).

For Ĵ5 we adopt the same strategy used for its bosonic counterpart. The KE vacuum part
is identical and given by eq. (C.34). The KE thermal part is split in three terms (cf. eq. (C.41))

Ĵ
(T )
5 = Ĵ

(T ) finite
5 + Ĵ

(T ) div.
5 + Ĵ

(T ),q0=0
5 . (C.48)

The finite and divergent terms are

Ĵ
(T ) finite
5 = T 5

8

∫
d3r

{[
Li2

(
e−r̄

)
− Li2

(
e−2r̄

)](csch3(r̄)(cosh(2r̄) + 3)
4r̄3 − 1

r̄6

)
+ ln

(
e−r̄ + 1

) (6 coth(r̄) csch(r̄)− 1
6r̄3 − 1

r̄5

)
+ csch(r̄)

12r̄2

(6 csch(r̄)
r̄

+ 1− 6
r̄2

)}

=
[
0.0831159

]
× T 2

96π2 , (C.49)

Ĵ
(T ) div.
5 = (22−d − 1)J (T ) div.

5
(C.43)= − T 2

384π2

[1
ϵ
+ 4 ln µ̄A

6

4πT + 2γE + 4− ln 4
]
. (C.50)

Finally, the zero mode can be read off from eq. (C.47). Summing up eqs. (C.34), (C.49), (C.50)
and (C.47) we find eq. (C.14).

C.2 Real-time evaluation of Zg,L-T

For the sake of readability, we split our evaluation into the fermionic quark- and the bosonic
gauge-contribution.
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C.2.1 Quark contribution

The unresummed Hard Thermal Loop (HTL) subset of the full contribution, using eq. (B.6), is

Z
(c)
g,L-T ,HTL,F = i

∫
Q

1+nB(q0)
(q−−iε)2

[
q2
⊥(ΠR

L(Q)−ΠR
T (Q))HTL

q2(Q2+iεq0) −adv.
]
, (C.51)

ΠR
L(Q)F,HTL−ΠR

T (Q)F,HTL =
g2TFNFT

2

12

[
− (6q2

0−4q2)
q2 +3q

0Q2

q3 ln q
0+q+iε
q0−q+iε

]
, (C.52)

which, after inserting eq. (C.52) into (C.51), gives rise to a pole and a cut contribution.
The pole contribution is

Z
(c)
g,L-T ,F,HTL pole = −g

2TFNFT
2

12

∫
Q

1
2 + nB(|q0|)
(q− − iε)2

(6q2
0 − 4q2)
q2

q2
⊥
q2 2πδ(Q

2) (C.53)

= −g
2TFNFT

2

6

∫
q

nB(q)
2q

[ 1
(q − qz − iε)2 + 1

(−q − qz − iε)2

]
q2
⊥
q2 (C.54)

= g2TFNFT
2

48π2

[ 1
ϵ2

+ 2
ϵ
ln µ̄e

γE+ 1
2

4πT + 2 ln2 µ̄e
γE+ 1

2

4πT − 4γ1 +
π2

4 − 2γ2
E + 3

2

]
,

where in DR, the second step used that the vacuum part is scale-free. The cut contribution
of the HTL piece is instead

Z
(c)
g,L-T ,F,HTLcut =

g2TFNFT
2

4

∫
q

∫ q

0

dq0

2π
q2
⊥q

0

q5 2π
[ 1+nB(q0)
(q0−qz−iε)2 +

nB(q0)
(q0+qz+iε)2

]
, (C.55)

where we have symmetrised the frequency integral before restricting the integration to be
over twice the positive range. The nB-independent part is now scale-free, while the rest can
be done in a somewhat similar way to the pole piece

Z
(c)
g L-T F HTL cut =

g2TFNFT
2

4
( µ̄2eγE

4π
)ϵ 2π

d−1
2

Γ(d−1
2 )(2π)d−1

∫ ∞

0

dq0

2π q
0nB(q0)

×
∫ ∞

q0
dqqd−4

∫ 1

−1
dx(1− x2)

d−1
2

[ 1
(q0 − qx− iε)2 + 1

(q0 + qx+ iε)2

]
.

(C.56)

Our strategy here is to do the following subtraction: nB(q0) → nB(q0)∓ (T/q0 − θ(T − q0)/2).
In this way, the subtraction is finite, and then we re-evaluate the addition in DR. For the
finite part, we find, performing the angular and momentum integrations first

Z
(c)
g,L-T ,F,HTL cut finite =

g2TFNFT
2

4
1
2π

∫ ∞

0

dq0

2π q
0
[
nB(q0)− T

q0 + θ(T − q0)
2

]
×
∫ ∞

q0

dq
q

∫ 1

−1
dx(1− x2)

[ 1
(q0 − qx− iε)2 + 1

(q0 + qx+ iε)2

]

= g2TFNFT
2

12π2 ln e
γE

2π (ln 2− 1) . (C.57)

– 28 –



J
H
E
P
0
3
(
2
0
2
4
)
1
1
1

For the DR subtracted part, we instead do the frequency integral first, splitting it into
the q > T and q < T ranges,

Z
(c)
g,L-T ,F,HTL cut div = −g

2TFNFT
2

8
( µ̄2eγE

4π
)ϵ 2π

d−1
2

Γ
(

d−1
2

)
(2π)d

∫ ∞

0
dq qd−4

∫ 1

−1
dx (1− x2)

d−1
2

×
{
θ(T − q)

[
− P

2
1− x2 + ln 1− x2

x2

]
+ θ(q − T )

[
ln
∣∣T 2 − q2x2∣∣

q2x2 − P
2T 2

T 2 − q2x2

]}
, (C.58)

where the principal value (PV) P arises from the ε → 0 limit. The q > T slice is finite
whereas the T > q part is IR-divergent and needs regularisation

Z
(c)
g,L-T ,F,HTLcut div =−g

2TFNFT
2

8
( µ̄2eγE

4π
)ϵ 2π

d−1
2

Γ
(

d−1
2

)
(2π)d

×
{∫ 1

−1
dx(1−x2)

d−1
2
T d−3

d−3

[
−P

2
1−x2 +ln 1−x2

x2

]
+
∫ 1

−1
dx(1−x2)

[Li2
(
x2)
2 +ln

(
x2

1−x2

)
+ln2 |x|−π2

6

]}
, (C.59)

=−g
2TFNFT

2

8
( µ̄2eγE

4π
)ϵ 2π

d−1
2

Γ
(

d−1
2

)
(2π)d

×
{
T d−3

d−3
Γ
(1

2
)
Γ
(

d+1
2
)

Γ
(

d
2+1

) (
ψ
(d−1

2
)
+γE−2+2ln2

)
− 1
9
(
8+π2−8ln2

)}

= g2TFNFT
2

24π2 (ln2−1)
[1
ϵ
+2ln µ̄

2T +1
]
, (C.60)

where ψ(x) = (ln Γ(x))′ is the digamma function. Finally

Z
(c)
g,L-T ,F,HTL cut =

g2TFNFT
2

24π2 (ln 2− 1)
[1
ϵ
+ 2 ln µ̄e

γE+ 1
2

4πT

]
. (C.61)

Let us now consider the non-HTL piece

δΠR
L(Q)F − δΠR

T (Q)F = 2g2TFNFQ
2

(4π)2q3

∫ ∞

0
dk nF(k)

[
24kq

+
(
3(2k − q0)2 − q2

)
ln q

0 + q − 2k + iε

q0 − q − 2k + iε

+
(
3(2k + q0)2 − q2

)
ln q

0 − q + 2k + iε

q0 + q + 2k + iε

]
, (C.62)
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where δΠ = Π − ΠHTL. This then gives

Z
(c)
g,L-T ,F,non-HTL = g2TFNF

4π

∫ ∞

0
dk nF(k)

∫
Q

1
2 + nB(q0)
(q− − iε)2

q2
⊥
q5

×
[
θ(q2 − (q0 − 2k)2)

(
3(2k − q0)2 − q2

)
− θ(q2 − (q0 + 2k)2)

(
3(2k + q0)2 − q2

) ]
. (C.63)

Here, we used the fact that the 1
2 piece vanishes8 to restrict to the purely odd 1

2 + nB(q0)
component. Let us again symmetrise and restrict to twice the positive frequency range

Z
(c)
g,L-T ,F,non-HTL =

g2TFNF

4π

∫ ∞

0
dknF(k)

∫ ∞

0

dq0

2π

∫
q

q2
⊥
q5

[ 1
2+nB(q0)

(q0−qz−iε)2 +
1
2+nB(q0)

(q0+qz+iε)2

]
×
{
θ(q−2k)

[(
3(2k−q0)2−q2

)
θ(2k+q−q0)

−
(
3(2k+q0)2−q2

)
θ(q−2k−q0)

]
+θ(2k−q)

(
3(2k−q0)2−q2

)
θ(2k+q−q0)θ(q0+q−2k)

}
. (C.64)

We start by dealing with the vacuum part

Z
(c)
g,L-T ,F,non-HTLvac =

g2TFNF

8π

∫ ∞

0
dknF(k)

∫ ∞

0

dq0

2π

∫
q

q2
⊥
q5

[ 1
(q0−qz−iε)2 +

1
(q0+qz+iε)2

]
×
{
θ(q−2k)

[(
3(2k−q0)2−q2

)
θ(q+2k−q0)

−
(
3(2k+q0)2−q2

)
θ(q−2k−q0)

]
+θ(2k−q)

(
3(2k−q0)2−q2

)
θ(2k+q−q0)θ(q0−2k+q)

}
. (C.65)

The strategy here is the following: we further symmetrise the expression in qz, to perform
the q0 integrations. After that one can take ε → 0. Logarithmic pieces will see their
argument change to its absolute value, while possible imaginary parts will cancel out due
to qz symmetrisation. Non-logarithmic pieces present poles on the qz integration range.
If we restrict to twice the positive qz range, these occur at −|2k − q| + qz = 0 and are
turned into a PV prescription by the ε → 0 limit. We can thus proceed to the qz integral
in the two ranges 2k > q and q > 2k. In the latter case, we find two subranges, one for
q⊥ < 2k and one for q⊥ > 2k. This last one has to be carried out in DR, since it contains
a UV divergence. We then find

Z
(c)
g,L-T ,F,non-HTL vac =

g2TFNFT
2

48π2

{ 1
ϵ2

+ 2
ϵ
ln µ̄A

12e−
1
2

16πT + 2 ln2 µ̄A
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1
2

16πT − 7
2 ln2(2)− 2(ln ζ2)′2

+ 2ζ ′′2
ζ2

+ 1
2Li2

(2
3
)
+ 1

4Li2
(3
4
)
− 1

2 − 1
4 ln(3) ln 4

3

}
.

(C.66)
8It gives rise to fully retarded and fully advanced contributions in q+. The contours can be safely closed in

these half-planes without encountering singularities or contributions from the arcs at large |q+|, thus yielding
a vanishing contribution.
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For the thermal part, we have instead

Z
(c)
g,L-T ,F,non-HTL th = g2TFNF

2π

∫ ∞

0
dk nF(k)

∫ ∞

0

dq0

2π
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0

dq
4π2
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q

[2q0 tanh−1
(

2qq0
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0

)
q3 − 4

q2

]
×
{
θ(q − 2k)

[ (
3(2k − q0)2 − q2

)
θ(2k + q − q0)

−
(
3(2k + q0)2 − q2

)
θ(q − 2k − q0)

]
+ θ(2k − q)

(
3(2k − q0)2 − q2

)
θ(2k + q − q0)θ(q0 + q − 2k)

}
. (C.67)

Here, we first perform the q integration analytically, followed by q0 and k numerically. We find

Z
(c)
g,L-T ,F,non-HTL th = g2TFNFT

2

48π2

[
−0.438129︸ ︷︷ ︸

q<2k

+1.97382︸ ︷︷ ︸
q>2k

]
. (C.68)

Putting everything together, we find
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4 ln(3) ln 4

3 −0.438129︸ ︷︷ ︸
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}
. (C.69)

C.2.2 Gluon and ghost contribution

We start from eqs. (3.20) and (B.5)

Z
(c)
g,L-T ,B = i

g2CA

(4π)2

∫
Q

∫ ∞

0
dk (1+nB(q0))
q3(q−−iε)2nB(k)

[
q2
⊥

q2(Q2+iεq0)

(
−8kq(3q2

0−q2)

+Q2(12k2−q2+3q2
0)
(
ln q0+q−2k+iε
q0−q−2k+iε+ln q0−q+2k+iε

q0+q+2k+iε

)
+12kq0Q

2
(
2ln q0+q+iε

q0−q+iε
+ln q0−q+2k+iε

q0+q+2k+iε−ln q0+q−2k+iε
q0−q−2k+iε

))
−adv.

]
.

(C.70)

As was done in section C.1, we need to separate out the contributions from zero and non-zero
Q Matsubara modes. In this case, because of the presence of the 1/(q− − iε)2 factor, the q0

integrand possesses poles in addition to those associated with the Matsubara frequencies,
meaning that we cannot effectively trade the q0 integral for a sum over Matsubara modes as
was done before. However, by first shifting: qz → qz + x0

xz q0, we may eliminate the q0 pole
tied to the 1/(q− − iε)2 prefactor, before proceeding to carry out the q0 integration using
contour methods. Of course, one may worry that such a shift spoils the analytical structure
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of the retarded (advanced) functions in the upper (lower) q0 plane. It has nevertheless
been pointed out by Caron-Huot [15]9 that as long as X is lightlike or spacelike, one may
always work in a frame where |x0|

|xz | ≤ 1, in which case the analytical structure of the causal
functions is not altered.10 Thus, in this case where X is lightlike, the appropriate shift is
precisely: qz → qz + q0. Following this maneuver, we can safely carry out the integral q0

and extract the n = 0 contribution

Z
(c)
g,L-T ,B,n=0 = g2CAT

8π2

∫
q

∫ ∞

0
dk q2

⊥nB(k)
q5(qz + iε)2

[
4kq − (12k2 − q2) ln

∣∣∣∣2k − q

q + 2k

∣∣∣∣
]

= g2CAT
2

32π2

[
−1
ϵ
+ 4− ln µ̄

2eγE

4T 2 − ψ
(3
2
)]

, (C.71)

which is needed for the matching calculation completed in section 4.
For the contribution from the non-zero Matsubara modes, we rather persist in the

Minkowskian signature so that we can employ the same strategy as in appendix C.2.1. In
more detail, for the HTL part, the k integrand is given by k nB(k). Therefore, given that∫ ∞

0
dk k nB(k) = 2

∫ ∞

0
dk k nF(k) =

π2T 2

6 , (C.72)

we may simply make the replacement 2NFTF → CA in eq. (C.61) to obtain the bosonic
equivalent. This yields
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. (C.73)

For the vacuum part of the non-HTL contribution, we have instead

Z
(c)
g,L-T ,B,non-HTL vac =

g2CA

16π

∫ ∞
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∫ ∞

0

dq0

2π

∫
q

q2
⊥
q5

[ 1
(q0 − qz − iε)2 + 1

(q0 + qz + iε)2

]
×
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,

(C.74)
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, (C.75)

9See also [44, 45].
10While the methods introduced in [15] are strictly speaking only defined for |x0|

|xz | < 1, they can be safely
extended to null correlators as well, provided the zero mode contribution is free of collinear singularities, which
is the case here.
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where in the last step, the methods of appendix C.2.1 were used. For the thermal part, we
have to subtract the zero mode (cf. eq. (C.71)11). This yields

Z
(c)
g,L-T ,B,non-HTL th,n ̸=0 = g2CA

4π
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]
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(
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)
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}
.

(C.76)

Here, we first perform the q integral analytically, followed by the q0 and k integrals numerically.
We find
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(c)
g,L-T ,B,non-HTL th n ̸=0 = g2CAT
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]
. (C.77)

Not including the Q zero-mode contribution, the total is then
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. (C.78)

D Determination of the QCD coupling

When adding perturbative and lattice determinations we need to be consistent in our choice of
the coupling g. Indeed, we need to set it to the values that correspond to those chosen in the
EQCD matching coefficients in the lattice ensembles. The matching procedure and coupling
determination for these ensembles is detailed in [21, 22], following [20, 46]. The resulting
values of the coupling and the number of light flavors NF are listed in table 2, together with the
data for Z3d

g
∣∣merge from [6].12 The matching procedure corresponds to a renormalisation scale

µ̄UV = 4πTe−γE µ̂ , (D.1)
11No zero-mode subtraction was necessary in the HTL part, since the zero mode is scale-free there.
12In the notation and normalisation of [6], that quantity is (Z3d

g /g2
3d)full. It is listed in table 1 there; please

refer to the latest arXiv version, which fixes a numerical issue in previous versions.
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T g2 NF
Z3d

g
∣∣merge

g2
3dT

250MeV 3.725027 3 0.085(37)(12)(2)
500MeV 2.763516 3 −0.024(36)(14)(1)

1GeV 2.210169 4 −0.026(32)(4)(3)
100GeV 1.066561 5 −0.179(15)(5)(2)

Table 2. The values for the QCD coupling squared and the number of light flavors correspond to
those used in the matching coefficients in the lattice ensembles of [5, 6], see [21, 22] for details. Data
for Z3d

g
∣∣merge comes from [6].

where at one-loop level [20]

µ̂ = exp −Nc + 4 ln(4)NF

22Nc − 4NF
. (D.2)

Hence, we set µ̄UV to eq. (D.1) when numerically evaluating eq. (3.28) in section 5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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