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The cold dark matter (CDM) candidate with weakly interacting massive particles can successfully
explain the observed dark matter relic density in cosmic scale and the large-scale structure of the Universe.
However, a number of observations at the satellite galaxy scale seem to be inconsistent with CDM
simulation. This is known as the small-scale problem of CDM. In recent years, it has been demonstrated
that self-interacting dark matter (SIDM) with a light mediator offers a reasonable explanation for the small-
scale problem. We adopt a simple model with SIDM and focus on the effects of Sommerfeld enhancement.
In this model, the dark matter candidate is a leptonic scalar particle with a light mediator. We have found
favored regions of the parameter space with proper masses and coupling strength generating a relic density
that is consistent with the observed CDM relic density. Furthermore, this model satisfies the constraints of
recent direct searches and indirect detection for dark matter as well as the effective number of neutrinos and
the observed small-scale structure of the Universe. In addition, this model with the favored parameters can
resolve the discrepancies between astrophysical observations and N-body simulations.
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I. INTRODUCTION

The first evidence of dark matter (DM) was observed by
Fritz Zwicky [1] in 1933. The existence of dark matter can
be observed in the whole Universe, at the small galactic
scale [2,3], the large scale of galaxy clusters [4,5], and the
cosmological scale [6,7]. The evidence of dark matter is
usually inferred from its gravitational interactions.
However, weakly interacting massive particles (WIMPs)
provide intuitive candidates as cold dark matter (CDM).
Stable invisible WIMPs with proper mass and coupling
strength can lead to a matter density that is consistent with
the observed DM relic density in cosmic scale structure
of the Universe [8]. In addition, CDM can account for
the consistency of large scale structure (21 Mpc) in the
Universe between the astrophysical observations [9] and
N-body simulations [10].

There exist some discrepancies between CDM N-body
simulations and astrophysical observations on small scale
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structure of the Universe. The first one is the cusp-core
problem (CCP) [11]. The observed mass distributions are
more flat in the central region of dwarf galaxies without a
steep cusp predicted from CDM simulations. The second
one is the missing satellite problem (MSP) [12]. The
observed number of dwarf satellite galaxies in the
Milky Way (MW) is much less than that predicted from
CDM simulations. In recent years there is another problem
originally from the MSP, which is called the too-big-to-fail
(TBTF) [13,14]. Most massive subhalos generated from the
CDM N-body simulation are too massive in the Milky Way
halo with circular velocity larger than 30 km/s, whereas
the observed maximum circular velocities of dwarf spher-
oidals are less than 25 km/s.

All three problems, CCP, MSP, and TBTF, are called the
small scale problem and they can be resolved if the CDM
particles are self-interacting with a light mediator to give a
large self-interacting cross section (SICS) [15]. The large
SICS provides a positive gradient of velocity dispersion /
temperature near the center of (sub)halo such that the heat
flow moves outward avoiding the formation of a density
cusp until self-interaction becomes weak and forms a flat
core density. Also, the smaller (sub)halo has a lower
temperature since the faster DM particles are easily to
escape from the long-range gravitational potential. Hence,
with the smaller subhalo in the host halo, the large SICS
can transfer heat from hotter DM particles in host halo to
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the colder DM particle in subhalo resulting in the subhalo’s
fragmentation or evaporation. On the other hand, the self-
interacting cross section can not be too large. Otherwise,
the small structures of our Universe such as satellite
galaxies would likely be washed out.

From the astrophysical observation of galaxies and
clusters of galaxy, we have the following constraints.

(i) For a galaxy cluster with circular velocity v =~

1000 km/s, the momentum transfer cross section
(o7) per unit DM mass is o7/m,~0.1 cm?*/g [16].
(i) For a galaxy with v ~ 100 km/s, 67/m, ~2 cm?/g.
(iii) For a dwarf galaxy with v ~ 10-100 km/s, 67 /m,, ~
5-10 cm?/g [17].
We can see that the SICS increases with decreasing DM
velocity. The velocity-dependent SICS is required to solve
the problems occurred in small structure scale of Universe.
In addition, possible anomalies in cosmic-ray, positron
excess observed by PAMELA [18], AMS02 [19], ATIC
[20] and FermiLLAT [21] can also be explained by requiring
that the present DM annihilation cross section be 2 ~ 3
orders of magnitude greater than that in the freeze-out
stage [22]. This can be achieved by considering the
Sommerfeld effect on a SIDM with a light mediator and
can also be constrained by these anomalous observations of
cosmic-ray [23].

A simple and elegant model with a self-interacting
leptonic scalar dark matter (y) and a light mediator ({)
was recently proposed [24] to provide a CDM candidate
and to solve the small scale problems of the Universe. The
light mediator ({) could have a large production cross
section through s-wave Sommerfeld enhancement at late
times. If it decays to electrons and photons, it would change
the history of gas ionization in the Universe, disrupt the
cosmic microwave background (CMB), and be ruled out by
the precise cosmological data now available [25]. To satisfy
cosmological requirements, the mediator ({) is chosen to
have special Yukawa couplings such that it would not decay
into electrons and photons [24]. In our analysis, we have
adopted this model with a focus on Sommerfeld enhance-
ment to determine the CDM relic density more precisely. In
addition, we find the allowed parameter space that satisfies
all constraints of (a) recent direct searches (b) indirect
detection experiments, (c) the observed relic density,
(d) effective number of neutrinos, and (e) the astrophysical
observation of small-scale structure of Universe.

This paper is organized as follows. In Sec. II, we
introduce a leptonic scalar dark matter (LSDM) model
proposed by E. Ma [24]. Section III shows direct search
results for leptonic scalar dark matter, the spin-independent
cross section of DM-nucleon elastic scattering in the
LSDM model, and compare it with XENONIT data
[26]. In Sec. IV, we present DM relic density as well as
discovery potential of indirect search for CDM. We
evaluate the relic density and effects of the Sommerfeld
enhancement in the LSDM model to compare with the

observed DM relic density [8,27]. In addition, we compare
our results of indirect search with Fermi-LAT [28,29] and
H.E.S.S. [30] astrophysical observations. The cosmological
constraints on right-handed neutrino and the small scale
requirements (CCP, MSP, TBTF) are discussed in Secs. V
and VI, respectively. We show favored regions of parameter
space in Sec. VII. Conclusions are drawn in Sec. VIIIL.
Some useful formulas for Sommerfeld enhancement are
presented in Appendix A.

II. LEPTONIC SCALAR DARK MATTER MODEL

Recently, a simple and elegant model with a self-
interacting leptonic scalar dark matter (LSDM) was pro-
posed [24]. This model is a simple extension of the
Standard Model (SM) with conservation of a U(1), lepton
number. There exist a singlet scalar (y) chosen to be the DM
candidate with L = 1, one light singlet scalar ({) as a
mediator with L = 2, and three right-handed neutrinos: vg;
(i =1, 2, 3). The lepton number conservation assures the
stability of y and no vacuum expectation value developed
from y and ¢ scalar fields.

The general scalar potential consisting of y, { and the SM
Higgs doublet is given by [24]

V= @@ @ + piyy + g3 (mindy® + He)
1, 1 1
+ 5/10(‘1”‘1))2 +54 'x)* + 5/12(5*5)2

+ 201 (DT®) (r ) + Ao (PTD)(L*E) + 2 (x*x)(£7C).

(1)
The scalar masses have the following relations
1
m2, = Agv? = (125 GeV)?, m; = pi + EAOIVZ,
1
m% = ,u% + 5/102V2, (2)

and the Higgs vacuum expectation value is v ~ 246 GeV.
For simplicity, let us consider a CP-conserving scalar
potential with eight free real parameters:
m,, me, 1o, A A2, Aors Aoz, and - Ao, 3)
The values of py and 4 are fixed by the minimization
condition of the scalar potential and the measured Higgs
mass. The p1,*y? term serves as the source to enhance the
self-interaction of yy* — yy* through the exchange of .
That leads to the dominant ¢-channel cross section

4
* * H
ol = ') = 4ﬂmlgzm2, (4)
X

where { is the light mediator [24].
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FIG. 1.

The neutrinos in this model are Dirac fermions with
small masses that could be natural consequences of various
known mechanisms [31-33]. For example, let us consider a
discrete symmetry S, such that under a transformation
we have

v, — +uyp, ¢ = +¢°, and vg —> —vg, (5)
Then we insert a heavy singlet Dirac fermion N with a large
mass My as shown in Fig. 1. The S symmetry is softly
broken by the dimension three mass term rpN; with
N — +N and v - —vg. The small masses m; and m,
are generated by electroweak symmetry breaking or soft §
symmetry breaking. That leads to a small Dirac neutrino
mass through the seesaw mechanism. Thus, the only new
Yukawa couplings are

L:y = fijg*ﬁl/]g + H.c.. (6)

After y freezes out, ¢ eventually decays to neutrinos via the
fij terms with a lifetime

dr
=" (7)
‘ mcf%m

where f&r = >, [fi;. We can see that 7, < 107! sec,
for m; > mf™ = 0.2 GeV and frg > fRi = 107°. This
means that before the onset of big bang nucleosynthesis
(BBN), all {’s decay away and v decouples from the SM
particles at the temperature 7% ~ me.

Before going further, we should note that y* has a lepton
number L = —1 and it is the antiparticle of y with L = +1.
Since CP is conserved, the transition amplitude (M)
involving y* is the same as the transition amplitude (M)
with y. Now let n, and n,- be the number density of the
particle y and the antiparticle y*, respectively. Their sum is
total number density of DM, n = n, + n,-. Both y and y*
make equal amount of contributions to the annihilation
cross section and the CDM relic density.

ITI. DIRECT SEARCH FOR LEPTONIC
SCALAR DARK MATTER

It is an opportune time to investigate direct detection for
WIMP dark matter. The XENONIT collaboration recently
announced the observation of low energy excess electronic

M, = —> my =

0 ml mlm2

m, M, my

Dirac neutrino mass with a Dirac singlet fermion insertion.

recoil events in their detector [34]. In this section, we focus
on the search for nuclear recoils generated by the WIMP-
nucleon scattering. We evaluate y-nucleon elastic scattering
cross section for the leptonic scalar dark matter (y). In
addition, we place limits on the relevant parameters A,; and
m,, with XENONIT results.

A. The elastic scattering of DM with nucleus N/

In the LSDM model, the leptonic scalar DM (y) interacts
with quarks (g) through the SM Higgs boson (H). Hence
the effective Lagrangian of y with quarks is simply

. m
Legr = Zaq xllaql.  with ag =2 m_%i’ (8)
q

where m, and my are masses of the quark and the Higgs
boson, respectlvely, and a,, is the effective coupling of DM
interacting with the quark in a nucleon.

Before making an estimate for the detection rate of the
leptonic dark matter (y) in the XENONIT experiment,
let us evaluate the normalized spin independent (SI) cross
section for the leptonic scalar DM scattered off the 2% 131Xe
nuclei. Applying the effective Lagrangian in Eq. (8), we
obtain the matrix element for elastic scattering of the DM
particle (y) and the nucleus (N) as

My =2myy_a,(N|gqIN). ©)
q

In general, the averaged unpolarized amplitude square at
g* = 0 can be written as

§|Mﬂ (¢ =0)
_ Z|MSI _|_Z|MSD )

=4m3 f2). (10)
where SI and SD denote the spin independent and the spin

dependent contributions, respectively.
For the effective scalar interaction, we have

fs/\/:Zfsp—i_(A_Z)fsm (11)

where
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_ Mp(n) ,p(n)
Fspn) = Z Y IT)q

q=u,d.s q
p(n)
+ Y a q27 p (1— Z qu,). (12)
q=c,b,t q q'=ud,s

When evaluating the quark operator matrix element in the
nuclear state, we need to include loop contributions
involving heavy quarks that contribute to the mass of
the nucleon (m,(,)).

The proton mass fraction f7, is defined by the matrix
elements of the quark current

q=u,d,s,

> qu> qg=c,b,t

q=u,d,s

prqv

-

The neutron mass fraction f7, is defined in the same way.

The matrix elements of the light-quark currents in the
proton or neutron are obtained in chiral perturbation
theory from measurements of the pion-nucleon sigma term
[35-40]. The heavy quark contribution to the mass of the
nucleon is through the triangle diagram [41].

In the center of mass (CM) frame, the differential cross
section is

(pIm,qq|p) =

(13)

do(G = 0)
dlqf?

1 _
= G2 LMl (6 =0 (14)

where v is the DM velocity relative to the target, /s ~
m,, + my is the total energy, and p, is the reduced mass of
DM and the target nucleus N. The total cross section at
zero momentum transfer [42] can then be obtained as

2 2
O.SI duy, v
0 =
0

Hence the total cross section of DM-nucleus (y —N)
scattering becomes

do(g=0

2
dqp LD e
T dlaP w

ol 4y 0
o= s [T daPRa) 16
4#/\/7/ 0

where F%(]q|) is the spin-independent form factor. To
compare with the experimental results, we define the scaled
SI and SD cross sections, respectively, for the nucleus with
atomic mass number A; and isotope abundance #; as the
following

Z'ﬂiGA-
Oy = ————1 (17)

>0 imAG —zp’

and

4
ngn = <Z’710A> (Z ’7} ﬂA

Spn eff(JA + 1)>
3)“[) nJA ’

(18)

where p,. and p,, , are the reduced masses of the DM with
the target nucleus and the DM with proton or neutron,
respectively. In the above, (S, )efr and (/) are the proton
(neutron) spin expectation value (including the contribu-
tions of two-body current [43]) and the total angular
momentum of the nucleus with atomic mass number A;
respectively. The effective spin expectation value is
defined as (S, ())err = (Spm)) £a1((S,)—(S,))/2 and
oa; 1is the fraction -contributing to the isovector
coupling [43,44].

B. Numerical results for direct search

At present, the XENONIT experiment [26] provides the
most stringent upper limits on ¢>! for WIMP masses above
6 GeV. In our analysis for spin independent cross section of
y — N scattering, we adopt the Helm form factor [45,46]
used in XENONIT experiments:

3j1(gRy)\?
Ao = (LY ewr o)
R
qin
where the nuclear radius R, = c? +%ﬂ'2£12 —55% with

c = (123A'3-0.6) fm, a =052 fm and the nuclear
surface thickness s = 1 fm. We use the updated data of
nucleon mass fractions from Ref. [40]: fTu =0.017,
fr,=0023, /4 =0.012, f2,=0.033, 7" = 0.053.

In the LSDM model with a scalar dark matter (y) and a
light mediator ({), there are eight free parameters as shown
in Eq. (3). In our analysis, the scan is performed with the
log-prior distributions for the input parameters as shown in
the below:

(i) my/2 <m, <1 TeV,

occur,

(i) 0.2 GeV <m; < 1.2 GeV,

(ii) 1 GeV <y, <1 TeV, and

(iv) 1070 <A < O(1) ~ Vax for 1 = Ay, Ay, Aoy, OF Ay
Note that Ay, is chosen to be 107® < Ay, < 1072, It is
constrained by the SM Higgs invisible decay width
(H — {0, ie.,

such that yy - {H can

D(H = (&) = ECL (20)

16zmy

055021-4



SELF-INTERACTING DARK MATTER WITH SCALAR DILEPTON ...

PHYS. REV. D 103, 055021 (2021)

XENONIT 2018

€ 10

)

% ‘ o iimesmmmmemm——

(Y S S
Jo-d9p==rTT Ty Backgroutt
10—51
goselin T e T R

100 200 500 1000
m, (GeV)

(a)

FIG.2. (a) The spin independent cross section o5

Xp X

0.01

Aot

107k

1078

x XENONIT Exclusion - Below neutrino floor

 Future Sensitivity

100 200 500 1000
m, (GeV)

(b)

versus 1, with random sampling for DM (y) scattered off the nuclei '>%!3'Xe. Also

shown are the upper limit from XENONIT [26] and the neutrino background [47]. (b) A scatter plot for the same samples projected to

the plane of (m,, 49;) with the corresponding ;.

Assuming that the invisible width is less than 10% of
the Higgs width 'y ~4.12 MeV [27], we obtain the
maximal value of Ay, ~ 6.5 x 1073 In addition, m; must
be greater than 0.2 GeV to satisfy the cosmological
constraint of effective number of neutrinos, which will
be discussed later.

In this model, the scaled SI and SD cross sections
(o35, and 6;5) depend on two parameters: (i) the mass of
leptonic scalar dark matter (m,), and (ii) the coupling Ag;.
We apply the most stringent constraint from XENONIT
experiment [26] with the upper limits of ST WIMP-nucleon
scattering cross section. Figure 2(a) shows the spin inde-

. SI . .
pendent cross section ¢, versus m, with random sampling

for DM (y) scattered off the nuclei '**13'Xe. In addition, a
scatter plot for the same samples projected to the plane
of (m,, 4g;) with the corresponding 4y is presented in
Fig. 2(b). In this figure, we show three groups of samples:
(a) all samples with red “x” above the upper limits of
XENONIT experiment [26] are ruled out, (b) those with
green “o” between the upper limits of XENONIT experi-
ment and the curve of neutrino background [47-49] are
allowed and could be detectable in future detectors, and
(c) the samples with blue “” below the curve of neutrino
background, and they are allowed as well. However, we
may not be able to distinguish the DM event from
neutrino event.

IV. RELIC DENSITY AND INDIRECT SEARCH

The matter density (p) of the Universe is often described
with a relative density (€2)

Q= (21)

s
Pe

_ 3H;

pe =g 1.88 x 107¥h? g/cm?
N

(22)

where p. is the critical density, Gy is Newton’s gravita-
tional constant, and H( is the Hubble constant, conven-
tionally expressed as

H, = 100h km/s/Mpc, (23)

and h ~0.68 [27].

The Planck collaboration has measured cosmological
parameters with very high precision [8]. The updated cold
dark matter relic density [8] is

Qcpph? = 0.120 £ 0.001. (24)

We can also take a conservative approach as demonstration
that ¥ can be produced again in the late time by other
cosmological mechanisms so that the relic density at the
present at 3¢ allowed range follows

Qh? <0.123. (25)

This assumption also includes the standard scenario
Q, h? ~0.12.
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A. Thermal relic dark matter density

In the early Universe, DM y existed abundantly in thermal
equilibrium with other particles. The evolution of the total
number density (n(f) = n, +n,- = 2n,) for the leptonic
dark matter is described by the Boltzmann equation:

d
S 3Hn = ~{o o)’ ], (26)

where ng is the number density at thermal equilibrium, the
Hubble parameter is

H = \[4r’g.(T)T*/(45M3) =~ 1.669!T2 /M. (27)

Mp = 1.2 x 10" GeV is the Planck mass, g, is the total
effective number of relativistic degrees of freedom [50,51],
(6amv) is the thermally averaged annihilation cross section
times velocity, and v is the relative velocity. The relative

velocity
V= vy = 4/S(s — 4m§)/(s —2m3) (28)

and the Mandelstam variable s = 2m2(1 + 1/+/1 — v?) are
measured in the lab frame.

The thermally averaged annihilation cross section times
velocity (o,,,v) is evaluated with the Maxwell velocity
distribution,

3\/6 *© (Gannv) * 2h0
<Garmv> =— dyp? XX ,=30% 20
Vavg Jo 2

32 .
_ xf Z /00 d/[j/[}z [Gann()ﬁ( - (plpr)v} e—x1)2/4
2\/7_[%-(/72 0 2
X H[me((l +1——v2) = (m,, + mwz)z]’
(29)
/{ \\ ,/ H /{\\ H ,/ H
X - =<
AN . 7 * o
Z H x- H
Z \\ ﬂ/g Z\\\ H
X s =<

FIG. 3.

where x;=m,/T;, vy = (V)2 =,/6/x; with the
freeze-out temperature 7;. The second expression repre-
sents the leading contribution of DM annihilating to a pair
of particles (¢, and ¢,) in the final state. Figure 3 shows the
Feynman diagrams for the dominant leptonic scalar DM
annihilation processes. For each annihilation channel, we
have put a step function (0) for the threshold energy.

As the Universe cooled down, deviation of number
density (n,) from thermal equilibrium would begin when
the temperature reached the freeze-out temperature (7'y).
After the temperature dropped to approximately 7';/5, the
annihilation rate of the WIMP dark matter became equal to
the expansion rate of universe [42], namely 7, (G, 0) = H.
The relic mass density becomes

Hm
Qn=nm,/p =-—->2— (30
P = T, )

and the leptonic scalar y remains as cold dark matter. From
the freeze-out condition, n,(6,,v) = H, the freeze-out
temperature parameter x; can be solved numerically by
the following equation [42,50]

4 M 6b/x,
x;=1In [C(c+2)”_591n311 (@ /)172) . (31)
8 2r \/g*(mx/Xf>Xf

In the above, ¢ is an order of unity parameter determined by
matching the late-time and early-time in the freeze-out
criterion. The exact value of ¢ is not so significant to solve
the numerical solution for x; due to the logarithmic
dependence in Eq. (31). Following the standard procedure
[50] to solve the Boltzmann equation [Eq. (26)], the relic
DM density Qpy = p,/p. can be approximately related to
<6annv> as

Gev-!
Quuh® ~ 1.04 x 10° ¢ . (32)
Mpi\/g:(T¢)J (xr)

+ -
‘\__}i[_ﬁilW'Z /L’\\\ H <f
7 W_,Z Z*/’/

f

/g Z——o——-,——c-—-g

Fa

\g Z*——o—b—-—-g*

Z\ :——r——,——p—— ‘——b——.\ .g Z\ Vv
- 4 ¢ x | . ¢ 4 1N // i < R
,’_-._ zf VA />\ ,/—_’_

Vi H y----L-»-H y--=-VF ~HOOx” v

Feynman diagrams for leptonic scalar DM annihilation.
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where

J(xp) = loo <O-a“;y> dx

- X

= /0o dv%v[l —erf(vv/xp/2)].
0

(33)

In the nonrelativistic limit, J(x;) = a/x; + 3b/x7.

The DM particles became nonrelativistic (NR) when
they froze out of thermal equilibrium in the early universe.
In the NR limit, we have o,,,(yy* = all)v = a + bv*> +
O(v*) by applying the Taylor series expansion and its
thermally averaged value Eq. (29) can be simplified
as (Gun?) = a +6b/x; + O(1/x3).

B. Indirect search for leptonic scalar dark matter

In the halo of the Milky Way and nearby galaxies, WIMP
DM annihilation might generate high energy gamma-rays
and appear in detectors such as Fermi-LAT [28,29],
H.E.S.S. [30,52], HAWC [53], MAGIC [54], or
VERITAS [55]. In addition, WIMP dark matter would
lose energy when they pass through massive stars such as
the sun. They become gravitationally trapped and accu-
mulate. WIMP annihilations could be sources of high
energy neutrinos and might be detected by ANTARES
[56] and IceCube [57].

At present, the most stringent limits for our surveyed DM
mass range, my /2 < m, < 1000 GeV, come from Fermi-
LAT [28,29] and H.E.S.S. [30]. We will evaluate the
leptonic scalar DM annihilation cross section (6,,,v) in
different channels, and investigate the discovery potential
as well as determine favored parameters guided by the
Fermi-LAT and the H.E.S.S. data.

Fermi-LAT analyzed 15 dwarf spheroidal satellite galaxies
(dSphs) [28,29], while the H.E.S.S observed y-ray toward
the inner 300 parsecs of the Milky Way. The speed of the sun
moving around the galactic center is approximately
220 km/s at the local distance r ~ 8.5 kpc and the galactic
circular rotation speed is about 230 km/s at radii ~100 kpc
[42,58]. On the other hand, the distance between the 15
dSphs and the sun is =23-233 kpc [28]. In the indirect-
detection calculation, we conventionally adopt a typical DM
velocity v ~ 1073 in the unit of the light speed [59].

In the leptonic scalar DM model, the dark matter particle
(y) can annihilate into a pair of SM particles such as
WHW-, 7°Z°, HH, fermion pairs ff, or ((* through
s-channel exchange of SM Higgs boson H. In addition, The
leptonic scalar DM can also annihilate into a pair of {{* or
HH through 4-point interactions and t-channel exchange of
X, or Upup through s-channel exchange of £, or a pair of H
through s-exchange of ¢ and t- and u-channel exchange of y
as presented in Fig. 3. From these Feynman diagrams, we
calculate the corresponding DM annihilation cross sections
at tree-level:

1%1/1(2)21)4 - 2/101/1021121}2 (S — m%i)

\/ s —dm? 2

¢ 16u
g =22 L
(00)p~ct 167\/s(s —2m2) | " + m} —m3 (s —4mg)

_|_

8uty (Ao (s — mH?)* + myTy;) = Ao A v* (s — M)

(s = miy)? + myT

s —2m} + \/(s —4m3)(s —4m3)

(ov) =

(m})xx—%H = 2

x log ) (34)
\/(s —4my)(s —4mZ)((s = mH?)* + myTy) s —=2mg — \/(s —4my)(s —4mg)
CpAgymi(s — 4m3)*2 i
e 17 = S (s — 2m) (5 = m + mATR) )
o RB\/s — dm (52 — 4smd + 12mY) S G 1 for WHw— (36)
2=V 16y /s (s = 2my,) (s — mE)? + miTE] 1/2 for 2°Z°
(o) _ ﬂ%zlfij|2\/ s = dm(s —2my) (37)
ARy [s(s = 2m3)[(s — mé%)2 + mgl"g] ’
(Ao1p120)*VA 2(Ag1p12v)*s tanh™' (VAB/C)

s = 2m3)(mA + smpm?) (s —2m2)v/BC

3 220102 (H120)? (s — m%) tanh™' (VAB/C) (Aoap1ov)*VA (38)

(s —2m2)v/BD

4rs(s —2m2)D’
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FIG. 4. Schematic diagrams for nonpertubative annihilation processes: yy* — {¢* and yy* — vgup.
where C. Sommerfeld enhancement effect
When the DM particles froze out in the early universe,
A=[s—(my+ mg) I[s = (my — mc)z], they became nonrelativistic and the nonperturbative
B— 4 Sommerfeld enhancement effect becomes important
= s(s —dmy 2 [60—66]. We present the schematic diagrams of annihilation
C=s(s— m%, - mg) processes with the Sommerfeld enhancement effect for
D=(s- 2F2 (39) = ¢¢* in Figs. 4(a), 4(b) and for yy — vgrg in

Fig. 4(c). In fact, Sommerfeld effect contains an infinite

series of the ladder diagrams.
After substituting s = 2m3(1 +1/v 1 — v?) into the above Let us first consider the easier case of Sommerfeld
equations and expandlng around v?, one can obtain the  enhancement effect on the annihilation process
usual form: {6,,,0) = (a + bv? +(9( v*)) in the nonrela-  y(p;)y(ps) = vr(ps3)vr(ps) through the exchange of
tivistic limit. As discussed in Sec. II, the decay lifetime of {  the mediator X = H, as shown in Fig. 4(c). When DM
is so short that the ¢ has all decayed into two right-handed  particles yy become non-relativistic, they rescatter off
neutrinos vg, and the light v; decouples from the SM  each other [Fig. 5(a)] before annihilating to vgvg. The
particles at its freeze out temperature T’; ~ m; before the ~ Sommerfeld enhanced amplitude iAg of yy — vgurg anni-
onset of BBN. hilation process [Fig. 5(b)] can be expressed as

|

d4/

. . D3 . . . .
iAs(p3. pas P1- P2) —lA(pz,p4,p1,pz)+/ﬁm(ps,m;p’s,pé)(lDF(pé))lF(pS,pé;pl,pz)(lDF(pé)), (40)

2n

where iA is the amplitude of the annihilation process at tree level, D is the leptonic scalar DM propagator and iI” is the
amputated nonperturbative 4-point vertex function [Fig. 5(a)] describing the rescattering process of y(p,)y(p,) =
x(P5)x(p)) and satisfying the following equation:

4 1

. e P3 = . . .
ir(p5. Py P1> P2) =lF(P’g,pZt;pl,pz)+/wﬂpé,pQ;P’g’,pi()[lDF(pé’)]lF(pl,pzzp’g”pi()[lDF(pi{)}- (41)

In the above, we have the lowest order perturbative 4-point vertex function given by

- 1
i (p5, py: P5. Py) = —i9§m7 (42)
iD(p"y) P == === X
Hp) == e 28 1) " )
Z-I"(pu3 :p||4;p1=p2) ”f(pl :pl ;pn :pu4 lr@'3p'4p1p2) ) ke +-=Z N
7 A N
)R 5‘ IR 2 7Py =~ id(pypp'sp',) V)
(a) (b)

FIG. 5. Diagrams for (a) rescattering of yy — yy, and (b) nonperturbative annihilation of yy — vpvg.
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where X is the mediator particle (X = H), and
py = —p4 + py+ p,. Note that the dimensionless cou-
pling strength of DM y with the mediator X is
gx = 9gx/(2m,), where the dimensionful coupling gy is
usually defined in the interaction Lagrangian. When the
process is mediated by the Higgs boson (H), we have
gu = 9gu/(2m,) = Ap;v/(2m,), where the dimensionful
coupling ¢, = AV as described in the scalar potential
[Eq. (1)].

From Appendix A1, we find that the pair of DM
particles yy form a bound state and the wave function
w(7) satisfies the following Schrodinger equation:

1 - N o1 -
—szy/(r) +V(EW(F) = By (F) = S0y (7). (43)
where y = m,, /2 is the reduce mass of the bound state (yy),
and E = |p|*/2u = uv?/2 is the total kinetic energy with

the relative velocity v = vy, defined in Eq. (28). V(r) is a
Yukawa-type potential

V(r) = —ay ) (44)

where ay = gg( /4rm and my is the mass of mediator.
For the case of s-wave rescattering, the Sommerfeld
enhanced amplitude iAg can be written as
|

v

- ey /6 €,
_o(r=0)=1i ri1—i—-~ 1 1
Wiso(F=0) =1 2e, ! n’ex/6 * €2

.1
with
v my

=5 ex=— (49)
XMy

and the s-wave Sommerfeld factor is given by [69]

S(m)(, my, dx, v)

= |l//1=0(? = 0)|2
. 27e,
_x sinh 2257 50
€, 2re, 1 6’2 ‘
v cosh (ﬂzex ; 6) — cos (27: Zerf6 W)

For yy — vgug annihilation process, the mediator particle
isX = H.y,_o(F = 0) indeed goes to 1 in the ay = 0 limit.
We will see that the analytic solution S = |y;_o(¥ = 0)|?

'Note that the p in the formula of [67] is in fact »/2 in this
work.

_7[2€X/6

l'AS(Pl, P2 P3s P4) = iA(l_"lyl_jz;l_?’& 1_54)'.’/(7 = 0)’ (45)

where iA is the amplitude at tree level as explained in
Appendix A 2. Consequently, the Sommerfeld enhanced
velocity averaged annihilation cross section (ov)g =~ ag +
bgv? can be further simplified as

(ov)s~as=(aS(v)).  S=lwio(F=0).  (46)

where S is just the s-wave Sommerfeld enhancement factor
(see Appendix A 2).

It is well known that there is no analytical solution with a
Yukawa potential in Eq. (43), but the Hulthén potential
maintains the same short and long distance behavior of the
Yukawa potential and has an analytical solution for s-wave
function. Hence it is a good approximation to employ the
Hulthén potential to obtain |y;_o(7 = 0)| with a Yukawa
potential [67],

(”2mx/6)e—ﬂzmxr/6

1= e—zrzmxr/ﬁ

V(F) ~ —ay , (47)

where the mediator particle X = H. One can obtain the
wave function [68] in terms of Gamma function I"

L€ ey /6 —2ie,
))Xr<1_l”2€x/6<l_ - € ))/F(”2€X/6>’

(48)

|
agrees well with that obtained from numerically solving the
Schrodinger equation with the Yukawa potential.
When the mediator mass can be neglected, the Yukawa
potential can be approximated by a Coulomb potential:
ax

V(r)z—T. (51)

The corresponding s-wave function is given by [70]

S (F) = T(1+ ip)e ™27 F | (iy. Lipr—ip - 7).
(52)

where | F is the confluent hypergeometric function of the
first kind, and

[04 o
e (53)
v |pl

In this approximation we have
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O (F = 0) = D(1 + iy)e /2. (54)

Accordingly, the corresponding s-wave Sommerfeld factor
in the Coulomb potential is

St =y (7 = )P

2
= T(1 + iy)[(1 — iy)e™™ = % (55)
e —
In fact |y;_o(F=0)| goes to |ps%(7=0)| and the

Sommerfeld factor S in Eq. (50) does reduce to S(cou)
in the large m, region [67,71].

As mentioned above, we only keep the first term
(the a term) in Eqs. (34)-(35) for both relic density
calculation and the indirect annihilation processes, namely,
the s-wave contribution, with (6,,,v) ~ a + O(v?). Hence
we show the a-term for each annihilation process as
follows:

2 2
o N {(ﬂ%z — diam} + 2dmy)?
- (

327m; 2my —mg)?
4 A5145, 0"
[(4m] —mp)* + m{Ty]

B 2/101102” (4 m;Z( - mH)(4/412
(2m; — mg)[(4m)2( -

— ﬂlzmé -+ 2].127’}15)}
miy)? + my ] ’
(56)

Cfﬂglm%(mﬁ — mjzc)3/2
T T

i/ ms — my, (4my* — Amom3, + 3my,)
v ! S, (58)

8z ((4m2 — m3;)? + m3 %))

ﬂ12|fz 2m _mz)\/
ey — 2 (59)

wm;[(4m; — mZ)? +m§F2 '

all = (57)

4xm3|(4m2 —

a

a

o vt 8/1%1D(A + 4m%mg)}

4VA |22
1282miD { \/—{ (A + 4mym?)*
128/1017’”)( [/102(47’}’1)2{ - m?)C - 8101”’[}2{D]} (60)
VBC '

For yy — vrvg and {H annihilation processes, we have

(ov)sQoxr — vrvr) = (@ S(my, my, ay, v)),  (61)

(ov)s(ux = CH) = (a*S(my. my. ayy. v)).  (62)

Accordingly, we can analytically obtain the Sommerfeld
factor S = |y,_o(¥ = 0)|? for the yy — vgvg and yy — CH
annihilation processes.

Figure 6 shows the s-wave Sommerfeld factor in the
present universe with (v = 1073¢) as a function of the DM
mass (m,,) for two values of the coupling gy/v = 10 [(a)
and (b)] as well as ¢g5/v =1 [(c) and (d)]. The left panels
[(a) and (c)] present the analytical results with the Hulthén
potential [Eq. (47)] and my = my, as well as numerical
results with Yukawa potential [Eq. (44)] and my = my. In
addition, we show the analytical solution in Coulomb
potential approximation. In the right panels [(b) and (d)],
the analytical solutions in Huthén potential approximation
are presented with three values of the mediator mass
myx = 0.01, 0.1, and 1 GeV. The Coulomb potential
approximation in the left panels and the analytical solution
with my = 0.01 GeV in the right panels are both repre-
sented with orange dot-dashed lines because there is no
difference between them numerically.

We find that all curves in Figs. 6(b) and 6(d) with a
massive my oscillate with an amplitude that increases with
an increasing mediator mass, while the frequency of
oscillation increases with a decreasing mediator mass.
Comparing Figs. 6(a)-6(d), we see that the Sommerfeld
enhancement factor S decreases with a decreasing coupling
g Furthermore, the strength of Sommerfeld enhancement
decreases with an increasing m,. The reason can be seen
as follows:

(i) First, these curves oscillate around the curve gen-

erated by the Coulomb potential.

(i) The Coulomb potential approximation provides the
central value for S.

(iii) From Egs. (53) and (55), we note that S is a
function of ay = g%/4x. Hence the enhancement
factor § is suppressed by an increasing m, owing
0 gx = gx/(2my).

In Fig. 7, we show S at the early universe with
(v=0.5xc) as a function of m,. The colored scheme
is the same as Fig. 6 while the thick and thin lines are based
on gx/v =10 and ¢y /v = 1, respectively. Clearly, com-
paring with low-velocity DM in present universe as
shown in Fig. 6, the nonperturbative effect for high-
velocity becomes much weaker resulting in much smaller
Sommerfeld enhancement in the early universe.

From Figs. 6 and 7, we find that the larger coupling
strength or smaller DM relative velocity v gives a greater
value of the Sommerfeld factor. Roughly speaking, the
Sommerfeld factor used at the present stage (v ~ 1073¢) is
2 ~3 order of magnitude greater than that in freeze-out
stage (v =~ 0.5 x ¢) with a light mediator mass. This main
characteristics of velocity dependent SICS is used to solve
the small scale problem.

We have shown in Figs. 6 and 7 that the numerical
result agrees well with the analytic solution in Hulthén
approximation at my = mpy. Nevertheless, we see that it is
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(d) Three different benchmark masses mx.

FIG. 6. Sommerfeld factor S versus m, for the present universe with v = 1073¢. The gl parameter is the dimensionful coupling
between the DM (y) and the mediator X. The left panels [(a) and (c)] present the analytical results (blue solid) with the Hulthén potential
[Eq. (47)] and my = my, as well as numerical results (red dashed) with Yukawa potential [Eq. (44)] and my = my. For comparison,
the analytical solution in Coulomb potential approximation is depicted by orange dashed lines. In the right panels [(b) and (d)],
the analytical solutions in Huthén potential approximation are shown with three values of the mediator mass my = 0.01 (orange

dot-dashed), 0.1 (black solid), and 1 GeV (green solid).

impossible to obtain an analytical form for S in the
process of yy* — x*x, which simultaneously involves the
exchanges of H and { particles schematically shown in
Figs. 4(a) and 4(b). The potential then becomes the sum of
two Yukawa-type potential

e~mu’ e

V(r) = —ay —ar

r r

(63)

where ay = g% /47, (X = H.{), gy = Ao1V/2m,,, and g, =
H12/m,. There is no analytical form for the Sommerfeld

enhancement factor S. Therefore, we develop a numerical
solution for S as given in Appendix A 3.

D. Numerical results for relic density
and indirect search

In this subsection, we present our numerical results for
the indirect search and the relic density. For the indirect
search, we compare our theoretical results with the most
stringent limits from the Fermi-LAT [28,29] and the
H.E.S.S. results [30]. Both Fermi-LAT and H.E.S.S. astro-
physical observations do not show the significant y-ray
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Thick lines: g /v= 10, Thin lines: ¢ /v=1
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FIG. 7. Sommerfeld factor S versus m, for the early universe
with v = 0.5 x ¢. The color scheme is same as Fig. 6. The
coupling ¢’ /v for the upper thick lines are fixed to 10 while the
value of the bottom thin lines are 1.

signal above background. Instead, Fermi-LAT provides
upper limits on (6,,,v) for DM annihilating into W W~
and the SM fermion pairs: bb,uit, 777", u*u~,eTe at
95% confidence level with WIMPs masses between 2 GeV
to 10 TeV, while H.E.S.S. gives the upper limits on (6,,,)
for DM annihilating into W W~ and the SM fermion pairs:
tf,bb, vt~ ™ with masses from 160 GeV to 70 TeV.
Figure 8 presents (0,,,v) for leptonic scalar DM (yy)
annihilating into W*W~, 7, tt¢~, {H and {*. The
samples above the upper limits of Fermi-LAT and
H.E.S.S are ruled out. The plots on the left-handed do
not include the Sommerfeld effect but the Sommerfeld
effect are considered in the plots on the right-handed side.
In each plot on the left-handed side, the same color scheme
as presented in Fig. 2 is used. In the panels of the right
column, we show the Sommerfeld effect for the data
survived from XENONIT limits, namely the samples taken
from those green (circle) and blue (dot) in the left panels.
Without considering the Sommerfeld effect, we see that
DM can only be detected with m, > 1 TeV via WTW~ or
the Higgs resonance annihilation via bb and 77~ channel.
Clearly, the cross sections can be enhanced by the
Sommerfeld effect. Albeit the enhancement differs from
channel to channel, it is interesting that the cross section
of the channel {{* is overall enhanced. We see that DM
annihilating to a pair of {{* is dominant while this channel
is not detectable because { eventually decays to vp.
Figure 9 shows the leptonic scalar DM thermal relic
density Q)(h2 as a function of m,,: (a) without Sommerfeld
enhancement, and (b) with Sommerfeld enhancement

effects. We maintain the same symbols for each sample
used in Figs. 2 and 8. The horizontal line denotes the
observed relic density: Q4% = 0.120 [27]. Since the relic
density is roughly proportional to the inverse of the total
(6am?), the samples are oriented reversely in vertical
direction. With Sommerfeld enhancement effect, the same
parameters will lead to a smaller relic density as expected.
Thus, there are more regions of the parameter space
satisfying the relic density requirement thz < 0.123 [27].

V. COSMOLOGICAL CONSTRAINTS ON THE
RIGHT-HANDED NEUTRINO

The left-handed neutrino decouple at the temperature
T % ~ 1 MeV when the left-handed neutrinos and the right-
handed antineutrinos cannot be converted to pairs of
electron and positron. On the other hand, the right-handed
neutrinos decouple at the temperature ij ~ m; when the

production of the ¢ particles is kinetically not allowed.
At the temperature T < T7 < T%, the total density of
radiation p, is

74\
pr=p,tpLtpr=3 1+Neff§ 11 Py, (64)

where p,, p;, and py are the energy density of photons, v,
and v, respectively. The relativistic degree of freedom N
here depends on the relativistic particle species and their
internal degree of freedoms. Considering only three gen-
erations of left-handed neutrinos in the SM, the theoretical
prediction is given by N = 3.045 [72,73]. The recent
Planck 2018 data shows N = 2.92703%(95%CL) and this
is compatible with the SM prediction.

Following the computation in Ref. [74], the additional
contribution to the relativistic degree of freedom arising
from vy is given by

(65)

s TL 4/3
ANy = 3 x [g ( fq

g*s(Tf)

Here, factor 3 describes three generations of neutrinos. As
shown in Ref. [74], the new relativistic degree of freedom is
limited to be AN.¢ = 0.107)45.

We would like to note that both v; and vy
completely decouple from the SM plasma before big bang
nucleosynthesis (BBN) in this model, thus one can obtain
9:s(T7) = 1075 at T% ~1 MeV and g, (TF) =67 at
0.2 GeV < T]’f < 1.2 GeV. By plugging these two values
into Eq. (65), we can simply verify that AN = 0.26
also agrees with current limit [27]. Moreover, it has also
pointed out in Ref. [74] that a combined constraint from
Planck CMB data and BBN (the helium abundance
measurements) reads AN s < 0.53 at 95% C.L. which
associates TJ’f 2200 MeV. This implies m; 2 200 MeV
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FIG. 8. Thermally averaged annihilation cross section times velocity for the leptonic scalar dark matter (y) (6,,,v) in different
channels. Left: without the Sommerfeld effect: red (cross), green (circle) and blue (dot) denote the scenario excluded by XENONIT,
testable soon by future underground detectors, and below the neutrino floor, respectively. Right: the Sommerfeld effect for those samples
surviving from XENONIT limit, namely green (circle) and blue (dot) in the left panels.

if taking TR ~me. Therefore, to escape the combined

constraint from CMB and BBN, we always take a safe
limit m; 2 200 MeV in this work.

VI. SMALL SCALE PROBLEM

As aforementioned in the introduction, the momentum
transfer cross section o7 of the process yy* — y*y depends

on the root mean square velocity v, of the DM particles.
To solve the small scale (CCP/MSP/TBTF) problems, we
simplify to use the following constraint [16,17]:

0.1 cm?/g < (o7/m,)s < 10 cm?/g, (66)

where (67/m,) ¢ is the Sommerfeld-enhanced cross section
per unit DM mass.
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FIG. 9. Relic density of leptonic scalar DM Qxh2 versus m,: (a) without Sommerfeld enhancement, and (b) with Sommerfeld

enhancement.

The process of yy* — y*y can occur via the exchanges of
H or { in the s- as well as t-channels. It can also occur via
the 4, quartic term interaction. The subleading terms via the
s—channel for the Sommerfeld effect can be ignored [75].
For the r—channel contribution, in the NR limit, we have

oy B,
64mmimi;m; dzmimy’

(67)

o =

The approximation holds only if y115 > Ag; v/ (2my). We
find that this approximation can be applied for the majority
of our collected samplings. Note that we have ignored the

quartic interaction since pi1,/m; > Ao \v/(2mpy) > \/41/8.
For example, we can have Ag;v/(2my)=1.85 and

V/21/8 = 0.67 by taking Ay, = 4, = V/4x.

VII. MODEL PARAMETER SPACE

In the CP-conserving LSDM model, there are eight free

real parameters:
m,, Mg, i, A, Aas Ao, A, and Apy.

In this section, we look for favored regions of the parameter
space in the LSDM model with implications from astro-
physical and cosmological observations. We apply selec-
tion requirements for small scale structure, cold dark matter
relic density, direct searches, and indirect detections, as
well as cosmological constraints on right handed neutrinos.

For the leptonic scalar DM, the solution of small scale
problem comes from DM strong self-interaction with
or/m, that contains 4 free parameters: m,,me, pis,
and Ag;, as shown in Eq. (67). At first, we perform a
grid scan for the ranges, my/2 <m, <1200 GeV,

02 < mc/GeV < 1, and -6 < loglo[ﬂ()]] < loglo[\/4 ]
With these collected samples, we can pin down the

corresponding allowed range for u;, by using the allowed
range of 61/ m,,. Second, we use the interpolation technique
to find the allowed range of y;, from random sampling for
m,,, my and 1;,. We then apply random sampling with the 8
free parameters as usual except that x5 is chosen from the
allowed region with randomly selected m,, m; and 4,,.
Third, we use the selected parameters to find the allowed
samples which satisfy the observed relic density constraint.
Finally, we find the allowed parameter space by satisfying
the constraints from the direct and indirect searches.

Following this procedure, we collect a thousand samples
that satisfy all the constraints mentioned above. Figure 10
shows the predictions in the LSDM model for o7/m,,
Q,h*, ¢, and (o) in WW™ st 777" ,(H and {C*
channels. Comparing the scenarios with and without
Sommerfeld effect, we only depict those samples in agree-
ment with XENONIT data in Fig. 10. The Sommerfeld
effect is applied in the computation for the magenta
samples (diamond), while Green (circle) (testable for near
future) and blue (filled circle) (below the neutrino floor)
are obtained without including the Sommerfeld effect. It is
clear to see in Fig. 10(a), that the (o7/m,) is enhanced by
the Sommerfeld effect such that all values fall into
0.1 (cm?/g) < (or/m,)s < 10 (ecm?/g). In Fig. 10(b),
we see that the relic density is roughly proportional to
1/(Gann)» and hence the Q, h* becomes suppressed by the
Sommerfeld effect such that the relic density of all selected
samples fall into the range of Q4> & 30.

It is interesting that the selected 1000 samples satisfying
the small scale requirement (CCP/MSP/TBTF) and the
observed relic density constraints also satisfy the constraint
on the SI DM-nucleon scattering cross section 6)‘2, shown in
Fig. 10(c). We have extended XENONIT 2018 data to
m, ~1.2 TeV with the dashed line. The cross section
(6anv) for DM annihilating into WtW~, 11, tt7~, (H
and {¢* channels are presented in Figs. 10(d)-10(h).
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CCP/MSP/TBTF constraint
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FIG. 10. Predictions on 67/m,, Qh%, 65, and (6,,,v) in different channels for all allowed samples. (Circle) and (filled circle) denote
the samples which are testable for near future and below the neutrino floor, respectively, by the direct-detection experiment and without
consideration of Sommerfeld effect. (Diamond) denotes the values with considering the Sommerfeld effect.

Combining indirect search in Fig. 8 and the small scale
requirement, we see that the values of (o,,,v) cannot be too
large, and that yy — bb and 777~ may not be detectable.
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Coupling Strength in Yukawa Potential
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FIG. 11. The dimensionless coupling strength g, = p,/m,, in

the Yukawa potential versus DM mass m, parametrized by the
light mediator mass m; where m; = 0.2 GeV [red (filled circle)],
0.4 GeV [blue (cross)], 0.6 GeV [blue (circle)], and 0.8 GeV
[black (diamond)].

ui giud,
ol =) =———5="—1. (68)
4ﬂm§mx 47zmc

The dimensionless coupling g- = u;,/m, is important to
determine the annihilation cross section, and it appears
in the Yukawa potential [Eq. (44)] contributing to the
Sommerfeld enhancement effects.

The allowed value of g, is modified by non-perturbative
Sommerfeld enhancement effects. Figure 11 presents
gr as a function of m, with several values of m, =
0.2 GeV [red (filled circle)], 0.4 GeV [blue (cross)],
0.6 GeV [blue (circle)], and 0.8 GeV [black (diamond)].
In addition, we consider four sets of parameters from top
to bottom: (lOI,loz,ﬂlz,fRR) = (10_6, 10_6, 10_6, 10_6),
(0.1,1073,0.1,0.0), (0.2,1073,0.2,0.2) and (0.2,1073,
0.2,0.6), respectively. All allowed samples consistent with
all mentioned constraints are denoted by green “¢”. We
find that g, becomes larger with increasing value in m; or
decreasing values in the parameter set (dg1, Ag2, 412, frr)-
Note that for a given set of parameters, y, is randomly
sampled to satisfy all mentioned constraint. The allowed
range of m, also depends on m,.

From the 1000 allowed samples that are consistent
with all mentioned constraints, we can find the favored
parameter space from the scanned region. BBN and CMB
constraints require that m; should be greater than 200 MeV,
that leads to the minimal value of m, =276 GeV. The
maximal value of m; is found to be 814 MeV correspond-
ing to m, =1176 GeV. 1; only involves the self-
interaction process of yyx — yy* in Eq. (67) and its
contribution can be ignored even with A, = /4z. On the
other hand, 4, is irrelevant in our calculation. We find that
the maximal values of Ay, Ay, 412 and fgg are 0.27, 0.01

0.51 and 1.30, respectively. The allowed range of p, is
between 75 and 634 GeV.

VIII. CONCLUSIONS

We have adopted a special model that has a leptonic
scalar dark matter (LSDM) (y) with lepton number
L, =1 and a light scalar mediator ({) with L, =2 and
three flavors of neutrino vz under the assumption of
lepton number conservation. In the early Universe, DM
thermalizes with SM particles via H-portal and yy* — {¢*
provides an efficient annihilation channel. After DM
freezes out, all { decay into vzvp with a lifetime
7 < 107" (sec) before the onset of BBN, and v
decouples from the SM particles at the temperature
ij- ~m¢. The LSDM (y) and the light mediator ({) with

lepton number conservation can provide a self-interacting
WIMP dark matter that is consistent with astrophysical
and cosmological constraints.

In the LSDM model, the ~—channel exchange of a light
mediator ({) makes the LSDM (y) self interacting cross
section (SICS) reasonable large. Furthermore, we evaluate
the Sommerfeld effects and find significant enhancement
for the SICS. That makes the LSDM model suitable to
explain the small scale structure of the Universe.

We apply selection requirements for small scale struc-
ture, cold dark matter relic density (Planck), direct searches
(XENONI1T), and indirect detections (Fermi-LAT and
H.E.S.S), as well as cosmological constraints on right-
handed neutrinos. A randomly selected set of parameters
was found with 1000 samples that satisfy all constraints.
Large regions of the parameter space in the LSDM model
are found to be consistent with astrophysical and cosmo-
logical observations and collider Higgs properties. A
summary is in the following for the favored ranges of
parameters:

(i) 0.2 GeV < m, <0.814 GeV (BBN, CMB),

(i) 276 GeV < m, < 1176 GeV (implied by m,),

(iii) 75 GeV < pjp <634 GeV, and

(iv) Ag» < 1072 (Higgs invisible width).

In addition, the upper bound of Ay;, 4p, and 1, are 0.27,
0.01 and 0.51, respectively.

It is interesting that almost all regions of parameter space
satisfying astrophysical and cosmological observations
lead to a cold dark matter relic density with the most
restrictive requirement [8].

Qchz + 306 = 0.120 4+ 0.001 (69)
that is
0.117 < Q)(h2 <0.123. (70)

A more realistic requirement should be
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Q,h? <0.123. (71)

That will enlarge the favored parameter space and accom-
modate more types of dark matter particles.
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d*pl -

iC(ph, Py 1. p2) = iL(Ph. Pl p1. pa) + 710(P5, Py PS, ) (iDR(P5))iC(P5, P4 Prs P2)(iDE(PY)),
(27)

where we have p)} = p} + p, — p4, Dr is the scalar DM
propagator and, the amputated tree-level 4-point vertex
function through the H-exchange is given by

- 1
it (p%. pls P4 pll) = —iA2, v? . (A2)
PP = R

With the instantaneous approximation, namely, ignoring
the time component of the momentum transfer, the
tree-level 4-point vertex function is just the potential
Uy (p% — p) defined below

i 1
lr(p/ , p/ ; p//, p//) — ilZ ,UZ — —
PR ER SO (B = Y)? + m,

= iU (P} - B4)- (A3)

To proceed we define two auxiliary functions as

follows [68]:

in(p3, p4; P1» P2) = iDp(p3)il(p3, pas p1s p2)(iDp(ps)),

i7(P3. pai P1. p2) = iDp(p3)il(ps. pa: 1. p1)(iDp(pa)).

(A4)
and Eq. (A1) can be expressed as
in(p3. Py P1- P2)
= i7(p5. Py P1. P2)
4p//
b [ G ot PN ).
(27)
(A5)

APPENDIX A: SOMMERFELD ENHANCEMENT
IN yx ANNIHILATIONS

1. Bethe-Salpeter equation in yy — yy process

The Feynman diagram of nonperturbative scattering
x(p1)x(p2) = x(p3)x(pY}) is shown in Fig. 5(a). Note that
ps and p) are not necessary on-shell as these two lines
will be connected to yy annihilation diagrams later [see
Fig. 5(b)]. Following the standard procedure [68,75], we
will derive the Bathe-Salpeter equation for the process of
scalar DM scattering via the scalar H-exchange repeatedly.

The amputated nonperturbative 4-point vertex function
can be written as

(A1)

|
Adding (27)*6*(p% — p1) to both side of the above
equation, and defining

iy (ps. phs p1. p2) = 27)*6* (p% — p5) + in(ph. Pl p1. P2)

(A6)
Eq. (AS) becomes
ix(ph. Py P11 p2) = (27)*6* (pf — p)
d4p// .,,
+ (277)34 i7(ph. Py P3. PY)
x iy (p5, P4s 1y P2)- (A7)

In the NR limit, the scalar propagator can be approx-
imately written as

: _ L.

1
2my, (k, — m,) — 122/2mx +ie 2m,7*

Dp(+k) =

(A8)

Substitute it into the above equation, we obtain the equation
for y,
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4 //
P3)g)( Py)

iy(ps. Py p1. p2) = 2m)*8* (p§ — ph) + Ps = Py)x (5, P4 p1s p2)- (A9)

1
4m2

In fact, we can drop the redundant variables p; and p, in the above equation. Now we define

p=(p5-py)/2
P=(p5+py)/2
J(ky ky) = y(ky + ky by — k). (A10)

Eq. (A9) can be rewritten as

. 1 d*q I,
i7(P.p) = (2n)'6*(q =P = p) + —9,(P+ p)g,(P=p) | =—3Uu(@—P-p)7(P.q—P).  (All)
4m; (27)
Let ¢’ = g — P and redefine ¢’ = g. The above equation becomes
i 4\ 4 1 d'q - -
i (P.p) = (27)6%(q = p) + 7 59,(P + p)g, (P~ p) 7Un(g—p)R(P.q). (A12)
m; (27)
Defining the Bathe-Salpeter wave function as
> qu .
= [ —iy(P,q), Al3
w(q) / 5y Z(P.a) (A13)
and integrating with respect to p, on both sides of Eq. (A12), we have
- 3 - - 1 1 d é) - - -
v(p) = (22)’8(G = p) +5 - an? dpog, (P + p)g,(P = p) 207 Un(q—Pw(q). (A14)

By taking p} = (Ej}. p), piy = (Ey,—p), pi = (E5. p), and p)y = (Ef, —p) in the center of mass frame, we have p =
(e.p) = ((E5—E,)/2.p) and P~ (m, + E/2, O) and the total kinetic energy E = uv?/2 where yu = m,, /2 is the reduce
mass of yy system and the relative velocity v = vy, defined in Eq. (28). Using the residue theorem, we integrate over
po = € in Eq. (A14), and obtain

.
W(F) = (205G~ P)+— / I ValG- W@, Vu@) = Und) (A15)

X

The above equation is simply the Bathe-Salpeter equation in the momentum space representation. By taking the Fourier
transformation, we have

37 =2 35 3G
/ (‘zi”l)g e—fﬂ?(Z__E) w(F) + (228G - B)] + / (‘21”1;3 e iP7 / (;’ﬂ)3 VG- Pw@=0.  (Al6)

After simplification, we obtain the Bathe-Salpeter equation in the position representation:

e—er

=5 V(D) + Vi) = B, Valr) = (A17)

where we see the potential is Yukawa-type with the corresponding fine structure constant ay = g% /47 and the
dimensionless coupling strength gy = Ao v/2m,.
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2. s-wave Sommerfeld factor in yy — vyvp process

From Fig. 5(b), the Sommerfeld enhanced amplitude iAg of yy — vy annihilation process can be expressed as

d*pl

iAs(p3s P4 P1»> P2) = IA(P3, P4, P15 P2) + /WiA(ps,m;pé,pi)(iDp(pS))iF(pé,pé;pl,pz)(iDF(pi))

where iA is the amplitude of the process at tree level. With
the help of Eq. (A4), we have

iAs(P3’ P4 P1> P2>

d*ph
=/ 11A(P3, P43 5 PY)ix (D5, P43 P1s P2)-
(27)
(A19)
For the s-wave rescattering, the amplitude A(ps, p4; p5, p))

is independent of momentum and hence, the above equa-
tion becomes

iAS(P3,P4,§P1,P2)
. &p [ dpy .,
= lA(p3,p4;p1,pz)/W/(2—”0)W(P,p)

= iA(Ps, P4 P17P2)l//1:0(7 = 0) (AZO)

Hence we have

|As(p3. pas P1s P2) [ = |A(p3. Pars P1. P2)IS. (A21)

where S = |y,_o(F=0)]*> is the so-called s-wave
Sommerfeld factor and the wave function y/(7) satisfies
the Bathe-Salpeter equation in Eq. (A17).

3. Solving y(r=0) numerically

Let us consider the general case. As we know that two
DM particles form a bound yy or yy* state before
annihilation. This two-particle wave function y (7) satisfies
the following Schrédinger equation [see in Eq. (43)]

(A22)

o V() + V() = Bu(F) = sy ()
U

The separation of variables give us the radial Schrodinger
equation

11d(,d I(1+1)
_ — )+ V() + R = ER;(r).
{ 2ur?dr <r dr> (r) 2ur? i(r) i(r)

(A23)

Here we follow [68,76] to solve for y (7 = 0) numerically.
From the scattering theory, the radial wave function has the
following asymptotic form [77]:

(A18)

R(r) > ¢ sin(pr—Iz/2 +6))
1 or ;

(A24)

where 9, is the phase shift corresponding to the partial wave
with angular momentum quantum number [ Defining @,
by R,(p) = Np'®,(r) with p = pr, and normalization
constant N to be determined later, Eq. (A23) becomes

2(1+1 2
(I);’_|_ (+ )d);—ﬁ— ——V(r)+1 D, =0, (A25)
4 pv

where the initial conditions are taken to be [76]

pV(r)

Hor=t P+ )

@;(0) = @,(0),

p—0

(A26)

for a regular solution. We now concentrate on the [ = 0
case. As one can see by taking p > 1, in the case that
|pV(r)| < 1, the differential equation and its solution
become

_0. dy(p) — cSneté)

v 2
Oy + D + D
P p>1 P

(A27)

with C a real number. The above @ is to be compared to
Ry(r) = e sin(p + 8y)/p [see Eq. (A24)], as p > 1. To
work out the normalization N, it is useful noting, in the
p > 1 region,

cos(p + &)

Dy(p—n/2) > -C o—x/2

(A28)

which can be used with ®y(p) to construct

k= lim e [—ip®(p) — (p — 7/2)Po(p — 7/2)] = Ce™™.

p—o0
(A29)
Consequently, we see that Ry(r) can be obtained as
Ro(r) = x~'®(p), (A30)

since it satisfies the Schrodinger equation and has the
correct asymptotic behavior. Finally, we have
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y (7 =0) =x'®y(0)

e~ir

_ -1 _ 1
T R S0~ (=22 —7/2)

(A31)

Note that the phase of w(7=0) is just &, [see
Eq. (A29)].

Now we are ready to do the numerical calculation. For a
scalar DM y with a scalar mediator X, we have the Yukawa-
type potential:

e~ mxr
Vx(r) = —ax P

(A32)

where ay = ¢%/(16zm;) with the dimensionful coupling
strength ¢y = Jo;v, namely, the dimensionless coupling
strength gy = gy/2m,. Hence we need to solve the
following differential equation:

2 2aye bxr
@)+ 20 + (1225 o) —0. (a3
with the boundary conditions:
D(p=0) =1, D'(p=0)=—ay. (A34)

In the above ay = ay and by = 2my/m,v. We find that it
is enough to take p ~ 200 to obtain the limit in Eq. (A31).
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