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Abstract: We study a bino-like light neutralino (χ̃0
1) produced at the LHC from the

decay of a scalar lepton (ẽL) through the process pp → ẽL → eχ̃0
1 in the context of R-

parity-violating (RPV) supersymmetry where χ̃0
1 is the lightest supersymmetric particle.

For small masses and RPV couplings, the neutralino is naturally long-lived and its decay
products can be identified as displaced tracks. Following existing searches, we propose a
displaced-vertex search strategy for such a light neutralino with a single RPV coupling
switched on, λ′111, in the mass range 10GeV . mχ̃0

1
. 230GeV. We perform Monte Carlo

simulations and conclude that at the high-luminosity LHC, the proposed search can probe
values of λ′111 down to two orders of magnitude smaller than current bounds and up to 40
times smaller than projected limits from monolepton searches.
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1 Introduction

In recent years, searches for heavy new particles at the Large Hadron Collider (LHC), in-
spired by supersymmetry (SUSY) and other new physics (NP) scenarios, have yielded no
concrete fruit. On the other hand, the lifetime frontier has become increasingly important.
In particular, the LHC and other high-energy experiments are now actively looking for long-
lived particles (LLPs) [1–3]. After such exotic states are produced, they can travel macro-
scopic distances before decaying into Standard Model (SM) or other NP particles, leading to
distinctive signatures such as displaced leptons or displaced vertices. A series of far-detector
experiments with the main purpose of searching for LLPs, such as FASER [4] and MoEDAL-
MAPP [5], have been proposed or approved at different interaction points (IPs) of the LHC.

In various SUSY models, different new particles can be long-lived. For instance, one
can have a long-lived gluino in split SUSY [6], or a long-lived chargino in compressed
SUSY [7, 8]. In this work, we consider the production of the lightest neutralino in R-parity-
violating (RPV) supersymmetry (see refs. [9–11] for reviews on the model). The minimal
supersymmetric standard model (MSSM) with broken R-parity allows for the lightest su-
persymmetric particle (LSP) to decay into standard model particles via either bilinear or
trilinear RPV couplings. In this work, we assume that the lightest neutralino is the LSP.

Current bounds on the lightest neutralino mass are much looser than those on the
squark, slepton, and gluino masses. If the GUT-inspired relation between the gaugino
masses (M1 ≈ 0.5M2) is dropped [12, 13] and dark matter (DM) does not consist of the
lightest neutralino [14–19], then the lightest neutralino can have O(GeV) masses or even be
massless [20, 21]. Such a light neutralino has to be bino-like [20, 21] and it is in agreement
with both astrophysical and cosmological bounds [22–28] as long as it decays (e.g. in the
framework of RPV-SUSY) in order to avoid overclosing the Universe [29]. See ref. [30] for
a recent study on the low-energy phenomenomology of a bino-like neutralino lighter than
the tau lepton.
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Besides the bounds on the lightest neutralino mass, the various RPV couplings are also
constrained from both collider and low-energy observables [31]. In this work, we focus on
the single coupling λ′111, for which the most stringent current bounds stem from neutrinoless
double beta decay [32–35] as well as monolepton searches at the LHC [36]. Details of the
neutrinoless double beta decay bounds are described in section 4, while a reinterpretation of
the monolepton search for our scenario is presented in section A. Both bounds are shown
in section 4 together with the expected bounds from the displaced vertex (DV) search
proposed in this work. If the coupling λ′211 is instead switched on, the sensitivity results
will be similar but the neutrinoless double beta decay constraints would no longer apply.

If either the lightest neutralino is light or the RPV couplings are small enough, the
lightest neutralino becomes long-lived and may be searched for at collider, beam-dump
experiments and even atmospheric neutrino detectors [37]. Phenomenological studies on the
exclusion limits in the same scenario already exist from the planned SHiP experiment [38,
39], proposed LHC far detectors [40–45], Belle II [46, 47], and future lepton colliders [48, 49].
These works mainly focus on the lightest neutralino produced from either B- or D-mesons
decays, or Z-boson decays, constraining masses below ∼ 45 GeV. In contrast, in this work
we consider the on-shell production of a heavy slepton, which then further decays to a
charged lepton and a long-lived neutralino. This allows us to probe neutralino masses up
to above 200GeV, as will be shown in section 4.

This work is organized as follows. We introduce the RPV-MSSM model basics and
benchmark scenarios in section 2. The simulation procedure is explained in section 3
together with the description of the event selections. Numerical results are presented in
section 4 and we conclude with a summary and conclusions in section 5. Additionally, in
appendix A, we describe our reinterpretation of the LHC monolepton search in the context
of the RPV-MSSM.

2 Model and benchmark scenarios

In the RPV-MSSM, the MSSM is supplemented with the following RPV superpotential [50,
51]

WRPV =
∑
i

µiLiHu +
∑
i,j,k

(1
2λijkLiLjE

c
k + λ′ijkLiQjD

c
k + 1

2λ
′′
ijkU

c
iD

c
jD

c
k

)
, (2.1)

where Qi, Dc
i , U ci , and Li, Eci are chiral superfields and i, j, k = (1, 2, 3) are generation

indices. The µi, λijk, and λ′ijk couplings violate lepton number (L) while the λ′′ijk couplings
violate baryon number (B). If all the RPV terms in eq. (2.1) are present and unsuppressed,
they would allow for a proton decay rate not compatible with current bounds on the proton
lifetime.1 Therefore, we will consider the scenario where baryon-number-violating couplings
(λ′′ijk) are vanishing or negligible. This can be justified, e.g., by imposing a baryon triality
B3 discrete symmetry [53, 54]. From the remaining L-violating terms in eq. (2.1), the
second trilinear term (LQDc) allows for the superpartners to be singly produced at the

1See ref. [52] for a recent study on constraints on RPV couplings from experimental and lattice results
of nucleon decays.
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Figure 1. Parton-level Feynman diagram for the neutralino (χ̃0

1) production and decay through
the λ′i11 coupling at the LHC. The slepton (ẽLi) in the left-hand side of the diagram decays into a
neutralino and a prompt, charged lepton. We trigger on this prompt lepton while the decay products
of the long-lived neutralino are identified as displaced tracks. In this scenario, the neutralino is long-
lived as a result of its small mass, the off-shell propagator of the heavy slepton (ẽ∗Li), and the small
RPV coupling. We note that diagrams with a positively charged s-channel slepton decaying into
the neutralino, or with a neutralino decay into e+

i ūd, are implied.

LHC. In this work we will focus on the LQDc term assuming all the other RPV couplings
are zero. The Yukawa couplings generated by this operator are

LRPV = λ′ijk

(
ν̃iLd̄kRdjL + d̃jLd̄kRνiL + d̃∗kRν̄

c
iRdjL − ẽiLd̄kRujL

−ũjLd̄kReiL − d̃∗kRēciRujL
)

+ h.c. (2.2)

The fourth term in eq. (2.2), which includes a charged slepton, allows for the neutralinos
to be produced at the LHC together with a prompt charged lepton, as shown in figure 1.
As it will be explained in section 3, this prompt lepton will be used as a trigger in the
proposed search. We consider χ̃0

1 to be the lightest supersymmetric particle, so it can only
decay through the RPV terms, with a total decay width proportional to the λ′ijk couplings
squared,

Γχ̃0
1
∝ m5

χ̃0
1

λ′ijk
m2
f̃

2

, (2.3)

where mf̃ is the mass of the corresponding sfermion mediating the decay. Consequently,
for small enough RPV couplings (and mχ̃0

1
) the neutralino will be long-lived. The decay

products of this long-lived neutralino (shown in figure 1) will be identified as displaced
tracks from a common origin, i.e., a displaced vertex (DV).

From the 27 flavor combinations of the λ′ijk couplings, the strongest sensitivity at the
LHC will be for λ′i11 (i = 1, 2) as a result of the proton parton distribution functions
and higher reconstruction efficiencies for electrons and muons compared to tau leptons.
For concreteness, in this work we analyze the sensitivity of the LHC to λ′111, but the
search strategy described in this work is expected to give similar constraints for λ′211. For
simplicity, all the superpartners different from χ̃0

1 and mẽL are taken to be heavy (10TeV),
so that they are effectively decoupled. Although this mass hierarchy may be difficult to
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achieve in a realistic model, this is a phenomenological consideration chosen to define our
benchmarks, so the phenomenology at the LHC can be controlled by the following three
parameters only:

λ′111,mẽL ,mχ̃0
1
. (2.4)

In section 4 we will present our numerical results with four benchmark scenarios of
the selectron mass, mẽL : 1 TeV, 2.5 TeV, 5 TeV, and 7 TeV, while varying the mass of the
lightest neutralino (mχ̃0

1
) and λ′111 freely.

3 Simulation and event selection

Inspired by the ATLAS 13-TeV SUSY search for displaced vertices [55], we focus on a
search strategy that identifies the χ̃0

1 decay products inside the inner tracker as displaced
tracks, which can come from the hadronized quarks or the displaced electron from the
neutralino decay.

We use the RPV-MSSM UFO model file implemented in ref. [56], with flavor diagonal
mixing matrices for sfermions. We also set the lightest neutralino to be a pure bino in the
model spectrum. We simulate the process pp→ χ̃0

1e in MadGraph 5 [57] at
√
s = 13TeV,

and generate parton-level LHE events with displaced information. The decay widths of
the selectron and the lightest neutralino are automatically computed by MadGraph 5.
Figure 2 shows the production cross section of pp → χ̃0

1e divided by λ′2111 as a function of
the selectron mass, for a fixed neutralino mass of 100GeV. For other neutralino mass values
below ∼ 250GeV, there are no appreciable differences, so we take only one benchmark
neutralino mass of 100GeV here. We note that for figure 2 and the remaining simulation,
we set the kinematic cuts of pT ≥ 10GeV and |η| > 2.5 for the outgoing electron or positron
at the generation level.

Events are further read within Pythia 8 [58] for showering and hadronization. We then
perform a custom detector simulation within Pythia 8 for electrons, and displaced tracks
and vertices. We start by selecting events triggering on a prompt, isolated electron with
pT > 25GeV and with |η| < 2.47. Displaced vertices are then selected from tracks with a
high transverse impact parameter, of |d0| > 2 mm and pT > 1GeV. Vertices are required
to be within the inner tracker acceptance, with transverse decay positions rDV between
4 and 300 mm, as well as longitudinal distance |zDV| < 300 mm. Additionally, displaced
vertices must have at least 5 tracks and have an invariant mass mDV ≥ 10GeV (for which
we assume all the tracks have the mass of the pion). These last two cuts define the region
where signal is expected to be found free of Standard Model and instrumental background
events [55]. In order to further characterize the detector response to displaced vertices
within the above mentioned regions, we also make use of the parametrized vertex-level
efficiencies provided by ATLAS in ref. [55]. A similar search for a long-lived right-handed
neutrino in the context of a left-right symmetric model was performed in refs. [59, 60].

In figure 3 we show the overall selection efficiency of our DV strategy as a function
of the neutralino mass, for three benchmark values of the slepton mass mẽL : 1, 2.5 and
5TeV, and a fixed coupling, λ′111 = 10−2. We observe that the larger is the slepton mass,
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Figure 2. Production cross section of pp → χ̃0
1e divided by λ′2111 as a function of mẽL

for
mχ̃0

1
=100GeV.
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Figure 3. DV selection efficiency as a function of the neutralino mass, for three values of the
slepton mass. Here as a sample scenario, we fix λ′111 = 10−2.
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Figure 4. DV selection efficiency as a function of the cτ of the neutralino, for three fixed slepton
masses and three fixed values of the neutralino mass.

the higher is the peak value in efficiency at a higher value of mχ̃0
1
. The highest efficiency

is achieved at values of the boosted decay length of the neutralino,

βγcτ = p

mχ̃0
1

~c
Γχ̃0

1

, (3.1)

that lie within a certain optimal range (of order O(cm)) corresponding to the ATLAS inner
detector geometry and predict the largest decay probability inside the ATLAS fiducial vol-
ume. Here, p denotes the 3-momentum magnitude of the light neutralino. The neutralino
boosted decay length is proportional to m4

ẽL
/m6

χ̃0
1
(see eq. (2.3)). As a result, with λ′111

fixed, the peak efficiency is obtained at a larger mχ̃0
1
for a heavier slepton mass. More-

over, for heavier slepton and neutralino masses, the prompt electron tends to be harder,
the displaced tracks have a larger transverse impact parameter as well as the transverse
momentum, and the displaced vertices consist of a larger number of tracks and a heavier
mDV; altogether these lead to a better overall efficiency at the peak.

This last feature of high mass displaced vertices with higher number of tracks can also
be seen in figure 4, which shows the DV efficiency as a function of the neutralino proper
decay length, for representative benchmarks with fixed slepton masses, mẽL : 1, 2.5 and
5TeV, and fixed neutralino masses, mχ̃0

1
: 50, 100 and 150GeV. Independent of the value

of mẽL , the larger the neutralino mass, the higher is the peak efficiency in lifetime.
With the above DV search strategy, we can then estimate 95% confidence level (C.L.)

exclusion limits under the assumption of zero background, in the RPV coupling and neu-
tralino mass planes in the following section.
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Figure 5. Sensitivity reach in the λ′111 vs. mχ̃0
1
plane with the proposed DV search strategy with

3000 fb−1. The number of expected signal events depicted in the color bar starts from 3. Red
lines show the recast monolepton limits for 36.1 fb−1 (solid red line) and our high-luminosity LHC
projection to 3000 fb−1 (dashed red line). Constraints from 0νββ are shown in solid blue.

4 Results

We proceed to calculate the sensitivity to the trilinear RPV coupling λ′111 with our DV
search strategy for long-lived light neutralinos at the ATLAS inner tracker detector. For
simplicity, we will assume that the λ′111 coupling is the only nonzero RPV coupling, and
that the masses of the squarks are heavy enough to be outside of LHC range, except for
the selectron mass, mẽL .

– 7 –
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In figure 5 we show the expected sensitivity for light neutralinos with our DV search
strategy for a luminosity of 3000 fb−1. The 95% C.L. exclusion limits are displayed in
the λ′111 vs. mχ̃0

1
plane for selectron masses mẽL = (1, 2.5, 5, 7)TeV. This is so as we are

assuming a zero background search and requiring three signal events.

In all benchmarks, the sensitivity is mostly limited by neutralinos decaying far away
beyond the trackers (towards the lower left of the colored contours) and neutralinos de-
caying too promptly (towards the upper right of the colored contours). The reach in the
neutralino mass is lower for higher selectron masses, as it is limited by production cross-
section. With this DV search at 3000 fb−1, we are able to exclude λ′111 values as low as
∼ 10−4 for mχ̃0

1
∼ 230GeV, and mẽL = 1TeV.

Figure 5 also compares our limits with current constraints from neutrinoless double
beta decay searches at GERDA [61] and monolepton searches at ATLAS [36] with 36.1 fb−1

of integrated luminosity. The neutrinoless double beta decay limits were obtained by
comparing the theoretical calculations from ref. [35] of the RPV SUSY contribution to
0νββ half-life, mediated by light neutralinos and selectrons2 (see figure 1 and rotate it by 90
degrees clockwise to visualize the Feynman diagram contributing to 0νββ decay) with the
experimental current limits on the 0νββ half-life T exp

1/2 > 1.8× 1026yr for the isotope 76Ge.

On the other hand, the monolepton limits are based on our reinterpretation of the AT-
LAS search described in appendix A, which corresponds to the red solid curve in figure 5.
We obtain the limits by extracting a contour on the significance at 36.1 fb−1, i.e. Z36 ≡
S/
√
B, with S the number of signal events after the monolopton cuts and B the number of

background events taken from the ATLAS search, at Z36 = 2. The dashed red curve in fig-
ure 5 is our projected limit for the same monolepton search but for a luminosity of 3000 fb−1.
The contour is again obtained at Z3000 = 2 after re-scaling with Z3000 ≡

√
3000/36.1 ·Z36.

For higher selectron mass, the monolepton limits become less stringent, owing to the
smaller production cross-sections. We also note a transition in the monolepton search sen-
sitivity happening as the mass of the neutralino increases and ceases to be long-lived, see
figure 5. This is understood as follows. Monolepton searches are efficient, provided the elec-
tron pT and the missing transverse momenta are high enough for the events to pass the cut
on transverse mass (see appendix A). When the mass of the neutralino is small enough for
it to decay outside the detector, all of its momentum contributes to missing transverse mo-
menta (as opposed to only a fraction when it has visible decay products inside the detector).
As a result, missing transverse momenta is high enough for the event selections to be effi-
cient when the neutralino is long-lived. For a more prompt neutralino, the monolepton sig-
nal efficiencies decrease, remaining constant for a large part of the neutralino masses thanks
to the contributions to the missing transverse momenta coming from prompt activities.

2Figure 3 in ref. [35] shows the calculation of the contribution of light neutralinos and selectrons to the
0νββ half-life for λ′111 = 10−3 and mẽL = 2TeV (green dashed line). We have re-scaled these results for
different values of λ′111 and mẽL using the proportionality relation (T 0νββ

1/2 )−1 ∝ |λ
′2
111/m

4
ẽL
|2 (see equation

(4.5) in ref. [35]).
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5 Conclusions

In recent years, increasingly more searches for long-lived particles have been proposed and
performed at the LHC and other experiments. In R-parity-violating supersymmetry (RPV-
SUSY), the lightest neutralino is allowed to be light with mass in the GeV scale, as long as
it decays via RPV couplings. Such a light neutralino also must be dominantly bino-like. If
both the mass and the non-vanishing RPV couplings are small, the lightest neutralino is
naturally long-lived.

In this work, we have proposed a search strategy based on an existing ATLAS 13-TeV
SUSY search, and performed Monte-Carlo simulations to estimate the sensitivities at the
high-luminosity LHC (HL-LHC) to such a light neutralino with a single RPV coupling
switched on, λ′111. We consider on-shell production of an selectron from pp collisions via
λ′111 which then decays promptly into an electron and the lightest neutralino. The lightest
neutralino travels a macroscopic distance before decaying into an electron and two quarks
via the same RPV coupling and an off-shell selectron. Thus, this theoretical scenario comes
with only three free parameters: the RPV coupling λ′111, the neutralino mass mχ̃0

1
, and the

selectron mass mẽ.
For numerical results, we present plots of search efficiencies as functions of either the

neutralino mass or its proper decay length, cτ , as well as plots of final sensitivities in the
plane λ′111 vs. mχ̃0

1
for four benchmark selectron masses, mẽL : 1, 2.5, 5, and 7TeV. Our

final results show that for 1TeV selectron mass, the proposed search at the HL-LHC can
probe values of λ′111 up to two orders of magnitude smaller than current bounds from
neutrinoless double beta decay experiments, as well as up to 40 times smaller than our
recast of an LHC monolepton search with an integrated luminosity of 36.1 fb−1, projected
to the final HL-LHC target, 3000 fb−1, for neutralino masses between 10GeV and 230GeV.
However, for a heavy selectron of mass 7TeV, our sensitivities are rather limited, and at
most comparable with the bounds from neutrinoless double beta decay at mχ̃0

1
∼ 50GeV.

We further note that while we have focused on the single coupling λ′111, our results are
almost equally applicable to the same scenario but with another RPV coupling, λ′211, as
at the LHC, we expect prompt muon efficiencies to be similar to that of electrons. For the
case of a single coupling λ′211 the limits from neutrinoless double beta decay do not apply.

Acknowledgments

We thank Benjamin Fuks and Torbjörn Sjöstrand for useful discussions on the UFO im-
plementation and Pythia 8, respectively. G.C. acknowledges support from ANID FONDE-
CYT grant No. 11220237. G.C., J.C.H. and F.H.P. also acknowledge support from grants
ANID FONDECYT No. 1201673 and ANID — Millennium Science Initiative Program
ICN2019_044. J.C.H. acknowledges the financial support of DIDULS/ULS, through the
project PTE202135. Z.S.W. is supported by the Ministry of Science and Technology
(MoST) of Taiwan with grant number MoST-110-2811-M-007-542-MY3. N.A.N. was sup-
ported by ANID (Chile) under the grant ANID REC Convocatoria Nacional Subvención a
Instalación en la Academia Convocatoria Año 2020, PAI77200092.

– 9 –



J
H
E
P
1
0
(
2
0
2
2
)
0
9
5

A Reinterpretation of monolepton search

The ATLAS collaboration has presented a search for a monolepton signal based on L =
36.1 fb−1 of statistics taken at

√
s = 13TeV [36]. We reinterpret this existing prompt search

for a new W ′ gauge boson decaying to an electron and a neutrino, W ′ → eν, in the context
of our RPV signal, ẽ→ eχ̃0

1.
For our recast, we first validated the W ′ Sequential Standard Model (SSM) signal

model [62]. The simulation for the W ′ signal was done with Pythia 8 [58] for both pro-
duction and decay. We performed a custom detector simulation where electrons are recon-
structed as an isolated prompt object within |η| < 2.47 with smeared momenta (idem as
in ref. [63]). Missing transverse momenta, pmiss

T , is reconstructed from all visible physics
objects (following ref. [64], with a standard reconstruction that includes a vector sum of
the pT of jets, leptons and unclustered deposits of energy not associated to leptons and
jets). Everything decaying outside the inner detector is considered stable. We consider a
cylinder with inner detector dimensions radius r = 1100 mm and length |z| = 2800 mm,
as in ref. [64]. The following cuts are applied:

• One electron with pT > 120GeV and transverse energy ET > 4.5GeV

• Missing transverse momenta pmiss
T > 65GeV

• Transverse mass mT =
√

2pT · pmiss
T (1− cos ∆φ) > 130GeV. Here pT corresponds to

the transverse momentum of the electron, pmiss
T is the missing transverse momenta,

and ∆φ is the azimuthal angle between these vectors.

A plot of the overall signal efficiency after all cuts as a function of W ′ mass is shown in
the left frame of figure 6, compared with the ATLAS auxiliary figure 6 from HepData. We
also validate table 1 of the ATLAS paper [36], and extract the number of expected events
frommT distributions, which we generate for eachmW ′ mass point. ThesemT distributions
are given after all cuts in the ATLAS paper, so we reproduce these histograms in order
to extract event level efficiencies. We calculate the signal efficiency (for a given mass
benchmark) after integrating over the mT bins defined by ATLAS. An example benchmark
for mW ′ = 2TeV is shown in the right frame of figure 6. In general, most bins match within
30%. The biggest discrepancy is found to be for the first mT bin of [130-200] GeV for the
mW ′ = 4TeV benchmark, which reaches 55%.

We implement the same above mentioned strategy to our RPV signal. As for cal-
culating the monolepton exclusion in figure 5, we take the background numbers directly
from the ATLAS paper [36], which are provided in HepData in bins of mT . We note that
monolepton searches have been reinterpreted in a similar way (but without considering
detector effects) in ref. [65] in the context of right-handed WR bosons and heavy neutrinos.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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Figure 6. Validation plots per mW ′ mass point and per mT ATLAS-defined bins. Comparison
with the ATLAS expectation is provided in the bottom frames. (left) Event efficiency as a function
of mW ′ . (right) Number of expected events as a function of mT bins.
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