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A R T I C L E I N F O A B S T R A C T

Editor: N. Lambert It was demonstrated recently that the 𝑊1+∞ algebra contains commutative subalgebras associated with all 
integer slope rays (including the vertical one). In this paper, we realize that every element of such a ray is 
associated with a generalized 𝑊 algebra. In particular, the simplest commutative subalgebra associated with 
the rational Calogero Hamiltonians is associated with the 𝑊 algebras studied earlier. We suggest a definition 
of the generalized 𝑊 algebra as differential operators in variables 𝑝𝑘 basing on the matrix realization of the 
𝑊1+∞ algebra, and also suggest an unambiguous recursive definition, which, however, involves more elements 
of the 𝑊1+∞ algebra than is contained in its commutative subalgebras. The positive integer rays are associated 
with 𝑊 algebras that form sets of Ward identities for the WLZZ matrix models, while the vertical ray associated 
with the trigonometric Calogero-Sutherland model describes the hypergeometric 𝜏-functions corresponding to 
the completed cycles.
1. Introduction

𝑊 algebras were first constructed many years ago as algebras of 
constraints in two-matrix models [1,2]. Later, they also emerged in 
the character phase of generalized Kontsevich model [3], where it was 
noted that, in fact, there are two series of the 𝑊 algebras: 𝑊 (±,𝑛). The 
simplest 𝑊 (±,𝑛) algebra is nothing but the Borel subalgebra of the Vira-
soro algebra. Higher spin algebras are no longer Lie algebras, and can be 
described by commutation relations [1,3]. However, more convenient 
is to use their representation in terms of an infinite set of variables 𝑝𝑘: 
then, the algebra is given by manifest expressions for its generators as 
graded differential operators in 𝑝𝑘. These expressions can be obtained 
from defining recurrent relations, or from a realization of the generators 
in terms of a matrix Λ such that 𝑝𝑘 = Tr Λ𝑘.

Though the 𝑊 algebras emerged later in various contexts related to 
matrix models (see, e.g., [4,5]), their meaning remained unclear. In the 
present paper, we make a step in revealing their meaning and demon-
strate that the 𝑊 algebras are naturally associated with the 𝑊1+∞
algebra [6–14], and with WLZZ models [15,16]. In fact, this relation 
was already preliminary discussed in [5].

This relation of the 𝑊 algebras with the 𝑊1+∞ algebra is as follows: 
as it was demonstrated in [17], the 𝑊1+∞ algebra contains infinitely 
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many commutative families, which are called integer rays, rational rays

and cones. These names are related to the 2𝑑 integer lattice of generators 
of the 𝑊1+∞ algebra: the vertical axis describes the maximal spin of 
generator, and the horizontal one, the grading. The integer rays drawn 
in Fig. 1 are just the rays with integer slopes. Rays with rational slopes 
are called rational rays, and a unification of rays is called cones [17].

The commuting elements of the algebra lying on these rays are con-
structed in the following way: one constructs two sets of generating 
elements, each of them being the first Hamiltonian of the correspond-
ing commutative family:

�̂�𝑛 = ad𝑛
�̂�0
�̂�0, 𝐹𝑛 = ad𝑛

�̂�0
𝐹0 , (1)

and all other commutative Hamiltonians at any fixed 𝑚 are generated 
as

�̂� (𝑚)
𝑘

= ad𝑘−1
�̂�𝑚+1

�̂�𝑚 , and �̂� (−𝑚)
−𝑘 = ad𝑘−1

𝐹𝑚+1
𝐹𝑚 (2)

There is also the commutative vertical ray: the set of zero grading ele-
ments generated as

[𝐹𝑖, �̂�𝑗 ] = ̂𝑖+𝑗 (3)
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Fig. 1. Commutative families (integer rays) on the 2𝑑 integer lattice of generators of the 𝑊 algebra.
Thus, all the elements are generated by repeated commutators of the 
three elements: �̂�0, �̂�0 and 𝐹0. The 𝑊1+∞ algebra can be also realized 
in terms of graded differential operators in variables 𝑝𝑘 [17] so that 
these three elements are

�̂�0 =
1
2

∑
𝑎,𝑏=1

(
𝑎𝑏𝑝𝑎+𝑏

𝜕2

𝜕𝑝𝑎𝜕𝑝𝑏
+ (𝑎+ 𝑏)𝑝𝑎𝑝𝑏

𝜕
𝜕𝑝𝑎+𝑏

)
+𝑁

∑
𝑎=1

𝑎𝑝𝑎
𝜕
𝜕𝑝𝑎

+ 𝑁3

6
,

�̂�0 = 𝑝1, 𝐹0 =
𝜕
𝜕𝑝1

(4)

Then, as follows from the grading, one can represent all 𝐻 (𝑚)
𝑘

in the 
form

𝐻 (𝑚)
𝑛 =

∑
𝑘

𝑝𝑘
(𝑚,𝑛)
𝑘−𝑛 (5)

As a matter of fact, there is a similar representation for the 𝐻 (−𝑚)
−𝑘 fam-

ilies:

𝐻 (−𝑚)
−𝑛 =

∑
𝑘

𝑝𝑘
(−𝑚,−𝑛)
𝑘+𝑛 (6)

though it does not follow from general arguments. Moreover, this is no 
longer the case for the rational rays.

Such representations of the commutative families was first noted in 
[5] for 𝑚 = 1 families, where it was pointed out that (±1,𝑛) are nothing 
but the elements of the 𝑊 (∓,𝑛) algebras. Here we extend this observa-
tion to all commutative families associated with the integer rays.

An important feature of the 𝑊 (𝑚,𝑛) algebras is that they realize sets 
of the Ward identities satisfied by partition functions 𝑍(𝑚)

𝑘
of the WLZZ 

models:

𝑍(𝑚)
𝑛 = 𝑒

1
𝑛
𝐻 (𝑚)
𝑛 ⋅ 1 =

∑
𝑅

(
𝑆𝑅{𝑝𝑘 =𝑁}
𝑆𝑅{𝑝𝑘 = 𝛿𝑘,1}

)𝑚
𝑆𝑅{𝑝𝑘 = 𝛿𝑘,𝑛}𝑆𝑅{𝑝𝑘} (7)

where 𝑆𝑅{𝑝𝑘} denotes the Schur function as a function of power sums 
𝑝𝑘, and 𝑅 is a partition. These models at 𝑚 = 1 admit a two-matrix 
model representation, and, in this case, 𝑊 (1,𝑛) is the standard 𝑊 (−,𝑛)

algebra, and it is known [4] to form a set of Ward identities for this 
two-matrix model.

The paper is organized as follows. In section 2, we describe the 
standard 𝑊 algebras. In section 3, we introduce the extension of 𝑊
algebras related to the 𝑊1+∞ algebra, and, in section 4, describe their 
definition using the recursive relations. This requires introducing more 
elements of the 𝑊1+∞ algebras, not related to the commutative fami-

lies. In section 5, we concentrate on the 𝑊 algebra associated with the 
vertical ray. In section 6, we discuss the Ward identities in one of the 
branches of the WLZZ series of models and explain that the generalized 
𝑊 algebras describe the Ward identities (constraint algebra) in these 
2

models. Section 7 contains some discussion and concluding remarks.
1+∞

2. Standard 𝑾 algebras

In this section, we describe the standard 𝑊 algebras [1,3,18]. We 
also introduce an 𝑁 ×𝑁 matrix Λ such that its traces are 𝑝𝑘 = Tr Λ𝑘. 
We imply that 𝑁 is large (formally, one has to bring 𝑁 to ∞, see [19]
for an accurate description of this procedure). Then, generators of the 
𝑊 algebras are defined from(
𝜕
𝜕Λ

)𝑛
𝑓 (𝑝) =

∑
𝑘=1

Λ𝑘𝑊 (+,𝑛)
𝑘+𝑛 (𝑝)𝑓 (𝑝)

|||||𝑝𝑎=Tr Λ𝑎 (8)

and1(
Λ 𝜕
𝜕Λ

Λ
)𝑛
𝑓 (𝑝) =

∑
𝑘=1

Λ𝑘𝑊 (−,𝑛)
𝑘−𝑛 (𝑝)𝑓 (𝑝)

|||||𝑝𝑎=Tr Λ𝑎 (9)

Now one can use the manifest expressions for the commutative families 
in 𝑊1+∞ algebra with 𝑚 = ±1, [17, Eqs.(51)-(54)] and note that

�̂� (1)
𝑛 = Tr

(
Λ 𝜕
𝜕Λ

Λ
)𝑛

=
∑
𝑘≥1

𝑝𝑘𝑊
(−,𝑛)
𝑘−𝑛 (𝑝)

�̂� (−1)
−𝑛 = Tr

(
𝜕
𝜕Λ

)𝑛
=
∑
𝑘≥1

𝑝𝑘𝑊
(+,𝑛)
𝑘+𝑛 (𝑝) +𝑁𝑊 (+,𝑛)

𝑛 (𝑝) (10)

This series of commuting Hamiltonians is associated with the rational 
Calogero model at the free fermion point [20].

Another possibility of defining the 𝑊 generators is to use the recur-
rent relations that follow from (8)-(9):

𝑊 (−,𝑛+1)
𝑘

(𝑝) =
∑
𝑎≥1

𝑝𝑎𝑊
(−,𝑛)
𝑘+𝑎 (𝑝) +

𝑘+𝑛−1∑
𝑎=1

𝑎
𝜕
𝜕𝑝𝑎

𝑊 (−,𝑛)
𝑘−𝑎 (𝑝) +𝑁𝑊 (−,𝑛)

𝑘
(11)

𝑊 (+,𝑛+1)
𝑘

(𝑝) =
∑
𝑎≥1

𝑝𝑎𝑊
(+,𝑛)
𝑘+𝑎 (𝑝) +

𝑘−𝑛∑
𝑎=1

𝑎
𝜕
𝜕𝑝𝑎

𝑊 (+,𝑛)
𝑘−𝑎 (𝑝) +𝑁𝑊 (+,𝑛)

𝑘
(12)

supplemented with “the initial condition”

𝑊 (∗,1)
𝑘

= 𝑘 𝜕
𝜕𝑝𝑘

, 𝑘 ≥ 1

𝑊 (∗,1)
0 =𝑁 (13)

and one generally requires that

𝑊 (−,𝑛)
𝑘

= 0, 𝑘 ≤ −𝑛

𝑊 (+,𝑛)
𝑘

= 0, 𝑘 ≤ 𝑛− 1 (14)

1 This formula can be also rewritten in the form(
−(det Λ)−𝑁 𝜕

𝜕Λ−1 (det Λ)
𝑁
)𝑛
𝑓 (𝑝) =

∑
𝑘=1

Λ−𝑘𝑊 (−,𝑛)
𝑘−𝑛 (𝑝)𝑓 (𝑝)

|||||𝑝𝑎=Tr Λ−𝑎

in accordance with the general principle of turning from the left hand side 
of Fig. 1 to the right hand side, when the operators (Λ) go to operators: 

− det−𝑁 Λ ⋅(Λ−1) ⋅ det𝑁 Λ [17,20].
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We do not write down here commutation relations of the 𝑊 algebras, 
they can be found in [1,3,18]. In order to improve the notation, from 
now on, we denote 𝑊 (∓1,𝑛)

𝑘
just as 𝑊 (±1,±𝑛)

𝑘
and, more generally, 𝑊 (𝑚,𝑛)

𝑘
keeping in mind that 𝑚 may be both positive and negative (and zero).

3. 𝑾𝟏+∞ and 𝑾 algebras

Similarly to formulas (8)-(9) of the previous section, here we intro-
duce an extension of the 𝑊 algebras via the definitions

(
Λ−1̂𝑚

)𝑛
𝑓 (𝑝) =

∞∑
𝑘=−∞

Λ𝑘𝑊 (−𝑚,−𝑛)
𝑘+𝑛 (𝑝)𝑓 (𝑝)

|||||𝑝𝑎=Tr Λ𝑎 (15)

and(
̂𝑚Λ

)𝑛
𝑓 (𝑝) =

∞∑
𝑘=−∞

Λ𝑘𝑊 (𝑚,𝑛)
𝑘−𝑛 (𝑝)𝑓 (𝑝)

|||||𝑝𝑎=Tr Λ𝑎 (16)

where ̂ = Λ 𝜕
𝜕Λ . These are the generalized 𝑊 algebras that we study 

in this paper.
Notice that the sums over 𝑘 in (8) and (9) run over all integers, 

while, comparing with the l.h.s., only terms with 𝑘 ≥ 0 contribute (in 
fact, in (9) even with 𝑘 > 0). This guarantees the relation similar to 
(14):

𝑊 (𝑚,𝑛)
𝑘

= 0, 𝑘 ≤ −𝑛−(−𝑛) (17)

where (𝑛) is the Heaviside function.
Using this definition and [17, Eqs.(51)-(54)], one immediately ob-

tains the relations between the commutative families of Hamiltonians 
of the 𝑊1+∞ algebra and 𝑊 -generators:

�̂� (𝑚)
𝑛 = Tr

(
̂𝑚Λ

)𝑛
=
∑
𝑘≥1

𝑝𝑘𝑊
(𝑚,𝑛)
𝑘−𝑛 (𝑝)

�̂� (−𝑚)
−𝑛 = Tr

(
Λ−1̂𝑚

)𝑛
=
∑
𝑘≥1

𝑝𝑘𝑊
(−𝑚,−𝑛)
𝑘+𝑛 (𝑝) +𝑁𝑊 (−𝑚,−𝑛)

𝑛 (𝑝) (18)

In fact, these two formulas can be written in the universal form describ-
ing the relation of the 𝑊 algebras with the commuting Hamiltonians in 
𝑊1+∞:

�̂� (𝑚)
𝑛 =

∑
𝑘≥0

𝑝𝑘𝑊
(𝑚,𝑛)
𝑘−𝑛 (𝑝) (19)

where we put 𝑝0 =𝑁 .

4. A recursive definition of the generalized 𝑾 algebra

Now we are going to use a counterpart of the recurrent relations 
(11), (12) in order to find an equivalent definition of the 𝑊 generators. 
In the case of 𝑚 ≠ 1, the relations become more involved, in particular, 
they require to use at intermediate stages some more elements of the 
𝑊1+∞ algebra, which do not belong to commutative families.

Thus, let us define an extended algebra

Λ−1̂𝑙
(
Λ−1̂𝑚

)𝑛−1
𝑓 (𝑝) =

∞∑
𝑘=−∞

Λ𝑘𝑊 (−𝑚,−𝑛|−𝑙)
𝑘+𝑛 (𝑝)𝑓 (𝑝)

|||||𝑝𝑎=Tr Λ𝑎 (20)

and

̂𝑙Λ
(
̂𝑚Λ

)𝑛−1
𝑓 (𝑝) =

∞∑
𝑘=−∞

Λ𝑘𝑊 (𝑚,𝑛|𝑙)
𝑘−𝑛 (𝑝)𝑓 (𝑝)

|||||𝑝𝑎=Tr Λ𝑎 (21)

so that

𝑊 (𝑚,𝑛|𝑚)
𝑘

(𝑝) =𝑊 (𝑚,𝑛)
𝑘

(𝑝) (22)
3

and
Physics Letters B 849 (2024) 138426

𝑊 (∗,𝑛|∗)
𝑘

= 0, 𝑘 ≤ −𝑛−(−𝑛) (23)

Then, there are two types of recurrent relations: there are relations that 
allow one to express 𝑊 (𝑚,±𝑛|±𝑙)

𝑘
(𝑝) from 𝑊 (𝑚,±𝑛|±1)

𝑘
(𝑝):

𝑊 (−𝑚,−𝑛|−𝑙−1)
𝑘

=
∑
𝑟≥1

𝑝𝑟𝑊
(−𝑚,−𝑛|−𝑙)
𝑘+𝑟 +

𝑘−𝑛∑
𝑟=1

𝑟
𝜕
𝜕𝑝𝑟

𝑊 (−𝑚,−𝑛|−𝑙)
𝑘−𝑟

+𝑁𝑊 (−𝑚,−𝑛|−𝑙)
𝑘

, (24)

𝑊 (𝑚,𝑛|𝑙+1)
𝑘

=
∑
𝑟≥1

𝑝𝑟𝑊
(𝑚,𝑛|𝑙)
𝑘+𝑟 +

𝑘+𝑛−1∑
𝑟=1

𝑟
𝜕
𝜕𝑝𝑟

𝑊 (𝑚,𝑛|𝑙)
𝑘−𝑟 +𝑁𝑊 (𝑚,𝑛|𝑙)

𝑘
, (25)

i.e. using these relations, one can construct 𝑊 (𝑚,𝑛|𝑚)
𝑘

(𝑝), i.e. 𝑊 (𝑚,𝑛)
𝑘

(𝑝)
from 𝑊 (∗,±1|±1)

𝑘
(𝑝). There is another type of relations:

𝑊 (−𝑚,−𝑛−1|−1)
𝑘

=
∑
𝑟≥1

𝑝𝑟𝑊
(−𝑚,−𝑛)
𝑘+𝑟 +

𝑘−𝑛∑
𝑟=1

𝑟
𝜕
𝜕𝑝𝑟

𝑊 (−𝑚,−𝑛)
𝑘−𝑟 +𝑁𝑊 (−𝑚,−𝑛)

𝑘
,

(26)

𝑊 (𝑚,𝑛+1|1)
𝑘

=
∑
𝑟≥1

𝑝𝑟𝑊
(𝑚,𝑛)
𝑘+𝑟 +

𝑘+𝑛−1∑
𝑟=1

𝑟
𝜕
𝜕𝑝𝑟

𝑊 (𝑚,𝑛)
𝑘−𝑟 +𝑁𝑊 (𝑚,𝑛)

𝑘
, (27)

supplemented by the initial conditions as in (13):

𝑊 (∗,±1|±1)
𝑘

= 𝑘 𝜕
𝜕𝑝𝑘

, 𝑘 ≥ 1,

𝑊 (∗,1|1)
0 =𝑁,

(28)

Using these relations, one can start from (𝑚, 𝑛, 𝑙) = (𝑚, 1, 1) and use (28), 
then, raise 𝑙 = 1 up to 𝑚 using (25), and use (22) in order to obtain 
𝑊 (𝑚,1). Then, one uses (27) in order to obtain (𝑛, 𝑙) = (2, 1), etc. A sim-
ilar procedure is also applied for negative 𝑚 and 𝑛. Thus, one obtains 
with these recurrent relations all 𝑊 (𝑚,𝑛) generators.

Note that sometimes it is possible to find direct recurrent relations 
involving only 𝑊 (𝑚,𝑛)

𝑘
generators. For instance, generators of the alge-

bra 𝑊 (𝑚,1)
𝑘

satisfy the relations

𝑊 (𝑚+1,1)
𝑘

(𝑝) =
∑
𝑎≥1

𝑝𝑎𝑊
(𝑚,1)
𝑘+𝑎 (𝑝) +

𝑘∑
𝑎=1

𝑎
𝜕
𝜕𝑝𝑎

𝑊 (𝑚,1)
𝑘−𝑎 (𝑝) +𝑁𝑊 (𝑚,1)

𝑘
(29)

with the same “initial condition” as before

𝑊 (1,1)
𝑘

= 𝑘 𝜕
𝜕𝑝𝑘

, 𝑘 ≥ 1

𝑊 (1,1)
0 =𝑁

(30)

A detailed description of these recurrent relations as well as manifest 
examples of the generators evaluated using this procedure can be found 
elsewhere [21].

5. 𝑾 (𝟎,𝒏) algebras, completed cycles and 𝝉-functions

So far we considered the algebras with positive and negative 𝑚, how-
ever, one can also extend these relations to generators of the 𝑊 (0,𝑛)

algebras. These algebras are associated with the 𝑊1+∞ commutative 
family corresponding to the vertical ray in Fig.1, the operators of this 
family ̂𝑖+𝑗 = [𝐹𝑖, �̂�𝑗 ] = [�̂� (𝑖)

1 , �̂�
(−𝑗)
−1 ] can be obtained in the matrix re-

alization from formulas (18):

̂2 = 2Tr ̂+𝑁2

̂3 = 3Tr ̂2 + 3𝑁Tr ̂+𝑁3 = 6�̂�0

̂4 = 4Tr ̂3 + 4𝑁Tr ̂2 + 4𝑁2Tr+𝑁4 + 2
(
Tr ̂

)2
…

̂ =
𝑛∑
T̂r ̂𝑗

(
̂+ 𝐼T̂r

)𝑛−𝑗
⋅ 𝐼 (31)
𝑛+1

𝑗=0



Y. Drachov, A. Mironov and A. Popolitov

where 𝐼 is the unit matrix and the operator T̂r acts2 just by producing 
the trace, in particular, T̂r ⋅ 𝐼 =𝑁 .

These generators are nothing but the commutative Hamiltonians of 
the trigonometric Calogero-Sutherland model at the free fermion point 
[20]. In particular, the operator �̂�0 is the cut-and-join operator [22,23]
which is known to be the trigonometric Calogero-Sutherland Hamilto-
nian [24].

It should not come as a surprise that the operators ̂𝑛 are not 
expressed through single trace operators. The reason is as follows. Con-
sider the partition function generated by such an operator:

𝑛 = 𝑒
1
𝑛
̂𝑛 ⋅ 𝑒

∑
𝑘=1

1
𝑘
𝑔𝑘𝑝𝑘 (32)

This partition function can be presented in the form

𝑛 =
∑
𝑅

𝑆𝑅{𝑔𝑘}𝑆𝑅{𝑝𝑘}𝑒𝐶𝑛(𝑅) (33)

where 𝐶𝑛(𝑅) is the eigenvalue of an 𝑛-th Casimir operator associated 
with ̂𝑛. As soon as ̂𝑛 is an element of the 𝑊1+∞ algebra, (33) is 
a KP 𝜏-function [25,26]. However, the sum over partitions (33) is a 
KP 𝜏-function iff 𝐶𝑛(𝑅) is a linear combination of quantities Λ𝑅 ∶=∑
𝑖(𝑅𝑖 − 𝑖 + 1∕2)𝑘 − (−𝑖 + 1∕2)𝑘 [27–32]. Such 𝜏-functions are called 

hypergeometric [28]. In fact, in such a case, it is a KP 𝜏-function w.r.t. 
the both sets of times, 𝑝𝑘 and 𝑔𝑘, and the dependence on the Toda 
zeroth (discrete) time requires further specification (see [33]) giving 
rise to the Toda lattice hierarchy [34].

Now let us note that the basis in the space of single trace operators 
Tr ̂𝑘 is provided by the generalized cut-and-join operators �̂�[𝑘] [23],3

the Schur functions being eigenfunction of these operators:

�̂�[𝑘] 𝑆𝑅{𝑝𝑘} = 𝜙𝑅([𝑘]) 𝑆𝑅{𝑝𝑘} (34)

where the eigenvalue 𝜙𝑅([𝑘]) is proportional [23,35,36]4 to the value 
of character of the symmetric group 𝑛, 𝑛 = |𝑅| in the representation 
𝑅 on the element with the only non-unit cycle of length 𝑘 [39]. The 
action of operator �̂�[𝑘] is

𝑒�̂�[𝑘] ⋅ 1 =
∑
𝑅

𝑆𝑅{𝑔𝑘}𝑆𝑅{𝑝𝑘}𝑒𝜙𝑅([𝑘]) (35)

because of the Cauchy identity

𝑒
∑
𝑘=1

1
𝑘
𝑔𝑘𝑝𝑘 =

∑
𝑅

𝑆𝑅{𝑔𝑘}𝑆𝑅{𝑝𝑘} (36)

Thus, since 𝑛, (33) should be a hypergeometric 𝜏-function, the Schur 
function 𝑆𝑅{𝑝𝑘} should be an eigenfunction of ̂𝑛 with an eigenvalue 
being a linear combination of the quantities Λ𝑅. The point is, however, 
that 𝜙𝑅([𝑘]) is not such a linear combination at 𝑘 > 2 [23], and only a 
non-linear polynomial of 𝜙𝑅([𝑘])’s is [40]. Such a polynomial is called 
completed cycle [30,31]. This is what we observe in formulas (31). Com-
pleted cycles have attracted a lot of attention during the last years in 
the enumerative geometry context (see, for instance, [41–43]). In par-
ticular, they feature in the celebrated Zvonkine’s conjecture [44], only 
recently proved in [45]. With the general �̃� -algebra point of view, 

2 For instance,

T̂r
(
̂+ 𝐼T̂r

)2
⋅ 𝐼 =T̂r

(
̂2 + 𝐼T̂r ̂+ ̂T̂r + 𝐼T̂r ⋅ 𝐼T̂r

)
⋅ 𝐼 = Tr ̂2 +𝑁Tr ̂

+𝑁Tr ̂+𝑁3

3 For instance,

�̂�0 = �̂�[2] −𝑁�̂�[1] −
𝑁3

6

4 An explicit formula for 𝜙𝑅([𝑘]) through the shifted Schur functions [37] can 
4

be found, e.g., in [38].
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advocated in the present paper, one may naturally wonder whether 
quantities, built from non-vertical families of �̃� -operators carry equally 
deep enumerative geometry meaning.

In order to be more concrete, the manifest action of ̂𝑛 on the Schur 
functions, indeed, gives rise to a linear combination of Λ𝑘. For the sake 
of brevity, we choose another basis

Λ̃𝑘 ∶=
∑
𝑖

(𝑅𝑖 − 𝑖+ 1∕2 +𝑁)𝑘 − (−𝑖+ 1∕2 +𝑁)𝑘 −𝑁𝑘 (37)

linearly related with the basis of Λ𝑘. Then,

̂𝑛 𝑆𝑅{𝑝𝑘} = 𝑛(𝑅) 𝑆𝑅{𝑝𝑘} (38)

with

𝑛(𝑅) =
∑
𝑗=0

1
4𝑗

(
𝑛

2𝑗 + 1

)
Λ̃𝑛−2𝑗−1 +𝑁𝑛 (39)

Now let us note that formula (31) can be rewritten in the form

̂𝑛+1 =
𝑛∑
𝑗=0

Tr ̂𝑗
(
Λ−1̂Λ

)𝑛−𝑗
(40)

This paves a way for introducing the generators of the 𝑊 (0,𝑛) algebra 
either from the relation

𝑛∑
𝑗=0

̂𝑗
(
Λ−1̂Λ

)𝑛−𝑗
𝑓 (𝑝) =

∞∑
𝑘=−∞

Λ𝑘𝑊 (0,𝑛)
𝑘

(𝑝)𝑓 (𝑝)
||||||𝑝𝑎=Tr Λ𝑎 (41)

or from the recurrent relations that follow from (41). To this end, we 
again need to introduce auxiliary operators

(
Λ−1̂Λ

)𝑛
𝑓 (𝑝) =

∞∑
𝑘=−∞

Λ𝑘𝑊 (0,𝑛|𝑙)
𝑘

(𝑝)𝑓 (𝑝)
|||||𝑝𝑎=Tr Λ𝑎 , 𝑛 < 𝑙 (42)

̂𝑛−𝑙 (Λ−1̂Λ
)𝑙
𝑓 (𝑝) =

∞∑
𝑘=−∞

Λ𝑘𝑊 (0,𝑛|𝑙)
𝑘

(𝑝)𝑓 (𝑝)
|||||𝑝𝑎=Tr Λ𝑎 , 𝑛 ≥ 𝑙 (43)

which satisfy the recurrent relations

𝑊 (0,𝑛+1|𝑙)
𝑘

=
∑
𝑟≥1

𝑝𝑟𝑊
(0,𝑛|𝑙)
𝑘+𝑟 +

𝑘∑
𝑟=1

𝑟
𝜕
𝜕𝑝𝑟

𝑊 (0,𝑛|𝑙)
𝑘−𝑟 +𝑁𝑊 (0,𝑛|𝑙)

𝑘
(44)

along with the initial conditions:

𝑊 (0,0|𝑙)
𝑘

= 𝛿𝑘,0 (45)

𝑊 (0,𝑛|𝑙)
𝑘

= 0 for 𝑘 ≤ −(𝑙 − 𝑛) (46)

These auxiliary generators are clearly summed into 𝑊 (0,𝑛)
𝑘

:

𝑊 (0,𝑛)
𝑘

=
𝑛∑
𝑙=0

𝑊 (0,𝑛|𝑙)
𝑘

(47)

Hence, for evaluating 𝑊 (0,𝑛)
𝑘

, one has to start from 𝑊 (0,0|𝑙)
𝑘

in (45) and 
then, using (44), to obtain all 𝑊 (0,𝑝|𝑙)

𝑘
with 𝑝 ≤ 𝑛. This evaluation has 

to be done at each 𝑙 ≤ 𝑛, and then one can use formula (47) in order to 
finally obtain 𝑊 (0,𝑛)

𝑘
.

From relation (41), it immediately follows that

̂𝑛 =
∑
𝑘≥0

𝑝𝑘𝑊
(0,𝑛)
𝑘

(48)

6. 𝑾 (𝒎,𝒏) algebras as Ward identities in the WLZZ matrix models

After having constructed the generalized 𝑊 algebras, we are ready 
to discuss the models where they form algebras of constraints. The basic 

example is given by the two-matrix model:
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𝑍𝑛 =
¨

𝑁×𝑁

𝑑𝑋𝑑𝑌 exp

(
−Tr𝑋𝑌 +

∑
𝑘

𝑝𝑘
𝑘
Tr𝑋𝑘 + 1

𝑛
Tr 𝑌 𝑛

)
(49)

where the integral is understood as integration of a power series in 𝑝𝑘, 
and 𝑋 are Hermitian matrices, while 𝑌 are anti-Hermitian ones. This 
matrix integral at 𝑛 > 1 satisfies a set of the 𝑊 (1,𝑛) algebra constraints 
[4,5],

𝑊 (1,𝑛)
𝑘

𝑍𝑛 = (𝑛+ 𝑘)
𝜕𝑍𝑛
𝜕𝑝𝑛+𝑘

, 𝑘 ≥ −𝑛+ 1 (50)

At the same time, one can follow paper [46] in order to encode all these 
constraints in a single equation,(∑
𝑎=1

𝑎𝑝𝑎
𝜕
𝜕𝑝𝑎

−
∑
𝑘=0

𝑝𝑘𝑊
(1,𝑛)
𝑘−𝑛

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

�̂� (1)
𝑛

)
𝑍𝑛 = 0 (51)

its solution being

𝑍𝑛 = 𝑒
1
𝑛
�̂� (1)
𝑛 ⋅ 1 (52)

and, hence, one associates 𝑍𝑛 =𝑍
(1)
𝑛 .

This scheme is completely extended to the whole series 𝑍(𝑚)
𝑛 (though 

it is no longer a matrix integral): the partition function

𝑍(𝑚)
𝑛 =

∑
𝑅

(
𝑆𝑅{𝑝𝑘 =𝑁}
𝑆𝑅{𝑝𝑘 = 𝛿𝑘,1}

)𝑚
𝑆𝑅{𝑝𝑘 = 𝛿𝑘,𝑛}𝑆𝑅{𝑝𝑘} (53)

satisfies the Ward identities

𝑊 (𝑚,𝑛)
𝑘

𝑍(𝑚)
𝑛 = (𝑛+ 𝑘)

𝜕𝑍(𝑚)
𝑛

𝜕𝑝𝑛+𝑘
, 𝑘 ≥ −𝑛+ 1 (54)

or the single equation(∑
𝑎=1

𝑎𝑝𝑎
𝜕
𝜕𝑝𝑎

−
∑
𝑘=0

𝑝𝑘𝑊
(𝑚,𝑛)
𝑘−𝑛

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

�̂� (𝑚)
𝑛

)
𝑍(𝑚)
𝑛 = 0 (55)

so that

𝑍(𝑚)
𝑛 = 𝑒

1
𝑛
�̂� (𝑚)
𝑛 ⋅ 1 (56)

in accordance with [47,48]. This set of partition functions 𝑍(𝑚)
𝑛 was 

first introduced in [15,16] (in the case of 𝑚 = 1), hence the name WLZZ 
models, and was later extended to arbitrary integer 𝑚 in [47,48]. Note 
also that the set of partition functions associated with 𝑊 (0,𝑛) was con-
sidered in [4] (along with its matrix model realization, see [4], it was 
called there 𝑍(1,𝑚)).

As for the series of 𝑊 (𝑚,𝑛) algebras with negative 𝑚, they generate 
the partition functions [47,48]

𝑍(−𝑚)
−𝑛 = 𝑒

1
𝑛
�̂� (−𝑚)

−𝑛 ⋅ 𝑒
∑
𝑘=1

1
𝑘
𝑔𝑘𝑝𝑘 (57)

where 𝑔𝑘 are non-zero parameters, since action on unity would give 
a trivial answer. Hence, the Hamiltonians 𝐻 (−𝑚)

−𝑛 do not give rise to a 
single equation and are not related to a constraint algebra, and neither 
are the corresponding 𝑊 (−𝑚,−𝑛).

Similarly, one can generate the Hurwitz partition functions corre-
sponding to the completed cycles (see a discussion in [5,49]),

𝑍(0)
𝑛 = 𝑒

1
𝑛
̂𝑛 ⋅ 𝑒

∑
𝑘=1

1
𝑘
𝑔𝑘𝑝𝑘 (58)

In the both these cases the algebra of constraints has to be constructed 
5

yet.
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7. Concluding remarks

In this paper, extending earlier known 𝑊 (±,𝑛) algebras, we con-
structed a series of generalized 𝑊 (𝑚,𝑛) algebras labelled by two integer 
numbers 𝑚 and 𝑛 that are either both negative, or both are non-
negative. These algebras are related to commutative subalgebras of the 
𝑊1+∞ algebra associated with integer rays [17]. In fact, each element 
of such a subalgebra �̂� (𝑚)

𝑛 is given by a simple formula connecting it 
with a 𝑊 (𝑚,𝑛) algebra, (19).

We presented the definition of the generalized 𝑊 algebra as an 
algebra of differential operators in terms of variables 𝑝𝑘 both via a for-
mulation in terms of matrix derivatives, and via a recursive definition. 
This allows one to construct the 𝑊 operators manifestly. Note that ex-
plicit formulas for �̂� (𝑚)

𝑛 in terms of variables 𝑝𝑘 were recently presented 
in [17]. Here we provide an alternative set of formulas for �̂� (𝑚)

𝑛 , which 
is based on the manifestly constructed 𝑊 operators and formula (19).

Note that the recursive definition of the 𝑊 algebra requires an aux-
iliary set of operators from 𝑊1+∞, which do not belong to commutative 
families. The basic role of these operators, however, remains unclear, 
and we postpone studying these operators to further studies.

The 𝑊 algebras have originally appeared as algebras of constraints 
in matrix models. The partition functions generated by �̂� (𝑚)

𝑛 with pos-
itive 𝑚 and 𝑛 as the operators determining the 𝑊 -representation of 
matrix models, (56) are called the WLZZ models [15,16,47,48], and 
we demonstrated that these partition functions are satisfied by the set 
of constraints given by the generalized 𝑊 algebras. Unfortunately, the 
algebra of constraints for the partition functions generated by the oper-
ators �̂� (𝑚)

𝑛 with non-positive 𝑚, (57), (58) is not described yet, only the 
case of 𝑚 = −1, 𝑛 =−2 was studied in [5, see sec.5.2 and especially for-
mula (104)], where it was demonstrated that, even in this simplest case, 
the algebra of constraints is given by linear combinations of generators 
of algebras 𝑊 (−1,𝑛) with all negative 𝑛. The problem of finding algebras 
of constraints for the partition function 𝑍(𝑚)

𝑛 with arbitrary negative 𝑚
and 𝑛 also deserves further investigation.

Another important issue that was not touched in the present paper 
is a 𝛽-deformation of the 𝑊 algebras. Such a deformation is definitely 
possible, since, as we demonstrated in [50], the commutative families 
associated with the integer rays of the 𝑊1+∞ algebra are immediately 
lifted to the affine Yangian algebra, which exactly provides the required 
𝛽-deformation. We are planning to return to this issue elsewhere.
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