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The quantum fluctuations of a test scalar field on superhorizon scale in de Sitter spacetime can be
described by an effective one-dimensional stochastic theory corresponding to a particular class of
nonequilibrium dynamical systems known as the model A. Using the formulation of the latter in terms of a
supersymmetric field theory, we compute various unequal time correlators at large (superhorizon) time
separations and compare with existing quantum field theory computation. This includes perturbative
calculations, pushed here up to three-loop order, and a nonperturbative 1=N expansion at next-to-leading
order. Exploiting the supersymmetry of the stochastic theory, we also derive a spectral representation of
the field correlators and a fluctuation-dissipation relation for the infrared modes of the scalar field in de
Sitter spacetime.
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I. INTRODUCTION

The dynamics of quantum fields in an expanding
spacetime is a subject of primordial importance for cos-
mology and inflation. In this context, the usual approach
is a semi-classical treatment where spacetime is treated
classically and interacts with a matter content which is of
quantum nature and can have a possible backreaction on the
geometry [1]. De Sitter spacetime is of particular interest
both physically, as it is a good approximation of the
inflationary phase, and mathematically, because of its high
degree of symmetry.
The computation of quantum corrections in the presence

of interactions is a lot more complicated in a curved
background as usual perturbative tools are not always
available. One particular setup in which nontrivial effects
arise is the case of light scalar fields in the expanding
Poincaré patch of de Sitter spacetime, particularly relevant
for inflationary cosmology. The scalar fields mode func-
tions are significantly modified by the curvature with, in
particular, a strong amplification of the infrared modes,
which can be viewed as intense particle production from the
gravitational field [2–4]. This effect is at the origin of
infrared and secular divergences in loop computations that
limit the use of perturbation theory [5,6].

A variety of nonperturbative treatments exists to address
the question of the nonlinear effects (e.g., self-interactions),
see Refs. [4,6–23] for various examples. The most promi-
nent one is certainly the stochastic approach, developed in
Ref. [6]. It gives an effective description of the dynamics
of the infrared, long wavelength modes in terms of an
effective Langevin equation. The infrared modes of the
scalar fields behave classically as a result of the afore-
mentioned gravitational amplification and experience a
random noise which encodes the effect of the ultraviolet
modes crossing the horizon during expansion. The
Langevin dynamics can be treated through the equivalent
Fokker-Planck equation. This gives access, for example, to
the late-time, equilibrium probability distribution for the
fields, from which one can compute various equal-time
correlators, often analytically for simple enough potentials.
Unequal time correlators or genuine nonequilibrium prop-
erties, which contain important information about the long
time/distance properties of the theory (dynamical time-
scales, spectral indices, etc.), are more difficult to access
analytically and even numerically in some situations. For
instance, for a simple quartic potential, the cases of
vanishing or of negative square mass are intrinsically
nonperturbative.
The stochastic Langevin equation is a particular case of

the so-called model A in the Halperin et al. classification of
nonequilibrium dynamical systems [24]. In the present
article, we shall use tools developed in this context to
compute various unequal time correlators at large time
separation, which gives access to different autocorrelation
and relaxation timescales. In the stationary state, the problem
can be formulated as a supersymmetric one-dimensional
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field theory [23,25,26], free of ultraviolet divergences
and which is a lot easier to manage than the original
D-dimensional quantum field theory (QFT).
This one-dimensional field theory gives analytic access

to properties of the stationary state reached by the scalar
fields in the late-time limit. Diagram resummations, pre-
viously performed in the complete four-dimensional field
theory [18,27] can be done here in a simpler way which
reproduces the leading infrared behavior. We compute
various correlators in two approximations schemes. First,
in a perturbative expansion in the self-interaction coupling
constant, which is, however, limited to not too light fields.
The second approximation scheme is the 1=N expansion,
where N is the number of scalar fields. The latter allows us
to consider the interesting case of massless fields and of a
symmetry breaking potential [27,28].
Along with the path integral formulation of the model A

comes some interpretation of the different correlators and
specific relations which are usually formulated in a statistical
physics language. Using this analogy allows us here to
reformulate these results in terms of our particular model and
discuss some consequences for the scalar field correlator.
After briefly reviewing the effective stochastic approach,

we present the functional formulation of the Langevin
equation and discuss the supersymmetry of the resulting
field theory in Sec. II. Various properties of the field
correlators, independent of any approximation scheme, are
discussed in Sec. III. Our calculations in the perturbative
and the 1=N expansions are presented in Sec. IV. We
conclude in Sec. V. Additional calculations and technical
details are presented in the various Appendixes.

II. GENERAL SETUP

We briefly recall the effective stochastic theory for
the superhorizon modes of light scalar fields in de Sitter
spacetime and review the functional formulation of the
resulting one-dimensional model A as a supersymmetric
field theory. We consider an OðNÞ-symmetric scalar field
theory on the expanding Poincaré patch of aD-dimensional
de Sitter spacetime with d spatial dimensions (D ¼ dþ 1).
The metric reads ds2 ¼ −dt2 þ aðtÞdx⃗2, with aðtÞ ¼ eHt,
where t is the cosmological time and we set the Hubble rate
H ¼ 1. The classical action reads

S ¼ −
Z
x

�
1

2
∂μφ̂a∂μφ̂a þ V̂ðφ̂2Þ

�
; ð1Þ

where φ̂2 ¼ φ̂aφ̂a and
R
x denotes the appropriate, invariant

integration measure.

A. Effective stochastic approach

For light fields in units of H, the (quantum) fluctuations
of long wavelength, superhorizon modes are well described
by the effective Langevin equation [6]

_̂φa þ
1

d
V̂;â ¼ ξ̂a; ð2Þ

where the dot denotes a time derivative and we used the
notation V̂;â ¼ ∂V̂=∂φ̂a. Here, the infrared fields φ̂a,
spatially smeared over a Hubble patch, effectively behave
as classical stochastic fields whose fluctuations mimic
those of the long wavelength modes of the original
quantum fields. Those stochastic fluctuations are driven
by the random kicks from the (quantum) subhorizon modes
which cross the horizon at a constant rate due to the
gravitational redshift. This is represented by the noise
term ξ̂a, whose stochastic properties reflect the quantum
state of the system. For the Bunch-Davies (BD) vacuum,
and treating the ultraviolet modes in the linear approxi-
mation, one finds [6]

hξ̂aðt; x⃗Þξ̂bðt0; x⃗0Þi ¼
2

dΩDþ1

δabδðt − t0ÞF ðjx⃗ − x⃗0jÞ; ð3Þ

withΩn ¼ 2πn=2=Γðn=2Þ and where the functionF reflects
the spatial smearing: it can always be normalized as
F ð0Þ ¼ 1 and it vanishes rapidly for spatial separations
jx⃗ − x⃗0j≳ 1. Its precise form depends on the smearing
procedure. Within a single Hubble patch, F ≈ 1 and the
time evolution of the infrared fields is described by an
effective one-dimensional Langevin equation with a
Gaussian white noise. At sufficiently late times, the system
is driven towards a stationary regime where, e.g., the
equilibrium distribution of field values is given by

Pðφ̂aÞ ∝ e−ΩDþ1V̂ðφ̂2Þ: ð4Þ

The latter describes the equal-time statistical properties of the
stochastic process and reflects the quantum fluctuations of the
infrared modes of the original quantum fields in the BD
vacuum. It can be seen as the Boltzmann distribution for a
thermal system. Introducing the Hamiltonian for the super-
horizon field in the Hubble patch under consideration as
Ĥ ¼ R

ddxV̂ ¼ VdV̂, whereVd ¼ Ωd=d is the volume of the
d-dimensional spherical Hubble patch (of radius H−1 ¼ 1),
the distribution (4) reads P ∝ e−βĤ, with β ¼ ΩDþ1=Vd ¼
2π the inverse Gibbons-Hawking temperature [29].
It is useful to rescale the variables so as to absorb the

various volume factors. Defining

φ̂a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

dΩDþ1

s
φa and V̂ðφ̂2Þ ¼ 2

ΩDþ1

Vðφ2Þ; ð5Þ

we get, denoting the time derivative with a dot,

_φaðtÞ þ V;aðtÞ ¼ ξaðtÞ ð6Þ

hξaðtÞξbðt0Þi ¼ δabδðt − t0Þ: ð7Þ

G. MOREAU and J. SERREAU PHYS. REV. D 101, 045015 (2020)

045015-2



This is a particular, (0þ 1)-dimensional case of the
model A in the classification of Halperin et al. [24],
which has been widely studied in the context of out-of-
equilibrium statistical physics. It can be given an elegant
functional formulation by means of the Janssen-de
Dominicis (JdD) procedure [25,26], which provides an
efficient starting point for implementing various field
techniques [26]. Recent examples in the present context
include diagrammatic methods [30,31] or renormalization
group techniques [23]. We now briefly review the JdD
procedure.

B. Path integral formulation

The expectation value of an operator OðφÞ can be
formally expressed as

hOðφÞi ¼
Z

DξP½ξ�OðφξÞ ð8Þ

where φξ is a solution of Eq. (6) with given initial
conditions and

P½ξ� ¼ 1ffiffiffiffiffiffi
2π

p e−
R
t
1
2
ξ2 ð9Þ

is the normalized probability distribution of the noise,
with

R
t ¼

Rþ∞
−∞ dt. In general, one should also average over

initial conditions in Eq. (8). However, the latter becomes
irrelevant if we restrict our considerations to the stationary
regime. Assuming the uniqueness of the solution of Eq. (6)
for a given realization of the noise (and given initial
conditions), one writes

OðφξÞ ¼
Z

Dφδ½ _φa þ V;a − ξa�J ½φ�OðφÞ ð10Þ

where J ½φ� ¼ jDet½δab∂t þ V;ab�j is the appropriate func-
tional Jacobian. Under the above uniqueness assumption,
one can forget the absolute value on the determinant and
exponentiate the latter in terms of Grassmann fields

J ½φ� →
Z

D½ψ ; ψ̄ �ei
R
t
ψ̄aðδab∂tþV;abÞψb : ð11Þ

Similarly, one exponentiates the functional delta as

δ½ _φa þ V;a − ξa� ¼
Z

D½iφ̃�e−
R
t
φ̃að _φaþV;a−ξaÞ; ð12Þ

where the so-called response fields φ̃a are purely imagi-
nary. Integration over the Gaussian noise ξa finally gives,
up to an irrelevant constant factor N ,

hOðφÞi ¼ N
Z

D½φ; iφ̃;ψ ; ψ̄ �e−SJdD½φ;φ̃;ψ ;ψ̄ �OðφÞ; ð13Þ

with the following action:

SJdD ¼
Z
t

�
φ̃að _φa þV;aÞ−

1

2
φ̃2 − iψ̄aðδab∂t þV;abÞψb

�
:

ð14Þ

This one-dimensional statistical field theory with 4N fields
describes the leading infrared behavior of the underlying
QFT in de Sitter spacetime. Alternatively, we can use a
more symmetric form of the action by changing the variable
φ̃a → Fa ¼ ið _φa − φ̃aÞ. The action rewrites as

SJdD ¼
Z
t

�
1

2
_φ2 þ 1

2
F2 − iψ̄a _ψa þ iFaV;a − iψ̄aV;abψb

�
;

ð15Þ
where we neglect the boundary term

R
t 2 _φaVa ¼

R
t
_V in the

stationary state. This form of the action makes clear another
link, namely, it relates to a supersymmetric quantum
mechanics after the Wick rotation t → iτ [32].

C. Supersymmetry

The action (14) or, equivalently, (15), possesses various
symmetries, such as the time-translation and the time-
reversal symmetries of the stationary regime, which can be
conveniently encoded in a supersymmetry that mixes the
bosonic and fermionic degrees of freedom (d.o.f.) [26,32].
To exhibit the latter, it is convenient to recast the various
fields into the superfield

Φaðt; θ; θ̄Þ ¼ φaðtÞ þ θ̄ψaðtÞ þ ψ̄aðtÞθ þ θ̄θFaðtÞ; ð16Þ
living on the superspace ðt; θ; θ̄Þ, with Grassmann direc-
tions θ and θ̄. The generators of the supersymmetry can
be written as Q ¼ i∂ θ̄ þ θ∂t and Q̄ ¼ i∂θ þ θ̄∂t, and the
covariant derivatives D ¼ i∂ θ̄ − θ∂t, D̄ ¼ i∂θ − θ̄∂t allow
us to write the action in the following form:

SJdD ¼
Z

dz

�
1

2
ΦaKΦa þ iVðΦaÞ

�
ð17Þ

with1 z ¼ ðt; θ̄; θÞ, dz ¼ dtdθdθ̄ and K ¼ 1
2
ðD̄D −DD̄Þ.

III. GENERAL PROPERTIES OF THE
CORRELATOR

The general form of the superfield correlators is con-
strained by various considerations, most prominently the
symmetries and causality. In this section, we detail the case
of the connected2 two-point correlator, with the notation

1Our convention for the Grassmann integration isR
dθdθ̄ θ̄θ ¼ 1.
2Unless explicitly stated, we only consider connected corre-

lators in what follows. For simplicity, we do not introduce a
special notation.
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Gab
12ðt1; t2Þ ¼ hΦaðt1; θ1; θ̄1ÞΦbðt2; θ2; θ̄2Þi: ð18Þ

For simplicity, we consider a single field (N ¼ 1). The
generalization to arbitrary N is trivial.

A. Supersymmetry constraints

The dependence of the inverse propagator Γð2Þ and the
propagator G on the Grassmann variables is strongly
constrained by the supersymmetry of the action. First,
the anticommutator fQ; Q̄g ¼ 2i∂t generates the time-
translation invariance, so that it proves more convenient
to work in frequency space

G12ðt1; t2Þ ¼
Z

dω
2π

e−iωðt1−t2ÞG12ðωÞ ð19Þ

and similarly for the two-point vertex Γð2Þ
12 ðωÞ. The general

dependence of the latter in the Grassmann variables
involves a priori six independent functions:

Γð2Þ
12 ðωÞ ¼ AðωÞ þ θ̄1θ1BðωÞ þ θ̄2θ2CðωÞ þ θ̄1θ1θ̄2θ2DðωÞ

þ θ̄1θ2EðωÞ þ θ̄2θ1FðωÞ: ð20Þ

Supersymmetry implies the Ward identities

ðQ1 þQ2ÞΓð2Þ
12 ðωÞ ¼ 0; ð21Þ

ðQ̄1 þ Q̄2ÞΓð2Þ
12 ðωÞ ¼ 0; ð22Þ

where the numerical index indicates the Grassmann vari-
able each operator Q or Q̄ is acting on. These yield four
independent constraints which are solved as

CðωÞ ¼ BðωÞ ð23Þ

DðωÞ ¼ ω2AðωÞ ð24Þ

EðωÞ ¼ −BðωÞ − ωAðωÞ ð25Þ

FðωÞ ¼ −BðωÞ þ ωAðωÞ: ð26Þ

Renaming AðωÞ ¼ ηðωÞ and BðωÞ ¼ iγðωÞ, the general
structure of the two-point vertex is [26,32]

Γð2Þ
12 ðωÞ ¼ iγðωÞδ12 þ ηðωÞKωδ12; ð27Þ

where the two Grassmann structures

δ12 ¼ ðθ̄1 − θ̄2Þðθ1 − θ2Þ; ð28Þ

Kωδ12 ¼ 1þ ωðθ̄2θ1 − θ̄1θ2Þ þ ω2θ̄1θ1θ̄2θ2 ð29Þ

denote, respectively, the Dirac function in Grassmann
coordinates and the supersymmetric d’Alembertian oper-
ator K1δðz1 − z2Þ in frequency space, with δðz1 − z2Þ ¼
δðt1 − t2Þδ12.
The superfield propagator is obtained by inversion,R

2 Γ
ð2Þ
12 ðωÞG23ðωÞ ¼ δ13, with

R
2 ¼

R
dθ2dθ̄2, and reads

G12ðωÞ ¼
−iγðωÞδ12 þ ηðωÞKωδ12

ω2η2ðωÞ þ γ2ðωÞ : ð30Þ

Using the decomposition (16) of the superfield, we obtain
the various correlators3

GφφðωÞ ¼
ηðωÞ

ω2η2ðωÞ þ γ2ðωÞ ; ð31Þ

GφFðωÞ ¼
−iγðωÞ

ω2η2ðωÞ þ γ2ðωÞ ; ð32Þ

as well as GFFðωÞ ¼ ω2GφφðωÞ, Gψψ̄ ðωÞ ¼ −GφFðωÞ−
ωGφφðωÞ, and Gψ̄ψ ðωÞ ¼ GφFðωÞ − ωGφφðωÞ. Now, from
the path integral representation (13), we see that both
hφðtÞφðt0Þi and hφðtÞφ̃ðt0Þi are real (despite φ̃ being
imaginary) and thus GφφðtÞ ∈ R and GφFðtÞ ∈ iR.
Using also the permutation identity of the superfield
correlator, G12ðtÞ ¼ G21ð−tÞ, we conclude, in frequency
space, that both the functions γðωÞ and ηðωÞ are real
and even.

B. Fluctuation-dissipation relation

The stationary, equilibrium state of the system is
characterized by a fluctuation-dissipation relation which
directly follows from the above constraints. This relates the
statistical correlator GφφðωÞ (fluctuation) to the response
function4 Gφφ̃ðωÞ (dissipation) or, more precisely, to the
stochastic spectral function ρ, which we now introduce.
The response function is given by

Gφφ̃ðωÞ¼ i½GφFðωÞþωGφφðωÞ�¼
i

ωηðωÞþ iγðωÞ ð33Þ

and we define the stochastic spectral function as

ρðωÞ≡ 2iℑGφφ̃ðωÞ ¼ 2iωGφφðωÞ; ð34Þ

where the second equality follows from Eqs. (31)–(33). In
real time, this reads

ρðtÞ ¼ −2∂tGφφðtÞ: ð35Þ

3Our convention is hAðtÞBðt0Þi ¼ R
dω
2π e

−iωðt−t0ÞGABðωÞ.
4The relation of the stochastic response and spectral functions

with the retarded and spectral functions of the underlying QFTare
discussed in the Appendix A.
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This is the announced fluctuation-dissipation relation
characteristic of a thermal state in the high temperature
(classical field) regime as discussed in the Appendix A.
An interesting consequence of the above relation is the

exact identity

ρðt ¼ 0þÞ ¼ 1; ð36Þ

which can be proven as follows. In the limit5 t → 0þ, we
have, using the relation (35) and Eq. (6)

ρðt ¼ 0þÞ ¼ −2∂tGφφðtÞjt→0þ ¼ −2h _φφi ¼ h2φ∂φVi:
ð37Þ

The equal-time average in the last equality can be computed
with the one-point equilibrium distribution (4) with the
proper rescaling (5). The result (36) follows from the
identity

Z þ∞

−∞
dφ2φð∂φVÞe−2V ¼

Z þ∞

−∞
dφe−2V; ð38Þ

obtained after integration by parts.

C. Causality

Further interesting information can be obtained from
causality. The latter implies, in particular, that the response
function vanishes identically for negative times, Gφφ̃ðtÞ ∝
θðtÞ [26]. From the definition (34) of the spectral function
and the fact that Gφφ̃ðtÞ ∈ R, we easily deduce that ρðtÞ ¼
Gφφ̃ðtÞ −Gφφ̃ð−tÞ and thus that6

Gφφ̃ðtÞ ¼ θðtÞρðtÞ; ð39Þ

or, equivalently, in frequency space,

Gφφ̃ðωÞ ¼
Z

dω0

2π

iρðω0Þ
ω − ω0 þ i0þ

; ð40Þ

which implies that Gφφ̃ is analytic in the upper half
complex frequency plane.
Also, using the fluctuation-dissipation relation (34), we

deduce

Gφφ̃ðω ¼ 0Þ ¼ 2

Z
dω
2π

GφφðωÞ ¼ 2Gφφðt ¼ 0Þ: ð41Þ

This yields an exact expression for the so-called7 dynamical
massmdyn, which measures the amplitude of the equal-time
fluctuations of the stochastic field within a Hubble patch as

Gφφðt ¼ 0Þ ¼ hφ2i≡ 1

2m2
dyn

: ð42Þ

Using Eqs. (33) and (41), we deduce

m2
dyn ¼ γð0Þ: ð43Þ

Such a relation is reminiscent of the concept of screening
mass, or susceptibility in thermal (quantum/statistical) field
theory, which are related to the value of the (inverse)
propagator at vanishing momentum and frequency and
typically measure the overall response of the system to a
static perturbation. These are to be distinguished from the
so-called pole masses, or correlation lengths, which are
associated to the poles of the response function and
describe correlations between different spacetime points.
The latter have their analogs in the present stochastic
model, which we now discuss.

D. Mass hierarchy

Using the Fokker-Planck formulation of the Langevin
equation (6), one shows that the unequal time (connected)
correlator for a given local functionAðφÞ of the field can be
written as [6,34]

GAAðt− t0Þ¼ hAðtÞAðt0Þi¼
X
n≥0

Xn
l¼0

CA
n;le

−Λn;ljt−t0j; ð44Þ

where the Λn;l’s are the eigenvalues of the (properly
rescaled) Fokker-Planck operator and the CA

n;l’s are appro-
priate coefficients. Because of the OðNÞ symmetry, the
latter can be labeled in terms of the eigenvalues l ∈ N of
the N-dimensional angular momentum and another pos-
sible index n. In the case of a quadratic potential, the latter
is a single positive integer and the possible values of l are
constrained such that n − l is even and positive. We expect
this to remain true for λ ≠ 0.
The eigenvalues are non-negative real numbers.8 Of

course, some CA
n;l may vanish, e.g., due to symmetry

selection rules [34]. For instance, the case A ¼ φ only
involves the vector channel l ¼ 1, so that the only non-
vanishing coefficients in the decomposition (44) are
Cφ
2nþ1;1. Similarly, for the composite field χ ¼ φ2=ð2NÞ

in the scalar (l ¼ 0) channel, the only nonvanishing terms
are Cχ

2n;0. The correlations of various quantities of interest5The correlator hξð0þÞφð0Þi ¼ 0 by causality. Considering,
instead, t → 0−, one would have to take into account the nonzero
correlator hξð0−Þφð0Þi. The final result is ∂tGφφðtÞjt→0− ¼
−∂tGφφðtÞjt→0þ ¼ 1=2.

6This is equivalent to GφFðtÞ ¼ i signðtÞ∂tGφφðtÞ [33].

7Note though that this is actually a static (equal-time) quantity.
8Supersymmetry guarantees that the lowest eigenvalue

Λ0;0 ¼ 0.
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at large time separations are thus governed by the lowest
eigenvalues contributing to the decomposition (44).
Below, we shall compute the hφφi and hχχi correlators

in various approximation schemes, from which we can
extract the eigenvalues Λ2nþ1;1 and Λ2n;0, respectively, at
each approximation order. Introducing the redefinitions
Cφ
2nþ1;1 ¼ cφ2nþ1=ð2Λ2nþ1;1Þ, Cχ

2n;0 ¼ cχ2n=ð2Λ2n;0Þ, and the
following notation for the tree-level correlator of a field
of mass m

Gm2ðtÞ ¼ e−m
2jtj

2m2
⇔ Gm2ðωÞ ¼ 1

ω2 þm4
; ð45Þ

we have

GφφðtÞ ¼
X
n≥0

cφ2nþ1GΛ2nþ1;1
ðtÞ; ð46Þ

GχχðtÞ ¼
X
n≥0

cχ2nGΛ2n;0
ðtÞ: ð47Þ

The eigenvalues Λn;l and the coefficients cφ;χn are directly
obtained as the poles and residues of the relevant response
function, e.g.,

Gφφ̃ðωÞ ¼
X
n≥0

icφ2nþ1

ωþ iΛ2nþ1;1
: ð48Þ

An obvious relation is

X
n≥0

cφ2nþ1

Λ2nþ1;1
¼ 1

m2
dyn

; ð49Þ

which directly follows from the definition (42). Another
constraint on the coefficients cφ2nþ1 is the following
sum rule:

X
n≥0

cφ2nþ1 ¼ −2∂tGφφðtÞjt→0þ ¼ 1; ð50Þ

which directly follows from Eqs. (35) and (36).

E. Effective noise correlator

Finally, we mention that the η component of the self-
energy (27) can be interpreted as the effective noise
correlator dressed by the nonlinear effect of the infrared
modes themselves. Indeed, as recalled in the Appendix A,
the general expression of the correlator of a Langevin
process with a colored noise

hξðtÞξðt0Þi ¼
Z

dω
2π

e−iωðt−t0ÞN ðωÞ ð51Þ

is, in frequency space,

GφφðωÞ ¼ N ðωÞjGφφ̃ðωÞj2: ð52Þ

Using the exact relations (31) and (33), we deduce that

N ðωÞ ¼ ηðωÞ ð53Þ

can be interpreted as an effective colored noise kernel as
announced. The tree-level expression ηfreeðωÞ ¼ 1 corre-
sponds to the white noise contribution (7) from the ultra-
violet modes in the present effective stochastic theory. As
we shall see below, nonlocal loop corrections bring a
nontrivial frequency dependence which corresponds to the
effective dressing of the noise kernel from the nonlinear
infrared dynamics.

IV. EXPLICIT CALCULATIONS

We now turn to explicit computations of the hφφi and
hχχi correlators in two approximation schemes previously
studied in the D-dimensional QFT [18,27], namely, the
perturbative expansion and the 1=N expansion. We con-
sider an OðNÞ-symmetric scalar theory with quartic self-
interaction, whose superpotential is given by

VðΦÞ ¼ m2

2
Φ2

a þ
λ

4!N
ðΦ2

aÞ2: ð54Þ

There is no possibility of spontaneously broken symmetry
in the present low dimensional system [17,35,36]. We thus
have hΦai ¼ 0 and Gab

12ðωÞ ¼ G12ðωÞδab, including in the
case m2 < 0.
In the following, we define the superfield self-energy

Σ as

Γð2Þ
12 ðωÞ ¼ im2δ12 þ Kωδ12 þ Σ12ðωÞ ð55Þ

where the first two terms on the right-hand side correspond
to the free-field case. We denote the tree-level super-
propagator for a field with mass m as

Gm2

12 ðωÞ ¼
−im2δ12 þ Kωδ12

ω2 þm4
: ð56Þ

We also introduce the supercorrelator of the composite field
X ¼ Φ2=ð2NÞ,

C12ðtÞ ¼ hXðt; θ̄1; θ1ÞXð0; θ̄2; θ2Þi; ð57Þ

which, in the free theory, is simply given by the one-
loop diagram of Fig. 1. This is easily computed as [see
Eq. (B10)]

FIG. 1. One-loop diagram giving the expression of Cm2

12 in a free
theory. The lines denote the tree-level propagator (56).
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Cm2

12 ðωÞ ¼
1

2N

Z
dω0

2π
Gm2

12 ðω − ω0ÞGm2

12 ðω0Þ ¼ G2m2

12 ðωÞ
2Nm2

:

ð58Þ

The component at θ1;2 ¼ θ̄1;2 ¼ 0 is

Gm2

χχ ðωÞ ¼
1

2Nm2

1

ω2 þ 4m4
: ð59Þ

From the decompositions (46) and (47) and the free-field
expressions (45) and (59), we read Λfree

1;1 ¼m2, cfree2nþ1 ¼ δn;0,
Λfree
2;0 ¼ 2m2, and cfree2n ¼ δn;1=ð2Nm2Þ. This agrees with the

known spectrum of the free case, which is just that of a
OðNÞ-symmetric harmonic oscillator [6,34]

Λfree
n;l ¼ nm2: ð60Þ

A. The perturbative expansion

We first compute the self-energy at two-loop order in a
perturbative expansion (the three-loop order is computed in
Appendix C). The relevant diagrams are shown in Fig. 2.
Their explicit evaluation is straightforward and we shall
only give the resulting expressions here. The details can
be found in Appendix B. The one-loop contribution,
diagram (a), yields

Σð2aÞ
12 ðωÞ ¼ i

N þ 2

3N
λ

4m2
δ12; ð61Þ

which simply corresponds to a constant shift of γðωÞ, that
is, a mere mass renormalization. The same is true for the
two-loop local9 contribution given by diagram (b) in Fig. 2,
which reads

Σð2bÞ
12 ðωÞ ¼ −i

�
N þ 2

3N

�
2 λ2

16m6
δ12: ð62Þ

A nontrivial frequency dependence appears with the non-
local contribution, diagram (c), which can be written as

Σð2cÞ
12 ðωÞ ¼ N þ 2

3N2

λ2

8m4
G3m2

12 ðωÞ: ð63Þ

Altogether, we obtain, for the functions γ and η in Eq. (27),

γðωÞ ¼ M2 −
6λ̄2

N þ 2

3m6

ω2 þ 9m4
þOðλ̄3Þ; ð64Þ

ηðωÞ ¼ 1þ 6λ̄2

N þ 2

m4

ω2 þ 9m4
þOðλ̄3Þ; ð65Þ

where we have introduced the dimensionless coupling

λ̄ ¼ N þ 2

3N
λ

4m4
ð66Þ

and the renormalized mass

M2 ¼ m2ð1þ λ̄ − λ̄2Þ: ð67Þ

We immediately obtain the expression of the dynamical
mass as

m2
dyn ¼ γð0Þ ¼ m2

�
1þ λ̄ −

N þ 4

N þ 2
λ̄2 þOðλ̄3Þ

�
: ð68Þ

As explained in Sec. III, the relevant mass hierarchy can be
directly read off the response function. Using the expres-
sions (64) and (65), the latter can be written as

Gφφ̃ðωÞ ¼
ic1

ωþ iΛ1;1
þ ic3
ωþ iΛ3;1

þOðλ̄3Þ; ð69Þ

with the poles given by

Λ1;1 ¼ m2

�
1þ λ̄ −

N þ 5

N þ 2
λ̄2 þOðλ̄3Þ

�
; ð70Þ

Λ3;1 ¼ 3m2½1þOðλ̄Þ�; ð71Þ

and the residues

cφ1 ¼ 1 −
3λ̄2

2ðN þ 2Þ þOðλ̄3Þ; ð72Þ

cφ3 ¼ 3λ̄2

2ðN þ 2Þ þOðλ̄3Þ: ð73Þ

In particular, we verify the sum rule (50) at this order.
The two-pole structure (69) at the present order of

approximation precisely coincides to the splitting of the
propagator obtained in the QFT calculation of Ref. [18],
which reads

(a) (b) (c)

FIG. 2. Perturbative contributions to the self-energy Σ at one-
and two-loop orders. The interactions vertex is represented with a
dot and contributes a factor −iλ=ð4!NÞ while the propagator lines
are given by the tree-level propagator (56).

9Here, local means that both external legs are attached to the
same vertex.
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GφφðtÞ ¼ cþGm2
þ
ðtÞ þ c−Gm2

−
ðtÞ; ð74Þ

with Gm2 given in Eq. (45). The expressions of the various
masses and coefficients exactly agree, with the identifica-
tions cþ ¼ cφ1 , c− ¼ cφ3 , m

2þ ¼ Λ1;1, m2
− ¼ Λ3;1, and with

the rescaling (5), that is,10

m2 ¼ m̂2

d
; λ ¼ 2

d2ΩDþ1

λ̂: ð75Þ

We now come to the two-loop correction to the hχχi
correlator, given by the two diagrams in Fig. 3. The
diagram (a) simply corresponds to the effect of the one-
loop mass renormalization of one propagator line [the same
is true for the diagram (b) of Fig. 2] and can be easily
computed. Equivalently, we can treat this diagram with the
following trick [18,27]. We implicitly include it in the one-
loop diagram of Fig. 1 by using effective propagator lines
with an effective mass M. We then replace the latter by its
expression (67) and systematically expand at the relevant
order of approximation.
Each loop in the diagram of 1 and the diagram (b) of 3 is

given by Eq. (58), with m2 → M2 and the sum reads

Cð1þ3bÞ
12 ðωÞ ¼ CM2

12 ðωÞ − iλ
N þ 2

3

Z
3

CM2

13 ðωÞCM2

32 ðωÞ;

ð76Þ

with
R
3 ¼

R
dθ3dθ̄3. Using the identity

Z
3

Gm2

13 ðωÞGm2

32 ðωÞ ¼
ðω2 −m4Þδ12 − 2im2Kωδ12

ðω2 þm4Þ2 ð77Þ

and extracting the component at vanishing Grassmann
variables, we obtain, in terms of the renormalized massM2

GχχðωÞ ¼
1

2NM2

1

ω2 þ 4M4

�
1 −

8λ̄M4

ω2 þ 4M4
þOðλ̄2Þ

�

¼ 1

2NM2

1

ω2 þ 4M4ð1þ λ̄Þ2 þOðλ̄2Þ: ð78Þ

In the last equation, we have used the knowledge of the
general structure (44) of the correlator to resum the

two-loop correction to the propagator in the appropriate
form (i.e., a correction to the corresponding self-energy).
We can directly read off the expressions

Λ2;0¼2M2½1þ λ̄þOðλ̄2Þ�¼2m2½1þ2λ̄þOðλ̄2Þ�; ð79Þ

cχ2 ¼
1

2NM2
½1þOðλ̄2Þ� ¼ 1

2Nm2
½1 − λ̄þOðλ̄2Þ�: ð80Þ

We note that the perturbative calculation of the propa-
gator at order λ̄2 only gives access to the leading-order (LO)
expression of the infrared subleading eigenvalue Λ3;1

because the corresponding coefficient cφ3 is, itself, of order
λ̄2. It is interesting to push our perturbative calculation to
three-loop order so as to obtain the first correction to Λ3;1

and compare to the perturbative results of Ref. [34]
obtained by directly solving the Fokker-Planck equation.
We present this calculation in the Appendix C. The three-
loop expressions of m2

dyn, Λ1;1, c
φ
1 and cφ3 can be found

there. Here, we simply gather the next-to-leading results for
the lowest eigenvalues:

Λ1;1 ¼ m2½1þ λ̄þOðλ̄2Þ�; ð81Þ

Λ2;0 ¼ 2m2½1þ 2λ̄þOðλ̄2Þ�; ð82Þ

Λ3;1 ¼ 3m2

�
1þ 5N þ 22

3ðN þ 2Þ λ̄þOðλ̄2Þ
�
; ð83Þ

which reproduce (and generalize to arbitrary D and N) the
perturbative results of Ref. [34] for D ¼ 4 and N ¼ 1 (in
that case, Λn;l ¼ Λn).
The present perturbative calculations are controlled by

the dimensionless expansion parameter λ̄ ∝ λ=m4 and are
thus invalid in the zero mass limit as well as in the negative
square mass case. These cases require a nonperturbative
treatment, such as the 1=N expansion, studied in Ref. [27]
in the QFT context and that we now describe in the present
stochastic framework.

B. The 1=N expansion

We closely follow Ref. [27] for the diagrammatic
formulation of the 1=N expansion, which we adapt to
the present (supersymmetric) theory. In particular, we
separate the local and nonlocal contributions11 to the
self-energy Σ and grab the former in an effective square
massM2, which satisfies the following exact gap equation:

M2 ¼ m2 þ σ; ð84Þ

(a) (b)

FIG. 3. Two-loop contributions to the hχχi correlator. The
diagram (a) is just an effect of the mass renormalization.

10In particular, the quantity named λ̄ in Ref. [18] is the same
as here.

11As mentioned earlier, local contributions consist of all
diagrams where the two external legs are attached to the same
vertex. These give the constant, frequency-independent contri-
bution σ to the function γðωÞ in Eq. (27).
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where σ is given by the diagram (a) of Fig. 2, but computed
with the full propagator, namely,

σ ¼ N þ 2

3N
λ

2

Z
dω
2π

G11ðωÞ ¼
N þ 2

3N
λ

4γð0Þ : ð85Þ

Here, we have used G11ðωÞ ¼ GφφðωÞ together with
Eqs. (33) and (41).
In the spirit of the 1=N expansion, we write

M2 ¼ M2
0 þOð1=NÞ. At LO, there are no nonlocal con-

tributions to the self-energy and the propagator is simply

given by a tree-level-like propagator G
M2

0

f with the LO
effective mass M0. In particular, we have γð0Þ ¼
M2

0 þOð1=NÞ. The LO gap equation (84) is thus solved as

M2
0 ¼

m2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

4
þ λ

12

r
: ð86Þ

To compute the next-to-leading order (NLO) propagator,
we first compute the nonlocal contributions to the self-

energy Σ at NLO in terms of the LO propagator G
M2

0

f (this
automatically resums all LO local insertions on internal
lines) and then we solve the implicit equation (84) for the
local contributions at NLO. The NLO nonlocal contribu-
tions Σnonloc are given by the infinite series of bubble
diagrams with the topology depicted in Fig. 4(a). Each one-
loop bubble, corresponding to the diagram (b), gives a
contribution

Π12ðωÞ ¼ −
λ

6

Z
dω0

2π
G

M2
0

12 ðω0ÞGM2
0

12 ðω − ω0Þ ð87Þ

and summing the infinite sum of bubbles is achieved by
solving the integral equation

I12ðωÞ ¼ Π12ðωÞ þ i
Z
3

Π13ðωÞI32ðωÞ: ð88Þ

The function I resums the infinite chain of bubble diagrams,
as is depicted in Fig. 5, where it is represented as a wiggly
line. In terms of the latter the nonlocal contribution to the
NLO self-energy is obtained as the bottom diagram of
Fig. 5, which gives the one-loop expression

Σnonloc
12 ðωÞ ¼ −

λ

3N

Z
dω0

2π
G

M2
0

12 ðω0ÞI12ðω − ω0Þ: ð89Þ

Again, we skip the details of the calculations and refer the
reader to the Appendix D for details. The calculation of the
one-loop bubble follows the same lines as that of diagram
(a) above. It can be written as

Π12ðωÞ ¼ −2λ̃M2
0G

2M2
0

12 ðωÞ ð90Þ

and we get, for the infinite series of bubbles,

I12ðωÞ ¼ −2λ̃M2
0G

2M2
0
ð1þλ̃Þ

12 ðωÞ; ð91Þ

where we defined the effective dimensionless coupling

λ̃ ¼ λ

12M4
0

; ð92Þ

which is the large-N analog of λ̄ defined in Eq. (66). The
nonlocal self-energy at NLO reads

Σnonloc
12 ðωÞ ¼ 2M4

0

N
λ̃2ð3þ 2λ̃Þ

1þ λ̃
G

M2
0
ð3þ2λ̃Þ

12 ðωÞ ð93Þ

and has a similar structure as the two-loop nonlocal self-
energy in the previous perturbative calculation, Eq. (63).
We finally get, for the functions γðωÞ and ηðωÞ,

γðωÞ ¼ M2 −
2M4

0

N
λ̃2ð3þ 2λ̃Þ

1þ λ̃

M2
0ð3þ 2λ̃Þ

ω2 þM4
0ð3þ 2λ̃Þ2 ð94Þ

ηðωÞ ¼ 1þ 2M4
0

N
λ̃2ð3þ 2λ̃Þ

1þ λ̃

1

ω2 þM4
0ð3þ 2λ̃Þ2 : ð95Þ

As in the previous case, the response function and the
field correlator can be decomposed as a sum of two poles,
see Eq. (69). At the present order of approximation, we get

(a) (b)

FIG. 4. (a) The topology of diagrams contributing the self-
energy at NLO in the 1=N expansion. (b): The single bubble Π12.

FIG. 5. Top: diagrammatic representation of the function I12
which sums the infinite series of bubble diagrams. Bottom: The
nonlocal contribution to the self-energy at NLO in the 1=N
expansion.
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Λ1;1 ¼ M2

�
1 −

1

N
λ̃2ð3þ 2λ̃Þ
ð1þ λ̃Þ2 þO

�
1

N2

��
ð96Þ

Λ3;1 ¼ M2

�
3þ 2λ̃þO

�
1

N

��
ð97Þ

and

cφ1 ¼ 1 −
λ̃2ð3þ 2λ̃Þ
2Nð1þ λ̃Þ3 þO

�
1

N2

�
ð98Þ

cφ3 ¼ λ̃2ð3þ 2λ̃Þ
2Nð1þ λ̃Þ3 þO

�
1

N2

�
: ð99Þ

Similarly to the previous perturbative calculation, the
coefficient cφ3 being of order 1=N, we only obtain the
LO expression for Λ3;1.
Let us now consider the hχχi correlator which, at LO, is

simply given by the infinite chain of bubbles. Indeed, one
easily shows (see Appendix D) that

C12ðωÞ ¼ −
3

λN
I12ðωÞ: ð100Þ

From this, we get the (connected) correlator of the
composite field χ ¼ φ2=ð2NÞ

GχχðωÞ ¼
1

2NM2
0

G2M2
0
ð1þλ̃ÞðωÞ þO

�
1

N2

�
ð101Þ

and we deduce the LO expressions

Λ2;0 ¼ 2M2
0ð1þ λ̃Þ; ð102Þ

cχ2 ¼
2

N
ð1þ λ̃Þ: ð103Þ

We finally need to solve Eq. (84) for the local contri-
bution M2 at NLO. To this aim, we use

γð0Þ ¼ M2

�
1 −

2

N
λ̃2

1þ λ̃
þO

�
1

N2

��
; ð104Þ

from which we obtain

M2 ¼ M2
0

�
1þ 2

N
λ̃ð1þ λ̃þ λ̃2Þ

ð1þ λ̃Þ2 þO
�

1

N2

��
: ð105Þ

Collecting the previous results, we have, for the dynamical
mass,

m2
dyn ¼ M2

0

�
1þ 2

N
λ̃

ð1þ λ̃Þ2 þO
�

1

N2

��
ð106Þ

and for the lowest eigenvalues

Λ1;1 ¼ M2
0

�
1þ 1

N
λ̃ð2 − λ̃Þ
ð1þ λ̃Þ2 þO

�
1

N2

��
; ð107Þ

Λ2;0 ¼ M2
0

�
2þ 2λ̃þO

�
1

N

��
; ð108Þ

Λ3;1 ¼ M2
0

�
3þ 2λ̃þO

�
1

N

��
: ð109Þ

As for the previous perturbative expressions, the above
results exactly agree with those of the direct QFT calcu-
lations in Ref. [27]. In fact the agreement concerns all the
intermediate quantities Π, I and Σ, using the rescalings (5)
of the parameters and

Ĝ ¼ dΩDþ1

2
G; Î ¼ ΩDþ1

2
I; and Σ̂ ¼ ΩDþ1

2d
Σ

ð110Þ

for the different two-point functions. The very same
results have also been recently obtained from a QFT
calculation in Euclidean de Sitter in Ref. [28]. That such
very different calculations agree is a nontrivial result. Such
an agreement between the stochastic approach and direct
QFT calculations on either Lorentzian or Euclidean de
Sitter was already well-known for equal-time correlators,
e.g., hφni, which measure the local field fluctuations
[4,9,13]. Although expected on the basis of general argu-
ments [4,30,31], the agreement mentioned here for unequal
time (nonlocal) correlators is far less trivial, in particular,
for nonperturbative approximation schemes, and the
present results, together with those of Refs. [27] and
[28] provide an explicit nontrivial check.

C. Discussion

We now discuss the results we obtained for the eigen-
values and associated correlators in several regimes. First,
we check that the expressions we have for the Λn;l and c

φ;χ
n

coincide in the limit where we take both N large and a the
coupling λ̄ small. In this regime, introducing λ̄∞ ¼
limN→∞ λ̄ ¼ λ=ð12m4Þ, we have M2

0 ¼ m2½1þ λ̄∞ − λ̄2∞ þ
Oðλ̄3∞Þ� and λ̃ ¼ λ̄∞ þOðλ̄2∞Þ, thus the two effective
coupling coincide. For example, it is easy to check that
Eq. (C14) coincides with the first member of Eq. (107)
to give

Λ1;1

m2
¼ 1þ λ̄∞ − λ̄2∞ þ 2λ̄3∞ þ 2λ̄∞ − 7λ̄2∞ þ 27λ̄3∞

N

þO
�
λ̄4∞;

1

N2

�
: ð111Þ
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The 1=N expansion allows the study of the nonpertur-
bative regime in λ̄, which correspond to either small or
negative m2 [27]. This is illustrated in Fig. 6, where we
show the effective coupling λ̃ as a function of m2 for fixed
coupling λ. The latter is of order one in the small mass
regime m2 ¼ 0 and becomes large for m2 < 0. Let us
discuss the leading-order eigenvalues (107)–(109) in these
regimes. The latter rewrite, in terms of the parameters m2

and λ,

Λ1;1 ¼
m2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

4
þ λ

12

r
; ð112Þ

Λ2;0 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

4
þ λ

12

r
; ð113Þ

Λ3;1 ¼
m2

2
þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

4
þ λ

12

r
; ð114Þ

and are plotted as functions of m2 for λ ¼ 1 in Fig. 7.
In the small mass regime, we have

Λ1;1 ¼
ffiffiffiffiffiffiffiffiffiffi
λ=12

p
; Λ2;0 ¼ 4Λ1;1; Λ3;1 ¼ 5Λ1;1; ð115Þ

where we see that all eigenvalues are of the same order, so
that all the correlators computed here have relatively large
autocorrelation times, in particular, in the case of small
coupling λ ≪ 1. This reflects the fact that the potential is
very flat in that case.
Instead, in the case of a steep symmetry breaking tree-

level potential, with m2 < 0 and λ=m4 ≪ 1, we have

Λ1;1 ¼ λ=ð12jm2jÞ ð116Þ

Λ2;0 ¼ Λ3;1 ¼ 2jm2j ≫ Λ1;1: ð117Þ

The presence of a small (Λ1;1) and a large (Λ3;1) eigenvalue
in the correlator of the vector field φ reflects the existence
of a flat (Goldstone mode) and a steep (Higgs mode)
direction in the tree-level potential.12 The eigenvalue Λ2;0

is, again, the longitudinal Higgs mode, the only one which
contributes to the correlator of the field χ.
Interestingly, the present large-N results share similar-

ities with similar analytical results in the case N ¼ 1 in the
limit of a steep double-well potential [6,39]. Intuitively,
when the two minima are far apart, the situation can be
described as a superposition of two single-well spectra with
tunnel effect yielding infinitesimally split energy levels.
Because the ground (equilibrium) state has Λ0 ¼ 0, this
results in an exponentially suppressed, instanton-like value
of Λ1 ∝ expð−a=λÞ, with a a positive constant. Higher
eigenvalues are essentially those of the unperturbed sep-
arate Gaussian wells with curvature 2jm2j, which yields
pairs of quasidegenerate levels with eigenvalues 2njm2j,
with n ∈ N [6]. Moreover, as pointed out in Ref. [39] the
actual effective potential which enters the relevant Fokker-
Planck equation is actually a three-well potential and there
exist, consequently, additional states with eigenvalues
ðnþ 1Þjm2j, corresponding to the central well around
ϕ ¼ 0. There are two major differences in the case of a
continuous symmetry N > 1. First, the presence of flat
directions (Goldstone modes) in the potential results in a
milder, power law suppression for the first nonzero eigen-
value Λ1;1, see Eq. (116). Interestingly, we observe that the
1=N expansion becomes singular for the latter when
N → 1. In the limit of a steep symmetry breaking potential
λ̃ ≫ 1, we have

FIG. 6. Effective coupling λ̃ as a function of the bare squared
mass m2. The bare coupling is taken as λ ¼ 1. The coupling
becomes strongly nonperturbative for small and negative values
of m2.

FIG. 7. The eigenvalues Λ1;1, Λ2;0 and Λ3;1 at leading order in
the 1=N expansion as functions of the tree-level square mass m2,
for λ ¼ 1.

12The absence of a true Goldstone mode in the actual spectrum,
Λ1;1 ≠ 0, is due to the effective symmetry restoration by the
infrared modes [10,17,37,38].
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Λ1;1 ¼
λ

12jm2j
�
1 −

1

N
þO

�
1

N2

��
; ð118Þ

and similarly for the coefficient cφ1 ¼ 1 − 1=N þOð1=N2Þ.
The second difference with the case N ¼ 1 is that, for
sufficiently large N, the central well is lifted by a factor ∝N
and the corresponding excitations decouple [40]. There
remains only the quasidegenerate levels with eigenvalues
2njm2j, corresponding to the heavy longitudinal directions
in the potential, see Eq. (117).
In terms of correlation functions, this implies that in the

casem2 < 0 the correlation time in the vector channel (φ) is
considerably larger than in the scalar channel (χ), which
does not see the flat transverse direction. It is to be expected
that such large correlation times also occur for composite
fields in higher representations (tensor channels). These
correlation times are related to other quantities of physical
interest, such as the relaxation (or equilibration) times from
an excited state to the BD vacuum, decoherence timescales
[41,42], or, closest to standard phenomenological interest,
to the spectral index of various observables [6,34].
Exploiting de Sitter invariance, the spectral index of a
given field A can be read off the decomposition (44) as
nA − 1 ¼ 2ΛA, with ΛA the lowest eigenvalue contributing
to the sum (44). For instance, the spectral index of the field
φ is given by nφ − 1 ¼ 2Λ1;1. Similarly, Λ2;0 is related to
the spectral index of the field χ or of other typical OðNÞ
scalar quantity. For instance, as discussed in Ref. [34], the
density contrast δ ¼ ðV − hViÞ=hVi has a spectral index
nδ − 1 ¼ 2Λ2;0.
Finally, we mention an interesting role played by the

eigenvalue Λ3;1 based on the discussion in Sec. III E.
According to Eqs. (65) and (95), we have

ηðωÞ ¼ 1þ 2c
Λ1;1Λ3;1

ω2 þ Λ2
3;1

ð119Þ

both in the perturbative and in the 1=N expansions, with

c ¼ λ̄2

N þ 2
þOðλ̄3Þ ¼ 1

N
λ̃2

1þ λ̃
þOðN−2Þ: ð120Þ

In real time, this gives

ηðtÞ ¼ δðtÞ þ cΛ1;1e−Λ3;1jtj: ð121Þ

With Eq. (53), we see that Λ−1
3;1 is the autocorrelation time

of the effective colored noise correlation in the vector
channel due to the infrared modes while cΛ1;1 controls the
amplitude of the colored contribution. In the perturbative
regime m2 > 0, the autocorrelation time is small ∼1=m2

with small amplitude ∼λ2=m2. However the autocorrelation
time can be either parametrically large ∼1=

ffiffiffi
λ

p
with a small

amplitude ∼
ffiffiffi
λ

p
for m2 ¼ 0, or small ∼1=jm2j with “large”

amplitude ∼1 for m2 < 0.
We close this section by comparing the expressions of

Λ1;1 at leading and next-to-leading orders in the 1=N
expansion as a function of the parameters of the theory
for the extreme case N ¼ 2 in Fig. 8.

V. CONCLUSIONS

To conclude, we used the JdD path integral formulation
of the stochastic equation that describes the infrared
dynamics of an OðNÞ theory of test scalar fields to study
the two-point unequal time correlators of various operators.
The resulting field theory is a one-dimensional super-
symmetric theory with N scalar superfields. This super-
symmetry is a mere consequence of the symmetries of the
original system in stationary state, and was used to show
that the correlators of the various fields are not independent.
One of the obtained relations can be interpreted as a
fluctuation-dissipation relation, showing the analogy of
the system with a Brownian motion with a thermal noise at
de Sitter temperature [43].
Having in mind the result of the Fokker-Planck formu-

lation, which is usually solved as an eigenvalue problem
[6,34], we then discussed the general structure of the
unequal time two-point correlator of composite operators
of the scalar field. It can be expressed as a sum of free
propagator with a hierarchy of mass scales, which corre-
sponds to a subset of the tower of eigenvalues previously
mentioned. We have computed explicitly the hφφi and hχχi
correlators in two specific limits, the perturbative case up to
three loop and the 1=N expansion at NLO, and we have
obtained the values of the first three eigenvalues in both
cases. We have checked that our results coincide with other
computations, done either in the Lorentzian [18,27] or
Euclidean [28] field theory.

FIG. 8. The lowest nonzero eigenvalue Λ1;1 at leading and next-
to-leading orders in the 1=N expansion as a function of m2 with
λ ¼ 1, and for N ¼ 2.
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The result from the 1=N expansion is particularly
interesting as it allows us to probe nonperturbative regimes.
Such regimes corresponds to the massless and symmetry
breaking case, the latter being difficult to probe numeri-
cally. In the limit of a deeply broken initial potential, we
find that the lowest nonzero eigenvalue is strongly sup-
pressed with respect to higher order ones. This has direct
physical consequence, e.g., in terms of equilibration times
or power spectra of fields in the different representations of
the OðNÞ group. For instance, the vector channel l ¼ 1 has
typically long range spacetime correlations whereas the
scalar channel l ¼ 0 is typically (sometimes significantly)
of shorter range.
There are several directions to extend the present

analysis. First, we used the computation of correlators to
access the mass scale hierarchy. When combined with our
expansion schemes, this only gives the first eigenvalues due
to the coefficients appearing in the sums of free propagators
of the correlators. Alternative formulations, directly at the
level of the Fokker-Planck equation, may be able to grasp
the full hierarchy directly.
On a more speculative level, this work is limited to test

scalar fields, and an important question would be to extend
the present considerations to a more realistic inflationary
setup. An interesting intermediary step would be to con-
sider systems with derivative interactions, e.g., along the
lines of Ref. [44].
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APPENDIX A: QUANTUM VS STOCHASTIC
FIELD THEORY

Here, we discuss the relation between the various two-
point functions of the stochastic theory and the underlying
QFT. In particular, the spectral function of the QFTencodes
information about the equal-time commutation relation
which is lost in the slow-roll approximation yielding the
effective Langevin equation (2). We show how this con-
straint is deleted in the process of coarse graining over the
relevant timescales of the slow-roll regime and is replaced
by the constraint (36) for the stochastic spectral function.
To this aim we consider the stochastic theory (for a single
free field, N ¼ 1, in the light mass limit) before taking the
slow-roll limit.
The effective stochastic theory applies to a field φ̂ðt; x⃗Þ

spatially smeared on the scale of a Hubble patch. As
recalled in Sec. II, integrating out the short wavelength,
subhorizon mode leads to an effective Langevin equation
for the infrared (smeared) field with the following essential
features: First, the spatial gradients of the smeared field can
be neglected, which results in effectively independent

Hubble patches with only one (quantum mechanical)
d.o.f. φ̂ðtÞ. Second, the quantum fluctuations of the
latter can be described by those of a classical stochastic
field sourced by a random noise which reflects the effect of
the ultraviolet modes. Finally, in the BD vacuum, the latter
is a Gaussian white noise. A simple model Langevin
equation is

̈φ̂þ d _̂φþ m̂2φ̂ ¼ dξ̂; ðA1Þ

where the Gaussian noise correlator is [see Eq. (3)]

hξ̂ðtÞξ̂ðt0Þi ¼ 2

dΩDþ1

δðt − t0Þ: ðA2Þ

Obviously, the slow-roll limit (2) is obtained by neglecting
the term ̈φ̂. We shall make this more precise below.

1. Retarded and spectral functions

The spectral function of the quantum mechanical d.o.f. φ̂
is defined as

ρ̂ðt − t0Þ ¼ ih½φ̂ðtÞ; φ̂ðt0Þ�i ðA3Þ

and is normalized through the equal-time commutation
relation

_̂ρðt ¼ 0Þ ¼ ih½ _̂φðtÞ; φ̂ðtÞ�i ¼ Z: ðA4Þ

Here, we allow for an arbitrary normalization of the
smeared field. The retarded Green function is defined as

ĜRðt; t0Þ ¼ θðt − t0Þρ̂ðt − t0Þ ðA5Þ

and solves the following equation:

ð∂2
t þ d∂t þm2ÞĜRðtÞ ¼ ZδðtÞ: ðA6Þ

In frequency space, we have

ĜRðωÞ ¼
Z

−ω2 − idωþ m̂2
ðA7Þ

and, for the spectral function,

ρ̂ðωÞ ¼ 2iℑĜRðωÞ ¼
2idZω

ðω2 − m̂2Þ2 þ ðdωÞ2 : ðA8Þ

In real time, this gives the standard expression for the (over)
damped harmonic oscillator

ρ̂ðtÞ ¼ Z
sinhðνtÞ

ν
e−

d
2
jtj; ðA9Þ
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with ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=4 − m̂2

p
. It is useful to rewrite these expres-

sions in terms of the roots of the inverse retarded function
G−1

R ð−iω�Þ ¼ 0, that is, ω� ¼ d=2� ν. We have

ĜRðωÞ ¼
Z
2ν

�
i

ωþ iω−
−

i
ωþ iωþ

�
; ðA10Þ

ρ̂ðωÞ ¼ Z
2ν

�
2iω

ω2 þ ω2
−
−

2iω
ω2 þ ω2þ

�
; ðA11Þ

and

ρ̂ðtÞ ¼ Z
2ν

signðtÞðe−ω−jtj − e−ωþjtjÞ: ðA12Þ

2. Statistical correlator

The statistical correlator of the quantum field is
defined as

F̂ðt; t0Þ ¼ 1

2
hφ̂ðtÞφ̂ðt0Þ þ φ̂ðt0Þφ̂ðtÞi: ðA13Þ

The effective stochastic theory relies on the assumption that
the smeared infrared field is essentially classical. At the
level of the field correlators, this means that the spectral
function (which encodes the noncommuting aspects of the
quantum fields) is small compared to the statistical corre-
lator (which encodes the typical occupation number) [45],
that is, ρ̂ ≪ F̂. In that case, the statistical correlator (A13)
reduces to the stochastic correlator

F̂ðt; t0Þ ≈ Gφ̂ φ̂ðt; t0Þ: ðA14Þ

In the present simple model, the latter is obtained as
follows. Equation (A1) is solved as

φ̂ðtÞ ¼ φ̂0ðtÞ þ
d
Z

Z
dt0ĜRðt − t0Þξðt0Þ; ðA15Þ

where the solution of the homogeneous equation reads

φ̂0ðtÞ ¼ A−e−ω−t þ Aþe−ωþt; ðA16Þ

with A� arbitrary constants of integration. The latter
describes the transient regime from generic initial con-
ditions to the late-time equilibrium. The equilibrium
stochastic correlator is obtained as, in frequency space,

Gφ̂ φ̂ðωÞ ¼
d2

Z2
N ðωÞjĜRðωÞj2; ðA17Þ

where N̂ ðωÞ ¼ 2=ðdΩDþ1Þ is the Fourier transform of the
noise correlator (A2). We get

Gφ̂ φ̂ðωÞ ¼
1

ΩDþ1ν

�
1

ω2 þ ω2
−
−

1

ω2 þ ω2þ

�
; ðA18Þ

or, equivalently, in real time,

Gφ̂ φ̂ðtÞ ¼
1

ΩDþ1ν

�
e−ω−jtj

2ω−
−
e−ωþjtj

2ωþ

�
: ðA19Þ

3. Fluctuation-dissipation relation

The spectral function and the statistical correlator satisfy
the identity

ρ̂ðωÞ ¼ iωZΩDþ1Gφ̂ φ̂ðωÞ; ðA20Þ

or, in real time,

ρ̂ðtÞ ¼ −ZΩDþ1∂tGφ̂ φ̂ðtÞ; ðA21Þ

which is characteristic of a thermally equilibrated system
in the high temperature (low frequency) limit. Indeed, in a
thermal state with inverse temperature β, one has the
following exact relation between the statistical correlator
(fluctuation) and the spectral function (dissipation)

Gφ̂ φ̂ðωÞ ¼
ρ̂ðωÞ

2i tanhðβω=2Þ →
ρ̂ðωÞ
iβω

; ðA22Þ

where the last expression is obtained in the limit βω ≪ 1.
This also corresponds to the classical field regime,
where the occupation number nðωÞ ¼ ½expðβωÞ − 1�−1 →
1=ðβωÞ ≫ 1. Comparing Eqs. (A20) and (A22), we read
the inverse temperature13 β ¼ ZΩDþ1.

4. Slow-roll limit

We are now in a position to clearly identify the necessary
requirement for the slow-roll limit, which, we recall,
amounts to neglecting the term ̈φ̂ in Eq. (A1). We see
that, in that case, the only root of the homogeneous
equation is ω ¼ −im̂2=d. This corresponds to, first, taking
the small mass limit m̂2 ≪ 1, so that ω− ≈ m̂2=d ≪ ωþ ≈ d
and, second, keeping only the contribution from the lowest
pole in Eqs. (A10), (A11), and (A18). In real time, this
amounts to neglecting e−ωþjtj ≪ e−ω−jtj, which amounts to
a coarse graining on timescales ∼ω−1

− .

13Note, that with the choice Z−1 ¼ Vd ¼ Ωd=d, the volume of
a spherical Hubble patch (of radius H−1 ¼ 1), we get β ¼ 2π, the
Gibbons-Hawking temperature of de Sitter space.
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We define the stochastic response and spectral func-
tions14 Gφφ̃ and ρ as

ĜR ¼ Z
d
Gφφ̃ and ρ̂ ¼ Z

d
ρ: ðA23Þ

In the slow-roll limit we thus have Gφφ̃ðtÞ ¼ θðtÞρðtÞ, with

ρðtÞ → signðtÞe−m̂2

d jtj: ðA24Þ

It is important to notice that in this coarse-graining
process, we lose the property (A4), for which the presence
of both roots ω� is essential. In other words, the coarse-
grained, stochastic spectral function does not resolve the
short-time structure close to t ¼ 0. However, the constraint
(A4) from quantum mechanics is replaced by another one
in the coarse-grained theory. Indeed, one easily checks in
the present simple example that for m̂2 → 0, the maximal
value of the QFT spectral function is ρ̂max → Z=d, that is,
ρmax → 1, which occurs at tmax → d−1 lnðd2=m̂2Þ. In units
of the stochastic timescale ω−1

− ¼ d=m̂2, we have ω−tmax ¼
ðm̂2=d2Þ lnðd2=m̂2Þ → 0þ. We thus have

ρðt ¼ 0þÞ ¼ 1; ðA25Þ

where t → 0þ is to be understood in units of the relevant
timescale ω−1

− . The identity (A25) also follows directly
from the expression (A24).
Finally, the stochastic correlator (A19) becomes, in the

slow-roll limit,

Gφ̂ φ̂ðtÞ →
e−

m̂2

d jtj

ΩDþ1m̂2
; ðA26Þ

which corresponds to Eq. (45) after the proper rescaling of
the field Gφ̂ φ̂ðtÞ ¼ 2

dΩDþ1
GφφðtÞ. Here, we see that in the

slow-roll limit, we automatically satisfy the classicality
condition Gφ̂ φ̂ ≫ ρ̂ mentioned above. We illustrate the
coarse-graining process in Fig. 9 by showing the stochastic
spectral function and correlator for various values of m̂2 in
units of the stochastic timescale ω−. We clearly see how the
ultraviolet, short-time structure near t ¼ 0 is washed out,
leading to a singular behavior. We also see the condition
(A25) emerging.
We end by remarking that the fluctuation-dissipation

relation discussed above remains valid in the slow-roll limit
and reads

ρðtÞ ¼ −dΩDþ1∂tGφ̂ φ̂ðtÞ; ðA27Þ

which is nothing but the relation (35) for the particular
model considered here, again with the appropriate rescaling
of the fields.

APPENDIX B: TWO-LOOP ORDER

Here, we detail the computation of the superfield self-
energy up to two-loop order in the perturbative expansion.
Standard diagrammatic rules yield, for the one-loop con-
tribution, given by the diagram (a) of Fig. 2

Σð2aÞ
12 ¼ δ12

N þ 2

3N
iλ
2

Z
dω
2π

Gm2

12 ðωÞ: ðB1Þ

Using the expression (56) of the tree-level propagator and
the relations

δ212 ¼ 0; ðB2Þ

δ12ðKωδ12Þ ¼ δ12; ðB3Þ

ðKωδ12ÞðKω0δ12Þ ¼ Kωþω0δ12; ðB4Þ

FIG. 9. The spectral function ρ and the statistical correlator Gφφ

(for the rescaled field φ) as functions of time in units of ω− for
different values of ωþ. This illustrates the coarse graining of the
short-time structure as a clear separation of scales ω− ≪ ωþ
arises. We have rescaled both functions by a factor 2ν=d ¼
ðωþ − ω−Þ=ðωþ þ ω−Þ → 1 for a nicer plot.

14From their definitions, these are insensitive to a change of
normalization so that, e.g., Gφφ̃ ¼ Gφ̂ ˜̂φ. In other words, the
response field φ̃ rescales as the inverse of φ.
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we easily perform the Grassmann algebra to get

Σð2aÞ
12 ¼ iδ12

N þ 2

3N
λ

2
F ðm2Þ; ðB5Þ

where we defined

F ðm2Þ ¼
Z

dω
2π

1

ω2 þm4
¼ 1

2m2
: ðB6Þ

This yields Eq. (61). The local two-loop contribution given
by the diagram (b) of Fig. 2 reads, writing

R
3 ¼

R
dθ3dθ̄3,

Σð2bÞ
12 ¼ λ2

4

�
N þ 2

3N

�
2
Z
3

Z
dω
2π

Gm2

13 ðωÞGm2

32 ðωÞ

×
Z

dω0

2π
Gm2

33 ðω0Þδ12: ðB7Þ

Using Eqs. (B2)–(B4) again, we get

Σð2bÞ
12 ¼ iδ12

�
N þ 2

3N
λ

2

�
2

F 0ðm2ÞF ðm2Þ; ðB8Þ

which gives Eq. (62). Finally, the nonlocal contribution at
two loop is given by the diagram (c) of Fig. 2 and can be
expressed as

Σð2cÞ
12 ðωÞ ¼ λ2

6

N þ 2

3N

Z
dω0

2π

dω00

2π
Gm2

12 ðω − ω0 − ω00Þ

×Gm2

12 ðω0ÞGm2

12 ðω00Þ: ðB9Þ

We perform the frequency integrations using the following
identity:

Z
dω0

2π
G

m2
A

12 ðω0ÞGm2
B

12 ðω − ω0Þ ¼ 1

2m2
AB

G
m2

Aþm2
B

12 ðωÞ; ðB10Þ

where m2
AB is the reduced square mass, defined as

1

m2
AB

¼ 1

m2
A
þ 1

m2
B
: ðB11Þ

Equation (B10) expresses the fact that the product of two
tree-level superpropagators in real time is proportional
to a single superpropagator with the sum of the two square
masses. For instance, for the component Gφφ of the
propagator, see Eq. (45), we have, trivially,15

Gm2
A
ðtÞGm2

B
ðtÞ ¼ 1

2m2
AB

Gm2
Aþm2

B
ðtÞ: ðB12Þ

This generalizes to all the components of the superpropa-
gator G12ðtÞ. Using this relation twice on the expression
(B11) gives Eq. (63).

APPENDIX C: THREE-LOOP ORDER

We turn to the computation of Λ3;1 at orderOðλÞ. Indeed,
we saw in Sec. IVA that taking diagrams up to orderOðλ2Þ
only gives Λ3;1 at LO because of the subleading coefficient
cφ3 . To circumvent this problem, we go to order Oðλ3Þ,
adding the diagram of Fig. 10. Applying the techniques
described in the previous section, we obtain, after some
calculations,

Σð10Þ
12 ðωÞ ¼ −

ðN þ 2ÞðN þ 8Þ
27N3

λ3

32M8

×

�
3iM2

ω2 − 27M4

ðω2 þ 9M4Þ2 δ12

þ ω2 þ 45M4

ðω2 þ 9M4Þ2Kωδ12

�
; ðC1Þ

which gives the following expressions for γ and η:

γðωÞ ¼ M2

�
1 −

3αλ2

ω2 þ 9M4

�
1þ βλ

ω2 − 27M4

ω2 þ 9M4

��
; ðC2Þ

ηðωÞ ¼ 1þ αλ2

ω2 þ 9M4

�
1 − βλ

ω2 þ 45M4

ω2 þ 9M4

�
; ðC3Þ

where α ¼ Nþ2
3N2

1
8M4 and β ¼ Nþ8

9N
1

4M4. We then proceed
as usual and compute the roots of −iG−1

φφ̃ðωÞ ¼
iγðωÞ þ ωηðωÞ, with

−iG−1
φφ̃ðωÞ ¼ ωþ iM2 þ αλ2

ωþ 3iM2

�
1 − βλ

ωþ 9iM2

ωþ 3iM2

�
:

ðC4Þ

To get the correct perturbative expression for the poles Λ1;1

and Λ3;1, and the coefficients c1 and c3, we have to
factorize this expression such that the retarded propagator
is decomposed into a sum of free propagators, as in
Eq. (69). To do this, we write, up to higher-orders terms,

FIG. 10. Three-loop contribution to the self-energy Σ.

15A similar relation holds for tree-level propagators of quan-
tum fields in Lorentzian [18,27] and Euclidean [28] de Sitter in
the appropriate limit.
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−iG−1
φφ̃ðωÞ ¼ ωþ iM2 þ αλ2ð1 − βλÞ

ωþ 3iM2ð1þ 2βλÞ þOðλ̄4Þ:

ðC5Þ

This is the only combination compatible with the decom-
position (48) in simple fractions. Computing the poles and
residue yields

Λ1;1 ¼ M2

�
1 −

α

2M4
λ2 þ 2αβ

M4
λ3
�
; ðC6Þ

Λ3;1 ¼ 3M2ð1þ 2βλÞ; ðC7Þ

cφ1 ¼ 1 −
αλ2ð1 − βλÞ

4M4
; ðC8Þ

cφ3 ¼ αλ2ð1 − 7βλÞ
4M4

: ðC9Þ

We now need to compute the effective square massM2 at
three-loop order. This can be done either by a direct
calculation of the relevant local contributions to the self-
energy, or by following the strategy adopted in Sec. IV B,
that is, by solving the gap equation (84) at the appropriate
order of approximation. We implement the latter here since
this does not involve computing any new diagram. The
exact gap equation for M2 reads

M2 ¼ m2 þ N þ 2

3N
λ

4γð0Þ ; ðC10Þ

where, at the present order of approximation,

γð0Þ ¼ M2

�
1 −

αλ2

3M4
þ αβλ3

M4

�
: ðC11Þ

This is readily solved as

M2

m2
¼ 1þ λ̄ − λ̄2 þ 2

N þ 3

N þ 2
λ̄3 þOðλ̄4Þ: ðC12Þ

We thus find, at three-loop order

m2
dyn

m2
¼ 1þ λ̄ −

N þ 4

N þ 2
λ̄2 þ 2

N2 þ 9N þ 20

ðN þ 2Þ2 λ̄3 þOðλ̄4Þ

ðC13Þ

and

Λ1;1

m2
¼ 1þ λ̄ −

N þ 5

N þ 2
λ̄2 þ 2N2 þ 23N þ 62

ðN þ 2Þ2 λ̄3 þOðλ̄4Þ;

ðC14Þ

together with

cφ3 ¼ 3λ̄2

2ðN þ 2Þ −
19N þ 80

2ðN þ 2Þ2 λ̄
3 þOðλ̄4Þ ðC15Þ

and c1 ¼ 1 − c3 þOðλ̄4Þ. We also get the Oðλ̄Þ correction
to Λ3;1

Λ3;1

3m2
¼ 1þ 5N þ 22

3ðN þ 2Þ λ̄þOðλ̄2Þ: ðC16Þ

APPENDIX D: THE 1=N EXPANSION AT NLO

In this section, we give additional details on the
computation of the self-energy and the hχχi correlator in
the 1=N expansion. We begin with the self-energy.
As previously mentioned, we can proceed in several

steps. We first compute the one-bubble diagram Π which is
a mere convolution of two propagators. This is easily done
with Eq. (B11). Putting this in the integral equation (88),
we decompose each function in terms of the Grassmann
structures

Π12ðωÞ ¼ iπγðωÞδ12 þ πηðωÞKωδ12; ðD1Þ

I12ðωÞ ¼ iIγðωÞδ12 þ IηðωÞKωδ12; ðD2Þ

and obtain the following equations:

IγðωÞ ¼ πγðωÞ − πγðωÞIγðωÞ þ ω2πηðωÞIηðωÞ; ðD3Þ

IηðωÞ ¼ πηðωÞ − πγðωÞIηðωÞ − πηðωÞIγðωÞ: ðD4Þ

Using

πγðωÞ ¼
λ

6M2
0

2M2
0

ω2 þ 4M4
0

; ðD5Þ

πηðωÞ ¼ −
λ

6M2
0

1

ω2 þ 4M4
0

: ðD6Þ

These equations are then solved as

IγðωÞ ¼
λ

6M2
0

2M2
0ð1þ λ̃Þ

ω2 þ 4M4
0ð1þ λ̃Þ2 ; ðD7Þ

IηðωÞ ¼ −
λ

6M2
0

1

ω2 þ 4M4
0ð1þ λ̃Þ2 ; ðD8Þ

where λ̃ has been defined in Eq. (92). Inserting in the
definition (D2) gives Eq. (91).
Turning now to the case of the hχχi correlator let us first

prove Eq. (100). In the symmetric phase, one has

hΦAΦBΦCΦDinc ¼ GABGCD þ perms:

− GAEGBFGCGGDHΓ
ð4Þ
EFGH; ðD9Þ
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where h…inc includes the disconnected contributions,
perms. denotes the relevant permutations, and where the
capital indices encompass the time variable, the Grassmann
variable, and the field space index, and GAB ¼ hΦAΦBi.
We use the LO expression for the four point vertex
function, which is schematically

Γð4Þ
ABCD ¼ iλ

3N
½δABδCDDAC þ perms:� ðD10Þ

Dab
12ðωÞ ¼ δabðδ12 þ iI12ðωÞÞ ðD11Þ

Inserting this in Eq. (D9) and retaining only the LO terms,
one obtains, after some simple algebra,

C ¼ −
3

λN
ðΠþ iΠ⋆Π − Π⋆Π⋆IÞ ðD12Þ

where Π has been defined in Eq. (87) and where we have
defined

ðA⋆BÞ12ðωÞ ¼
Z
3

A13ðωÞB32ðωÞ: ðD13Þ

Using the defining equation (88) for I,

I ¼ Πþ iΠ⋆I; ðD14Þ

we finally get

C ¼ −
3

λN
ðΠþ iΠ⋆IÞ ¼ −

3

λN
I: ðD15Þ
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