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Abstract We study the redistribution of the fermionic steer-
ing and the relation among fermionic Bell nonlocality, steer-
ing, and entanglement in the background of the Garfinkle–
Horowitz–Strominger dilaton black hole. We analyze the
meaning of the fermionic steering in terms of the Bell
inequality in curved spacetime. We find that the fermionic
steering, which is previously found to survive in the extreme
dilaton black hole, cannot be considered to be nonlocal.
We also find that the dilaton gravity can redistribute the
fermionic steering, but cannot redistribute Bell nonlocality,
which means that the physically inaccessible steering is also
not nonlocal. Unlike the inaccessible entanglement, the inac-
cessible steering may increase non-monotonically with the
dilaton. Furthermore, we obtain some monogamy relations
between the fermionic steering and entanglement in dilaton
spacetime. In addition, we show the difference between the
fermionic and bosonic steering in curved spacetime.

1 Introduction

Einstein–Podolsky–Rosen (EPR) steering, first discussed by
Schrödinger [1] in his response to the EPR paper, is a remark-
able feature of nonlocality in quantum theory, wherein one
party (Alice) can remotely steer another distant party (Bob)
by her choice of measurements. EPR steering can be viewed
as a quantum correlation (quantum resource) between quan-
tum entanglement and Bell nonlocality, since it requires
quantum entanglement as a fundamental resource for steer-
ing remote states, while EPR steering is not always suffi-
cient to violate Bell inequality. Research on the relationship
between Bell nonlocality, EPR steering, and quantum entan-
glement has made some progress [2–4], but it remains an
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open question. Unlike Bell nonlocality and quantum entan-
glement, EPR steering has a unique asymmetry, that is, one
party can steer the another but not vice versa. Because of its
asymmetric properties, EPR steering has potential applica-
tions in quantum secret sharing [5–8], quantum networks [9],
and quantum key distribution [10,11].

String theory is a promising candidate for a unified theory
between general relativity and quantum mechanics. Unlike
general relativity, the string theory predicted that the exis-
tence of the dilaton fields changes the properties of black
holes [12–15]. The dilaton black holes are formed by gravita-
tional systems coupled to Maxwell and dilaton fields, i.e., the
Garfinkle–Horowitz–Strominger (GHS) dilaton black hole
[13,14]. The Hawking effect [16] of the GHS black hole
relies not only on the mass of the black hole, but also on its
dilaton field, since the latter is also the source of gravity. The
Hawking effect for the dilaton black hole on quantum corre-
lation, quantum coherence, and entropic uncertainty relation
has been widely studied [17–29]. However, the relationship
between quantum correlations is still unclear in the back-
ground of the GHS dilaton black hole. Therefore, studying
the relationship between quantum steering, Bell nonlocality,
and quantum entanglement in dilaton spacetime is one of the
motivations for our work.

Another motivation for our work is to investigate the redis-
tribution of the fermionic steering and the difference between
the bosonic and fermionic steering in the background of the
dilaton black hole. Based on these motivations, it is assumed
that our model involves three fermionic modes: the first mode
A is observed by Alice at the asymptotically flat region; the
second mode B is observed by Bob who hovers near the event
horizon of the dilaton black hole; the third mode B̄ observed
by Anti-Bob is restricted by the event horizon. By calculat-
ing the fermionic steering in dilaton spacetime, we find that
the A → B fermionic steerability is always larger than the
B → A fermionic steerability, but the A → B bosonic steer-
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ability is always smaller than the B → A bosonic steerability
[22]. Furthermore, the fermionic steering can always survive,
while the bosonic steering suffers a sudden death in curved
spacetime. We also find that the dilaton gravity can redis-
tribute the fermionic steering, but cannot redistribute Bell
nonlocality, which indicates that the physically inaccessible
steering is not nonlocal. Finally, we obtain the relationships
between the fermionic steering and entanglement in dila-
ton spacetime. Therefore, we can understand another type of
quantum correlation through one type of quantum correlation
in dilaton spacetime.

Our paper is organized as follows. In Sect. 2, we intro-
duce the quantification of quantum steering and the Clauser–
Horne–Shimony–Holt (CHSH) inequality. In Sect. 3, we dis-
cuss the quantization of the Dirac field in the background
of the GHS dilaton black hole. In Sect. 4, we study the
redistribution of the fermionic steering in dilaton spacetime.
In Sect. 5, we obtain the monogamy relations between the
fermionic steering and entanglement in dilaton spacetime.
Finally, the Sect. 6 is devoted to the conclusion.

2 Quantification of quantum steering and CHSH
inequality

Bell nonlocality, quantum steering, and quantum entangle-
ment have a strict hierarchy for the mixed states. Interest-
ingly, Bell nonlocality can be indirectly detected by the
notion of quantum steering [2], and quantum steering can
be indirectly detected by the concept of quantum entangle-
ment [3,4]. We consider the density matrix of the X-state ρx

as

ρx =

⎛
⎜⎜⎝
ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎟⎠ , (1)

where ρi j is the real element satisfying ρi j = ρ j i . As we all
know, quantum entanglement of the bipartite states can be
effectively identified by the concurrence. The concurrence
of the X-state ρx given by Eq. (1) can be specifically shown
as [30]

C(ρx ) = 2 max
{
0, |ρ14| − √

ρ22ρ33, |ρ23| − √
ρ11ρ44

}
.

(2)

For a general bipartite state ρAB shared by Alice and Bob,
the steering from Bob to Alice can be witnessed if the density
matrix τAB defined as

τAB = ρAB√
3

+ 3 − √
3

3

(
ρA ⊗ I

2

)
, (3)

is entangled, where ρA = TrB(ρAB) and I is the two-
dimension identity matrix [4,31]. Similarly, we can witness

the steering from Alice to Bob when the density matrix τBA

defined as

τBA = ρAB√
3

+ 3 − √
3

3

(
I

2
⊗ ρB

)
, (4)

is entangled, where ρB = TrA(ρAB).
Through simple calculations, the matrix τAB of the X-state

ρx can be expressed as

τ x
AB =

⎛
⎜⎜⎜⎝

√
3

3 ρ11 + a 0 0
√

3
3 ρ14

0
√

3
3 ρ22 + a

√
3

3 ρ23 0

0
√

3
3 ρ32

√
3

3 ρ33 + s 0√
3

3 ρ41 0 0
√

3
3 ρ44 + s

⎞
⎟⎟⎟⎠ ,

(5)

with a = 3−√
3

6 (ρ11 +ρ22) and s = 3−√
3

6 (ρ33 +ρ44). Using
Eq. (2), the state τ x

AB is entangled, if the state τAB satisfies
inequality

|ρ14|2 > La − Lb, (6)

or

|ρ23|2 > Lc − Lb, (7)

where

La = 2 − √
3

2
ρ11ρ44 + 2 + √

3

2
ρ22ρ33

+1

4
(ρ11 + ρ44) (ρ22 + ρ33) ,

Lb = 1

4
(ρ11 − ρ44) (ρ22 − ρ33) ,

Lc = 2 + √
3

2
ρ11ρ44 + 2 − √

3

2
ρ22ρ33

+1

4
(ρ11 + ρ44) (ρ22 + ρ33) . (8)

Using a similar method, we find that the steering from Alice
to Bob can be witnessed via one of the inequality

|ρ14|2 > La + Lb, (9)

or

|ρ23|2 > Lc + Lb. (10)

According to the inequality, the steerability from Bob to Alice
SB→A is found to be

SB→A = max

{
0,

8√
3
[|ρ14|2 − La + Lb], 8√

3
[|ρ23|2 − Lc + Lb]

}
.

(11)

By exchanging the mode A and the mode B, we can obtain
the steerability SA→B as

SA→B = max

{
0,

8√
3
[ |ρ14|2 − La − Lb], 8√

3
[|ρ23|2 − Lc − Lb]

}
.

(12)
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The factor 8√
3

guarantees that the steerability of the maxi-
mally entangled state is 1.

The Bell inequality can be violated in quantum mechan-
ics, which means that quantum mechanics cannot be rede-
fined as a local realist theory. As we all know, the typical
Bell inequality is the CHSH inequality. To study the rela-
tionship between quantum steering and Bell nonlocality, we
use the CHSH inequality to verify the nonlocality of quan-
tum steering. The Bell operator for the CHSH inequality can
be defined as

B = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ, (13)

where a, a′,b, and b′ are unit vectors in R
3, and σ =

(σ1, σ2, σ3) denotes the vector of Pauli matrices. To detect the
Bell nonlocality of a state ρ, we employ the CHSH inequal-
ity and its expression of inequality for the two qubits to test
local-realistic theories reads

B(ρ) = |Tr(ρB)| � 2. (14)

Thus, the requirement to violate the CHSH inequality is
B(ρ) > 2, and the violation of this inequality implies the
nonlocality of the state. We need to find the maximal Bell
signal B(ρ), which for two-qubit systems can be equivalent
to

B(ρ) = 2
√

max
i< j

(Ki + K j ), (15)

where Ki and K j are the eigenvalues of the real symmetric
matrix K (ρ) = T T

ρ Tρ , and T = (ti j ) represents the correla-
tion matrix with ti j = Tr[ρσiσj]. For the two-qubit X-state,
K1, K2, and K3 take the specific form

K1 = 4(|ρ14| + |ρ23|)2,

K2 = 4(|ρ14| − |ρ23|)2,

K3 = (|ρ11| − |ρ22| − |ρ33| + |ρ44|)2. (16)

As K1 is greater than K2, we can represent the maximal Bell
signal as

B(ρx ) = max {B1, B2} , (17)

with B1 = 2
√
K1 + K2 and B2 = 2

√
K1 + K3 [32,33].

Note that the maximal violation of the CHSH inequality for
certain states is 2

√
2, and this bound can only be obtained

by the maximally steered states. We will use Eqs. (14), (15),
and (17) to judge whether quantum steering is nonlocal in
the dilaton black hole.

3 Quantization of Dirac field in dilaton black hole

Let us now introduce the massless Dirac equation in a general
background spacetime [34,35]

[γ aeμ
a (∂μ + �μ)]� = 0, (18)

whereγ a denotes the Dirac matrices,�μ = 1
8 [γ a, γ b]eν

aebν;μ
is the spin connection coefficient, and the four-vectors eμ

a rep-
resents the inverse of the tetrad eaμ. Note that the eaμ is defined
by gμν = ηabeaμe

b
ν with ηab = diag(−1, 1, 1, 1).

The thermal Fermi–Dirac distribution of particles of the
GHS dilaton black hole with the Hawking temperature T =

1
8π(M−D)

has been computed [36–38]. It is well known that
the presence of such radiation is called the Hawking effect.
The metric for the GHS dilaton black hole reads [39,40]

ds2 = −
(
r − 2M

r − 2D

)
dt2 +

(
r − 2M

r − 2D

)−1

dr2

+r(r − 2D)d�2, (19)

where M and D represent the mass and the dilaton of the
black hole, respectively. Throughout this paper, we set h̄ =
G = c = κB = 1 for convenience. In addition, the dilaton D
and the mass M should satisfy the relationship D < M . To
separate the Dirac equation in the following discussion, we
utilize a tetrad as

eaμ = diag

(√
f ,

1√
f
,
√
rr̃

√
rr̃ sin θ

)
, (20)

where f = (r−2M)
r̃ and r̃ = r − 2D. According to Eq. (18),

the massless Dirac equation in the GHS dilaton black hole
can be specifically represented as

− r0√
f

∂�

∂t
+ √

f γ1

(
∂

∂r
+ r − D

rr̃
+ 1

4 f

d f

dr

)
�

+ γ2√
rr̃

(
∂

∂θ
+ cot θ

2

)
� + γ3√

rr̃ sin θ

∂�

∂ϕ
= 0. (21)

If we use � = f − 1
4 � [41], we can solve the Dirac equation

near the event horizon of the black hole. For the exterior
region and interior region of the event horizon, we obtain the
following positive frequency outgoing solutions [42–44]

�+
out,k = J e−iωO, (22)

�+
in,k = J eiωO, (23)

whereO = t−r∗,J is a four-component Dirac spinor, and k
is the wave vector that can be used to label the modes. Using
Eqs. (22) and (23), the Dirac field can be expanded as

� =
∑
σ

∫
dk[âσ

k �+
σ,k + b̂σ†

k �−
σ,k], (24)

where σ = (in, out), âσ
k and b̂σ†

k are the fermion annihila-
tion and antifermion creation operators acting on the quan-
tum state, respectively. The annihilation operator and cre-
ation operator satisfy the canonical anticommutation rela-

tions
{
âoutk , âout†k′

}
=

{
âink , âin†

k′
}

=
{
b̂outk , b̂out†k′

}
={

b̂ink , b̂in†
k′

}
= δkk′ . The annihilation operators âσ

k define the
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dilaton vacuum as âoutk |0〉D = âink |0〉D = 0. Usually, we call
the dilaton modes �±

σ,k .
The complete basis for positive energy modes, i.e., the

Kruskal modes introduced by Domour–Ruffini [30], can
make analytic continuations of Eqs. (22) and (23). We can
also use the Kruskal modes to expand the Dirac field

� =
∑
σ

∫
dk

1√
2 cosh(4π(M − D)ω)

[
ĉσ
k �+

σ,k + d̂σ†
k �−

σ,k

]
,

(25)

where ĉσ
k and d̂σ†

k are the fermion annihilation and antifermion
creation operators acting on the Kruskal vacuum, respec-
tively. It can be seen from Eqs. (24) and (25) that the Dirac
field is decomposed into the Kruskal and dilaton modes,
respectively. Thus, we can obtain the Bogoliubov transforma-
tions between Kruskal and dilaton modes. Using the Bogoli-
ubov transformations, we can get the relations between the
Kruskal and dilaton operators that take the forms

ĉoutk = 1√
e−8π(M−D)ω + 1

âoutk − 1√
e8π(M−D)ω + 1

b̂out†k ,

ĉout†k = 1√
e−8π(M−D)ω + 1

âout†k − 1√
e8π(M−D)ω + 1

b̂outk .

(26)

Since the GHS dilaton black hole can be divided into phys-
ically accessible and inaccessible regions, the ground and
only excited states in Kruskal spacetime become the two-

mode squeezed state in the dilaton black hole. After properly
normalizing the state vector, the Kruskal vacuum and only
excited states in dilaton spacetime read

|0〉K = 1√
e−8π(M−D)ω+1

|0〉out |0〉in + 1√
e8π(M−D)ω+1

|1〉out |1〉in,
|1〉K = |1〉out |0〉in, (27)

where {|n〉out } and {|n〉in} correspond to the orthonormal
bases for the outside and inside regions of the event horizon,
respectively.

4 Redistribution of fermionic steering in dilaton
spacetime

We initially assume that Alice and Bob share a maximally
entangled state in the asymptotically flat region of the dilaton
black hole, which can be written in the following form

|φAB〉 = 1√
2
(|0〉A|0〉B + |1〉A|1〉B), (28)

where the modes A and B are observed by Alice and Bob,
respectively. Then, Bob hovers near the event horizon of the
dilaton black hole and Alice continues to stay at the asymptot-
ically flat region. Therefore, Bob can detect a thermal Fermi–
Dirac distribution of particles, meaning that his detector is
found to be excited. We can use the dilaton modes of Eq. (27)
to rewrite the initial entangled state

|φAB B̄〉 = 1√
2

(
1√

e−8π(M−D)ω+1
|0〉A|0〉B |0〉B̄

+ 1√
e8π(M−D)ω+1

|0〉A|1〉B |1〉B̄ + |1〉A|1〉B |0〉B̄
)

.

(29)

Here, the physically inaccessible mode B̄ is observed by
Anti-Bob inside the event horizon. The density matrix of
quantum state φAB B̄ in the orthonormal basis |0, 0, 0〉,
|0, 0, 1〉, |0, 1, 0〉,|0, 1, 1〉, |1, 0, 0〉, |1, 0, 1〉, |1, 1, 0〉,
|1, 1, 1〉 can be expressed as

ρAB B̄ = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
e−8π(M−D)ω+1

0 0 1√
e−8π(M−D)ω+e8π(M−D)ω+2

0 0 1√
e−8π(M−D)ω+1

0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1√

e−8π(M−D)ω+e8π(M−D)ω+2
0 0 1

e8π(M−D)ω+1
0 0 1√

e8π(M−D)ω+1
0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1√

e−8π(M−D)ω+1
0 0 1√

e8π(M−D)ω+1
0 0 1 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

4.1 Physically accessible steering

Because the exterior region of the black hole is causally dis-
connected from the interior region, Alice and Bob cannot
approach the mode B̄. The physically accessible informa-
tion is encoded in the mode A described by Alice and the
mode B described by Bob. Taking the trace over the mode B̄
inside the event horizon, we obtain a mixed density matrix
of Alice and Bob

ρAB = 1

2

⎛
⎜⎜⎜⎝

1
e−8π(M−D)ω+1

0 0 1√
e−8π(M−D)ω+1

0 1
e8π(M−D)ω+1

0 0
0 0 0 0
1√

e−8π(M−D)ω+1
0 0 1

⎞
⎟⎟⎟⎠ ,

(31)
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in the basis {|00〉, |01〉, |10〉, |11〉}. Employing Eqs. (11) and
(12), quantum steering from Alice to Bob and quantum steer-
ing from Bob to Alice are found to be

SA→B = max

{
0,

1

e−8π(M−D)ω + 1
− 1√

3

1

e−8π(M−D)ω + e8π(M−D)ω + 2

}
, (32)

SB→A = max

{
0,

1

e−8π(M−D)ω + 1
− 1√

3

1

e8π(M−D)ω + 1

}
. (33)

S > 0 indicates the presence of quantum steering, and S = 0
indicates the absence of quantum steering. Using Eq. (17),
the maximal Bell signal can be written as

B(ρAB) = 2√
e−8π(M−D)ω + 1

√
1 + 1

e−8π(M−D)ω + 1
.

(34)

We plot the A → B steering, B → A steering, and the
maximal Bell signal as a function of the dilation D and plot
the relationship of quantum steering between modes A and
B, as shown in Fig. 1. It can be seen from Fig. 1a, b that
the fermionic steering monotonically decreases to a fixed
value with increasing dilaton D, while the bosonic steer-
ing first irreversibly degenerates and then undergoes sudden
death under the influence of the dilaton [22]. We find that
the fermionic steerability from Alice to Bob is always larger
than the fermionic steerability from Bob to Alice, while the
bosonic steerability from Alice to Bob is always smaller than
the bosonic steerability from Bob to Alice in dilaton space-
time. If we use the steerability from Alice to Bob over the
steerability from Bob to Alice for relativistic quantum infor-
mation tasks, we should use the fermionic steering rather than
the bosonic steering. These results suggest that the fermionic
steering contrasts sharply with the bosonic steering due to the
difference between the Fermi–Dirac statistic and the Bose–
Einstein statistic in dilaton spacetime. From Fig. 1a, b, we can
also see that the fermionic steering does not depend on the
frequency of the modes ω in the limit of an extremely dilaton
black hole (D → M). In other words, the fermionic steering
is not affected by the frequency in the limit of D → M . In
Fig. 1c, we also find that B(ρAB) is equal to 2 for D → M ,
indicating that there is no Bell nonlocality in quantum state
ρAB . This means that the fermionic steering cannot be con-
sidered to be nonlocal in the extreme dilaton black hole. In
Fig. 1d, each circle represents an observer, and the arrows
connecting two observers describe the bipartite steering rela-
tionship between them. Based on the characteristics of steer-
ing, quantum steering in the bipartite system includes two-
way steering, one-way steering, and no-way steering. It is
easy to find that the physically accessible steering between
Alice and Bob is a two-way steering in curved spacetime.

4.2 Physically inaccessible steering

Next, we will explore the steering between Alice and Anti-

Bob, and the steering between Bob and Anti-Bob under the
influence of the dilaton. Since Anti-Bob is inside the event
horizon of the black hole, we refer to this type of quantum
steering as a “physically inaccessible steering”.

Firstly, we study the fermionic steering between Alice and
Anti-Bob. Tracing over the mode B observed by Bob, we can
get the density matrix between the modes A and B̄ as

ρAB̄ = 1

2

⎛
⎜⎜⎜⎜⎝

1
e−8π(M−D)ω+1

0 0 0

0 1
e8π(M−D)ω+1

1√
e8π(M−D)ω+1

0

0 1√
e8π(M−D)ω+1

1 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

.

(35)

Using Eqs. (11), (12), and (17), the fermionic steering and
the maximal Bell signal between Alice and Anti-Bob can be
written as

SA→B̄ = max

{
0,

1

e8π(M−D)ω + 1

[
1 − 1√

3

1

e−8π(M−D)ω + 1

]}
,

(36)

SB̄→A = max

{
0,

1

e8π(M−D)ω + 1
− 1√

3

1

e−8π(M−D)ω + 1

}
,

(37)

and

B(ρAB̄) = 2√
e8π(M−D)ω + 1

√
1 + 1

e8π(M−D)ω + 1
. (38)

The influence of the dilaton D of the black hole on the
fermionic steerability and the maximal Bell signal between
Alice and Anti-Bob for different frequencies ω are plotted in
Fig. 2a–c. And the illustration in Fig. 2d depicts the relation-
ship of quantum steering between Alice and Anti-Bob. From
Fig. 2a, b, we can see that the fermionic steering between
Alice and Anti-Bob can be generated by gravitational effect,
and the B̄ → A steering undergoes the sudden birth with
the dilaton D. In addition, the A → B̄ steerability is always
larger than the B̄ → A steerability in dilaton spacetime. We
also see from Fig. 2a, b that, for the given dilaton D, the steer-
ing between Alice and Anti-Bob decreases monotonically
with the increase of the ω. Specially, for the non-dilaton and

123



161 Page 6 of 10 Eur. Phys. J. C (2024) 84 :161

Fig. 1 a–c The fermionic steerability and the maximal Bell signal between Alice and Bob as a function of the dilaton D, for different ω. We set
the parameter M = 1. d An example of relationship of quantum steering between Alice and Bob

Fig. 2 a–c The fermionic steerability and the maximal Bell signal between Alice and Anti-Bob as a function of the dilaton D, for different ω. We
set the parameter M = 1. d An example of relationship of quantum steering between Alice and Anti-Bob
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extreme dilaton black holes, quantum steering is independent
of the frequency ω. In Fig. 2c, we find that B(ρAB) is always
less than or equal to 2, which means that there is no Bell
nonlocality between Alice and Anti-Bob. Two different pos-
sibilities of bipartite steering between Alice and Anti-Bob
are depicted in Fig. 2d. According to the steering asymmetry
of Alice and Anti-Bob, the fermionic steering exhibits unique
directionality, which may lead to one-way steering, that is,
Alice can steer Anti-Bob, but Anti-Bob cannot steer Alice.
Note that the dilaton for the sudden birth of steering SB̄→A

is D0 = M − 1
8πω

ln
√

3. For 0 < D ≤ D0, we can obtain

SA→B̄ > 0 and SB̄→A = 0, which corresponds to one-way
steering in Fig. 2d. For D0 < D ≤ 1, we find SA→B̄ > 0
and SB̄→A > 0, so the steering between Alice and Anti-Bob
is a two-way steering.

In addition, we also study the fermionic steering between
Bob and Anti-Bob. We trace over the mode A and then get
the density matrix for the modes B and B̄

ρB B̄ = 1

2

⎛
⎜⎜⎜⎜⎝

1
e−8π(M−D)ω+1

0 0 1√
e−8π(M−D)ω+e8π(M−D)ω+2

0 0 0 0
0 0 1 0
1√

e−8π(M−D)ω+e8π(M−D)ω+2
0 0 1

e8π(M−D)ω+1

⎞
⎟⎟⎟⎟⎠

. (39)

The fermionic steering and the maximal Bell signal between
Bob and Anti-Bob can be expressed as

SB→B̄ = max

{
0,

1

e8π(M−D)ω + 1

[
1

e−8π(M−D)ω + 1
− 1√

3

]}
,

(40)

SB̄→B = max

{
0,

1

e−8π(M−D)ω + 1

[
1

e8π(M−D)ω + 1
− 1√

3

]}
,

(41)

and

B(ρB B̄) = 2√
e−8π(M−D)ω + e8π(M−D)ω + 2

. (42)

In Fig. 3, we plot quantum steering and the maximal
Bell signal between Bob and Anti-Bob as a function of
the dilaton D, as well as its relationship in dilaton space-
time. From Fig. 3a, we can see that the fermionic steering
SB→B first increases from zero to the maximum and then
suffers sudden death with the growth of the dilaton D. In
Fig. 3b, we can find that the fermionic steering SB→B is
always equal to zero. The dilaton for the maximal steer-
ing is D1 = M − 1

8πω
[ln(

√
3 + 1) − ln(

√
3 − 1)], and

the dilaton for the sudden death of quantum steering is
D2 = M + 1

8πω
ln(

√
3 − 1). In Fig. 3c, we can also find that

the maximal Bell signal B(ρAB) is always less than 2, indi-
cating that there is no Bell nonlocality between Bob and Anti-
Bob. Figure 3d shows two relationships of quantum steering

between Bob and Anti-Bob. The conditions of its relation-
ship are given as follows: (i) the condition 0 < D < D2

means one-way steering SB→B̄ > 0 and SB̄→B = 0; (ii) the
condition D2 ≤ D ≤ 1 implies no-way steering SB→B̄ = 0
and SB̄→B = 0.

We compare Figs. 1, 2 and 3 in order to relate the two fun-
damental physical phenomena of quantum steering and Bell
nonlocality. We conclude that the fermionic steering cannot
be considered nonlocality in the extreme dilaton black hole.
From Figs. 2 and 3, we can find that the physically inaccessi-
ble steering is also not nonlocal. We can also find that quan-
tum steering and the maximal Bell signal are not affected by
the frequency of the fermionic field for the extreme dilaton
black hole. In other words, quantum steering and the maxi-
mal Bell signal for different frequencies approach the same
values in the extreme dilaton black hole.

4.3 Asymmetry of quantum steering

Unlike quantum entanglement and Bell nonlocality, quantum
steering has asymmetric. Therefore, we distinguish quantum
steering into three cases: (i) the first one corresponds to no-
way steering, showing that the state is nonsteerable in any
direction; (ii) the second case is two-way steering, that is to
see, the state can be steerable in both directions; (iii) the third
case is one-way steering, indicating that the state is steerable
only in one direction. The last case reflects the asymmet-
ric nature of quantum steering. To measure the degrees of
asymmetry in the dilaton black hole, we define the steering
asymmetries between the modes A and B, A and B̄, or B and
B̄ as

S�
AB =

∣∣∣SA→B − SB→A
∣∣∣ , (43)

S�

AB̄
=

∣∣∣SA→B̄ − SB̄→A
∣∣∣ , (44)

S�

B B̄
=

∣∣∣SB→B̄ − SB̄→B
∣∣∣ . (45)

Figure 4 shows how the dilaton D of the black hole influ-
ences the steering asymmetry for different frequencies ω.
It can be seen that, as the dilaton D increases, the steer-
ing asymmetry S�

AB increases, while the steering asymmetry
S�

AB̄
increases from zero to the maximum and then decreases

to a fixed value, and the steering asymmetry S�

B B̄
suffers

sudden death. In Fig. 4a, we find that the steering asymme-
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Fig. 3 a–c The fermionic steerability and the maximal Bell signal between Bob and Anti-Bob as a functon of the dilation D, for different ω. We
set the parameter M = 1. d An example of relationship of quantum steering between Bob and Anti-Bob

Fig. 4 The steering asymmetry S�
AB , S�

AB̄
, and S�

B B̄
as a function of the dilaton D, for different ω. We set the parameter M = 1

try between Alice and Bob has the case of two-way steer-
ing, which means that they can steer each other. Figure 4c
presents quantum steering in one direction (one-way steer-
ing), indicating that quantum steering between B and B̄ is
completely asymmetric. From Fig. 4b, we can also find that
maximal steering asymmetry between A and B̄ shows the
the transformation between one-way steering and two-way
steering. In other words, for the point D = D0, the system
ρAB̄ is experiencing a transformation from one-way steer-
ing to two-way steering in dilaton spacetime. In addition, the
steering asymmetry is also independent of the frequency ω

for the non-dilaton and the extreme dilaton black hole.

5 Monogamy relations between quantum steering and
entanglement in dilaton spacetime

In the previous section, we have studied the relationship
between quantum steering and Bell nonlocality in detail,
but the relationship between steering and entanglement is
still not very clear in dilaton spacetime. As is well known,
quantum steering is an intermediate form of quantum corre-
lation between Bell nonlocality and quantum entanglement
and a good connection between Bell nonlocality and quantum
entanglement [45]. Therefore, we try to find the relationships
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between the fermionic steering and entanglement in dilaton
spacetime.

According to Eq. (2), we calculate the concurrence
C(ρAB) between Alice and Bob, C(ρAB̄) between Alice and
Anti-Bob, as well as C(ρB B̄) between Bob and Anti-Bob,
which can be written as

C(ρAB) = 1√
e−8π(M−D)ω + 1

, (46)

C(ρAB̄) = 1√
e8π(M−D)ω + 1

, (47)

and

C(ρB B̄) = 1√
e−8π(M−D)ω + e8π(M−D)ω + 2

, (48)

respectively. It is found that, with the increase of the dilaton
D, the physically accessible entanglement decreases mono-
tonically, and at the same time, the physically inaccessible
entanglement only increases monotonically. However, the
physically inaccessible steering increases monotonically or
non-monotonically with the growth of the dilaton D. The
monogamous relations between the fermionic steering and
entanglement can be obtained as

SA→B − SA→B̄ = C2(ρAB) − C2(ρAB̄), (49)

SA→B + SA→B̄ = C2(ρAB) + C2(ρAB̄) − 2√
3
C2(ρB B̄),

(50)
3 − √

3

2
[SB→A − SB̄→A] = C2(ρAB) − C2(ρAB̄), (D > D0),

(51)
3 + √

3

2
[SB→A + SB̄→A] = C2(ρAB) + C2(ρAB̄), (D > D0).

(52)

These monogamous relations show the relations between the
fermionic entanglement and steering for physical accessibil-
ity and inaccessibility in dilaton spacetime. They reflect that
the dilaton of the black hole can cause the transformations
between these different types of quantum correlations.

6 Conclusions

In this paper, we have studied the distribution of the fermionic
steering and the relation between fermionic Bell nonlocality,
steering, and entanglement in the context of the dilaton black
hole. Our model involves three observers: Alice, Bob, and
Anti-Bob. Here, Alice stays stationary at an asymptotically
flat region, Bob hovers near the event horizon of the dilaton
black hole, and Anti-Bob is restricted by the event horizon
of the black hole. We get that the fermionic steering between
Alice and Bob decreases to a fixed value with the dilaton,
while the bosonic steering suffers sudden death under the

influence of the dilaton [22]. In addition, the fermionic steer-
ability from Alice to Bob is always larger than the fermionic
steerability from Bob to Alice, whereas the bosonic steerabil-
ity is the opposite of the fermionic steerability. These differ-
ent properties between the fermionic and bosonic steering
originate from the difference in statistics. We find that the
physically accessible steering in the extremely dilaton black
hole cannot be affected by frequency. Interestingly, the phys-
ically accessible steering in the extremely dilaton black hole
has no Bell nonlocality, meaning that quantum steering can-
not be considered nonlocality. We also find that quantum
steering between Alice and Bob is a two-way steering in
dilaton spacetime.

We also investigate the properties of the physically inac-
cessible steering in dilaton spacetime. It is shown that the
dilaton gravity can redistribute the fermionic steering, but
cannot redistribute Bell nonlocality, meaning that the physi-
cally inaccessible steering cannot be considered to be nonlo-
cal. We find that, as the dilaton increases, the steering between
Alice and Anti-Bob increases monotonously, while the steer-
ing from Bob to Anti-Bob increases non-monotonically.
When the steering from Anti-Bob to Alice experiences a
sudden birth with the dilaton, we obtain the maximum steer-
ing asymmetry that indicates the transformation between
one-way steering and two-way steering in dilaton space-
time. When the steering from Bob to Anti-Bob experiences
a sudden death with the dilaton, it shows the transformation
between one-way steering and no-way steering. Finally, we
obtain some monogamous relations between the fermionic
steering and entanglement in dilaton spacetime. Therefore,
we can indirectly understand the redistribution of quan-
tum steering by understanding the redistribution of quantum
entanglement in curved spacetime.
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