
 

Self-interacting dark matter with scalar dilepton mediator

Chung Kao ,1,* Yue-Lin Sming Tsai,2,3,† and Gwo-Guang Wong 4,‡

1Homer L. Dodge Department of Physics, University of Oklahoma, Norman, Oklahoma 73019, USA
2Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory,

Chinese Academy of Sciences, Nanjing 210033, China
3Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan
4Department of Physics, National Taiwan University, Taipei 10617, Taiwan

(Received 31 December 2020; accepted 3 March 2021; published 29 March 2021)

The cold dark matter (CDM) candidate with weakly interacting massive particles can successfully
explain the observed dark matter relic density in cosmic scale and the large-scale structure of the Universe.
However, a number of observations at the satellite galaxy scale seem to be inconsistent with CDM
simulation. This is known as the small-scale problem of CDM. In recent years, it has been demonstrated
that self-interacting dark matter (SIDM) with a light mediator offers a reasonable explanation for the small-
scale problem. We adopt a simple model with SIDM and focus on the effects of Sommerfeld enhancement.
In this model, the dark matter candidate is a leptonic scalar particle with a light mediator. We have found
favored regions of the parameter space with proper masses and coupling strength generating a relic density
that is consistent with the observed CDM relic density. Furthermore, this model satisfies the constraints of
recent direct searches and indirect detection for dark matter as well as the effective number of neutrinos and
the observed small-scale structure of the Universe. In addition, this model with the favored parameters can
resolve the discrepancies between astrophysical observations and N-body simulations.
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I. INTRODUCTION

The first evidence of dark matter (DM) was observed by
Fritz Zwicky [1] in 1933. The existence of dark matter can
be observed in the whole Universe, at the small galactic
scale [2,3], the large scale of galaxy clusters [4,5], and the
cosmological scale [6,7]. The evidence of dark matter is
usually inferred from its gravitational interactions.
However, weakly interacting massive particles (WIMPs)
provide intuitive candidates as cold dark matter (CDM).
Stable invisible WIMPs with proper mass and coupling
strength can lead to a matter density that is consistent with
the observed DM relic density in cosmic scale structure
of the Universe [8]. In addition, CDM can account for
the consistency of large scale structure (≳1 Mpc) in the
Universe between the astrophysical observations [9] and
N-body simulations [10].
There exist some discrepancies between CDM N-body

simulations and astrophysical observations on small scale

structure of the Universe. The first one is the cusp-core
problem (CCP) [11]. The observed mass distributions are
more flat in the central region of dwarf galaxies without a
steep cusp predicted from CDM simulations. The second
one is the missing satellite problem (MSP) [12]. The
observed number of dwarf satellite galaxies in the
Milky Way (MW) is much less than that predicted from
CDM simulations. In recent years there is another problem
originally from the MSP, which is called the too-big-to-fail
(TBTF) [13,14]. Most massive subhalos generated from the
CDM N-body simulation are too massive in the Milky Way
halo with circular velocity larger than 30 km=s, whereas
the observed maximum circular velocities of dwarf spher-
oidals are less than 25 km=s.
All three problems, CCP, MSP, and TBTF, are called the

small scale problem and they can be resolved if the CDM
particles are self-interacting with a light mediator to give a
large self-interacting cross section (SICS) [15]. The large
SICS provides a positive gradient of velocity dispersion /
temperature near the center of (sub)halo such that the heat
flow moves outward avoiding the formation of a density
cusp until self-interaction becomes weak and forms a flat
core density. Also, the smaller (sub)halo has a lower
temperature since the faster DM particles are easily to
escape from the long-range gravitational potential. Hence,
with the smaller subhalo in the host halo, the large SICS
can transfer heat from hotter DM particles in host halo to
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the colder DM particle in subhalo resulting in the subhalo’s
fragmentation or evaporation. On the other hand, the self-
interacting cross section can not be too large. Otherwise,
the small structures of our Universe such as satellite
galaxies would likely be washed out.
From the astrophysical observation of galaxies and

clusters of galaxy, we have the following constraints.
(i) For a galaxy cluster with circular velocity v≃

1000 km=s, the momentum transfer cross section
(σT) per unit DM mass is σT=mχ≃0.1 cm2=g [16].

(ii) For a galaxy with v ≃ 100 km=s, σT=mχ ≃ 2 cm2=g.
(iii) For a dwarf galaxy with v ≃ 10–100 km=s, σT=mχ ≃

5–10 cm2=g [17].
We can see that the SICS increases with decreasing DM
velocity. The velocity-dependent SICS is required to solve
the problems occurred in small structure scale of Universe.
In addition, possible anomalies in cosmic-ray, positron
excess observed by PAMELA [18], AMS02 [19], ATIC
[20] and FermiLAT [21] can also be explained by requiring
that the present DM annihilation cross section be 2 ∼ 3
orders of magnitude greater than that in the freeze-out
stage [22]. This can be achieved by considering the
Sommerfeld effect on a SIDM with a light mediator and
can also be constrained by these anomalous observations of
cosmic-ray [23].
A simple and elegant model with a self-interacting

leptonic scalar dark matter (χ) and a light mediator (ζ)
was recently proposed [24] to provide a CDM candidate
and to solve the small scale problems of the Universe. The
light mediator (ζ) could have a large production cross
section through s-wave Sommerfeld enhancement at late
times. If it decays to electrons and photons, it would change
the history of gas ionization in the Universe, disrupt the
cosmic microwave background (CMB), and be ruled out by
the precise cosmological data now available [25]. To satisfy
cosmological requirements, the mediator (ζ) is chosen to
have special Yukawa couplings such that it would not decay
into electrons and photons [24]. In our analysis, we have
adopted this model with a focus on Sommerfeld enhance-
ment to determine the CDM relic density more precisely. In
addition, we find the allowed parameter space that satisfies
all constraints of (a) recent direct searches (b) indirect
detection experiments, (c) the observed relic density,
(d) effective number of neutrinos, and (e) the astrophysical
observation of small-scale structure of Universe.
This paper is organized as follows. In Sec. II, we

introduce a leptonic scalar dark matter (LSDM) model
proposed by E. Ma [24]. Section III shows direct search
results for leptonic scalar dark matter, the spin-independent
cross section of DM-nucleon elastic scattering in the
LSDM model, and compare it with XENON1T data
[26]. In Sec. IV, we present DM relic density as well as
discovery potential of indirect search for CDM. We
evaluate the relic density and effects of the Sommerfeld
enhancement in the LSDM model to compare with the

observed DM relic density [8,27]. In addition, we compare
our results of indirect search with Fermi-LAT [28,29] and
H.E.S.S. [30] astrophysical observations. The cosmological
constraints on right-handed neutrino and the small scale
requirements (CCP, MSP, TBTF) are discussed in Secs. V
and VI, respectively. We show favored regions of parameter
space in Sec. VII. Conclusions are drawn in Sec. VIII.
Some useful formulas for Sommerfeld enhancement are
presented in Appendix A.

II. LEPTONIC SCALAR DARK MATTER MODEL

Recently, a simple and elegant model with a self-
interacting leptonic scalar dark matter (LSDM) was pro-
posed [24]. This model is a simple extension of the
Standard Model (SM) with conservation of a Uð1ÞL lepton
number. There exist a singlet scalar (χ) chosen to be the DM
candidate with L ¼ 1, one light singlet scalar (ζ) as a
mediator with L ¼ 2, and three right-handed neutrinos: νRi
(i ¼ 1, 2, 3). The lepton number conservation assures the
stability of χ and no vacuum expectation value developed
from χ and ζ scalar fields.
The general scalar potential consisting of χ, ζ and the SM

Higgs doublet is given by [24]

V ¼ μ20Φ†Φþ μ21χ
�χ þ μ22ζ

�ζ þ ðμ12ζ�χ2 þ H:c:Þ

þ 1

2
λ0ðΦ†ΦÞ2 þ 1

2
λ1ðχ�χÞ2 þ

1

2
λ2ðζ�ζÞ2

þ λ01ðΦ†ΦÞðχ�χÞ þ λ02ðΦ†ΦÞðζ�ζÞ þ λ12ðχ�χÞðζ�ζÞ:
ð1Þ

The scalar masses have the following relations

m2
H ¼ λ0v2 ≃ ð125 GeVÞ2; m2

χ ¼ μ21 þ
1

2
λ01v2;

m2
ζ ¼ μ22 þ

1

2
λ02v2; ð2Þ

and the Higgs vacuum expectation value is v ≃ 246 GeV.
For simplicity, let us consider a CP-conserving scalar

potential with eight free real parameters:

mχ ; mζ; μ12; λ1; λ2; λ01; λ02; and λ12: ð3Þ

The values of μ0 and λ0 are fixed by the minimization
condition of the scalar potential and the measured Higgs
mass. The μ12ζ�χ2 term serves as the source to enhance the
self-interaction of χχ� → χχ� through the exchange of ζ.
That leads to the dominant t-channel cross section

σðχχ� → χχ�Þ ¼ μ412
4πm4

ζm
2
χ
; ð4Þ

where ζ is the light mediator [24].
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The neutrinos in this model are Dirac fermions with
small masses that could be natural consequences of various
known mechanisms [31–33]. For example, let us consider a
discrete symmetry S, such that under a transformation
we have

νL → þνL; ϕ0 → þϕ0; and νR → −νR; ð5Þ

Then we insert a heavy singlet Dirac fermionN with a large
mass MN as shown in Fig. 1. The S symmetry is softly
broken by the dimension three mass term ν̄RNL with
N → þN and νR → −νR. The small masses m1 and m2

are generated by electroweak symmetry breaking or soft S
symmetry breaking. That leads to a small Dirac neutrino
mass through the seesaw mechanism. Thus, the only new
Yukawa couplings are

LY ¼ fijζ�νcRνR þ H:c:: ð6Þ

After χ freezes out, ζ eventually decays to neutrinos via the
fij terms with a lifetime

τζ ¼
4π

mζf2RR
; ð7Þ

where f2RR ≡Pi;j jfijj2. We can see that τζ ≲ 10−11 sec,
for mζ > mmin

ζ ¼ 0.2 GeV and fRR > fmin
RR ¼ 10−6. This

means that before the onset of big bang nucleosynthesis
(BBN), all ζ’s decay away and νR decouples from the SM
particles at the temperature TR

f ≃mζ.
Before going further, we should note that χ� has a lepton

number L ¼ −1 and it is the antiparticle of χ with L ¼ þ1.
Since CP is conserved, the transition amplitude (Mχ�)
involving χ� is the same as the transition amplitude (Mχ)
with χ. Now let nχ and nχ� be the number density of the
particle χ and the antiparticle χ�, respectively. Their sum is
total number density of DM, n ¼ nχ þ nχ� . Both χ and χ�

make equal amount of contributions to the annihilation
cross section and the CDM relic density.

III. DIRECT SEARCH FOR LEPTONIC
SCALAR DARK MATTER

It is an opportune time to investigate direct detection for
WIMP dark matter. The XENON1T collaboration recently
announced the observation of low energy excess electronic

recoil events in their detector [34]. In this section, we focus
on the search for nuclear recoils generated by the WIMP-
nucleon scattering. We evaluate χ-nucleon elastic scattering
cross section for the leptonic scalar dark matter (χ). In
addition, we place limits on the relevant parameters λ01 and
mχ with XENON1T results.

A. The elastic scattering of DM with nucleus N

In the LSDMmodel, the leptonic scalar DM (χ) interacts
with quarks (q) through the SM Higgs boson (H). Hence
the effective Lagrangian of χ with quarks is simply

Leff ¼
X
q

aq½χχ��½q̄q�; with aq ≃ λ01
mq

m2
H
; ð8Þ

where mq and mH are masses of the quark and the Higgs
boson, respectively, and aq is the effective coupling of DM
interacting with the quark in a nucleon.
Before making an estimate for the detection rate of the

leptonic dark matter (χ) in the XENON1T experiment,
let us evaluate the normalized spin independent (SI) cross
section for the leptonic scalar DM scattered off the 129;131Xe
nuclei. Applying the effective Lagrangian in Eq. (8), we
obtain the matrix element for elastic scattering of the DM
particle (χ) and the nucleus (N ) as

Mfi ¼ 2mN

X
q

aqhN fjq̄qjN i: ð9Þ

In general, the averaged unpolarized amplitude square at
q2 ¼ 0 can be written as

X
jMfij2ðq2 ¼ 0Þ
¼
X

jMSI
fij2ðq2 ¼ 0Þ þ

X
jMSD

fi j2ðq2 ¼ 0Þ
¼ 4m2

N f2sN ; ð10Þ

where SI and SD denote the spin independent and the spin
dependent contributions, respectively.
For the effective scalar interaction, we have

fsN ¼ Zfsp þ ðA − ZÞfsn; ð11Þ

where

FIG. 1. Dirac neutrino mass with a Dirac singlet fermion insertion.
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fspðnÞ ¼
X

q¼u;d;s

aq
mpðnÞ
mq

fpðnÞTq

þ
X

q¼c;b;t

aq
2

27

mpðnÞ
mq

�
1 −

X
q0¼u;d;s

fpðnÞTq0

�
: ð12Þ

When evaluating the quark operator matrix element in the
nuclear state, we need to include loop contributions
involving heavy quarks that contribute to the mass of
the nucleon (mpðnÞ).
The proton mass fraction fpTq is defined by the matrix

elements of the quark current

hpjmqq̄qjpi ¼

8>><
>>:

mpf
p
Tq; q ¼ u; d; s;

2
27
mp

�
1 −

P
q¼u;d;s

fpTq

�
; q ¼ c; b; t:

ð13Þ

The neutron mass fraction fnTq is defined in the same way.
The matrix elements of the light-quark currents in the
proton or neutron are obtained in chiral perturbation
theory from measurements of the pion-nucleon sigma term
[35–40]. The heavy quark contribution to the mass of the
nucleon is through the triangle diagram [41].
In the center of mass (CM) frame, the differential cross

section is

dσðq⃗ ¼ 0Þ
djqj2 ¼ 1

64πsμ2N v2
X

jMfij2ðq2 ¼ 0Þ; ð14Þ

where v is the DM velocity relative to the target,
ffiffiffi
s

p
≈

mχ þmN is the total energy, and μN is the reduced mass of
DM and the target nucleus N . The total cross section at
zero momentum transfer [42] can then be obtained as

σSI0 ¼
Z

4μ2
N
v2

0

djqj2 dσðq⃗ ¼ 0Þ
djqj2 ¼ μ2N

π
f2sN : ð15Þ

Hence the total cross section of DM-nucleus (χ −N )
scattering becomes

σN ¼ σSI0
4μ2N v2

Z
4μ2

N
v2

0

djqj2F2
SIðjqjÞ ð16Þ

where F2
SIðjqjÞ is the spin-independent form factor. To

compare with the experimental results, we define the scaled
SI and SD cross sections, respectively, for the nucleus with
atomic mass number Ai and isotope abundance ηi as the
following

σSIχp ≡
P

iηiσAiP
jηjA

2
j

μ2Aj
μ2p

; ð17Þ

and

σSDχp;n ≡
�X

i

ηiσAi

��X
j
ηj
4μ2Aj

hSp;ni2effðJAj
þ 1Þ

3μ2p;nJAj

�−1

;

ð18Þ

where μAi
and μp;n are the reduced masses of the DM with

the target nucleus and the DM with proton or neutron,
respectively. In the above, hSpðnÞieff and (JAj

) are the proton
(neutron) spin expectation value (including the contribu-
tions of two-body current [43]) and the total angular
momentum of the nucleus with atomic mass number Aj

respectively. The effective spin expectation value is
defined as hSpðnÞieff≡hSpðnÞi�δa1ðhSpi−hSniÞ=2 and
δa1 is the fraction contributing to the isovector
coupling [43,44].

B. Numerical results for direct search

At present, the XENON1T experiment [26] provides the
most stringent upper limits on σSI for WIMP masses above
6 GeV. In our analysis for spin independent cross section of
χ −N scattering, we adopt the Helm form factor [45,46]
used in XENON1T experiments:

F2
SIðjqjÞ ¼

�
3j1ðqRN Þ

qRN

�
2

eðqsÞ2 ; ð19Þ

where the nuclear radius RN ¼ c2 þ 7
3
π2a2 − 5s2 with

c ¼ ð1.23A1=3–0.6Þ fm, a ¼ 0.52 fm and the nuclear
surface thickness s ¼ 1 fm. We use the updated data of
nucleon mass fractions from Ref. [40]: fpTu ¼ 0.017,
fpTd ¼ 0.023, fnTu ¼ 0.012, fnTd ¼ 0.033, fp;nTs ¼ 0.053.
In the LSDM model with a scalar dark matter (χ) and a

light mediator (ζ), there are eight free parameters as shown
in Eq. (3). In our analysis, the scan is performed with the
log-prior distributions for the input parameters as shown in
the below:

(i) mH=2 ≤ mχ ≤ 1 TeV, such that χχ → ζH can
occur,

(ii) 0.2 GeV ≤ mζ ≤ 1.2 GeV,
(iii) 1 GeV ≤ μ12 ≤ 1 TeV, and
(iv) 10−6 ≤ λ ≤ Oð1Þ ∼ ffiffiffiffiffiffi

4π
p

for λ ¼ λ1; λ2; λ01, or λ12.
Note that λ02 is chosen to be 10−6 ≤ λ02 ≤ 10−2. It is
constrained by the SM Higgs invisible decay width
(H → ζζ�), i.e.,

ΓðH → ζζ�Þ ¼ λ202v
2

16πmH
: ð20Þ
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Assuming that the invisible width is less than 10% of
the Higgs width ΓH ∼ 4.12 MeV [27], we obtain the
maximal value of λ02 ∼ 6.5 × 10−3. In addition, mζ must
be greater than 0.2 GeV to satisfy the cosmological
constraint of effective number of neutrinos, which will
be discussed later.
In this model, the scaled SI and SD cross sections

(σSIχp and σSDχp ) depend on two parameters: (i) the mass of
leptonic scalar dark matter (mχ), and (ii) the coupling λ01.
We apply the most stringent constraint from XENON1T
experiment [26] with the upper limits of SI WIMP-nucleon
scattering cross section. Figure 2(a) shows the spin inde-
pendent cross section σSIχp versus mχ with random sampling
for DM (χ) scattered off the nuclei 129;131Xe. In addition, a
scatter plot for the same samples projected to the plane
of (mχ , λ01) with the corresponding λ01 is presented in
Fig. 2(b). In this figure, we show three groups of samples:
(a) all samples with red “×” above the upper limits of
XENON1T experiment [26] are ruled out, (b) those with
green “∘” between the upper limits of XENON1T experi-
ment and the curve of neutrino background [47–49] are
allowed and could be detectable in future detectors, and
(c) the samples with blue “·” below the curve of neutrino
background, and they are allowed as well. However, we
may not be able to distinguish the DM event from
neutrino event.

IV. RELIC DENSITY AND INDIRECT SEARCH

The matter density (ρ) of the Universe is often described
with a relative density (Ω)

Ω ¼ ρ

ρc
ð21Þ

ρc ¼
3H2

0

8πGN
≃ 1.88 × 10−29h2 g=cm3 ð22Þ

where ρc is the critical density, GN is Newton’s gravita-
tional constant, and H0 is the Hubble constant, conven-
tionally expressed as

H0 ¼ 100h km=s=Mpc; ð23Þ

and h ≃ 0.68 [27].
The Planck collaboration has measured cosmological

parameters with very high precision [8]. The updated cold
dark matter relic density [8] is

ΩCDMh2 ¼ 0.120� 0.001: ð24Þ

We can also take a conservative approach as demonstration
that χ can be produced again in the late time by other
cosmological mechanisms so that the relic density at the
present at 3σ allowed range follows

Ωχh2 ≤ 0.123: ð25Þ

This assumption also includes the standard scenario
Ωχh2 ≈ 0.12.

(a) (b)

FIG. 2. (a) The spin independent cross section σSIχp versusmχ with random sampling for DM (χ) scattered off the nuclei 129;131Xe. Also
shown are the upper limit from XENON1T [26] and the neutrino background [47]. (b) A scatter plot for the same samples projected to
the plane of (mχ , λ01) with the corresponding λ01.
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A. Thermal relic dark matter density

In the early Universe, DM χ existed abundantly in thermal
equilibrium with other particles. The evolution of the total
number density (nðtÞ ¼ nχ þ nχ� ¼ 2nχ) for the leptonic
dark matter is described by the Boltzmann equation:

dn
dt

þ 3Hn ¼ −hσannvi½n2 − n2E�; ð26Þ

where nE is the number density at thermal equilibrium, the
Hubble parameter is

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3g�ðTÞT4=ð45M2

PlÞ
q

≃ 1.66g1=2� T2=MPl; ð27Þ

MPl ¼ 1.2 × 1019 GeV is the Planck mass, g� is the total
effective number of relativistic degrees of freedom [50,51],
hσannvi is the thermally averaged annihilation cross section
times velocity, and v is the relative velocity. The relative
velocity

v≡ vlab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

χÞ
q .

ðs − 2m2
χÞ ð28Þ

and the Mandelstam variable s ¼ 2m2
χð1þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2Þ

p
are

measured in the lab frame.
The thermally averaged annihilation cross section times

velocity hσannvi is evaluated with the Maxwell velocity
distribution,

hσannvi ¼
3
ffiffiffi
6

p
ffiffiffi
π

p
v30

Z
∞

0

dvv2
ðσannvÞχχ�

2
e−3v

2=2v2
0

¼ x3=2f

2
ffiffiffi
π

p
X
φ1;φ2

Z
∞

0

dvv2
½σannðχχ� → φ1φ2Þv�

2
e−xv

2=4

× θ

�
2m2

χ

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

�
− ðmφ1

þmφ2
Þ2
�
;

ð29Þ

where xf ≡mχ=Tf, v0 ≡ hv2i1=2 ¼ ffiffiffiffiffiffiffiffiffiffi
6=xf

p
with the

freeze-out temperature Tf. The second expression repre-
sents the leading contribution of DM annihilating to a pair
of particles (φ1 and φ2) in the final state. Figure 3 shows the
Feynman diagrams for the dominant leptonic scalar DM
annihilation processes. For each annihilation channel, we
have put a step function (θ) for the threshold energy.
As the Universe cooled down, deviation of number

density (nχ) from thermal equilibrium would begin when
the temperature reached the freeze-out temperature (Tf).
After the temperature dropped to approximately Tf=5, the
annihilation rate of the WIMP dark matter became equal to
the expansion rate of universe [42], namely nχhσannvi ¼ H.
The relic mass density becomes

Ωχh2 ¼ nχmχ=ρc ¼
Hmχ

hσannviρc
ð30Þ

and the leptonic scalar χ remains as cold dark matter. From
the freeze-out condition, nχhσannvi ¼ H, the freeze-out
temperature parameter xf can be solved numerically by
the following equation [42,50]

xf ¼ ln

�
cðcþ 2Þ

ffiffiffiffiffi
45

8

r
gχmχMplðaþ 6b=xfÞ
2π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðmχ=xfÞ

p
x1=2f

�
: ð31Þ

In the above, c is an order of unity parameter determined by
matching the late-time and early-time in the freeze-out
criterion. The exact value of c is not so significant to solve
the numerical solution for xf due to the logarithmic
dependence in Eq. (31). Following the standard procedure
[50] to solve the Boltzmann equation [Eq. (26)], the relic
DM density ΩDM ≡ ρχ=ρc can be approximately related to
hσannvi as

ΩDMh2 ≈ 1.04 × 109
GeV−1

MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTfÞ

p
JðxfÞ

; ð32Þ

FIG. 3. Feynman diagrams for leptonic scalar DM annihilation.
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where

JðxfÞ≡
Z

∞

xf

hσannvi
x2

dx

¼
Z

∞

0

dv
ðσannvÞχχ�

2
v½1 − erfðv ffiffiffi

x
p

f=2Þ�: ð33Þ

In the nonrelativistic limit, JðxfÞ ¼ a=xf þ 3b=x2f.
The DM particles became nonrelativistic (NR) when

they froze out of thermal equilibrium in the early universe.
In the NR limit, we have σannðχχ� → allÞv ¼ aþ bv2 þ
Oðv4Þ by applying the Taylor series expansion and its
thermally averaged value Eq. (29) can be simplified
as hσannvi ¼ aþ 6b=xf þOð1=x2fÞ.

B. Indirect search for leptonic scalar dark matter

In the halo of the MilkyWay and nearby galaxies, WIMP
DM annihilation might generate high energy gamma-rays
and appear in detectors such as Fermi-LAT [28,29],
H.E.S.S. [30,52], HAWC [53], MAGIC [54], or
VERITAS [55]. In addition, WIMP dark matter would
lose energy when they pass through massive stars such as
the sun. They become gravitationally trapped and accu-
mulate. WIMP annihilations could be sources of high
energy neutrinos and might be detected by ANTARES
[56] and IceCube [57].

At present, the most stringent limits for our surveyed DM
mass range, mH=2 < mχ < 1000 GeV, come from Fermi-
LAT [28,29] and H.E.S.S. [30]. We will evaluate the
leptonic scalar DM annihilation cross section hσannvi in
different channels, and investigate the discovery potential
as well as determine favored parameters guided by the
Fermi-LAT and the H.E.S.S. data.
Fermi-LATanalyzed 15 dwarf spheroidal satellite galaxies

(dSphs) [28,29], while the H.E.S.S observed γ-ray toward
the inner 300 parsecs of the MilkyWay. The speed of the sun
moving around the galactic center is approximately
220 km=s at the local distance r ≈ 8.5 kpc and the galactic
circular rotation speed is about 230 km=s at radii ≈100 kpc
[42,58]. On the other hand, the distance between the 15
dSphs and the sun is ≈23–233 kpc [28]. In the indirect-
detection calculation, we conventionally adopt a typical DM
velocity v0 ≃ 10−3 in the unit of the light speed [59].
In the leptonic scalar DM model, the dark matter particle

(χ) can annihilate into a pair of SM particles such as
WþW−, Z0Z0, HH, fermion pairs ff̄, or ζζ� through
s-channel exchange of SMHiggs bosonH. In addition, The
leptonic scalar DM can also annihilate into a pair of ζζ� or
HH through 4-point interactions and t-channel exchange of
χ, or νRνR through s-channel exchange of ζ, or a pair of ζH
through s-exchange of ζ and t- and u-channel exchange of χ
as presented in Fig. 3. From these Feynman diagrams, we
calculate the corresponding DM annihilation cross sections
at tree-level:

ðσvÞχχ�→ζζ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− 4m2

ζ

q
16π

ffiffiffi
s

p ðs− 2m2
χÞ

8>><
>>:λ212 þ

16μ212
m4

ζ −m2
χðs− 4m2

ζÞ
þ λ201λ

2
02v

4 − 2λ01λ02λ12v2ðs−m2
HÞ

ðs−m2
HÞ2 þm2

HΓ2
H

þ 8μ212½λ12ððs−mH2Þ2 þm2
HΓ2

HÞ− λ01λ02v2ðs−M2
HÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs− 4m2
χÞðs− 4m2

ζÞ
q

ððs−mH2Þ2 þm2
HΓ2

HÞ
× log

2
64s− 2m2

ζ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs− 4m2

χÞðs− 4m2
ζÞ

q
s− 2m2

ζ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs− 4m2

χÞðs− 4m2
ζÞ

q
3
75
9>>=
>>;; ð34Þ

ðσvÞχχ�→ff̄ ¼ Cfλ201m
2
fðs − 4m2

fÞ3=2
8π

ffiffiffi
s

p ðs − 2m2
χÞ½ðs −m2

HÞ2 þm2
HΓ2

H�
; ð35Þ

ðσvÞχχ�→VV ¼ λ201
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

V

p
ðs2 − 4sm2

V þ 12m4
VÞ

16π
ffiffiffi
s

p ðs − 2mχÞ½ðs −m2
HÞ2 þm2

HΓ2
H�

S; S ¼
�
1 for WþW−
1=2 for Z0Z0

ð36Þ

ðσvÞχχ→νRiνRj
¼ μ212jfijj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

ν

p
ðs − 2m2

νÞ
π
ffiffiffi
s

p ðs − 2m2
χÞ½ðs −m2

ζÞ2 þm2
ζΓ2

ζ �
; ð37Þ

ðσvÞχχ→ζH ¼ ðλ01μ12vÞ2
ffiffiffiffi
A

p

2πðs − 2m2
χÞðm2

χAþ sm2
Hm

2
ζÞ

þ 2ðλ01μ12vÞ2s tanh−1ð
ffiffiffiffiffiffiffi
AB

p
=CÞ

πðs − 2m2
χÞ

ffiffiffiffi
B

p
C

−
2λ01λ02ðμ12vÞ2ðs −m2

ζÞ tanh−1ð
ffiffiffiffiffiffiffi
AB

p
=CÞ

πðs − 2m2
χÞ

ffiffiffiffi
B

p
D

þ ðλ02μ12vÞ2
ffiffiffiffi
A

p

4πsðs − 2m2
χÞD

; ð38Þ
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where

A ¼ ½s − ðmH þmζÞ2�½s − ðmH −mζÞ2�;
B ¼ sðs − 4m2

χÞ;
C ¼ sðs −m2

H −m2
ζÞ;

D ¼ ðs −m2
ζÞ2 þm2

ζΓ2
ζ : ð39Þ

After substituting s ¼ 2m2
χð1þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Þ into the above

equations and expanding around v2, one can obtain the
usual form: hσannvi ¼ haþ bv2 þOðv4Þi in the nonrela-
tivistic limit. As discussed in Sec. II, the decay lifetime of ζ
is so short that the ζ has all decayed into two right-handed
neutrinos νR, and the light νR decouples from the SM
particles at its freeze out temperature TR

f ∼mζ before the
onset of BBN.

C. Sommerfeld enhancement effect

When the DM particles froze out in the early universe,
they became nonrelativistic and the nonperturbative
Sommerfeld enhancement effect becomes important
[60–66]. We present the schematic diagrams of annihilation
processes with the Sommerfeld enhancement effect for
χχ� → ζζ� in Figs. 4(a), 4(b) and for χχ → νRνR in
Fig. 4(c). In fact, Sommerfeld effect contains an infinite
series of the ladder diagrams.
Let us first consider the easier case of Sommerfeld

enhancement effect on the annihilation process
χðp1Þχðp2Þ → νRðp3ÞνRðp4Þ through the exchange of
the mediator X ¼ H, as shown in Fig. 4(c). When DM
particles χχ become non-relativistic, they rescatter off
each other [Fig. 5(a)] before annihilating to νRνR. The
Sommerfeld enhanced amplitude iAS of χχ → νRνR anni-
hilation process [Fig. 5(b)] can be expressed as

iASðp3; p4; p1; p2Þ ¼ iAðp3; p4; p1; p2Þ þ
Z

d4p0
3

ð2πÞ4 iAðp3; p4;p0
3; p

0
4ÞðiDFðp0

3ÞÞiΓðp0
3; p

0
4;p1; p2ÞðiDFðp0

4ÞÞ; ð40Þ

where iA is the amplitude of the annihilation process at tree level, DF is the leptonic scalar DM propagator and iΓ is the
amputated nonperturbative 4-point vertex function [Fig. 5(a)] describing the rescattering process of χðp1Þχðp2Þ →
χðp0

3Þχðp0
4Þ and satisfying the following equation:

iΓðp0
3; p

0
4; p1; p2Þ ¼ iΓ̃ðp0

3; p
0
4;p1; p2Þ þ

Z
d4p00

3

ð2πÞ4 iΓ̃ðp
0
3; p

0
4;p

00
3; p

00
4Þ½iDFðp00

3Þ�iΓðp1; p2;p00
3; p

00
4Þ½iDFðp00

4Þ�: ð41Þ

In the above, we have the lowest order perturbative 4-point vertex function given by

iΓ̃ðp0
3; p

0
4;p

00
3; p

00
4Þ ¼ −ig2X

1

ðp00
3 − p0

3Þ2 −m2
X
; ð42Þ

FIG. 4. Schematic diagrams for nonpertubative annihilation processes: χχ� → ζζ� and χχ� → νRνR.

FIG. 5. Diagrams for (a) rescattering of χχ → χχ, and (b) nonperturbative annihilation of χχ → νRνR.
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where X is the mediator particle (X ¼ H), and
p00
4 ¼ −p00

3 þ p0
3 þ p0

4. Note that the dimensionless cou-
pling strength of DM χ with the mediator X is
gX ¼ g0X=ð2mχÞ, where the dimensionful coupling g0X is
usually defined in the interaction Lagrangian. When the
process is mediated by the Higgs boson (H), we have
gH ¼ g0H=ð2mχÞ ¼ λ01v=ð2mχÞ, where the dimensionful
coupling g0H ¼ λ01v as described in the scalar potential
[Eq. (1)].
From Appendix A 1, we find that the pair of DM

particles χχ form a bound state and the wave function
ψðr⃗Þ satisfies the following Schrödinger equation:

−
1

2μ
∇2ψðr⃗Þ þ Vðr⃗Þψðr⃗Þ ¼ Eψðr⃗Þ ¼ 1

2
μv2ψðr⃗Þ: ð43Þ

where μ ¼ mχ=2 is the reduce mass of the bound state (χχ),
and E ¼ jp⃗j2=2μ≡ μv2=2 is the total kinetic energy with
the relative velocity v ¼ vlab defined in Eq. (28). VðrÞ is a
Yukawa-type potential

VðrÞ ¼ −αX
e−mXr

r
; ð44Þ

where αX ¼ g2X=4π and mX is the mass of mediator.
For the case of s-wave rescattering, the Sommerfeld

enhanced amplitude iAS can be written as

iASðp1; p2;p3; p4Þ ¼ iAðp⃗1; p⃗2; p⃗3; p⃗4Þψðr⃗ ¼ 0Þ; ð45Þ

where iA is the amplitude at tree level as explained in
Appendix A 2. Consequently, the Sommerfeld enhanced
velocity averaged annihilation cross section hσviS ≃ aS þ
bSv2 can be further simplified as

hσviS ∼ aS ¼ haSðvÞi; S ¼ jψ l¼0ðr⃗ ¼ 0Þj2; ð46Þ

where S is just the s-wave Sommerfeld enhancement factor
(see Appendix A 2).
It is well known that there is no analytical solution with a

Yukawa potential in Eq. (43), but the Hulthén potential
maintains the same short and long distance behavior of the
Yukawa potential and has an analytical solution for s-wave
function. Hence it is a good approximation to employ the
Hulthén potential to obtain jψ l¼0ðr⃗ ¼ 0Þj with a Yukawa
potential [67],

Vðr⃗Þ ≃ −αX
ðπ2mX=6Þe−π2mXr=6

1 − e−π
2mXr=6

; ð47Þ

where the mediator particle X ¼ H. One can obtain the
wave function [68] in terms of Gamma function Γ

ψ l¼0ðr⃗¼ 0Þ ¼ i
π2ϵX=6
2ϵv

Γ

 
1− i

ϵv
π2ϵX=6

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

π2ϵX=6
ϵ2v

s !!
× Γ

 
1− i

ϵv
π2ϵX=6

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

π2ϵX=6
ϵ2v

s !!�
Γ
�

−2iϵv
π2ϵX=6

�
;

ð48Þ

with1

ϵv ≡ v
2αX

; ϵX ≡ mX

αXmχ
; ð49Þ

and the s-wave Sommerfeld factor is given by [69]

Sðmχ ; mX; αX; vÞ
¼ jψ l¼0ðr⃗ ¼ 0Þj2

¼ π

ϵv

sinhð 2πϵv
π2ϵX=6

Þ
cosh

	
2πϵv

π2ϵX=6



− cos

	
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

π2ϵX=6
− ϵ2v

ðπ2ϵX=6Þ2
q 
 : ð50Þ

For χχ → νRνR annihilation process, the mediator particle
is X ¼ H. ψ l¼0ðr⃗ ¼ 0Þ indeed goes to 1 in the αX ¼ 0 limit.
We will see that the analytic solution S ¼ jψ l¼0ðr⃗ ¼ 0Þj2

agrees well with that obtained from numerically solving the
Schrödinger equation with the Yukawa potential.
When the mediator mass can be neglected, the Yukawa

potential can be approximated by a Coulomb potential:

VðrÞ ≃ −
αX
r
: ð51Þ

The corresponding s-wave function is given by [70]

ψ ðcoulÞ
l¼0 ðr⃗Þ ¼ Γð1þ iγÞe−πγ=2eip⃗·r⃗1F 1ð−iγ; 1; ipr − ip⃗ · r⃗Þ;

ð52Þ

where 1F 1 is the confluent hypergeometric function of the
first kind, and

γ ¼ αX
v

¼ αXμ

jp⃗j : ð53Þ

In this approximation we have
1Note that the β in the formula of [67] is in fact v=2 in this

work.
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ψ ðcoulÞ
l¼0 ðr⃗ ¼ 0Þ ¼ Γð1þ iγÞe−πγ=2: ð54Þ

Accordingly, the corresponding s-wave Sommerfeld factor
in the Coulomb potential is

SðcoulÞ ¼ jψ ðcoulÞ
l¼0 ðr⃗ ¼ 0Þj2

¼ Γð1þ iγÞΓð1 − iγÞe−πγ ¼ 2πγ

e2πγ − 1
: ð55Þ

In fact jψ l¼0ðr⃗ ¼ 0Þj goes to jψ coul
l¼0 ðr⃗ ¼ 0Þj and the

Sommerfeld factor S in Eq. (50) does reduce to SðcoulÞ
in the large mχ region [67,71].
As mentioned above, we only keep the first term

(the a term) in Eqs. (34)–(35) for both relic density
calculation and the indirect annihilation processes, namely,
the s-wave contribution, with hσannvi ≈ aþOðv2Þ. Hence
we show the a-term for each annihilation process as
follows:

aζζ
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ −m2
ζ

q
32πm3

χ

�ðμ212 − λ12m2
ζ þ 2λ12m2

χÞ2
ð2m2

χ −m2
ζÞ2

þ λ201λ
2
02v

4

½ð4m2
χ −m2

HÞ2 þm2
HΓ2

H�

−
2λ01λ02v2ð4m2

χ −m2
HÞð4μ212 − λ12m2

ζ þ 2λ12m2
χÞ

ð2m2
χ −m2

ζÞ½ð4m2
χ −m2

HÞ2 þm2
HΓ2

H�
�
;

ð56Þ

aff̄ ¼ Cfλ
2
01m

2
fðm2

χ −m2
fÞ3=2

4πm3
χ ½ð4m2

χ −m2
HÞ2 þm2

HΓ2
H�

; ð57Þ

aVV ¼
λ201

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ −m2
W

q
ð4mχ4 − 4m2

χm2
W þ 3m4

WÞ
8πm3

χðð4m2
χ −m2

HÞ2 þm2
HΓ2

HÞÞ
S; ð58Þ

aνRiνRj ¼
μ212jfijj2ð2m2

χ −m2
νÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ −m2
ν

q
πm3

χ ½ð4m2
χ −m2

ζÞ2 þm2
ζΓ2

ζ �
; ð59Þ

aζH ¼ μ212v
2

128πm4
χD

�
4
ffiffiffiffi
A

p �
λ202 þ

8λ201DðAþ 4m2
Hm

2
ζÞ

ðAþ 4m2
Hm

2
ζÞ2

�

−
128λ01m2

χ ½λ02ð4m2
χ −m2

ζÞC − 8λ01m2
χD�ffiffiffiffi

B
p

C

�
: ð60Þ

For χχ → νRνR and ζH annihilation processes, we have

hσviSðχχ → νRνRÞ ≃ haνRνRSðmχ ; mH; αH; vÞi; ð61Þ

hσviSðχχ → ζHÞ ≃ haζHSðmχ ; mH; αH; vÞi: ð62Þ

Accordingly, we can analytically obtain the Sommerfeld
factor S ¼ jψ l¼0ðr⃗ ¼ 0Þj2 for the χχ → νRνR and χχ → ζH
annihilation processes.
Figure 6 shows the s-wave Sommerfeld factor in the

present universe with (v ¼ 10−3c) as a function of the DM
mass (mχ) for two values of the coupling g0X=v ¼ 10 [(a)
and (b)] as well as g0X=v ¼ 1 [(c) and (d)]. The left panels
[(a) and (c)] present the analytical results with the Hulthén
potential [Eq. (47)] and mX ¼ mH, as well as numerical
results with Yukawa potential [Eq. (44)] and mX ¼ mH. In
addition, we show the analytical solution in Coulomb
potential approximation. In the right panels [(b) and (d)],
the analytical solutions in Huthén potential approximation
are presented with three values of the mediator mass
mX ¼ 0.01, 0.1, and 1 GeV. The Coulomb potential
approximation in the left panels and the analytical solution
with mX ¼ 0.01 GeV in the right panels are both repre-
sented with orange dot-dashed lines because there is no
difference between them numerically.
We find that all curves in Figs. 6(b) and 6(d) with a

massive mX oscillate with an amplitude that increases with
an increasing mediator mass, while the frequency of
oscillation increases with a decreasing mediator mass.
Comparing Figs. 6(a)–6(d), we see that the Sommerfeld
enhancement factor S decreases with a decreasing coupling
g0X. Furthermore, the strength of Sommerfeld enhancement
decreases with an increasing mχ . The reason can be seen
as follows:

(i) First, these curves oscillate around the curve gen-
erated by the Coulomb potential.

(ii) The Coulomb potential approximation provides the
central value for S.

(iii) From Eqs. (53) and (55), we note that SðcoulÞ is a
function of αX ¼ g2X=4π. Hence the enhancement
factor S is suppressed by an increasing mχ owing
to gX ¼ g0X=ð2mχÞ.

In Fig. 7, we show S at the early universe with
ðv ¼ 0.5 × cÞ as a function of mχ . The colored scheme
is the same as Fig. 6 while the thick and thin lines are based
on g0X=v ¼ 10 and g0X=v ¼ 1, respectively. Clearly, com-
paring with low-velocity DM in present universe as
shown in Fig. 6, the nonperturbative effect for high-
velocity becomes much weaker resulting in much smaller
Sommerfeld enhancement in the early universe.
From Figs. 6 and 7, we find that the larger coupling

strength or smaller DM relative velocity v gives a greater
value of the Sommerfeld factor. Roughly speaking, the
Sommerfeld factor used at the present stage (v ≃ 10−3c) is
2 ∼ 3 order of magnitude greater than that in freeze-out
stage ðv ≃ 0.5 × cÞ with a light mediator mass. This main
characteristics of velocity dependent SICS is used to solve
the small scale problem.
We have shown in Figs. 6 and 7 that the numerical

result agrees well with the analytic solution in Hulthén
approximation at mX ¼ mH. Nevertheless, we see that it is

KAO, TSAI, and WONG PHYS. REV. D 103, 055021 (2021)

055021-10



impossible to obtain an analytical form for S in the
process of χχ� → χ�χ, which simultaneously involves the
exchanges of H and ζ particles schematically shown in
Figs. 4(a) and 4(b). The potential then becomes the sum of
two Yukawa-type potential

VðrÞ ¼ −αH
e−mHr

r
− αζ

e−mζr

r
: ð63Þ

where αX ¼ g2X=4π; ðX ¼ H; ζÞ, gH ¼ λ01v=2mχ , and gζ ¼
μ12=mχ . There is no analytical form for the Sommerfeld

enhancement factor S. Therefore, we develop a numerical
solution for S as given in Appendix A 3.

D. Numerical results for relic density
and indirect search

In this subsection, we present our numerical results for
the indirect search and the relic density. For the indirect
search, we compare our theoretical results with the most
stringent limits from the Fermi-LAT [28,29] and the
H.E.S.S. results [30]. Both Fermi-LAT and H.E.S.S. astro-
physical observations do not show the significant γ-ray

(a) (b)

(c) (d)

FIG. 6. Sommerfeld factor S versus mχ for the present universe with v ¼ 10−3c. The g0X parameter is the dimensionful coupling
between the DM (χ) and the mediator X. The left panels [(a) and (c)] present the analytical results (blue solid) with the Hulthén potential
[Eq. (47)] and mX ¼ mH, as well as numerical results (red dashed) with Yukawa potential [Eq. (44)] and mX ¼ mH . For comparison,
the analytical solution in Coulomb potential approximation is depicted by orange dashed lines. In the right panels [(b) and (d)],
the analytical solutions in Huthén potential approximation are shown with three values of the mediator mass mX ¼ 0.01 (orange
dot-dashed), 0.1 (black solid), and 1 GeV (green solid).
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signal above background. Instead, Fermi-LAT provides
upper limits on hσannvi for DM annihilating into WþW−

and the SM fermion pairs: bb̄; uū; τþτ−; μþμ−; eþe− at
95% confidence level with WIMPs masses between 2 GeV
to 10 TeV, while H.E.S.S. gives the upper limits on hσannvi
for DM annihilating intoWþW− and the SM fermion pairs:
tt̄; bb̄; τþτ−; μþμ− with masses from 160 GeV to 70 TeV.
Figure 8 presents hσannvi for leptonic scalar DM (χχ)

annihilating into WþW−, tt̄, τþτ−, ζH and ζζ�. The
samples above the upper limits of Fermi-LAT and
H.E.S.S are ruled out. The plots on the left-handed do
not include the Sommerfeld effect but the Sommerfeld
effect are considered in the plots on the right-handed side.
In each plot on the left-handed side, the same color scheme
as presented in Fig. 2 is used. In the panels of the right
column, we show the Sommerfeld effect for the data
survived from XENON1T limits, namely the samples taken
from those green (circle) and blue (dot) in the left panels.
Without considering the Sommerfeld effect, we see that

DM can only be detected with mχ ≳ 1 TeV via WþW− or
the Higgs resonance annihilation via bb̄ and τþτ− channel.
Clearly, the cross sections can be enhanced by the
Sommerfeld effect. Albeit the enhancement differs from
channel to channel, it is interesting that the cross section
of the channel ζζ� is overall enhanced. We see that DM
annihilating to a pair of ζζ� is dominant while this channel
is not detectable because ζ eventually decays to νR.
Figure 9 shows the leptonic scalar DM thermal relic

density Ωχh2 as a function of mχ : (a) without Sommerfeld
enhancement, and (b) with Sommerfeld enhancement

effects. We maintain the same symbols for each sample
used in Figs. 2 and 8. The horizontal line denotes the
observed relic density: Ωobsh2 ¼ 0.120 [27]. Since the relic
density is roughly proportional to the inverse of the total
hσannvi, the samples are oriented reversely in vertical
direction. With Sommerfeld enhancement effect, the same
parameters will lead to a smaller relic density as expected.
Thus, there are more regions of the parameter space
satisfying the relic density requirement Ωχh2 < 0.123 [27].

V. COSMOLOGICAL CONSTRAINTS ON THE
RIGHT-HANDED NEUTRINO

The left-handed neutrino decouple at the temperature
TL
f ∼ 1 MeV when the left-handed neutrinos and the right-

handed antineutrinos cannot be converted to pairs of
electron and positron. On the other hand, the right-handed
neutrinos decouple at the temperature TR

f ∼mζ when the
production of the ζ particles is kinetically not allowed.
At the temperature T < TL

f < TR
f , the total density of

radiation ρr is

ρr ¼ ργ þ ρL þ ρR ¼ 3

�
1þ Neff

7

8

�
4

11

�
4=3
�
ργ; ð64Þ

where ργ , ρL and ρR are the energy density of photons, νL,
and νR, respectively. The relativistic degree of freedom Neff
here depends on the relativistic particle species and their
internal degree of freedoms. Considering only three gen-
erations of left-handed neutrinos in the SM, the theoretical
prediction is given by Neff ¼ 3.045 [72,73]. The recent
Planck 2018 data shows Neff ¼ 2.92þ0.36

−0.37ð95%CLÞ and this
is compatible with the SM prediction.
Following the computation in Ref. [74], the additional

contribution to the relativistic degree of freedom arising
from νR is given by

ΔNeff ¼ 3 ×

�
g�sðTL

f Þ
g�sðTR

f Þ
�4=3

: ð65Þ

Here, factor 3 describes three generations of neutrinos. As
shown in Ref. [74], the new relativistic degree of freedom is
limited to be ΔNeff ¼ 0.10þ0.44

−0.43 .
We would like to note that both νL and νR

completely decouple from the SM plasma before big bang
nucleosynthesis (BBN) in this model, thus one can obtain
g�sðTL

f Þ ¼ 10.75 at TL
f ∼ 1 MeV and g�sðTR

f Þ ¼ 67 at
0.2 GeV≲ TR

f ≲ 1.2 GeV. By plugging these two values
into Eq. (65), we can simply verify that ΔNeff ¼ 0.26
also agrees with current limit [27]. Moreover, it has also
pointed out in Ref. [74] that a combined constraint from
Planck CMB data and BBN (the helium abundance
measurements) reads ΔNeff ≲ 0.53 at 95% C.L. which
associates TR

f ≳ 200 MeV. This implies mζ ≳ 200 MeV

FIG. 7. Sommerfeld factor S versus mχ for the early universe
with v ¼ 0.5 × c. The color scheme is same as Fig. 6. The
coupling g0X=v for the upper thick lines are fixed to 10 while the
value of the bottom thin lines are 1.
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if taking TR
f ≃mζ. Therefore, to escape the combined

constraint from CMB and BBN, we always take a safe
limit mζ ≳ 200 MeV in this work.

VI. SMALL SCALE PROBLEM

As aforementioned in the introduction, the momentum
transfer cross section σT of the process χχ� → χ�χ depends

on the root mean square velocity v0 of the DM particles.
To solve the small scale (CCP/MSP/TBTF) problems, we
simplify to use the following constraint [16,17]:

0.1 cm2=g ≤ hσT=mχiS ≤ 10 cm2=g; ð66Þ

where hσT=mχiS is the Sommerfeld-enhanced cross section
per unit DM mass.

FIG. 8. Thermally averaged annihilation cross section times velocity for the leptonic scalar dark matter (χ) hσannvi in different
channels. Left: without the Sommerfeld effect: red (cross), green (circle) and blue (dot) denote the scenario excluded by XENON1T,
testable soon by future underground detectors, and below the neutrino floor, respectively. Right: the Sommerfeld effect for those samples
surviving from XENON1T limit, namely green (circle) and blue (dot) in the left panels.
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The process of χχ� → χ�χ can occur via the exchanges of
H or ζ in the s- as well as t-channels. It can also occur via
the λ1 quartic term interaction. The subleading terms via the
s−channel for the Sommerfeld effect can be ignored [75].
For the t−channel contribution, in the NR limit, we have

σT ¼ ð4μ212m2
H þ λ201v

2m2
ζÞ2

64πm4
ζm

4
Hm

2
χ

≃
μ412

4πm4
ζm

2
χ
: ð67Þ

The approximation holds only if μ12 ≫ λ01vmζ=ð2mHÞ. We
find that this approximation can be applied for the majority
of our collected samplings. Note that we have ignored the
quartic interaction since μ12=mζ ≫ λ01v=ð2mHÞ >

ffiffiffiffiffiffiffiffiffi
λ1=8

p
.

For example, we can have λ01v=ð2mHÞ ¼ 1.85 andffiffiffiffiffiffiffiffiffi
λ1=8

p ¼ 0.67 by taking λ01 ¼ λ1 ¼
ffiffiffiffiffiffi
4π

p
.

VII. MODEL PARAMETER SPACE

In the CP-conserving LSDM model, there are eight free
real parameters:

mχ ; mζ; μ12; λ1; λ2; λ01; λ02; and λ12:

In this section, we look for favored regions of the parameter
space in the LSDM model with implications from astro-
physical and cosmological observations. We apply selec-
tion requirements for small scale structure, cold dark matter
relic density, direct searches, and indirect detections, as
well as cosmological constraints on right handed neutrinos.
For the leptonic scalar DM, the solution of small scale

problem comes from DM strong self-interaction with
σT=mχ that contains 4 free parameters: mχ ; mζ; μ12,
and λ01, as shown in Eq. (67). At first, we perform a
grid scan for the ranges, mH=2 < mχ < 1200 GeV,

0.2 < mζ=GeV < 1, and −6 < log10½λ01� < log10½
ffiffiffiffiffiffi
4π

p �.
With these collected samples, we can pin down the

corresponding allowed range for μ12 by using the allowed
range of σT=mχ . Second, we use the interpolation technique
to find the allowed range of μ12 from random sampling for
mχ ,mζ and λ12. We then apply random sampling with the 8
free parameters as usual except that μ12 is chosen from the
allowed region with randomly selected mχ , mζ and λ12.
Third, we use the selected parameters to find the allowed
samples which satisfy the observed relic density constraint.
Finally, we find the allowed parameter space by satisfying
the constraints from the direct and indirect searches.
Following this procedure, we collect a thousand samples

that satisfy all the constraints mentioned above. Figure 10
shows the predictions in the LSDM model for σT=mχ,
Ωχh2, σSI, and hσannvi in WþW−; tt̄; τþτ−; ζH and ζζ�

channels. Comparing the scenarios with and without
Sommerfeld effect, we only depict those samples in agree-
ment with XENON1T data in Fig. 10. The Sommerfeld
effect is applied in the computation for the magenta
samples (diamond), while Green (circle) (testable for near
future) and blue (filled circle) (below the neutrino floor)
are obtained without including the Sommerfeld effect. It is
clear to see in Fig. 10(a), that the hσT=mχiS is enhanced by
the Sommerfeld effect such that all values fall into
0.1 ðcm2=gÞ ≤ hσT=mχiS ≤ 10 ðcm2=gÞ. In Fig. 10(b),
we see that the relic density is roughly proportional to
1=hσanni, and hence the Ωχh2 becomes suppressed by the
Sommerfeld effect such that the relic density of all selected
samples fall into the range of Ωobsh2 � 3σ.
It is interesting that the selected 1000 samples satisfying

the small scale requirement (CCP/MSP/TBTF) and the
observed relic density constraints also satisfy the constraint
on the SI DM-nucleon scattering cross section σSIχp shown in
Fig. 10(c). We have extended XENON1T 2018 data to
mχ ≃ 1.2 TeV with the dashed line. The cross section
hσannvi for DM annihilating into WþW−, tt̄, τþτ−, ζH
and ζζ� channels are presented in Figs. 10(d)–10(h).

(a) (b)

FIG. 9. Relic density of leptonic scalar DM Ωχh2 versus mχ : (a) without Sommerfeld enhancement, and (b) with Sommerfeld
enhancement.
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Combining indirect search in Fig. 8 and the small scale
requirement, we see that the values of hσannvi cannot be too
large, and that χχ → bb̄ and τþτ− may not be detectable.

Recall that the dominant t-channel cross section
for the self-interacting leptonic scalar DM at the tree
level is

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 10. Predictions on σT=mχ , Ωh2, σSI , and hσannvi in different channels for all allowed samples. (Circle) and (filled circle) denote
the samples which are testable for near future and below the neutrino floor, respectively, by the direct-detection experiment and without
consideration of Sommerfeld effect. (Diamond) denotes the values with considering the Sommerfeld effect.
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σðχχ� → χχ�Þ ¼ μ412
4πm4

ζm
2
χ
¼ g2ζμ

2
12

4πm4
ζ

: ð68Þ

The dimensionless coupling gζ ≡ μ12=mχ is important to
determine the annihilation cross section, and it appears
in the Yukawa potential [Eq. (44)] contributing to the
Sommerfeld enhancement effects.
The allowed value of gζ is modified by non-perturbative

Sommerfeld enhancement effects. Figure 11 presents
gζ as a function of mχ with several values of mζ ¼
0.2 GeV [red (filled circle)], 0.4 GeV [blue (cross)],
0.6 GeV [blue (circle)], and 0.8 GeV [black (diamond)].
In addition, we consider four sets of parameters from top
to bottom: ðλ01; λ02; λ12; fRRÞ ¼ ð10−6; 10−6; 10−6; 10−6Þ,
ð0.1; 10−3; 0.1; 0.0Þ, ð0.2; 10−3; 0.2; 0.2Þ and ð0.2; 10−3;
0.2; 0.6Þ, respectively. All allowed samples consistent with
all mentioned constraints are denoted by green “⋄”. We
find that gζ becomes larger with increasing value in mζ or
decreasing values in the parameter set ðλ01; λ02; λ12; fRRÞ.
Note that for a given set of parameters, μ12 is randomly
sampled to satisfy all mentioned constraint. The allowed
range of mζ also depends on mχ .
From the 1000 allowed samples that are consistent

with all mentioned constraints, we can find the favored
parameter space from the scanned region. BBN and CMB
constraints require thatmζ should be greater than 200 MeV,
that leads to the minimal value of mχ ¼ 276 GeV. The
maximal value of mζ is found to be 814 MeV correspond-
ing to mχ ¼ 1176 GeV. λ1 only involves the self-
interaction process of χχ� → χχ� in Eq. (67) and its
contribution can be ignored even with λ1 ¼

ffiffiffiffiffiffi
4π

p
. On the

other hand, λ2 is irrelevant in our calculation. We find that
the maximal values of λ01, λ02, λ12 and fRR are 0.27, 0.01

0.51 and 1.30, respectively. The allowed range of μ12 is
between 75 and 634 GeV.

VIII. CONCLUSIONS

We have adopted a special model that has a leptonic
scalar dark matter (LSDM) (χ) with lepton number
Lχ ¼ 1 and a light scalar mediator (ζ) with Lζ ¼ 2 and
three flavors of neutrino νR under the assumption of
lepton number conservation. In the early Universe, DM
thermalizes with SM particles viaH-portal and χχ� → ζζ�
provides an efficient annihilation channel. After DM
freezes out, all ζ decay into νRνR with a lifetime
τζ ≲ 10−11 (sec) before the onset of BBN, and νR
decouples from the SM particles at the temperature
TR
f ∼mζ. The LSDM (χ) and the light mediator (ζ) with

lepton number conservation can provide a self-interacting
WIMP dark matter that is consistent with astrophysical
and cosmological constraints.
In the LSDM model, the t—channel exchange of a light

mediator (ζ) makes the LSDM (χ) self interacting cross
section (SICS) reasonable large. Furthermore, we evaluate
the Sommerfeld effects and find significant enhancement
for the SICS. That makes the LSDM model suitable to
explain the small scale structure of the Universe.
We apply selection requirements for small scale struc-

ture, cold dark matter relic density (Planck), direct searches
(XENON1T), and indirect detections (Fermi-LAT and
H.E.S.S), as well as cosmological constraints on right-
handed neutrinos. A randomly selected set of parameters
was found with 1000 samples that satisfy all constraints.
Large regions of the parameter space in the LSDM model
are found to be consistent with astrophysical and cosmo-
logical observations and collider Higgs properties. A
summary is in the following for the favored ranges of
parameters:

(i) 0.2 GeV≲mζ ≲ 0.814 GeV (BBN, CMB),
(ii) 276 GeV≲mχ ≲ 1176 GeV (implied by mζ),
(iii) 75 GeV ≤ μ12 ≤ 634 GeV, and
(iv) λ02 ≤ 10−2 (Higgs invisible width).

In addition, the upper bound of λ01, λ02 and λ12 are 0.27,
0.01 and 0.51, respectively.
It is interesting that almost all regions of parameter space

satisfying astrophysical and cosmological observations
lead to a cold dark matter relic density with the most
restrictive requirement [8].

Ωch2 � 3σ ¼ 0.120� 0.001 ð69Þ

that is

0.117≲ Ωχh2 ≲ 0.123: ð70Þ

A more realistic requirement should be

FIG. 11. The dimensionless coupling strength gζ ≡ μ12=mχ in
the Yukawa potential versus DM mass mχ parametrized by the
light mediator mass mζ where mζ ¼ 0.2 GeV [red (filled circle)],
0.4 GeV [blue (cross)], 0.6 GeV [blue (circle)], and 0.8 GeV
[black (diamond)].
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Ωχh2 ≲ 0.123: ð71Þ

That will enlarge the favored parameter space and accom-
modate more types of dark matter particles.
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APPENDIX A: SOMMERFELD ENHANCEMENT
IN χ χ ANNIHILATIONS

1. Bethe-Salpeter equation in χ χ → χ χ process

The Feynman diagram of nonperturbative scattering
χðp1Þχðp2Þ → χðp0

3Þχðp0
4Þ is shown in Fig. 5(a). Note that

p0
3 and p0

4 are not necessary on-shell as these two lines
will be connected to χχ annihilation diagrams later [see
Fig. 5(b)]. Following the standard procedure [68,75], we
will derive the Bathe-Salpeter equation for the process of
scalar DM scattering via the scalar H-exchange repeatedly.
The amputated nonperturbative 4-point vertex function

can be written as

iΓðp0
3; p

0
4;p1; p2Þ ¼ iΓ̃ðp0

3; p
0
4;p1; p2Þ þ

Z
d4p00

3

ð2πÞ4 iΓ̃ðp
0
3; p

0
4;p

00
3; p

00
4ÞðiDFðp00

3ÞÞiΓðp00
3; p

00
4;p1; p2ÞðiDFðp00

4ÞÞ; ðA1Þ

where we have p00
4 ¼ p0

3 þ p0
4 − p00

3 , DF is the scalar DM
propagator and, the amputated tree-level 4-point vertex
function through the H-exchange is given by

iΓ̃ðp0
3; p

0
4;p

00
3; p

00
4Þ ¼ −iλ201v2

1

ðp00
3 − p0

3Þ2 −m2
H
: ðA2Þ

With the instantaneous approximation, namely, ignoring
the time component of the momentum transfer, the
tree-level 4-point vertex function is just the potential
UHðp⃗00

3 − p⃗0
3Þ defined below

iΓ̃ðp0
3; p

0
4;p

00
3; p

00
4Þ ¼ iλ201v

2
1

ðp⃗00
3 − p⃗0

3Þ2 þm2
H

≡ iUHðp⃗00
3 − p⃗0

3Þ: ðA3Þ

To proceed we define two auxiliary functions as
follows [68]:

iηðp3; p4;p1; p2Þ≡ iDFðp3ÞiΓðp3; p4;p1; p2ÞðiDFðp4ÞÞ;
iχ̃ðp3; p4;p1; p2Þ≡ iDFðp3ÞiΓ̃ðp3; p4;p1; p1ÞðiDFðp4ÞÞ;

ðA4Þ

and Eq. (A1) can be expressed as

iηðp0
3; p

0
4;p1; p2Þ

¼ iχ̃ðp0
3; p

0
4;p1; p2Þ

þ
Z

d4p00
3

ð2πÞ4 iχ̃ðp
0
3; p

0
4;p

00
3; p

00
4Þiηðp00

3; p
00
4;p1; p2Þ:

ðA5Þ

Adding ð2πÞ4δ4ðp00
3 − p1Þ to both side of the above

equation, and defining

iχðp0
3; p

0
4;p1; p2Þ≡ ð2πÞ4δ4ðp00

3 −p0
3Þ þ iηðp0

3; p
0
4;p1; p2Þ;

ðA6Þ

Eq. (A5) becomes

iχðp0
3; p

0
4;p1; p2Þ ¼ ð2πÞ4δ4ðp00

3 − p0
3Þ

þ
Z

d4p00
3

ð2πÞ4 iχ̃ðp
0
3; p

0
4;p

00
3; p

00
4Þ

× iχðp00
3; p

00
4;p1; p2Þ: ðA7Þ

In the NR limit, the scalar propagator can be approx-
imately written as

DFð�kÞ ¼ 1

2mχ

1

ðk0 −mχÞ − k⃗2=2mχ þ iϵ
≡ 1

2mχ
gχðkÞ:

ðA8Þ

Substitute it into the above equation, we obtain the equation
for χ,
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iχðp0
3; p

0
4;p1; p2Þ ¼ ð2πÞ4δ4ðp00

3 − p0
3Þ þ

1

4m2
χ
gχðp0

3Þgχðp0
4Þ
Z

d4p00
3

ð2πÞ4UHðp⃗00
3 − p⃗0

3Þχðp00
3; p

00
4;p1; p2Þ: ðA9Þ

In fact, we can drop the redundant variables p1 and p2 in the above equation. Now we define

p≡ ðp0
3 − p0

4Þ=2
P≡ ðp0

3 þ p0
4Þ=2

χ̂ðk1; k2Þ≡ χðk1 þ k2; k1 − k2Þ: ðA10Þ

Eq. (A9) can be rewritten as

iχ̂ðP; pÞ ¼ ð2πÞ4δ4ðq − P − pÞ þ 1

4m2
χ
gχðPþ pÞgχðP − pÞ

Z
d4q
ð2πÞ4UHðq⃗ − P⃗ − p⃗Þχ̂ðP; q − PÞ: ðA11Þ

Let q0 ¼ q − P and redefine q0 ¼ q. The above equation becomes

iχ̂ðP; pÞ ¼ ð2π4Þδ4ðq − pÞ þ 1

4m2
χ
gχðPþ pÞgχðP − pÞ

Z
d4q
ð2πÞ4UHðq⃗ − p⃗Þχ̂ðP; qÞ: ðA12Þ

Defining the Bathe-Salpeter wave function as

ψðq⃗Þ≡
Z

dq0
2π

iχ̂ðP; qÞ; ðA13Þ

and integrating with respect to p0 on both sides of Eq. (A12), we have

ψðp⃗Þ ¼ ð2πÞ3δðq⃗ − p⃗Þ þ 1

2πi
1

4m2
χ

Z
dp0gχðPþ pÞgχðP − pÞ

Z
d3q⃗
ð2πÞ3UHðq⃗ − p⃗Þψðq⃗Þ: ðA14Þ

By taking p0
3 ¼ ðE0

3; p⃗Þ, p0
4 ¼ ðE0

4;−p⃗Þ, p00
3 ¼ ðE00

3; p⃗Þ, and p0
4 ¼ ðE00

4;−p⃗Þ in the center of mass frame, we have p≡
ðϵ; p⃗Þ ¼ ððE0

3 − E0
4Þ=2; p⃗Þ and P ≃ ðmχ þ E=2; 0⃗Þ and the total kinetic energy E ¼ μv2=2 where μ ¼ mχ=2 is the reduce

mass of χχ system and the relative velocity v ¼ vlab defined in Eq. (28). Using the residue theorem, we integrate over
p0 ¼ ϵ in Eq. (A14), and obtain

ψðp⃗Þ ¼ ð2πÞ3δðq⃗ − p⃗Þ þ 1

E − p⃗2

mχ

Z
d3q⃗
ð2πÞ3 VHðq⃗ − p⃗Þψðq⃗Þ; VHðq⃗Þ≡ −

1

4m2
χ
UHðq⃗Þ; ðA15Þ

The above equation is simply the Bathe-Salpeter equation in the momentum space representation. By taking the Fourier
transformation, we have

Z
d3p⃗
ð2πÞ3 e

−ip⃗·r⃗
�
p⃗2

mχ
− E
�
½ψðp⃗Þ þ ð2πÞ3δðq⃗ − p⃗Þ� þ

Z
d3p⃗
ð2πÞ3 e

−ip⃗·r⃗
Z

d3q⃗
ð2πÞ3 VHðq⃗ − p⃗Þψðq⃗Þ ¼ 0. ðA16Þ

After simplification, we obtain the Bathe-Salpeter equation in the position representation:

−
1

2μ
∇2ψðr⃗Þ þ VHðrÞψðr⃗Þ ¼ Eψðr⃗Þ; VHðrÞ ¼ −αH

e−mHr

r
; ðA17Þ

where we see the potential is Yukawa-type with the corresponding fine structure constant αH ¼ g2H=4π and the
dimensionless coupling strength gH ¼ λ01v=2mχ .
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2. s-wave Sommerfeld factor in χ χ → νRνR process

From Fig. 5(b), the Sommerfeld enhanced amplitude iAS of χχ → νRνR annihilation process can be expressed as

iASðp3; p4; p1; p2Þ ¼ iAðp3; p4; p1; p2Þ þ
Z

d4p0
3

ð2πÞ4 iAðp3; p4;p0
3; p

0
4ÞðiDFðp0

3ÞÞiΓðp0
3; p

0
4;p1; p2ÞðiDFðp0

4ÞÞ ðA18Þ

where iA is the amplitude of the process at tree level. With
the help of Eq. (A4), we have

iASðp3; p4;p1; p2Þ

¼
Z

d4p0
3

ð2πÞ4 iAðp3; p4;p0
3; p

0
4Þiχðp0

3; p
0
4;p1; p2Þ:

ðA19Þ

For the s-wave rescattering, the amplitude Aðp3; p4;p0
3; p

0
4Þ

is independent of momentum and hence, the above equa-
tion becomes

iASðp3; p4; ;p1; p2Þ

¼ iAðp3; p4;p1; p2Þ
Z

d3p⃗
ð2πÞ4

Z
dp0

ð2πÞ iχ̂ðP; pÞ

¼ iAðp3; p4;p1; p2Þψ l¼0ðr⃗ ¼ 0Þ ðA20Þ

Hence we have

jASðp3; p4; ;p1; p2Þj2 ¼ jAðp3; p4; ;p1; p2Þj2S; ðA21Þ

where S ¼ jψ l¼0ðr⃗ ¼ 0Þj2 is the so-called s-wave
Sommerfeld factor and the wave function ψðr⃗Þ satisfies
the Bathe-Salpeter equation in Eq. (A17).

3. Solving ψ ð⃗r= 0Þ numerically

Let us consider the general case. As we know that two
DM particles form a bound χχ or χχ� state before
annihilation. This two-particle wave function ψðr⃗Þ satisfies
the following Schrödinger equation [see in Eq. (43)]

−
1

2μ
∇2ψðr⃗Þ þ Vðr⃗Þψðr⃗Þ ¼ Eψðr⃗Þ ¼ 1

2
μv2ψðr⃗Þ: ðA22Þ

The separation of variables give us the radial Schrödinger
equation

�
−

1

2μ

1

r2
d
dr

�
r2

d
dr

�
þ VðrÞ þ lðlþ 1Þ

2μr2

�
RlðrÞ ¼ ERlðrÞ:

ðA23Þ

Here we follow [68,76] to solve for ψðr⃗ ¼ 0Þ numerically.
From the scattering theory, the radial wave function has the
following asymptotic form [77]:

RlðrÞ → eiδl
sinðpr − lπ=2þ δlÞ

pr
; ðA24Þ

where δl is the phase shift corresponding to the partial wave
with angular momentum quantum number l. Defining Φl

by RlðρÞ ¼ NρlΦlðrÞ with ρ ¼ pr, and normalization
constant N to be determined later, Eq. (A23) becomes

Φ00
l þ

2ðlþ 1Þ
ρ

Φ0
l þ
�
−

2

pv
VðrÞ þ 1

�
Φl ¼ 0; ðA25Þ

where the initial conditions are taken to be [76]

Φlð0Þ ¼ 1; Φ0
lð0Þ ¼

ρVðrÞ
pvðlþ 1Þ

����
ρ→0

Φlð0Þ; ðA26Þ

for a regular solution. We now concentrate on the l ¼ 0
case. As one can see by taking ρ ≫ 1, in the case that
jρVðrÞj ≪ 1, the differential equation and its solution
become

Φ00
0 þ

2

ρ
Φ0

0 þΦ0

����
ρ≫1

¼ 0; Φ0ðρÞ → C
sinðρþ δ0Þ

ρ
;

ðA27Þ

with C a real number. The above Φ0 is to be compared to
R0ðrÞ → eiδ0 sinðρþ δ0Þ=ρ [see Eq. (A24)], as ρ ≫ 1. To
work out the normalization N, it is useful noting, in the
ρ ≫ 1 region,

Φ0ðρ − π=2Þ → −C
cosðρþ δ0Þ
ρ − π=2

; ðA28Þ

which can be used with Φ0ðρÞ to construct

κ ≡ lim
ρ→∞

eiρ½−iρΦ0ðρÞ − ðρ − π=2ÞΦ0ðρ − π=2Þ� ¼ Ce−iδ0 :

ðA29Þ

Consequently, we see that R0ðrÞ can be obtained as

R0ðrÞ ¼ κ−1Φ0ðρÞ; ðA30Þ

since it satisfies the Schrödinger equation and has the
correct asymptotic behavior. Finally, we have
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ψðr⃗¼ 0Þ ¼ κ−1Φ0ð0Þ

¼ κ−1 ¼ lim
ρ→∞

e−iρ

−iρΦ0ðρÞ− ðρ− π=2ÞΦ0ðρ− π=2Þ :

ðA31Þ

Note that the phase of ψðr⃗ ¼ 0Þ is just δ0 [see
Eq. (A29)].
Now we are ready to do the numerical calculation. For a

scalar DM χ with a scalar mediator X, we have the Yukawa-
type potential:

VXðrÞ ¼ −αX
e−mXr

r
; ðA32Þ

where αX ¼ g02X=ð16πm2
χÞ with the dimensionful coupling

strength g0X ¼ λ01v, namely, the dimensionless coupling
strength gX ¼ g0X=2mχ . Hence we need to solve the
following differential equation:

Φ00ðρÞ þ 2

x
Φ0ðρÞ þ

�
1 −

2aXe−bXρ

ρ

�
ΦðρÞ ¼ 0; ðA33Þ

with the boundary conditions:

Φðρ ¼ 0Þ ¼ 1; Φ0ðρ ¼ 0Þ ¼ −aX: ðA34Þ

In the above aX ¼ αX and bX ¼ 2mX=mχv. We find that it
is enough to take ρ ≃ 200 to obtain the limit in Eq. (A31).
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