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We study unequal rapidity correlators in the stochastic Langevin picture of Jalilian-Marian–Iancu–
McLerran–Weigert–Leonidov–Kovner (JIMWLK) evolution in the color glass condensate effective field
theory. We discuss a diagrammatic interpretation of the long-range correlators. By separately evolving the
Wilson lines in the direct and complex conjugate amplitudes, we use the formalism to study two-particle
production at large rapidity separations. We show that the evolution between the rapidities of the two
produced particles can be expressed as a linear equation, even in the full nonlinear limit. We also show how
the Langevin formalism for two-particle correlations reduces to a Balitsky-Fadin-Kuraev-Lipatov (BFKL)
picture in the dilute limit and in momentum space, providing an interpretation of BFKL evolution as a
stochastic process for color charges.
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I. INTRODUCTION

Multiparticle correlations, in both azimuthal angle and
rapidity, are becoming an increasingly important exper-
imental tool to access the properties of QCD in high energy
collision systems. There is an intensive debate (see e.g., [1])
on the origin of the structure of azimuthal correlations in
small (proton-proton and proton-nucleus) collision sys-
tems, where QCD correlations already present in the
colliding objects compete with the effects of particle
reinteractions (such as hydrodynamical flow or escape
bias) in the later stage of the collision. In order to fully
sort out the interpretation of the experimental results, it is
important to fully understand the QCD dynamics leading to
particle correlations. In particular, a characteristic feature of
a hydrodynamical-like azimuthal correlation in a hadronic
collision is that it extends far in rapidity [2]. Whereas
effects at later times, such as resonance decays, have a very
short range in rapidity, effects that extend to large rapidity
separations must originate early in the collision. This is the
case both for hydrodynamical flow, which is sensitive to the
coordinate space geometry that is similar at all rapidities,
and for correlations between the partons in the colliding

hadrons. Therefore, one needs to understand in QCD how
the production of particles in high energy collisions is
correlated across large rapidity separations.
The color glass condensate (CGC; see e.g., [3–5]) is an

effective theory of QCD for high energy processes. It is
based on a separation of scales between “fast” large-x
degrees of freedom (d.o.f.) that are integrated out into
an effective description and the soft small-x gluons that are
the relevant d.o.f. for high energy scattering. The longi-
tudinal momentum cutoff separating these two scales can
be varied, and the effect of changing it absorbed into a
renormalization of the effective description as a function of
the longitudinal momentum (or rapidity) scale. This pro-
cedure leads to the JIMWLK1 evolution equation [6–16],
which can be used to resum leading logarithmic (in energy
or x) corrections to QCD scattering cross sections. In
practical calculations, the convenient d.o.f. for describing
high energy QCD scattering is the Wilson line (see e.g.,
[17]). This is the eikonal scattering amplitude for a partonic
probe passing through the target color field. In the CGC
picture, the Wilson lines at each point in the transverse
plane are stochastic variables drawn from a probability
distribution; it is this probability distribution whose
dependence on the rapidity Y ¼ ln 1=x is given by the
JIMWLK equation. An equivalent formulation for the
evolution of the probability distribution is provided by
the Langevin formulation [18], where the Wilson lines
themselves depend on rapidity through a stochastic partial
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differential equation involving a random noise. In addition
to providing a more direct physical picture of the evolution,
the Langevin formulation is the basis for numerical
solutions of the JIMWLK equation [19–21].
The most common phenomenological applications of the

CGC framework involve processes in which one needs only
theWilson lines at one rapidity. This includes deep inelastic
scattering (DIS) cross sections [22–30], where the relevant
rapidity depends only on the energy of the incident virtual
photon, and single inclusive particle production [31–40],
where it is determined by the kinematics of the produced
particle. This is also true for multiparticle production
[41,42], if the produced particles are close to each other
in rapidity. The situation becomes more complicated, how-
ever, if one is interested in the correlations between particles
that are separated by a parametrically large rapidity inter-
val ΔY ≳ 1=αs.
For the case of two dense projectiles, there is a

formalism, developed initially in [43], in which one follows
a separate JIMWLK evolution for each of the colliding
nuclei (see also [44] for a discussion). While the theoretical
status of this formulation is still poorly understood (see e.g.,
the calculation reported in [45] suggesting that the decor-
relation speed in rapidity is not an infrared safe quantity in
this framework), it has been used in some phenomeno-
logical applications [46]. It has also led, via a kT-factorized
approximation, to the “glasma graph” or related calcula-
tions of multiparticle correlations in small collision systems
[47–53]. In a perturbative language, the correlation in these
calculations originates from two particles being produced
from different Balitsky-Fadin-Kuraev-Lipatov (BFKL) lad-
ders. This contribution dominates when both the projectile
and the target are parametrically dense, so that there is no
suppression for having additional ladders between them.
In this sense, these are “dense-dense” calculations, even if
done in a kT-factorized approximation. On the other hand,
when both the projectile and the target are dilute, correlated
semihard particle production should be dominated by
production from a single ladder, or the “jet graphs” in the
language of [52,53]. Here, perturbative calculations of
azimuthal decorrelations between these (Mueller-Navelet)
jets have been performed, even at the next-to-leading-order
(NLO) level [54].
For correlations between particles with large rapidity

separations, it turns out that the “dilute-dense” case is
actually in some sense the most complicated one. In the
power counting of [43,55], where the color charge density
in the dense target is parametrically large ρ ∼ 1=g, and in
the dilute projectile parametrically small ρ ∼ g, both the
“single ladder” (or jet graph) and “separate ladder” (or
glasma graph) contributions are parametrically (in αs)
equally important. Out of these two kinds of contributions,
there has been a lot of recent work in understanding the
separate ladder contributions beyond the glasma graph
approximation [48,49,56–59].

In the case of a dense target, our understanding of
how to calculate the single ladder contribution is much less
developed. One needs to generalize the fully nonlinear
JIMWLK equation to the evolution of not just operators
made out of Wilson lines at a single rapidity, but corre-
lations of Wilson lines at different rapidities. For this
purpose, a formalism based on the Langevin description
of JIMWLK evolution was developed by Iancu and
Triantafyllopoulos (IT) in [60] (see also earlier, very similar
work in [61,62]). Here, one derives a new Langevin
equation for a bilocal quantity that encodes the correlation
between Wilson lines at two different rapidities. This
formalism has not, however, been fully applied to phe-
nomenology, nor has it been analyzed in more detail.
Our intention in this paper is to do the latter, with the

main purpose of elucidating the diagrammatic interpreta-
tion of the IT formalism. We do this by starting from the
bilocal Langevin description and taking the dilute limit. We
show explicitly how this procedure recovers a two-particle
correlation originating in particle production from the same
BFKL ladder. In the process, we show also that the bilocal
Langevin formulation, even in the full nonlinear case, can
actually be transformed into a form in which the evolution
between the rapidities of the two produced particles is
linear. This somewhat surprising, or even counterintuitive,
result seems to confirm what has been found earlier in
[62,63]. This statement does not mean that the two-particle
production process would somehow be fully linear; one
still needs to solve the nonlinear evolution equation for
the Wilson lines themselves. Rather than explore the full
phenomenological consequences of this picture, we will try
to elucidate the physics in this formalism and set the stage for
such a calculation in future work. For concreteness, we will
focus throughout this paper on the two-particle cross section
specifically for the production of a quark and a gluon. The
incoming projectile is consequently a Wilson line in the
fundamental representation; the generalization of this to a
gluon probe should be relatively straightforward.
This paper is structured as follows. First, we review

the basics of JIMWLK evolution in Sec. II, both in the
Fokker-Planck and in the Langevin formulations. We then
discuss in Sec. III two-particle production at parametrically
similar rapidities, i.e., without evolution between the
rapidities of the particles. In Sec. IV, we develop the dilute
limit of JIMWLK evolution in terms of color charges or,
more accurately, Reggeized gluons, leading to the BFKL
equation for the unintegrated gluon distribution. We then
move in Sec. V to the IT formalism of Langevin evolution
between the rapidities of the two produced particles,
slightly rewriting the evolution equation to highlight the
linear structure in the evolution between the two rapidities.
Finally, in Sec. VI we show how the dilute limit of the IT
formalism leads to a factorized structure that one would
expect from BFKL dynamics, with a BFKL Green’s
function separating the two particles.
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II. JIMWLK EVOLUTION

A. The JIMWLK equation in the
Fokker-Planck formalism

We consider a high energy interaction of a dilute colored
probe with the color field of a dense target. In the CGC
theory, the expectation value of an observable Ô that is
local in rapidity Y is given by

hÔiY ≡
Z

½DU�WY ½U�Ô: ð1Þ

Here ½DU� is the functional de Haar measure on SUðNcÞ,
and WY ½U� is the CGC weight function describing the
density distribution at Y of the Wilson lines in the target.
These Wilson lines U ¼ UðxÞ≡Ux are unitary, path-
ordered exponentials

U†
x ≡ P exp

�
ig
Z

dxþαaxðxþÞta
�
; ð2Þ

represented diagrammatically following the notation of
[20,64,65] as

ð3Þ

Here, αax is the color field generated by the target with
color index a ¼ 1;…; Nc and the t’s are the fundamental
generators of SUðNcÞ. The light-cone time axis xþ runs
from right to left in these diagrams. The Hermitian
conjugate Wilson line is then denoted by an arrow facing
the opposite way:

ð4Þ

An example of a simple observable that is relevant in this
context is the quark dipole

ð5Þ

The dependence of the target color field on rapidity is
described by JIMWLK evolution. Here the CGC weight
function evolves from an initial condition Y in to a final Y
according to the JIMWLK equation

∂
∂Y WY ½U� ¼ HWY ½U�: ð6Þ

Typically, a Gaussian distribution is used for the initial
condition WY in

, as in the McLerran-Venugopalan (MV)
[66–68] model. The JIMWLK Hamiltonian is

H ≡ 1

8π3

Z
uvz

KuvzðLa
u − Ũ†ab

z Rb
uÞðLa

v − Ũ†ac
z Rc

vÞ; ð7Þ

where tildes denote the adjoint representation and two-
dimensional coordinate space integrals are denoted with the
shorthand

R
u ≡

R
d2u. The JIMWLK kernel is

Kuvz ≡Ki
uzKi

vz; ð8Þ

where

Ki
uz ¼

ðu − zÞi
ðu − zÞ2 ð9Þ

is the Weizsäcker-Williams soft gluon emission kernel. The
L and R are “left” and “right” Lie derivatives2 that act to
color rotate the Wilson lines on the left and right sides of
the target field, respectively. They are defined as

La
u ≡ −igðUutaÞαβ

δ

δUu;αβ
; ð10Þ

Ra
u ≡ −igðtaUuÞαβ

δ

δUu;αβ
; ð11Þ

where α, β are matrix indices and δ
δUu

acts as an ordinary
functional derivative:

δ

δUu;αβ
Ux;γρ ¼ δαγδβρδ

ð2Þðu − xÞ≡ δαγδβρδux: ð12Þ

We can represent the action of the Lie derivatives on the
Wilson lines as

ð13Þ

ð14Þ

2The naming of the derivatives may seem counterintuitive, but
they appear on the opposite side to what is expected due to the
light-cone time axis running from right to left in our diagram-
matic notation.
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The Hermitian conjugates of these expressions give

ð15Þ

ð16Þ

The left and right Lie derivatives L and R are related to each
other by

La
u ¼ Ũ†ab

u Rb
u ð17Þ

ð18Þ

which follows from the identity Ũ†ab
u tb ¼ UutaU

†
u. The Lie

derivatives satisfy the commutation relations

½La
u; Lb

v � ¼ gδuvfabcLc
u; ð19Þ

½Ra
u; Rb

v � ¼ −gδuvfabcRc
u; ð20Þ

½La
u; Rb

v � ¼ ½La
u; Ũ

†ab
z � ¼ ½Ra

u; Ũ
†ab
z � ¼ 0: ð21Þ

B. The JIMWLK equation in the Langevin formalism

Generically, it can be shown that a Fokker-Planck
description of a system’s dynamics can be recast in a
Langevin description. For the JIMWLK equation, this was
done in [18], with a slight simplification introduced in [21]
using the form of Eq. (7) with left and right derivatives.
Numerical solutions to JIMWLK evolution are more
conveniently expressed using the Langevin formulation
of the equation, as opposed to the Fokker-Planck formu-
lation discussed in the previous section. This is one reason to
explore analytically the Langevin picture. In this formu-
lation, evolution is treated as a randomwalk in the functional
space of Wilson lines. Rapidity acts as a “time” and is
discretized as Y − Y0 ¼ ϵN with Z ∋ N → ∞, ϵ → 0,
where each evolution step is labeled by n ∈ f0; 1;…; Ng.
The averaging over the probability distribution of Wilson
lines in Eq. (1) is equivalent to the averaging over a noise
term in the stochastic equation. This term can be taken as a
localized Gaussian white noise

hνi;ax;mνj;by;ni ¼ 1

ϵ
δijδabδmnδxy; ð22Þ

where νi;az;m ∈ R. The noise is introducedwithin termswe can
call, respectively, “left” and “right” (traceless, Hermitian)
color fields

αLx;n ≡ 1ffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xzν
i
z;n; ð23Þ

αRx;n ≡ 1ffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xzUz;nν
i
z;nU

†
z;n; ð24Þ

where νiz;n ≡ νi;az;nta is an element of the SUðNcÞ algebra.
These definitions of αL and αR can be interchanged,

as long as one is rotated by Ũ†ab with respect to the other;
this merely amounts to a redefinition of the noise in
Eq. (22) [21]. To be explicit, one defines a rotated noise as

ν̃iz;n ≡ ν̃i;az;nta ≡Uz;nν
i
z;nU

†
z;n: ð25Þ

It is then straightforward to show that this rotated noise is
also a Gaussian random variable with

hν̃i;ax;mν̃jby;ni ¼ 1

ϵ
δijδabδmnδxy: ð26Þ

With this, one can equally well consider the rotated noise ν̃
as being independent of the Wilson lines. Thus, the original
noise ν and so too αL are quantities that depend on them.
However, the choice of whether to consider ν or ν̃ has to be
made globally for the whole calculation at once, and kept
fixed when taking functional derivatives with respect to the
Wilson lines. These properties will be crucial later to see
how the evolution between the two rapidities becomes
independent of the Wilson lines.
The Langevin equation describing the evolution of a

Wilson line from step n to step nþ 1 is written as

U†
x;nþ1 ¼ eiϵgα

L
x;nU†

x;ne−iϵgα
R
x;n : ð27Þ

The two matrix exponentials act as infinitesimal color
rotations to the left and to the right of the target field, hence
the naming of the α’s. If the Wilson line at rapidity step n is
represented as

ð28Þ

then we can write
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ð29Þ

ð30Þ

Notice that the free color index in these two
diagrams contracts with the color index of the noise factor.
The Hermiticity of the color fields means that the time step
for the complex conjugate Wilson line is simply

Ux;nþ1 ¼ eiϵgα
R
x;nUx;ne−iϵgα

L
x;n : ð31Þ

1. Expansion in the time step ϵ

Since ϵ is infinitesimal, we may choose to keep terms
only up to order ϵ. The color fields each contain a factor
ν, which is of order ϵ−1=2, and always appear multiplied
by a factor of ϵ. So OðϵαL=RÞ ¼ Oðϵ1=2Þ, and we can
immediately neglect from the expansion powers of αL=R

larger than two. Also, since in the end we only need to
keep terms of order ðαL=RÞ2 multiplied by terms that do
not depend on the noise, we can at any stage in the
calculation take the expectation value over the noise in
such terms.
It is useful to note that Wilson lines appear only in the

cross term αLαR, but not in the squares:

hðαLx;nÞ2i ¼ hðαRx;nÞ2i ¼
CF

4π3ϵ

Z
z
Kxxz: ð32Þ

In terms of diagrams, this can be expressed as the
relation

ð33Þ

Using these, one step of the Wilson line to the order needed
can be written as

U†
x;nþ1 ¼ U†

x;n þ
Z
z

�
iϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;a
z;n −

ϵg2

4π3
Kxxzta

�

× ðtaU†
x;n −U†

x;nŨ
†ab
z;n tbÞ þOðϵ3=2Þ ð34Þ

ð35Þ

where the relation (33) can be used to draw the virtual
diagram on either side of the target.
By calculating the dipole Ŝxx̄;nþ1 in terms of quantities at

the previous step n, we can also derive the first equation of
the Balitsky hierarchy:

d
dY

trfU†
xUyg
Nc

¼−
Nc

2

αs
π2

Z
z
K̃xyz

�
trfU†

x;nUy;ng
Nc

−
trfU†

z;nUy;ng
Nc

trfU†
x;nUz;ng
Nc

�
þOðϵ3=2Þ:

ð36Þ

Here, one needs to use the Fierz identity

2Ũab
z trfU†

ytaUxtbg¼ trfU†
zUxgtrfU†

yUzg−
1

Nc
trfU†

yUxg

ð37Þ

to simplify the color structure and get rid of the adjoint
representation matrices. Note that at this order in ϵ (and thus
also in the limit ϵ → 0), Eq. (36) is exact, even at the level of a
single configurationwithout expectationvalues.Additionally,
taking the expectation value on both sides and using
the mean field approximation htrfU†

z;nUy;ngtrfU†
x;nUz;ngi ≈

htrfU†
z;nUy;ngihtrfU†

x;nUz;ngi transform Eq. (36) into the
Balitsky-Kovchegov (BK) [29,69] equation

d
dY

�
trfU†

xUyg
Nc

�
¼ −

Nc

2

αs
π2

Z
z
K̃xyz

��
trfU†

x;nUy;ng
Nc

�

−
�
trfU†

z;nUy;ng
Nc

��
trfU†

x;nUz;ng
Nc

��

þOðϵ3=2Þ: ð38Þ
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III. ONE- AND TWO-PARTICLE PRODUCTION
AT EQUAL RAPIDITY

Consider a single quark produced in a proton-nucleus
collision. It is described mathematically by a fundamental
representation dipole

ð39Þ

where the dashed line denotes the separation between
the direct amplitude (DA) on the left and the complex
conjugate amplitude (CCA) on the right. The bars on
both the Wilson line and the coordinate in Ūx̄ denote
that this Wilson line is in the CCA. Henceforth, this bar
notation will be used to distinguish between quantities in
the DA (unbarred) and the CCA (barred). The cross section
for inclusive quark production in a proton-nucleus collision
is then

dσq
dηpd2p

¼ xqðxÞ 1

ð2πÞ2
Z
xx̄
e−ip·ðx−x̄ÞhŜxx̄jŪ¼UiY: ð40Þ

Here, Y is the relative rapidity of the produced quark with
respect to the target, x is the longitudinal momentum
fraction of the projectile, xqðxÞ is the quark distribution
in the proton, and p and ηp are the transverse momentum
and rapidity, respectively, of the quark. The dipole expect-
ation value can be obtained by averaging the dipole
operator over the probability distribution of the Wilson
lines according to Eq. (1), except that at this stage, the DA
and CCA should still be regarded as independent:

hŜxx̄iY ¼
Z

½DU�½DŪ�WY ½U; Ū�Ŝxx̄: ð41Þ

For inclusive quark-gluon production (both the quark
and the gluon emitted with rapidity Y with respect to the
target), the cross section can be written compactly in terms
of a “production Hamiltonian” [60–62] operating on the
quark cross section:

dσqg
dηpd2pdηkd2k

¼ 1

ð2πÞ4
Z
xx̄
e−ip·ðx−x̄ÞhHprodðkÞŜxx̄jŪ¼UiY:

ð42Þ

Here, the quark has transverse momentum p and
pseudorapidity ηp, and the gluon has transverse momentum
k and pseudorapidity ηk. The production Hamiltonian is
given by [60]

HprodðkÞ ¼
1

4π3

Z
yȳ
e−ik·ðy−ȳÞ

Z
uū
Ki

yuKi
ȳ ū

× ðLa
u − Ũ†ab

y Rb
uÞðL̄a

ū −
¯̃U†ac
ȳ R̄c

ūÞ; ð43Þ

which correctly accounts for all possible ways that a second
gluon can be produced. Notice that transverse coordinates y
and ȳ are kept distinct, and the Lie derivatives with respect
to the Wilson lines in the DA and CCA are kept separate. In
spite of the notational similarity, this makes Hprod a
somewhat more complicated operator than the JIMWLK
Hamiltonian in Eq. (7).
In order to evaluate the cross section, the four terms in

ðLa
u − Ũ†ab

y Rb
uÞðL̄a

ū −
¯̃U†ac
ȳ R̄c

ūÞŜxx̄ ð44Þ

need to be calculated, where the left and right Lie
derivatives can be evaluated using Eqs. (13) and (16).
Only once all the functional derivatives have been evalu-
ated can we set Ū ¼ U, since there is no more need to
distinguish between Wilson lines in the DA and CCA
separately. Substituting the results into Eq. (42) gives

dσ2g
dηpd2pdηkd2k

¼ 1

ð2πÞ4
αs
π2

Z
xx̄yȳ

e−ip·ðx−x̄Þ−ik·ðy−ȳÞKi
yxKi

ȳ x̄

×

�
Cf

trfUx̄U
†
xg

Nc
− ðŨ†ab

ȳ þ Ũ†ab
y Þ trft

bUx̄taU
†
xg

Nc

þ ðUȳU
†
yÞab trft

aUx̄U
†
xtbg

Nc

�
Y
; ð45Þ

where the integrals over u and ū have been evaluated using
the delta functions δū x̄δux from calculating the Lie deriv-
atives, and the overall constant has been rewritten using
αs ¼ g2=ð4πÞ. This is the analogue of the result (in the soft
gluon limit z → 0) of two-gluon production at equal
rapidity obtained in Ref. [70]. Note that the rapidities of
the quark and gluon are not really equal, because in the
production Hamiltonian one has taken the limit where the
gluon is soft. However, at this point they are also not
parametrically large, so that one would need to consider
high energy evolution between the two. Thus, the rapidity
separation in Eq. (45), ΔY, satisfies 1 ≪ ΔY ≪ 1=αs.

IV. DILUTE LIMIT: STOCHASTIC PICTURE OF
BFKL EVOLUTION

In order to understand the connection of the Langevin
picture of JIMWLK evolution to the physics of the BFKL
equation, we must develop the Wilson lines in the limit of a
small color field [28,71–73]. To do this, we start with the
fundamental representation Wilson line
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U†
x;n ≡ P exp

�
ig
Z

dxþαax;nðxþÞta
�

≡ eiλx;n

¼ 1þ iλx;n −
1

2
λ2x;n þOðλ3Þ; ð46Þ

where each real matrix λ is an element of the algebra of
SUðNcÞ and denotes a one-gluon interaction between
projectile and target. We can represent this diagrammati-
cally as

ð47Þ

The Hermitian conjugate is simply

Ux;n ¼ e−iλx;n ¼ 1 − iλx;n −
1

2
λ2x;n þOðλ3Þ; ð48Þ

and an adjoint Wilson line is

Ũ†ab
x;n ¼ δab þ fabcλcx;n þ 2trftaλx;ntbλx;ng

− trftaftb; λ2x;ngg þOðλ3Þ: ð49Þ

The part of the Langevin step for Wilson lines in Eq. (34)
involving an adjoint representationWilson line corresponds
to the interaction of a gluon with the target shock wave. At
step n ¼ 0 in this linearized limit, we have

U†
x;0Ũ

†ab
z;0 t

b ¼ ta − fabcλbz;0t
c þ iλx;0ta þOðλ2Þ; ð50Þ

which we can represent as

ð51Þ

Using this, we can write the full Langevin step to linear
order in the gluon field as

λx;nþ1 ¼ λx;n þ
Z
z

�
iϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;a
z;n −

ϵg2

4π3
Kxxzta

�

× ifabctcðλbx;n − λbz;nÞ þOðϵ3=2; λ2Þ: ð52Þ

Diagrammatically, we have

ð53Þ

Note that the three-gluon vertex can also be written as a
commutator:

ifabctcλbx;n ¼ ½ta; λx;n�; ð54Þ

ð55Þ

Equation (52) is simply a linear iterative equation, for
which we can write a formal solution. Separating out a time
evolution matrix M as

Mab
xw;n≡δxwδ

abþ
Z
z

�
ϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;c
z;nfabc−

ϵg2

4π3
Nc

2
Kxxzδ

ab

�

× ðδxw−δzwÞ; ð56Þ
we can write

λax;nþ1 ¼
Z
w
Mab

xw;nλ
b
w;n þOðϵ3=2; λ2Þ: ð57Þ

This recursive relation has the solution

λax;nþ1 ¼
Z
wn

Mabn
xwn;n

Yn−1
j¼0

�Z
wj

M
bjþ1bj
wjþ1wj;j

�
λb0w0;0

: ð58Þ

The product of M’s can be simplified further if necessary,
by using Eq. (22) and keeping terms up to linear order in ϵ.

A. Reggeization

As a side note, we can now easily see (following [71])
how the gluon field λ “Reggeizes” in this picture. This is
done by taking the expectation value of the single gluon
field time step Eq. (52), which eliminates terms linear in ν
and leads to
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1

ϵ
hλx;nþ1−λx;ni¼−

Nc

2

g2

4π3

Z
z
Kxxzhλx;n−λz;niþOðϵ2;λ2Þ;

ð59Þ

which we may write as

�
d
dY

λx

�
¼ Nc

2

αs
π2

Z
z
Kxxzhλz;n − λx;ni þOðϵ2; λ2Þ: ð60Þ

This equation can be Fourier transformed using

λaðpÞ ¼
Z
z
eip·zλaz ð61Þ

and written as

�
d
dY

λaðpÞ
�

¼ hαgðpÞλanðpÞi þOðϵ2; λ2Þ: ð62Þ

Here,

αgðpÞ≡ Nc

2

αs
π2

Z
z

1

z2
ðeip·z − 1Þ ð63Þ

is the so-called “Regge trajectory” (see [71]). The gluon is
said to Reggeize, meaning that the amplitude for the gluon
exchange process scales with energy to the power of the
trajectory. In the Langevin picture, Reggeization therefore
simply refers to the power law growth of the expectation
value of the gluon field.

B. The BFKL equation

Let us then obtain the BFKL equation for the uninte-
grated gluon distribution. This can be done by first
expanding the Wilson lines in the dilute limit and looking
at the evolution of a quantity that is quadratic in the
expansion parameter λ. For this discussion, it is useful to
still keep track of the λ’s in the DA and CCA separately. In
order to derive such a quadratic equation, we square
Eq. (57). Eventually taking the expectation value of the
noise on both sides will remove terms linear in ν and
simplify terms quadratic in ν according to Eq. (26). As
discussed above, we have expanded to the relevant order in
the rapidity step ϵ. After some straightforward color
algebra, we obtain

λax;nþ1λ̄
a
x̄;nþ1¼

Z
ww̄

	
δwxδw̄ x̄−

Nc

2

ϵαs
π2

Z
z
ðKx̄ x̄ zδwxðδw̄ x̄−δw̄zÞ

þKxxzðδwx−δwzÞδw̄ x̄

−2Kxx̄zðδwx−δwzÞðδw̄ x̄−δw̄zÞÞ


λaw;nλ̄

a
w̄;n

þOðϵ3=2;λ3Þ: ð64Þ

From this basic equation, one can define two different
versions of the BFKL equation. The first one comes
naturally when one considers a particle production process,
in which one wants to keep a nonzero contribution from
both the DA and the CCA. To do this, we define the
unintegrated gluon distribution

ϕn
xx̄ ≡ hλax;nλ̄ax̄;ni: ð65Þ

Then, Eq. (64) yields the evolution equation

ϕnþ1
xx̄ −ϕn

xx̄¼−
Nc

2

ϵαs
π2

Z
z
½Kxxzðϕn

xx̄−ϕn
zx̄ÞþKx̄ x̄zðϕn

xx̄−ϕn
xzÞ

−2Kxx̄zðϕn
xx̄−ϕn

xz−ϕn
zx̄þϕn

zzÞ�
þOðϵ3=2;ϕ3=2Þ: ð66Þ

Note that this does not have the customary form of a
coordinate space BFKL equation. Equation (66) acquires a
more familiar form, however, in momentum space. To see
this, we define the Fourier transform

ϕxx̄ ≡
Z

d2p
ð2πÞ2 e

−ip·ðx−x̄ÞϕðpÞ≡
Z
p
e−ip·ðx−x̄ÞϕðpÞ: ð67Þ

ϕxx̄ is a function of the relative length x − x̄, so we need not
transform each coordinate separately. Using this and the
Fourier transformed kernel

Ki
uv ¼ 2πi

Z
k
e−ik·ðu−vÞ

ki

k2
; ð68Þ

the BFKL equation (66) becomes

ϕnþ1ðqÞ¼ϕnðqÞþ4Ncϵαs

Z
p

1

ðq−pÞ2
�
ϕnðpÞp2

q2
−
1

2

ϕnðqÞq2
p2

�

þOðϵ3=2;ϕ3=2Þ: ð69Þ

This is immediately recognized as the (color singlet,
zero momentum transfer) textbook version of the BFKL
equation [74].
The other (Mueller’s) version of the BFKL equation

[75,76] is obtained when we set theWilson lines to be equal
in the DA and CCA. One then looks at the expansion of the
dipole operator up to order λ2 as

trfU†
xUyg
Nc

¼ 1 −
1

4Nc
ðλax − λay Þðλax − λay Þ þOðλ3Þ: ð70Þ

The natural definition of the gluon distribution based on the
expansion of the dipole operator is then the so-called
“BFKL pomeron” [71]

φxy ≡ hðλax − λay Þðλax − λayÞi; ð71Þ
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which we can write in terms of ϕ by setting λ̄ ¼ λ:

ϕxx þ ϕyy − 2ϕxy ¼λ̄¼λ
φxy: ð72Þ

Using Eq. (66) for each of the three terms in Eq. (72), one
arrives at the Mueller version of the BFKL equation:

φnþ1
xy − φn

xy ¼ −
Nc

2

ϵαs
π2

Z
z
K̃xyz½φn

xy − φn
xz − φn

zy�: ð73Þ

This is the version of the BFKL equation one usually sees
written in coordinate space. It can also be obtained by
linearizing the BK equation (38).
It is important to emphasize the relatively trivial but

important observation that the two equations, (66) and (73),
are closely related but not the same. Equation (66) is
usually derived and written in momentum space by con-
sidering the BFKL ladder diagrams. It appears naturally for
a particle production process in which we want to have an
explicit product of the DA and the CCA. Such a calculation
would begin with the dipole written diagrammatically as

On the other hand, the Mueller version of the BFKL
equation (73) is satisfied by an object associated with the
elastic amplitude for a color neutral dipole. In our notation,
this would be expressed as

which is not naturally separated into terms associated with
the DA and the CCA. While Eq. (73) is usually written in
coordinate space, the momentum space version is straight-
forward to obtain; it is not particularly simple or useful in
this context, so we omit it here.

V. UNEQUAL RAPIDITY CORRELATORS
IN JIMWLK

A. Two-particle production

Next, we consider the production of two particles
produced at parametrically different rapidities. The rapidity
YA is closer to that of the target; i.e., it is “earlier” on the
evolution trajectory of the target. We want to calculate the
double inclusive cross section for the simultaneous pro-
duction of another particle at a later rapidity Y that is much
larger than the first one: αsðY − YAÞ ≫ 1. Unlike the case
considered in Sec. III, we now have genuine high energy
evolution between the two produced particles due to the

rapidity separation. The situation is rendered more com-
plicated than the JIMWLK evolution considered in Sec. II
by the fact that the Wilson line trajectories are now
conditional ones. This is because they are now aware of
the fact that a particle with a specific transverse momentum
was produced earlier in the evolution. The IT Langevin
formalism for this scenario was set up in [60]. The purpose
of our discussion here is to elucidate how this formalism in
the dilute limit relates to a conventional BFKL picture.
We begin this discussion as formulated in [60]. After the

first part of evolution from rapidity Y in to YA for the quark
dipole, one obtains the Wilson lines Ūx̄;A and U†

x;A at the
earlier rapidity YA. In order to keep track of the gluon that is
produced at YA, we consider these Wilson lines to be fixed
for now. They act as the initial condition for the second part
of the evolution from rapidity YA to Y. In terms of the
discretization Y − YA ¼ Nϵ, we have Y0 ≡ YA, U0 ≡ UA,
and Ū0 ≡ ŪA at n ¼ 0. The expectation value of the cross
section for producing a quark at some rapidity Y is then
calculated as an average over the noise ν at the end of the
stochastic process:

hŜxx̄iY−YA
¼ hŜxx̄;Niν: ð74Þ

Equation (1) for the expectation value of an operator at the
later rapidity Y is now written as

hÔiY−YA
≡

Z
½DUDŪ�WY−YA

½U; ŪjUA; ŪA�Ô: ð75Þ

We need to have a new conditional weight function
WY−YA

½U; ŪjUA; ŪA� [43], which is the probability of
observing Wilson lines U and Ū at rapidity Y, with the
condition that there are already Wilson lines UA and ŪA at
the earlier rapidity YA. This weight function obeys the
differential equation

∂
∂Y WY−YA

½U; ŪjUA; ŪA� ¼ HevolWY−YA
½U; ŪjUA; ŪA�

ð76Þ

[cf. Eq. (6)]. The evolution Hamiltonian Hevol is just the
conventional JIMWLK Hamiltonian, with the exception
that one must now keep track of the Wilson lines and Lie
derivatives for the DA and the CCA separately. Thus, there
are terms operating only on the DA (11), terms operating
only on the CCA (22), and a mixed term (12),

Hevol ≡H11 þ 2H12 þH22; ð77Þ

where
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H11 ≡ 1

8π3

Z
uvz

KuvzðLa
u;n − Ũ†ab

z;n Rb
u;nÞðLa

v;n − Ũ†ac
z;n Rc

v;nÞ;

ð78Þ

H12 ≡ 1

8π3

Z
uv̄z

Kuv̄zðLa
u;n − Ũ†ab

z;n Rb
u;nÞðL̄a

v̄;n −
¯̃U†ac
z;n R̄c

v̄;nÞ;

ð79Þ

H22 ≡ 1

8π3

Z
ū v̄ z̄

Kū v̄ z̄ðL̄a
ū;n −

¯̃U†ac
z̄;n R̄b

ū;nÞðL̄a
v̄;n −

¯̃U†ac
z̄;n R̄c

v̄;nÞ

ð80Þ

[cf. Eq. (7) or rather (43)]. Here, the Lie derivatives and the
adjoint Wilson lines carry a subscript n to emphasize that
they pertain to the current (latest) rapidity in the evolution.
The initial condition at YA for the conditional weight

function sets Wilson lines for both the DA and the CCA:

WYA
½U; ŪjUA; ŪA� ¼ δ½U − UA�δ½Ū − ŪA�: ð81Þ

If one sets the DA and the CCA to be the same at the initial
condition, this property is preserved throughout the evo-
lution; at some other rapidity YB, we then have

WYB
½U; ŪjUA;UA� ¼ δ½U − Ū�WYB

½UjUA�; ð82Þ

where WYB
½UjUA� is just the conventional conditional

probability [e.g., Eq. (6)] with initial condition

WYA
½UjUA� ¼ δ½U − UA�: ð83Þ

The cross section for inclusive two-particle production,
as provided by Eq. (42), needs to be modified to account for
the fact that the emitted particle has a different rapidity to
the projectile. For a gluon emitted from a quark projectile at
rapidity YA, we must now operate with the production
Hamiltonian (43) acting on the Wilson lines at YA, i.e., on
the initial condition for the conditional evolution [60]:

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ4
Z
xx̄
e−ip·ðx−x̄ÞhHprodðkAÞhŜxx̄iY−YA

jŪA¼UA
i
YA
: ð84Þ

Note that there are now two separate averages. The dipole
operator is evolved from YA to Y with the conditional
JIMWLK evolution; the average over these Langevin
trajectories is denoted by hiY−YA

. One then operates with
the production Hamiltonian, which is a functional deriva-
tive with respect to the initial conditions UA and ŪA. Only
then does one set the Wilson lines to be the same in the DA
and the CCA. Finally, one does the average over the earlier
rapidity distribution hiYA

, using a weight function that has
been evolved from Y in to YA. This double averaging
procedure can be written in a more explicit way with the
help of delta functions and conditional probabilities:

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ4
Z
xx̄
e−ip·ðx−x̄Þ

Z
½DUA�WYA

½UA�
Z

½DŪA�δ½ŪA −UA�HprodðkAÞ

×
Z

½DUDŪ�WY−YA
½U; ŪjUA; ŪA�Ŝxx̄: ð85Þ

In order to proceed, we need the result of the production
Hamiltonian operating on the dipole; i.e., we need to
calculateHprodŜxx̄. This expression will have several terms,
with left or right Lie derivatives operating on the Wilson
lines. We also have to maintain the distinction between
barred and unbarred contributions. The resulting expres-
sions involve Wilson lines not only at the rapidity YA ≡ Y0

but also at later rapidities Yn, where the n refers to the
discrete Langevin process description we are using. Putting
everything together, we can write the cross section as

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ4
1

4π3
1

Nc

Z
xx̄yȳ

e−ip·ðx−x̄Þ

×e−ikA·ðy−ȳÞ
Z
uv
Ki

yuKi
ȳvhhINiνiYA

; ð86Þ

where

In ≔ trfL̄a
ū;0Ūx̄;nLa

u;0U
†
x;ng − ¯̃U†ac

ȳ;0 trfR̄c
ū;0Ūx̄;nLa

u;0U
†
x;ng

− Ũ†ab
y;0 trfL̄a

ū;0Ūx̄;nRb
u;0U

†
x;ng

þ Ũ†ab
y;0

¯̃U†ac
ȳ;0 trfR̄c

ū;0Ūx̄;nRb
u;0U

†
x;ng: ð87Þ

Before moving forward, let us stress some features of
Eqs. (86) and (87). In addition to the Wilson lines at
rapidity YN, they involve Lie derivatives of Wilson lines at
YN with respect to Wilson lines at YA, e.g., L̄a

ū;0Ūx̄;N ,
denoted by the subscript 0 in the Lie derivatives. This is
contrary to the evolution Hamiltonian in Eqs. (78), (79),
and (80) that involved Lie derivatives with respect to the
latest rapidity in the evolution. Additionally, the expression
contains adjoint representation Wilson lines at the initial
rapidity YA, again denoted by the subscript 0. These Lie
derivatives are new d.o.f., in some sense like Reggeized
gluon propagators, that encode information about the
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(de)correlation in rapidity of theWilson lines. The JIMWLK
equation also gives the evolution equations for the Lie
derivatives themselves. To find the expressions for RU†,
RU, LU†, and LU, one starts by acting with the Lie
derivatives on Eqs. (27) and (31). However, the four
equations are not independent of each other. For example,
wemay start by finding the equation forRU†. TheHermitian
conjugate will give the equation for RU, and the relation
La
u;0 ¼ Ũ†ab

u;0 R
b
u;0 can be used to get the equations for LU†

and LU.
The initial conditions at Y0 for these four bilocal

Langevin equations are given by Eqs. (13) to (16):

Ra
u;nU

†
x;0 ¼ igδuxU

†
x;0t

a; ð88Þ

Ra
u;0Ux;0 ¼ −igδuxtaUx;0; ð89Þ

La
u;0U

†
x;0 ¼ igδuxtaU

†
x;0; ð90Þ

La
u;0Ux;0 ¼ −igδuxUx;0ta: ð91Þ

We emphasize once more that the adjoint Wilson lines
appearing in In are from the production Hamiltonian; they
are always at Y0 and do not evolve to YN .

B. Evolution in rapidity

To derive the evolution equations for the Lie
derivatives, we begin by acting on Eq. (27) with a right

Lie derivative. After some manipulations described in [60],
we arrive at

Ra
u;0U

†
x;nþ1 ¼ eiϵgα

L
x;nRa

u;0U
†
x;ne−iϵgα

R
x;n −

iϵgffiffiffiffiffiffiffi
4π3

p eiϵgα
L
x;nU†

x;n

×
Z
z
Ki

xz½Uz;nν
i
z;nU

†
z;n; Uz;nRa

u;0U
†
z;n�: ð92Þ

The quantity Ra
u;0U

†
x;n describes the evolution from the

initial rapidity YA, initial coordinate u, and color index a to
the final Wilson line at rapidity step n, coordinate z, and a
color that is encoded in the matrix structure of Ra

u;0U
†
z;n.

In order to understand what Eq. (92) does at each
iteration, we can look at one step in evolution in diagrams.
First, we Taylor expand the exponentials in ϵ. At n ¼ 0, we
can use the initial condition Eq. (88) to write

Ra
u;0U

†
x;1¼ igδuxU

†
x;0t

aþ ig
Z
z

�
iϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;b
z;0−

ϵg2

4π3
Kxxztb

�

× ½δuxðtbU†
x;0t

a−U†
x;0t

aŨ†bc
z;0 t

cÞ
−δuzðU†

x;0Ũ
†bc
z;0 t

cta−U†
x;0t

aŨ†bc
z;0 t

cÞ�þOðϵ3=2Þ:
ð93Þ

In diagrams, this is

ð94Þ

From this, we can see that after one iteration, Eq. (92)
contains all possible diagrams with one gluon inserted on
the right of the target (corresponding to color index a in the
diagrams), and afterwards either none or one more gluon
insertion. The second gluon (corresponding to color indices
b and c) can be inserted in four different ways: either to
the right or to the left of the target, and either at coordinate

x or z. Additionally, it can be either left as a free color index
(contracted by the color of the noise) or reabsorbed by the
quark. This makes the 23 two-gluon diagrams shown
in Eq. (94).
The next iteration of the evolution equation will add

more gluons to the diagrams present in Eq. (94), in the same
way. The number of terms therefore grows very rapidly
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with each step. The same analysis can be done for the LU†

evolution. The only difference will be that the gluons
appear on the opposite side of the target.
It is more natural to write Eq. (92) such that the color

structure is more explicit. The propagator should have two
adjoint representation indices at the ends, i.e., Rab, or
equivalently, be an explicitly Hermitian traceless matrix
with one additional index, i.e., Rabtb. This more symmetric
form is achieved by multiplying RU† by U from the left.
Defining Ra

ux;n ≡Ux;nRa
u;0U

†
x;n, which is conveniently a

member of the Lie algebra of SUðNcÞ, we can write the
Langevin step compactly as

Ra
ux;nþ1 ¼ eiϵgα

R
x;nRa

ux;ne−iϵgα
R
x;n

−
iϵgffiffiffiffiffiffiffi
4π3

p eiϵgα
R
x;n

Z
z
Ki

xz½ν̃iz;n; Ra
uz;n�; ð95Þ

where we have used ν̃iz;n ¼ Uz;nν
i
z;nU

†
z;n as introduced in

Eq. (25). Notice that this equation is linear in Ra
ux;n,

although it resums all orders in the background field,
incorporated into the Wilson line.
As mentioned above, the three other required equations,

RU, LU†, and LU, can be obtained directly from Eq. (95).
In terms of explicitly Hermitian quantities, we obtain for
R̄a
ux;n ≡ ðRa

u;0Ux;nÞU†
x;n

R̄a
ux;nþ1 ¼ eiϵgα

R
x;n R̄a

ux;ne−iϵgα
R
x;n

−
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n; R̄a
uz;n�e−iϵgαRx;n : ð96Þ

Defining La
ux;n ≡ Ux;nLa

u;0U
†
x;n, we get the corresponding

equations for the left Lie derivative,

La
ux;nþ1 ¼ eiϵgα

R
x;nLa

ux;ne−iϵgα
R
x;n

−
iϵgffiffiffiffiffiffiffi
4π3

p eiϵgα
R
x;n

Z
z
Ki

xz½ν̃iz;n; La
uz;n�; ð97Þ

and for L̄a
ux;n ≡ ðLa

u;0Ux;nÞU†
x;n,

L̄a
ux;nþ1 ¼ eiϵgα

R
x;n L̄a

ux;ne−iϵgα
R
x;n

−
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n; L̄a
uz;n�e−iϵgαRx;n : ð98Þ

The initial conditions for this set of four evolution equa-
tions follow directly from Eqs. (88) to (91):

Ra
ux;0 ¼ igδuxta; ð99Þ

R̄a
ux;0 ¼ −igδuxta; ð100Þ

La
ux;0 ¼ igδuxŨ

†ab
x;0 t

b; ð101Þ

L̄a
ux;0 ¼ −igδuxŨ

†ab
x;0 t

b: ð102Þ

A quick inspection of the equations of motion (95) to
(98) reveals in all of them two crucial features. First, they
only depend on the “rotated noise” ν̃ [see Eq. (25)], but not
the original unrotated noise ν; note that this is true also for
the “right” color field αRx;n, Eq. (24). Second, their depend-
ence on the Wilson line also comes through the rotated
noise, but not separately in terms of explicit Wilson lines in
the evolution equations. Thus, if we take the rotated noise
as the independent variable that one averages over, all the
dependence on the Wilson lines disappears. This means
that the quantities Ra

ux;n, R̄a
ux;n, La

ux;n, and L̄a
ux;n satisfy

evolution equations that are linear and independent of the
Wilson lines, and we can therefore express the evolution
between the two rapidities in terms of linear BFKL-like
dynamics. This can be made even more explicit by
developing the equations in ϵ and, as usual, replacing
the terms that are quadratic in the noise with their expect-
ation values. Doing this one gets

Ra
ux;nþ1¼Ra

ux;nþ
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n;Ra
ux;n−Ra

uz;n�

−
Nc

2

ϵg2

4π3

Z
z
KxxzðRa

ux;n−Ra
uz;nÞþOðϵ3=2Þ; ð103Þ

R̄a
ux;nþ1¼ R̄a

ux;nþ
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n;R̄a
ux;n− R̄a

uz;n�

−
Nc

2

ϵg2

4π3

Z
z
KxxzðR̄a

ux;n− R̄a
uz;nÞþOðϵ3=2Þ; ð104Þ

La
ux;nþ1¼La

ux;nþ
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n;La
ux;n−La

uz;n�

−
Nc

2

ϵg2

4π3

Z
z
KxxzðLa

ux;n−La
uz;nÞþOðϵ3=2Þ; ð105Þ

L̄a
ux;nþ1¼ L̄a

ux;nþ
iϵgffiffiffiffiffiffiffi
4π3

p
Z
z
Ki

xz½ν̃iz;n;L̄a
ux;n− L̄a

uz;n�

−
Nc

2

ϵg2

4π3

Z
z
KxxzðL̄a

ux;n− L̄a
uz;nÞþOðϵ3=2Þ: ð106Þ

The whole cross section, however, is not given by a
“kT-factorized” expression (unlike the dilute case that we
discuss in the next section). This is not true even at equal
rapidity, as we have seen in Eq. (45). This is due to the
appearance of the Wilson lines in two places in the cross
section. First, the initial conditions for Ra

ux;n, R̄a
ux;n, La

ux;n,
and L̄a

ux;n depend on the Wilson lines at YA. Second, the
final expression for the cross section (87) written in terms
of these quantities is now
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In ¼ trfL̄a
vx̄;nUx̄;nU

†
x;nLa

ux;ng − ¯̃U†ac
ȳ;0 trfR̄c

vx̄;nUx̄;nU
†
x;nLa

ux;ng
− Ũ†ab

y;0 trfL̄a
vx̄;nUx̄;nU

†
x;nRb

ux;ng
þ Ũ†ab

y;0
¯̃U†ac
ȳ;0 trfR̄c

vx̄;nUx̄;nU
†
x;nRb

ux;ng: ð107Þ

We see that this expression involves explicit Wilson lines
both at the rapidity of the earlier particle (i.e., n ¼ 0) and at
the rapidity of the later one (i.e., n). Because of the latter,
the expression in the full nonlinear case cannot be written in
a kT-factorized form with only an unintegrated gluon
distribution at n ¼ 0 and a BFKL Green’s function between
the rapidities, as we will do in the dilute limit in Sec. VI.
Because the evolution equations (95) to (98) do not

depend on the Wilson lines, the dynamics of the evolution
of the two-particle correlation between these rapidities is
linear. This is a remarkable feature that should significantly
simplify a future numerical analysis of the two-particle
correlation in this framework. This is generically quite
difficult in the original formulation due to the bilocal nature
of the “Reggeized gluon propagators” Ra

ux;n, R̄a
ux;n, La

ux;n,
and L̄a

ux;n (i.e., the fact that they depend on two separate
coordinate arguments). Note, however, that calculating the
cross section requires additionally the nonlinear evolution
of the Wilson lines themselves according to conventional
JIMWLK. This evolution is correlated with that of the
Reggeized gluon propagators, since the evolution steps of
both quantities are expressed in terms of the same noise at
the same rapidity step. Since the evolution step of the latter
is linear and does not explicitly involve the Wilson lines, it
should be simpler to analyze. However, one cannot
factorize the expectation value of Eq. (107) as a product
of expectation values of a Wilson line operator at rapidity n
on the one hand and a two-point function of the Reggeized
gluon propagators on the other.
Let us make, in passing, a side note concerning the initial

conditions (101) and (102). It would be tempting to get rid of
theWilson line in these initial conditions by defining, instead
of La

ux;n≡Ux;nLa
u;0U

†
x;n, a new quantity ðLa

u;0U
†
x;nÞUx;n and

set out to solve its equation of motion. Contrary to La
ux;n,

which has an initial condition that depends on theWilson line
but an evolution that can be expressed in a way that does not,
this alternative quantity would have a simple initial condition
(only a generator matrix ta) but an evolution equation that
depends on both the noise ν and the rotated noise ν̃. This
wouldmake the linear dynamics of the evolution muchmore
difficult to see explicitly.
The statement of linearity in the evolution between the

two rapidities is in fact in agreement with the result for one
quark and one gluon production in [63], where it is argued
that there can be no pomeron mergings between these two
particles. However, the situation becomes more compli-
cated when one considers the production of one quark and
two gluons. In this case, the result of [63] is that evolution
between the produced particles is genuinely nonlinear.

VI. TWO-PARTICLE CORRELATORS IN THE
DILUTE LIMIT

We shall now move on to work out what happens in
the dilute limit and show explicitly how to recover an
expected BFKL result from this formalism. Our aim is to
show that the two-particle cross section in the dilute limit
can be expressed as a convolution of an unintegrated gluon
distribution at the earlier rapidity YA and a BFKL Green’s
function from YA to the rapidity of the quark (see e.g., [77]
for calculations of two-particle production from the same
BFKL ladder). Although the following calculation is done
by linearizing the evolution, it is important to note that due
to the linearity of the dynamics in the full case discussed
above, the nature of decorrelations in rapidity could be
expected to be very similar.
The general idea is to see what happens when we start

increasing the rapidity separation between the produced
quark and gluon. The gluon is produced at rapidity YA; the
quark rapidity increases and the cross section changes
accordingly, via JIMWLK evolution. It is important here to
note that the JIMWLK evolution is that of the Wilson lines
in the dipole operator Ŝxx̄ at rapidity Yn only. The Wilson
lines and Lie derivatives in the production Hamiltonian
Hprod remain at the initial rapidity YA. In this sense, the
JIMWLK evolution “commutes” with the production
Hamiltonian and only operates on the dipole operator.
We also know that the evolution must be linear, and thus
in the dilute limit it must correspond to the BFKL
equation (69).
The essential part of the cross section (86) is given by In

as defined in Eq. (87): the combination of Wilson lines and
their derivatives. To understand how this works, we have to
understand the operations of the Lie derivatives in the dilute
limit, i.e., how the Lie derivatives as defined in Eqs. (10)
and (11) act on λ. The result is obtained by changing the
differentiation variable from elements of U to λ, and then
performing an expansion in powers of λ. Doing so gives

La
u;0 ¼ g

�
δac −

1

2
fabcλbu;0 þOðλ2Þ

�
δ

δλcu;0
;

Ra
u;0 ¼ g

�
δac þ 1

2
fabcλbu;0 þOðλ2Þ

�
δ

δλcu;0
ð108Þ

(see also [71]). As expected, the Lie derivatives reduce the
term they act on by one power of λ; they are after all
derivatives with respect to the Wilson line. Since the
evolution equation for λ is linear, this statement will be
true at any step n.
The most straightforward way to proceed would be

to derive, in the spirit of [60], evolution equations for the
Lie derivatives operating on λ. This can be done in two
equivalent ways: either by expanding the evolution equa-
tions of the bilocal quantities, e.g., Eq. (92), or by acting
with the Lie derivative on the time step of λ [Eq. (52)].
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In other words, the operations of Lie differentiating and
expanding in λ are commutative. Either procedure results in

Ra
u;0λx;nþ1 ¼ Ra

u;0λx;n þ
Z
z

�
iϵgffiffiffiffiffiffiffi
4π3

p Ki
xzν

i;d
z;n −

ϵg2

4π3
Kxxztd

�

× ifdbctcRa
u;0ðλbx;n − λbz;nÞ þOðϵ3=2; λ2Þ:

ð109Þ

The equation for LU† is identical, with R → L. The initial
conditions for the bilocal Langevin equations are given in
Eqs. (88) to (91). By expanding them as

Ra
u;0U

†
x;0 ¼ igδux

�
1þ iλx;0 −

1

2
λ2x;0

�
ta þOðλ3Þ; ð110Þ

La
u;0U

†
x;0 ¼ igδuxta

�
1þ iλx;0 −

1

2
λ2x;0

�
þOðλ3Þ; ð111Þ

one easily obtains the initial conditions for the Lie
derivatives of λ as

Ra
u;0λx;0 ¼ La

u;0λx;0 ¼ gtaδux þOðλÞ: ð112Þ

In principle, we could go on to solve these equations, and
indeed it is straightforward to write down a full formal
solution in terms of the time evolution matrix Mab

xy , as
defined in Eq. (56). But our main objective is to look at the
cross section directly, as well as to derive an evolution
equation for its dependence on the later rapidity Y. To do
this, we use the expressions (108) to write the Lie
derivatives in Hprod as

ðL̄a
ū;0 −

¯̃U†ac
ȳ;0 R̄c

ū;0ÞðLa
u;0 − Ũ†ab

y;0 R
b
u;0Þ

¼ g2½fabcfadeðλ̄eū;0 − λ̄eȳ;0Þðλcu;0 − λcy;0Þ þOðλ3Þ�

×
δ

δλ̄dū;0

δ

δλbu;0
: ð113Þ

We emphasize here that one must take care to perform the
functional derivatives in the right order. It is essential to
operate first with the Lie derivatives in the DA and the CCA
separately. Only after doing this is one allowed to set λ̄0 ¼
λ0 at the initial rapidity Y0 ¼ YA. On the other hand, the
noise ν is the same in the DA and the CCA, so we do not
need to keep them separated when averaging over the noise.
For example, we can take the expectation value that
allowed us to write Eq. (64), even if the expression involves
both λ and λ̄ separately.
An important feature of the operator (113) is that it has

exactly one derivative operating on the DA and one on the
CCA. Also, since the DA and the CCA evolve separately,
λn depends only on λ0 and not on λ̄0, and vice versa. Thus,
from the expansion of the dipole in Eq. (85) as

Ŝxx̄¼ 1−
1

4Nc
λaxλ

a
x −

1

4Nc
λ̄ax̄ λ̄

a
x̄þ

1

2Nc
λax λ̄

a
x̄þOðλ3Þ ð114Þ

[cf. Eq. (70)], we need only to retain the cross term ∼λλ̄
when operating with the production Hamiltonian.
Using the linearized production Hamiltonian (113) and

the linearized dipole (114), we have

In ¼
g2

2Nc
fabcfadeðλ̄eū;0 − λ̄eȳ;0Þðλcu;0 − λcy;0Þ

×
δ

δλ̄dū;0

δ

δλbu;0
λ̄fx̄;nλ

f
x;n þOðλ3Þ: ð115Þ

Now we can write the explicit λ’s from the production
Hamiltonian (113) in terms of the gluon distribution ϕ0

ww̄
(65) at the initial rapidity YA. Then we can use δce from the
initial condition of ϕ to simplify the color algebra. We now
introduce the definition

F n
x;x̄;u;ū ≡ δ

δλ̄aū;0

δ

δλau;0
λ̄bx̄;nλ

b
x;n ð116Þ

for the BFKL Green’s function. Note that due to the linear
evolution of λ, the relation between λbx;n and λau;0 is linear
[see e.g., Eq. (58)]. Thus Green’s function F n

x;x̄;u;ū defined
by Eq. (116) does not depend on λ. Using this we get

hINi ¼
g2

2
ðϕ0

ūu − ϕ0
ūy − ϕ0

ȳu þ ϕ0
ȳyÞFN

x;x̄;u;ū þOðϕ3=2Þ;
ð117Þ

which we can put into the equation for the two-particle
cross section (85) to obtain a kT-factorized expression:

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ4
1

2Nc

αs
π2

Z
xx̄yȳuū

Ki
yuKi

ȳ ūe
−ip·ðx−x̄Þ−ikA·ðy−ȳÞ

× ðϕ0
ūu − ϕ0

ūy − ϕ0
ȳu þ ϕ0

ȳyÞFN
x;x̄;u;ū þOðϕ3=2Þ: ð118Þ

At this stage all the functional derivatives are already
taken, and we can now finally take the color field to be
equal in the DA and the CCA, i.e., take λ ¼ λ̄. We can now,
in fact, also replace the ϕ’s with the other gluon distribution
φ (71), since they appear in the particular combination

ϕ0
ūu − ϕ0

ūy − ϕ0
ȳu þ ϕ0

ȳy ¼ −
1

2
ðφ0

ūu − φ0
ūy − φ0

ȳu þ φ0
ȳyÞ;
ð119Þ

where the value of the distribution at zero coordinate
separation cancels. This means that the cross section can
be equally well written in terms of the gluon distribution ϕ
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satisfying the usual BFKL equation (66) [more familiarly
Eq. (69) in momentum space] or the BFKL pomeron φ
satisfying the Mueller version of the equation, Eq. (73).
There is a factor of −1=2 difference due to our conventions
here. The fact that we are taking derivatives with respect to
λ̄ū;0 and λu;0 does not in any way interfere with the BFKL
evolution of the gluon density λ̄bx̄;nλ

b
x;n. So it is clear that

F n
x;x̄;u;ū satisfies the same equation as λ̄bx̄;nλ

b
x;n with respect

to the rapidity index n:

F nþ1
x;x̄;u;ū ¼ F n

x;x̄;u;ū −
Nc

2

ϵαs
π2

Z
z
½KxxzðF n

x;x̄;u;ū − F n
z;x̄;u;ūÞ

þKx̄ x̄ zðF n
x;x̄;u;ū − F n

x;z;u;ūÞ
− 2Kxx̄zðF n

x;x̄;u;ū − F n
x;z;u;ū − F n

z;x̄;u;ū þ F n
z;z;u;ūÞ�

þOðF 3=2Þ ð120Þ

[cf. Eq. (66)].
Now that we have derived the factorized form for the

cross section, Eq. (118), it is easy to write it in momentum
space. We use the Fourier representations of the gluon
emission kernels, given in Eq. (68), to write

dσqg
dYd2pdYAd2kA

¼ 1

ð2πÞ2
1

4Nc

αs
π2

Z
xx̄yȳuūww̄ll̄

l · l̄

l2 l̄2

× e−il·ðy−uÞ−il̄·ðȳ−ūÞe−ip·ðx−x̄Þ−ikA·ðy−ȳÞ

× ðδwu − δwyÞðδw̄ ū − δw̄ ȳÞφ0
ww̄F

N
x;x̄;u;ū

þOðφ3=2Þ: ð121Þ

Introducing a Fourier representation for the BFKL Green’s
function

F n
x;x̄;u;ū ¼

Z
PP̄mm̄

e−iðP·xþP̄·x̄þm·uþm̄·ūÞF nðP; P̄;m;m̄Þ ð122Þ

and

φxy ≡
Z
q
e−iq·ðx−yÞφðqÞ; ð123Þ

we can write

dσqg
dYd2pdYAd2kA

¼ −
αs
Nc

Z
q

q2

ðq − kAÞ2k2A
FNð−p; p; q − kA;

− qþ kAÞφ0ð−qÞ þOðφ3=2Þ ð124Þ

with the (zero momentum transfer) BFKL Green’s function
F in momentum space satisfying the usual BFKL equation

F nþ1ðP;−P;m;−mÞ ¼ F nðP;−P;m;−mÞ þ 4Ncϵαs

Z
K

1

ðP − KÞ2
�
F nðK;−K;m;−mÞK

2

P2
−
1

2
F nðP;−P;m;−mÞ P

2

K2

�

þOðϵ3=2;F 3=2Þ ð125Þ

[cf. Eq. (69)]. A diagrammatic interpretation of this as a
typical BFKL ladder is given in Fig. 1. Equation (124) is
the main result of this section. It shows that the IT Langevin
equation formalism reduces, in the dilute limit, to a
conventional correlation between two particles produced
from the same BFKL ladder.
The initial condition for the evolution can be read off

from the definition (116),

F 0
x;x̄;u;ū ¼ ðNc

2 − 1Þδxuδx̄ ū; ð126Þ

or in momentum space,

F 0ðP; P̄;m;m̄Þ¼ ðNc
2−1Þδð2ÞðPþmÞδð2ÞðP̄þ m̄Þ: ð127Þ

Using this in the general expression (124) reduces the equal
rapidity cross section to a kT-factorized expression for the
two-particle production cross section:

dσqg
dYd2pdYAd2kA

����
Y¼YA

¼−
αs

ð2πÞ2
ðpþkAÞ2
p2k2A

φ0ðpþkAÞ:

ð128Þ

This expression already has the structure of Fig. 1, with an
unintegrated gluon distribution q2φðqÞ for the gluon taken
from the target, and propagators 1=k2A and 1=p

2 correspond-
ing to the produced particles. For this case of no evolution in
rapidity, the Lipatov vertices for producing the gluon and the

FIG. 1. Coordinate and momentum assignments for the BFKL
ladder diagram corresponding to Eq. (125).
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initial condition for the BFKL Green’s function combine to
produce a simple factor δð2Þðq − kA − pÞ, which naturally
means that in the absence of gluon emission in a ladder, the
transverse momentum of the two final-state particles must
match that coming from the target.

VII. CONCLUSIONS

In conclusion, we have attempted to clarify here the
Langevin formulation [60] of two-particle correlations in
JIMWLK evolution, in the case of a dilute probe scattering
off a dense color field target. Our first important result is the
observation that, although the JIMWLK evolution for the
Wilson lines is nonlinear, the evolution of the Lie deriv-
atives encoding the correlation between the two rapidities is
in fact not. It can be expressed instead, with a suitable
transformation, as a linear equation that is independent of
the Wilson lines. This observation seems to confirm the
result obtained earlier (in a rather different language) in
[63]. This conclusion points toward a much simpler way to
calculate the two-particle cross section than a straightfor-
ward numerical solution of the bilocal Langevin equations
in [60]. Exploring the full phenomenological consequences
of this observation is beyond the scope of this paper, but it
would be valuable to pursue this in future work.
We have also calculated explicitly the dilute limit of the

Langevin formulation, where the decorrelations in azimu-
thal angle between the two particles are given by a BFKL
Green’s function between the two rapidities. The physical

picture here is that of color charges, or rather Reggeized
gluon fields λ, that change with rapidity in a stochastic
process [see e.g., Eqs. (52) and (109)]. The power counting
for calculating two-particle correlations in this limit is,
however, tricky. This is due to the fact that the two-particle
cross section depends on Reggeized gluon fields from the
expansion of both the adjoint Wilson lines and the Lie
derivatives in the production Hamiltonian. In order to see
this connection, it is easier to continue a bit further with the
more formal definition in terms of the functional deriva-
tives. The essential feature is that JIMWLK evolution as a
function of the quark rapidity Y “commutes” with the
production Hamiltonian and only operates on the dipole
operator at Y. The evolution of the double inclusive cross
section with Y is therefore determined by the evolution of
the single inclusive cross section, but with a more com-
plicated initial condition. This feature enabled us to show
that in the linearized limit, the result is in fact what one
would expect from BFKL dynamics.
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[39] B. Ducloué, T. Lappi, and Y. Zhu, Implementation of NLO
high energy factorization in single inclusive forward hadron
production, Phys. Rev. D 95, 114007 (2017).
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