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Abstract A class of strange stars is analysed in the present
article in hydrostatic equilibrium, whose state is defined by a
CFL phase equation of state. We have compared our results
with those obtained from the MIT equation of state for strange
quark matter, which is regarded as free particles. We have
noted that if we consider quarks to form a cooper pair and
if their description is made by the CFL equation of state,
the maximum mass of strange star reaches a value as high
as 3.61 M�. This value is well above the value of 2.03 M�
obtained by using the MIT bag equation of state for massless
free quarks. Both the maximum masses are determined by
solving the TOV equation for different values of the strange
quark massms . Thus, the inclusion of the possibility of quark
pair formation in the theory permits us to accommodate a
wider class of compact objects such as PSR J1614-2230,
PSR J0740+6620, PSR J0952-0607 etc. and the mass of the
companion star in the GW190814 event in our model. The
consideration of such a high value of mass is hardly theoret-
ically obtainable from normal strange star models in general
relativity even with a fast rotation effect. The object PSR
J0952-0607 is found to be the fastest and heaviest pulsar in
the disk of Milky Way Galaxy, having a mass of 2.35 M�,
which may be predicted in our model, as observational evi-
dence supports the existence of strange quark matter in its
composition.
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b e-mail: anirban.astro9@gmail.com
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1 Introduction

The objective that strange quark matter (henceforth SQM)
may be the true ground state of quantum chromodynamics
(henceforth QCD) was first suggested by Witten [1] in 1984.
The basic concept is that in the case of SQM, the energy
associated with each baryon might be lower than that of the
energy per baryon of the most stable nucleus, 56Fe, making
SQM more stable. According to the asymptotic behaviour
of QCD, nucleons are split into the form of quarks, and
these weakly interacting deconfined quarks constitute a gas.
Theories used for the description of hadron to quark phase
transition are phenomenological. One such model is the bag
model [2], which contributes to the suitable description of
the bulk quark matter and also its confinement in a region of
space called a “bag”, containing hadronic fields. The bag has
a constant, positive potential energy per unit volume. This
constant is known as vacuum energy B, also termed the bag
constant. In the context of the MIT bag model, Farhi and
Jaffe [3] studied the properties of SQM extensively consid-
ering different choices of B and the mass of a strange quark
(ms). They established a stability window for stable SQM
in the (ms − B) plane. In the context of general relativity
(henceforth GR), a number of authors have used the MIT
bag equation of state (henceforth EoS) to qualitatively study
compact stars composed of quark matter [4–8]. If the hypoth-
esis of strange matter is correct, a possibility of a new class of
compact object made entirely of SQM, called the “Strange
Star”, should exist. The possible existence of strange stars
has been studied by many researchers [9,10], and it has been
confirmed theoretically that stable strange star configurations
are possible. These stars are much smaller in size than nor-
mal neutron stars because they are self-bound due to strong
interaction and fundamentally different in comparison to the
gravitationally bound neutron stars [9,10]. Recently, a large
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group of researchers have studied compact stars extensively
composed of SQM [11–15].

There has been a vast theoretical progress in the under-
standing of SQM. It is well established that in the presence
of weak attractive interactions arbitrary in nature, degener-
ate Fermi systems are unstable. Such a problem of instability
is solved by considering the formation of Cooper pairs in
the Bose condensate form, leading to superconductivity for
charged fermions. Similarly, at low temperature and suffi-
ciently high baryon number density, the presence of attrac-
tive interactions between quarks will lead to the formation
of quark Cooper pairs, which are responsible for colour
superconductivity. It is now well admitted that colour fla-
vor locked (henceforth CFL) strange matter is the true
ground state of strong interaction [16]. At temperatures much
lower than quark chemical potentials (T � μ), several
spontaneous symmetry breaking phases occur. In nature, this
only happens in the interior of compact objects where mat-
ter density exceeds nuclear matter density. The time span
of such objects is high enough to attain a state of equilib-
rium through weak interactions and to reduce the tempera-
ture below the chemical potential of quarks. It is expected
that at low temperatures and ultrahigh densities, hadrons
may break into a degenerate soup of quarks, forming Cooper
pairs near the Fermi surface that exhibit colour superconduc-
tivity. Quark Cooper pair formation was noted long before
the development of any consistent theory of strong inter-
action [17,18]. The study of quark Cooper pair formation
originated after the pioneering works of Barrois [19,20] and
Frautschi [21]. Making use of the CFL EoS, Bogadi et al.
[22] investigated the surface tension of strange quark stars
in hydrostatic equilibrium. In their work, they employed
the Finch-Skeaansatz and thereby studied the mass–radius
profile of such stars. They found that by properly choos-
ing the strange quark mass (ms) and the QCD gap energy
(ΔG), the mass and radius of a few strange star candidates
may be predicted that are closest to the observational data.
Thirukkanesh et al. [23] obtained a general solution of the
Einstein field equation for a colour flavor locked EoS. They
showed that by switching off a parameter, the CFL phase
EoS reduces to a linear form that mimics the MIT bag model
EoS. Reference [24] discussed further development in this
field.

Most of the studies of SQM in both the normal and CFL
phases initiated the concept of vacuum energy based on the
idea of a phenomenological bag constant, B. However, due
to the high densities in the vicinity of the core of the compact
stars/ strange stars, it is more practical to demand that the
bag constant should be density dependent [25]. Several works
have been done on density-dependent bag constants [26–32].
Thermodynamics and the EoS of the SQM are different if one
considers the density-dependent B from those with constant
B.

In the case of a compact object, with exceedingly high
matter density, it is expected that the internal pressure con-
sists of two parts [33], namely, (i) radial pressure (pr ) and (ii)
transverse pressure (pt ). The existence of type 3A superfluid
or a solid core interior to a compact object may explain the
presence of anisotropic pressure in the high density regime
[34]. As nucleons are fermions, they obey the Pauli exclusion
principle and therefore cannot occupy the same energy state.
However, at low temperature, nucleons may form cooper
pairs [35], which are virtually bosons and behave collectively.
Thus, at very low temperature, nucleons behave collectively
on a large scale and form nucleon condensates. This nucleon
condensate is analogous to He-3 and flows without viscos-
ity. The high-pressure environment inside a compact object,
especially in a Neutron Star or Strange Star, increases the
critical temperature of cooper pair formation, making nuclear
superfluidity to exist even at a temperature of billion degrees.
Anisotropy may also arise from pion condensation [36] and
different types of phase transitions [37].

Our objective here is to study the strange star with a
density-dependent bag constant model and compare it with
an exactly solvable Vaidya–Tikekar model [38,39]. In the
Vaidya–Tikekar model, the grr metric component exten-
sively depends on the spheroidal parameter λ and curvature
parameter R. This implies that the physical 3-space associ-
ated with the star possesses the geometry of a 3-spheroid
immersed in a four-dimensional Euclidean flat space. Using
V–T ansatz, Sharma et al. [40] have shown that by fine tun-
ing λ or bag constant B, the observed mass radius of a wider
range of compact objects may be predicted from theoreti-
cal model. Goswami et al. [41] recently obtained the radius
and maximum mass of strange stars whose interior may be
described by the MIT bag EoS in the V–T model. They also
showed that a correlation between the spheroidal parameter
λ and bag constant B exists so that the observed mass and
radius of some compact objects may be predicted from their
model. The prime goal of the present article is to conduct a
comparative study between quark matter in the CFL phase
EoS and MIT bag EoS and their astrophysical implications.
The thermodynamically obtained pressure density relation
has been related to that obtained by solving the Einstein Field
equations for metric ansatz of Vaidya and Tikekar.

The paper is arranged in the following sequences: in
Sect. 2, we have given a brief outline of the thermodynamic
properties of SQM and the EoS in the MIT bag model. Sec-
tion 3 consists of a density-dependent bag model as pro-
posed by previous authors, while the origin of the density-
dependent bag constant (B) has been discussed on a thermo-
dynamic standpoint in Sect. 4. The EoS of quarks in the CFL
phase is outlined in Sect. 5. In Sect. 6, the solutions of the
Einstein Field equations are presented for Vaidya–Tikekar
ansatz. Hence, the mathematical expressions of energy den-
sity and pressure have been obtained. Next, we used the

123



Eur. Phys. J. C (2023) 83 :1038 Page 3 of 13 1038

thermodynamically obtained EoS for both the CFL and MIT
bag EoS and incorporated them into the mathematical model
stated in Sect. 7. A comparison of both EoSs has been made,
which is also discussed in this section. In Sect. 8, we have
shown the mass–radius relation of strange stars in the CFL
and MIT bag EoS. The energy conditions are plotted in
Sect. 9. The stability of the model has been studied in view
of the Herrera cracking concept and the nature of the adi-
abatic index, which have been represented in Sects. 10 and
11. Finally, we make concluding remarks on our model by
mentioning some of the striking features in Sect. 12.

2 General properties of SQM

SQM is composed of Fermi gas comprised of massless u
and d quarks, massive strange (s) quarks of mass ms and
electrons. The chemical equilibrium between the particles is
sustained through the weak interactions

d, s ↔ u + e + νe; s + u ↔ u + d. (1)

The properties of strange matter are determined by their ther-
modynamic potentials Ωi (i = u, d, s, e−), which are func-
tions of chemical potentials μi as well as ms and the strong
interaction coupling constant αc [3]. The weak interactions
given by Eq. (1) imply that the chemical potentials μi should
satisfy

μd = μs ≡ μ; μu + μe = μ (2)

and the charge neutrality condition requires

2

3
nu − 1

3
nd − 1

3
ns − ne = 0, (3)

where ni is known as the number density of the i th type par-
ticle given by ni = −(

∂Ωi
∂μi

). Equations (2) and (3) imply that
there is only one independent chemical potential denoted by
μ. The pressure (p), energy density (ρ) and baryon num-
ber density (n) of the quark phase are evaluated from the
following relations:

p = −
∑

i

Ωi − B, (4)

ρ =
∑

i

(Ωi + μi ni ) + B, (5)

n = 1

3
(nu + nd + ns). (6)

To obtain the EoS, one has to eliminate μ from Eq. (4) and
express ρ and n as a function of pressure p using Eqs. (5)
and (6). Witten [1] considered ms → 0, αc → 0 in the
case of a neutron star and gave the EoS of the quark matter
approximately as

p = 1

3
(ρ − 4B). (7)

In Eq. (7), B is referred to as the bag constant. In the MIT
bag model, the constituent quarks are assumed to be in a con-
fined state inside a perturbative vacuum or ’bag’. The con-
finement occurs due to the presence of a net inward pressure
B exerted by the surrounding nonperturbative vacuum. With
an increase in the baryon number density n, the separation
between these two vacua may disappear, and consequently,
the bag constant, which is basically the net inward pressure,
must vanish. Therefore, it is physically more realistic to con-
sider B as a density-dependent quantity [25].

3 Density dependent bag constant

Originally, the bag constant was kept fixed as its free space
value in the bag model. Since the deconfinement phase transi-
tion depends on both the temperature and the number density
of baryons in the system, the bag constant may be temperature
dependent [42] as well as density dependent [43–45]. The
bag constant, which depends on the temperature, describes
the scenario of heavy-ion collision in the high-energy regime
of terrestrial laboratories, whereas the density-dependent bag
constant describes cold compact stars. Prasad and Bhalerao
[31] considered three forms of the density-dependent B pub-
lished by three different groups:

1. They have fitted the results obtained by [43] to express B
analytically as

B(n) = B(0)exp[−(a1x
2 + a2x)], (8)

where n is the baryon number density and x = n
n0

is
the normalized number density of baryons. Where n0 =
0.17 f m−3 represents the baryon number density of the
ordinary nuclear matter, a1 = 0.0125657, a2 = 0.29522
and B(0) = 114 MeV/ f m3 = (172 MeV)4.

2. Burgio et al. [44] have presented B in terms of a parametric
form given below:

B(n) = Bas + (B0 − Bas)exp[−βnx
2], (9)

where Bas = 38 MeV/fm3, B0 = 200 MeV/fm3, βn =
0.14.

3. Aguirre [45] has calculated a density-dependent B to
study SQM in the CFL phase, which is given by

B(n) = a +
5∑

i=1

bi x
i , x ≤ 9;

B(n) = βnexp[−αn(x − 9)], x > 9, (10)
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Fig. 1 Bag constant B vs baryon number density n for the three mod-
els. The solid line is for Liu et al. [43], the dot-dashed line is for Aguirre
et al. [45] and the dashed line is for Burgio et al. [44]

where a = 291.5906, b1 = −142.25581, b2 = 39.29997,
b3 = −6.04592, b4 = 0.46817, b5 = −0.01421, αn =
0.253470705 and βn = 19.68764.

The density dependent B given above is displayed in
Fig. 1. The above three models give the value of B over
a broad range of densities that exist in the strange star.

4 Thermodynamics with density dependent B

Here, we have followed a similar mechanism adopted by Zhu
et al. [32]. First, we have derived from the general ensemble
theory the expression for the energy and pressure of a sys-
tem of particles when the particle masses are dependent on
density. The partition function is given by

Ξ =
∑

Ni ,αc

e−β(ENi ,αc−
∑

i μi Ni ), (11)

where β is the reverse temperature, and Ni and μi repre-
sent the particle numbers and chemical potentials of the i th
type particle, respectively. The microscopic energy ENi ,α =
f (V,mi , Ni , αc), where V , mi , Ni and αc represent the vol-
ume of the system, particle masses, particle numbers and
other quantum numbers, respectively. The pressure of such
a system is defined as

p = 1

Ξ

∑

Ni ,αc

(
−∂ENi,αc

∂V

)
e−β(ENi ,αc−

∑
i μi Ni )

= 1

β

∂lnΞ

∂V
= −∂(VΩ)

∂V
, (12)

where Ω = − 1
Vβ

lnΞ is the thermodynamic potential den-
sity. It can be written in the functional form as Ω =
f (T, μi ,mi ). If the masses of particles are independent of
baryon number density nb = ( N

3V

)
(N = ∑

Ni ), one obtains
p = −Ω .

However, in the situation where the particle mass depends
on the density or volume, one should have

p = −Ω + nb
∂Ω

∂nb
. (13)

Now the statistical average for the energy is given by

Ē = 1

Ξ

∑

Ni ,αc

ENi ,αc e
−β(ENi ,αc−

∑
i μi Ni )

= − ∂

∂β
lnΞ +

∑

i

μi N̄i , (14)

where

N̄i = 1

Ξ

∑

Ni ,αc

Ni e
−β(ENi ,αc−

∑
i μi Ni )

= 1

β

(
∂

∂μi
lnΞ

)

V,T,mk

= −V

(
∂Ω

∂μi

)

T,mk

, (15)

represents the average number of i th type particles. Hence,
the energy density of such a system can be written as:

ρ = Ē

V
= ∂(βΩ)

∂β
+

∑

i

μi ni

= Ω + β
∂Ω

∂β
+

∑

i

μi ni

= Ω +
∑

i

μi ni − T
∂Ω

∂T
. (16)

where ni is the number density of particle type i and is given
by

ni = N̄i

V
= −

(
∂Ω

∂μi

)

T,mk

(17)

The energy of the system in the MIT bag model in the micro-
scopic regime is expressed as

EBag
Ni ,αc

= ENi ,αc + BV . (18)

The partition function becomes

Ξ Bag =
∑

Ni ,αc

e−β(ENi ,αc+BV−∑
i μi Ni ) = Ξe−βBV . (19)

Therefore,

nBag
i = N̄i

V
= −

(
∂(Ω + B)

∂μi

)

T,mk ,ENi ,αc ,B
, (20)

pBag = 1

β

∂lnΞ Bag

∂V
= 1

β

∂(lnΞ − βBV )

∂V

= −(Ω + B) − V
∂(Ω + B)

∂V
, (21)

ρBag = Ω + B +
∑

i

μi ni − T
∂(Ω + B)

∂T
. (22)
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Now, if we consider that the mass of the particle does not
depend on the number density of baryon and the parameter
B depends only on the energy density, then Eqs. (20)–(22)
reduce to

nBag
i = −

(
∂Ω

∂μi

)
, (23)

pBag = −(Ω + B) + nb
∂B

∂nb
, (24)

ρBag = Ω + B +
∑

i

μi ni , (25)

In Eq. (24), the last term on the right hand side arises from the
consideration that B depends on energy density. The addi-
tional term vanishes for constant B, and subsequently, the
EoS of the interior matter reduces to that obtained in the
MIT bag model.

5 EoS in the CFL phase

It is widely accepted that if the strange quark mass ms is
small enough, the CFL state would be the minimum energy
configuration at high densities. In the case of the CFL phase
of SQM, the constituent u, d and s quarks together form pairs
and are compelled to take up equal Fermi momenta [32]. To
obtain the EoS and relevant quantities, one must start with the
thermodynamic potential density of the SQM in the context
of the CFL phase. In the CFL phase of SQM at T → 0, the
thermodynamic potential density is given by [31,46,47].

Ω = 6

π

∫ ν

0
(κ − μ)κ2dκ − 3

π2 Δ2
Gμ2

+ 3

π2

∫ ν

0
[(κ2 + m2

s )
1
2 − μ]κ2dκ, (26)

where μ = μu+μd+μs
3 , μu , μd and μs represent the chem-

ical potentials of quarks u, d and s, respectively, and ms

is the strange quark mass. ΔG represents the gap parame-
ter in colour-superconductivity. In the CFL phase, the Fermi
momentum of u, d and s quarks are the same [31,32]. This
common Fermi momentum is determined by minimizing the
free energy density up to order m4

s and is given by

ν = 2μ −
(

μ2 + m2
s

3

) 1
2

= μ − m2
s

6μ
+ m4

s

72μ3 . (27)

Substituting Eq. (26) in Eqs. (20)–(22), we obtain the EoS in
the CFL phase.

p = 3μ4

4π2 − 3m2
sμ

2

4π2 + 1 − 12ln(ms
2μ

)

32π2 m4
s + 3

π2 Δ2
Gμ2

−B + nb
∂B

∂nb
, (28)

ρ = 9μ4

4π2 − 3m2
sμ

2

4π2 + 11m4
s

32π2

Fig. 2 Energy per baryon ( En ) vs pressure p of SQM in the CFL phase.
Here dashed line is drawn for ms = 50 MeV, solid line and dotdashed
line represent ms = 150 MeV and ms = 228.3 MeV respectively. The
energy per baryon for the horizontal line is 930.4 MeV which is the
typical energy per baryon of 56Fe. To draw the plots we have taken
ΔG = 100 MeV

+3ln(ms
2μ

)

8π2 m4
s + 3

π2 Δ2
Gμ2 + B, (29)

n = ν3 + 2Δ2
Gμ

π2 = μ3

π2 − m2
sμ

2π2

+ m4
s

8π2μ
+ 2Δ2

Gμ

π2 . (30)

Zhu et al. [32] considered the density dependent B given
in Eq. (10) predicted by Aguirre [45]. Using this density
dependence of B, the energy associated with each baryon
(E/n) is plotted as a function of pressure p and is shown
in Fig. 2. In this model, zero pressure appears exactly at the
lowest energy state. The minimum energy per baryon for
ms = 228.3 MeV touches the line for 56Fe. Therefore, as per
the stability of 3-flavor quarks is concerned, the upper limit
of ms is 228.3 MeV. The EoS in this model is visualized in
Fig. 3. Here we have used the unit of ρ and p as f m−4. The
conversion is established as 1 f m−1 = 197.3 MeV [48].

6 Vaidya–Tikekar model EoS of different compact stars

In the standard procedure, to obtain the stellar structure of a
compact star, one has to solve the TOV equation for a given
EoS, using appropriate boundary conditions. However, in the
Vaidya–Tikekar model, a geometry is given, and then one
looks for a suitable composition of matter to support this
geometry. The geometry is described by one free parameter
λ known as the spheroidal parameter and another is known
as the curvature parameter R to be determined. The EoS
obtained from the V–T model assumes a linear form when
the value of the parameterλ is large. In this geometrical model
the stellar structures are found to be stable against small radial
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oscillations. The EoS predicted by Gondek-Rosińska et al.
[49] is in well agreement with the EoS predicted by Sharma
et al. [50] for SAX J 1808.4-3658 from the V–T geometrical
model. Thus it is interesting to note that the EoS obtained
by considering geometry attached to the physical space of
the compact object is consistent with that obtained from the
microscopic composition of the interior matter of compact
object, as both of them give a stable compact object having
the same mass and radius. In the V–T model [38], a specific
form of the grr metric component is prescribed, and using
this metric ansatz, the general solution for the other metric
component gtt is obtained following the process prescribed
by Mukherjee et al. [39]. The general solution is briefly out-
lined below.

We consider a static, spherically symmetric star whose
interior metric is given by

ds2 = −e2γ (r)dt2 + e2ξ(r)dr2 + r2(dθ2 + sin2θdφ2).

(31)

Considering the ansatz, predicted by Vaidya and Tikekar
[38], given below

e2ξ = 1 + λ r2

R2

1 − r2

R2

, (32)

and assuming that inside the star matter distribution is similar
to a perfect fluid with anisotropy in pressure, we have used
the approach of Goswami et al. [41], which is the anisotropic
extension of the solution obtained by Mukherjee et al. [39]
and obtained the solution for the gtt component of the metric
function,

ψ(z) = eγ = A

[
cos[(d + 1)ζ + δ]

d + 1
− cos[(d − 1)ζ + δ]

d − 1

]
,

(33)

where ζ = cos−1z, z2 = λ
λ+1 (1− r2

R2 ) and d2 = λ(1−α)+2.
The energy-density ρ, radial (pr ) and transverse pressures
(pt ) in this model are given by

ρ = 1

R2(1 − z2)

[
1 + 2

(λ + 1)(1 − z2)

]
, (34)

pr = − 1

R2(1 − z2)

[
1 + 2z

(λ + 1)

(
ψz

ψ

)]
, (35)

pt = pr + Δ, (36)

where ψz represents the first derivative of function ψ with

respect to variable z and Δ = αλ[λ−(λ+1)z2]
R2(λ+1)2(1−z2)2 is the measure

of the pressure anisotropy parametrized by α. The expression
for the total mass contained within the radius b of a star is
given below:

M(b) = (1 + λ) b3

R2

2(1 + λ b2

R2 )
. (37)

Fig. 3 Equation of state of SQM in the CFL phase with density depen-
dent B

The model has four parameters, A, δ, R and λ, where λ is
an input parameter and the rest will be fixed by imposing
restrictions at the boundary of a star as given below.

1. At the boundary (r = b) of a star, the interior metric
should be finite and matched with the value obtained from
the Schwarzschild exterior metric given below:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2
(
dθ2 + sin2θdφ2

)
. (38)

Therefore, matching of the metric (31) and (38) at the
boundary yields:

e2ξ = 1 + λ b2

R2

1 − b2

R2

=
(

1 − 2M

b

)−1

. (39)

and

e2γ =
(

1 − 2M

b

)
. (40)

2. Again at the surface of a star the radial pressure may be
equated to zero which gives the following condition

(
ψz

ψ

)

zb

= − (λ + 1)

2zb
. (41)

Furthermore, taking the derivative of ψ into account in

Eq. (33) with respect to z, we obtain the ratio
(

ψz
ψ

)
at

z = zb as

(
ψz

ψ

)

zb

= d2 − 1√
1 − z2

b
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×
[

sin[(d + 1)ζ + δ] − sin[(d − 1)ζ + δ]
(d − 1)cos[(d + 1)ζ + δ] − (d + 1)cos[(d − 1)ζ + δ]

]
.

(42)

Thus, equating Eqs. (41) and (42), we can obtain the value
of δ. As in this model, λ specifies the EoS of the interior
matter of a star of given mass (M) and radius (b), and the
choice of any one among radius (b), surface density (ρb)
or central density (ρ0) will determine the value of R for a
given choice of λ. Thus, the present model accounts for a
complete description of the physical properties of the star
which includes the radial variation of energy density and
radial pressure using Eqs. (34) and (35). The values of ρ and
pr are then used to determine the EoS of the interior matter.

7 Comparison of thermodynamic model with exactly
solvable model

As we already have obtained the expressions for physical
parameters such as energy density and pressures, we are
now going to apply our model to some possible strange
star candidates such as 4U 1820-30 [51], PSR J1614-2230
[52], PSR J1903+0327 [53], PSR J0030+0451 [54] and PSR
J0740+6620 [55]. In the Vaidya–Tikekar model, the EoS of
a star depends on both λ and α, therefore, by changing any of
them, we can match the EoS of a given star with that obtained
from thermodynamic point of view. In the present set up, we
note that to fit the EoS of a star with the CFL EoS, the radius
may be predicted. In Figs. 4, 5 and 6 we have plotted the EoS
of the chosen compact objects and compared them with that
of the CFL state. It is very interesting to note that our model
permits a wide range of the model parameters λ and α for
which strange quarks having CFL type EoS may be perceived
inside compact objects. Another noteworthy feature is that to
have a CFL type EoS, PSR J1614-2230 should be anisotropic
in nature. In Table 1, we have tabulated the predicted radius
and central density of compact objects as mentioned above
by using (i) CFL EoS and (ii) MIT bag EoS. In the CFL phase,
due to cooper pair formation, quarks collectively behave as
bosons thereby overlooking the Pauli exclusion principle.
This admits a more closed pack structure, and consequently,
the central density of the star increases. Gravity, on the other
hand, finds a new path to squeeze the star to a smaller size.
This can be noted from Table 1.

8 Mass–radius relation of strange star admitting CFL
EoS

We now study the mass–radius curve of compact objects by
solving TOV equation comprised of strange matter having
CFL type EoS. The mass–radius plot is shown in Fig. 7.

Fig. 4 Equation of state of SQM in the CFL phase with density
dependent B (solid line) obtained from the thermodynamic model for
ms = 150 MeV and those obtained from VT model for the compact
star 4U 1820-30 (dashed line) with predicted radius b = 8.54 km. The
model parameters are λ = 5 and α = 0

Fig. 5 Equation of state of SQM in the CFL phase with density
dependent B (solid line) obtained from the thermodynamic model for
ms = 200 MeV and those obtained from VT model for the compact
star PSR J1614-2230 (dashed line) with predicted radius b = 8.46 km.
The model parameters are λ = 50 and α = 0.39

From the mass–radius plot, the maximum mass of strange
star in the CFL EoS is found to be the maximum for
ms = 0 MeV, which is ∼ 3.61 M� and decreases when
ms increases. For instance, the maximum mass is 3.570 M�
when ms = 100 MeV, while it reduces to 3.458 M� when
ms = 150 MeV. These values of maximum masses are well
above the value of 2.03 M� obtained by considering the
MIT bag EoS for massless quarks (ms = 0 MeV). Thus,
we may conclude that the CFL EoS admits a wider range
of compact objects, as indicated in the mass–radius plot in
Fig. 7. The mass–central density plot reveals that the maxi-
mum density obtained from this model is 1.221 ×1015 g/cm3

forms = 0 MeV, while for other values ofms , it takes a lower
value. It is to be noted that 1 MeV/fm3 = 1.78 × 1012 g/cm3

[56]. Above the maximum point, the mass (M) of a compact
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Fig. 6 Equation of state of SQM in the CFL phase with density
dependent B (solid line) obtained from the thermodynamic model for
ms = 125 MeV and those obtained from VT model for the compact
star PSR J1903+0327 (dashed line) with predicted radius b = 8.5 km.
The model parameters are λ = 100 and α = 0

object decreases with an increase in the value of central den-
sity (ρ0), i.e., ( ∂M

∂ρ0
< 0), which corresponds to a collapsible

state [57] and is not allowed as per stability is concerned.
Interestingly, the maximum mass takes a higher value in the
CFL phase than in the MIT bag model, as can be observed
from Fig. 7. A physical justification can be made as follows:
from Fig. 8 it is noted that the maximum central density of
a star takes a lower value in the CFL phase than in the MIT
bag model EoS. Therefore, as quarks form cooper pairs in
the colour superconducting state, it takes away some part of
the star’s energy which is balanced by incorporating extra
mass.

9 Energy conditions

For a relativistic sphere a physically realistic model is possi-
ble if the following energy conditions are satisfied at all the
internal points and surface of the sphere [58,59].

1. Null Energy Condition (NEC): ρ + pr ≥ 0; ρ + pt ≥ 0.

Fig. 7 Mass–radius plot of strange star composed of strange quark
matter described by CFL EoS. Here solid, dotted and dashed line cor-
respond to ms = 0, 100 and 150 MeV respectively. Blue curve shows
the mass radius relation for quark matter following the MIT bag EoS
pr = 1

3 (ρ − 4B) with B = 57.55 MeV/fm3. Mass ranges of different
compact objects are also shown and indicated in the figure

2. Weak Energy Condition (WEC): ρ + pr ≥ 0; ρ ≥ 0, ρ +
pt ≥ 0.

3. Strong Energy Condition (SEC): ρ + pr ≥ 0; ρ + pr +
2pt ≥ 0.

4. Dominant Energy Condition (DEC): ρ ≥ 0; ρ − pr ≥ 0;
ρ − pt ≥ 0.

In Figs. 9 and 10, we have plotted the Null Energy Con-
ditions. In Figs. 9, 10 and 11, we have shown the Weak
Energy Conditions. In Figs. 9 and 12, Strong Energy Con-
ditions have been visualized. Figures 13 and 14 illustrate the
Dominant Energy Conditions. From Figs. 9, 10, 11, 12, 13
and 14, we note that in this model, necessary energy condi-
tions held good.

10 Herrera cracking condition

We know that a stellar model can be physically acceptable if
both the square of the radial (v2

r = dpr
dρ ) and transverse (v2

t =
dpt
dρ ) sound velocities remain below the velocity of light inside

Table 1 Tabulation of predicted radius and central density of some compact objects obtained from (i) CFL Eos and (ii) MIT bag Eos

Compact object Mass (M�) λ α ms (MeV) Predicted radius (km) Central density ×1015 (g/cm3)

CFL EoS MIT bag EoS CFL Eos MIT bag EoS

4U 1820-30 [51] 1.58+0.06
−0.06 5 0 150 8.54 10.85 2.20 0.91

PSR J1614-2230 [52] 1.928+0.017
−0.017 50 0.39 200 8.46 8.75 4.42 3.75

PSR J1903+0327 [53] 1.667+0.021
−0.021 100 0 125 8.50 9.85 3.00 1.63

PSR J0030+0451 [54] 1.44+0.15
−0.14 2.2 0 100 8.70 13 1.55 0.40

PSR J0740+6620 [55] 2.072+0.067
−0.066 100 0.45 100 8.7 9.07 4.88 3.94
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Fig. 8 Mass vs central density plot of strange star composed of strange
quark matter described by CFL EoS. Here solid, dotted and dashed line
correspond toms = 0, 100 and 150 MeV respectively. Blue curve shows
the mass radius relation for quark matter following the MIT bag EoS
pr = 1

3 (ρ − 4B) with B = 57.55 MeV/fm3

Fig. 9 Variation of (ρ+ pr ) with radial distance r for different compact
objects. Here solid, dotdashed and dashed lines are drawn for 4U 1820-
30, PSR J1903+0327 and PSR J1614-2230 respectively

Fig. 10 Variation of (ρ + pt ) with radial distance r for different com-
pact objects. Here solid, dotdashed and dashed lines are drawn for 4U
1820-30, PSR J1903+0327 and PSR J1614-2230 respectively

Fig. 11 Variation of ρ with radial distance r for different compact
objects. Here solid, dotdashed and dashed lines are drawn for 4U 1820-
30, PSR J1903+0327 and PSR J1614-2230 respectively

Fig. 12 Variation of (ρ + pr +2pt ) with radial distance r for different
compact objects. Here solid, dotdashed and dashed lines are drawn for
4U 1820-30, PSR J1903+0327 and PSR J1614-2230 respectively

a star, which is referred to as the ’causality condition’. In
Figs. 15 and 16, we have plotted variations of v2

r and v2
t with

r for different compact objects. It is found that the causality
condition is obeyed in this model.

To check the stability of a stellar system, the concept
’cracking’ was introduced by Herrera [60]. Based on this
method, Abreu et al. [61] gave a criteria as given below:

0 ≤ |v2
t − v2

r | ≤ 1. (43)

It should be noted that for isotropic star dpr
dρ = dpt

dρ and there-
fore for 4U 1608-52 and PSR J1903+0327, we must have
|v2

t − v2
r | = 0 at all interior points. Therefore, we have

checked the validity of Abreu’s inequality for PSR J1614-
2230 only, which is shown in Fig. 17.

Again the condition −1 ≤ v2
t − v2

r ≤ 1 implies two
distinct regions

−1 ≤ (v2
t − v2

r ) ≤ 0, potentially stable ,

0 ≤ (v2
t − v2

r ) ≤ 1, potentially unstable .
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Fig. 13 Variation of (ρ − pr ) with radial distance r for different com-
pact objects. Here solid, dotdashed and dashed lines are drawn for 4U
1820-30, PSR J1903+0327 and PSR J1614-2230 respectively

Fig. 14 Variation of (ρ − pt ) with radial distance r for different com-
pact objects. Here solid, dotdashed and dashed lines are drawn for 4U
1820-30, PSR J1903+0327 and PSR J1614-2230 respectively

Fig. 15 Variation of v2
r with radial distance r inside various compact

objects. Here solid, dotdashed and dashed lines are drawn for 4U 1820-
30, PSR J1903+0327 and PSR J1614-2230 respectively

Fig. 16 Variation of v2
t with radial distance r inside various compact

objects. Here solid, dotdashed and dashed lines are drawn for 4U 1820-
30, PSR J1903+0327 and PSR J1614-2230 respectively

Fig. 17 Variation of |v2
t −v2

r | with radial distance r inside PSR J1614-
2230

The plot in Fig. 18 indicates that there is region inside the
star where (v2

t − v2
r ) alters sign and therefore changes from

a potentially stable to a potentially unstable region.
Moreover, the difference between each sound speed

should follow the physical restriction |v2
t − v2

r | ≤ 1, as the
individual sound speed must be less than the speed of light.
This is crucial in view of the characterization of a particular
model to investigate whether the model is potentially unsta-
ble. For a set of nonphysical fluctuations in energy density
and anisotropy, it can be possible to check the cracking points
within a given configuration, i.e., |v2

t −v2
r | > 1, but the exis-

tence of such cracking points could not point out the physical
stellar models that are potentially unstable.

11 Adiabatic index

The adiabatic index (Γ ) is an important thermodynamic
quantity describing any instability inside a compact object.
For adiabatic perturbations, the entropy remains constant, for
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Fig. 18 Variation of (v2
t −v2

r ) is shown against radial distance r inside
PSR J1614-2230

Fig. 19 Variation of adiabatic index (Γ ) against radial distance r inside
various compact objects. Here solid, dotdashed and dashed lines are
drawn for 4U 1820-30, PSR J1903+0327 and PSR J1614-2230 respec-
tively. Horizontal red line corresponds to the value Γ ′

such an instability, the adiabatic index can be expressed in
the form [62]

Γ = ρ + pr
pr

dpr
dρ

. (44)

For the stability of a Newtonian fluid sphere, the adiabatic
index must be greater than 4

3 [63]. However, Chan et al. mod-
ified this limit for a relativistic anisotropic fluid sphere and
showed that for stability Γ > Γ ′. Where

Γ ′ = 4

3
−

[
4

3

(pr − pt )

|p′
r |r

]

max
. (45)

For our model we have found that the value of Γ is always
larger than the limit Γ ′ as evident from Fig. 19.

12 Conclusions

In this paper, we have obtained a class of solutions for rela-
tivistic compact objects in spheroidal geometry with a matter

distribution that is anisotropic in nature and obeys the colour-
flavor-locked (CFL) equation of state. The metric ansatz in
spheroidal geometry was introduced by Vaidya and Tikekar
[38], in which the t = constant hypersurface has the geom-
etry of a three-spheroid embedded in a four dimensional
Euclidean space and stipulates a law of variation of density
determined by the curvature of the physical 3-space. Assum-
ing a density dependence of the B-parameter according to
Aguirre [45], the energy per baryon in the CFL phase is eval-
uated, which seems to take a minimum value at zero external
pressure, as evident from Fig. 2. The minima of the plots
increase with increasing mass of the strange quark (ms) and
touch the line corresponding to the energy per baryon of
56Fe (∼ 930.4 MeV) for ms = 228.3 MeV. Thus, 3-flavor
quark matter (SQM) in the CFL phase is absolutely stable
relative to 56Fe for ms < 228.3 MeV. The stability of SQM
increases with a decrease in the value of ms . For example,
when ms = 150 MeV, the energy per baryon is approxi-
mately 889.2 MeV, which represents weakly bound SQM
compared to the value 856.1 MeV when ms = 50 MeV.
To apply the EoS, obtained from thermodynamics to some
observed compact objects, we have considered the compact
objects 4U 1820-30, PSR J1614-2230, PSR J1903+0327,
PSR J0030+0451 and PSR J0740+6620. It has been found
that a wider range of λ is allowed for which CFL EoS may be
obtained inside these compact objects. Apart from that, PSR
J1614-2230 and PSR J0740+6620 are found to be anisotropic
in nature with values of anisotropy parameter α = 0.39 and
0.45, respectively, while others show isotropic pressure dis-
tribution. In our article, we have shown that the CFL equation
of state from thermodynamic point of view may be described
from a geometrical point of view considering the Vaidya–
Tikekar metric ansatz with a proper choice of metric param-
eter λ and anisotropy parameter α. Using the choice of such
parameters, we have predicted the radius of the above men-
tioned recently observed compact objects. The radius pre-
diction of such pulsars considering the CFL EoS and MIT
bag EoS suggest that the CFL EoS gives relatively smaller
radii compared to the MIT bag EoS, which can be noted from
Table 1. In the CFL phase, quarks form cooper pairs that col-
lectively behave as bosons, hence, by virtue, they do not need
to obey Pauli’s exclusion principle. Thus, gravity can shrink
the star to a more compact structure, and as a result, its radius
decreases. As our approach theoretically predicts the maxi-
mum mass of Strange Quark Star as high as 3.61 M�, a wide
range of observed masses, which includes pulsars and sec-
ondary objects of GW170817 and GW190814 events, may be
predicted. From the mass–radius plots in Fig. 7, it is noted that
the CFL EoS puts a limit on the maximum mass, which is ∼
3.61 M� whenms = 0 MeV, ΔG = 100 MeV, and decreases
further for higher values of ms . This is because the CFL EoS
becomes softer for higher values ofms , as evident from Fig. 3.
The same argument is also valid for MIT bag EoS. A com-
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parison is made with the MIT bag EoS, which shows that
the CFL EoS allows a higher value of maximum mass than
the MIT bag EoS for which Mmax = 2.03 M�. Such a high
value of maximum mass permits our model to include a wider
range of compact objects, which is also indicated in Fig. 7.
In comparison with the maximum mass obtained by Jasim et
al. [12] for CFL EoS and constant B, our model predicts a
much higher value of maximum mass for the same values of
ms and ΔG in the presence of density dependent B. There-
fore, it may be concluded that a large value of stellar mass
(> 2M�) may be accommodated with density dependent B
and CFL EoS in our proposed model. In particular, the the-
ory with CFL EoS and nonzero strange quark mass (ms �= 0)
can achieve the 3.61 M� which is a value hardly attainable
in general relativity even if we consider fast rotation effects
too. After the discovery of GW190814 event, the mass of
the secondary object is found to be 2.59+0.08

−0.09 M� [64]. The
recently measured mass of PSR J0952-0607 is found to be
2.35±0.17 M� [65], the heaviest and fastest pulsar detected
so far in the disk of the Milky Way, supporting the possible
presence of strange quark matter in its composition. Such
observed high mass may be accommodated in our present
model with nonzero ms . From Fig. 8, it is evident that the
maximum central density permitted by the CFL EoS is 1.221
× 1015 g/cm3. Above the maximum mass point it is noted
that ∂M

∂ρ0
< 0, which is not allowed since this leads to insta-

bility of a fluid sphere [57]. From Figs. 9, 10, 11, 12, 13
and 14, it is obvious that all the necessary energy conditions
are obeyed in this model. The causality conditions and the
inequality given by Abreu et al. [61] are satisfied, as shown in
Figs. 15, 16, 17 and 18. For stability against small adiabatic
perturbations, we calculate the value of the adiabatic index Γ

from Eq. (44) and study its radial variation, which is plotted
in Fig. 19. It is evident that at all interior points, the value of
Γ is greater than Γ ′ according to Eq. (45), thus showing that
our model is stable against small perturbations for adiabatic
flow.
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