
 

Semiclassical energy of closed Nambu-Goto strings
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We compute semiclassical corrections to the energy of rotating closed Nambu-Goto strings. We confirm
the results obtained by means of the Polchinski-Strominger action. We also show that in this semiclassical
approximation, the spectrum of physical excitations contains modes that are unphysical nonperturbatively,
i.e., to which no physical excitations of the covariantly quantized Nambu-Goto string correspond.
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I. INTRODUCTION

In the covariant quantization scheme, the Regge inter-
cept a of the Nambu-Goto string is a free parameter, only
constrained by a ≤ 1 for D ≤ 25 and a ¼ 1 for D ¼ 26,
with D the dimension of the target Minkowski space [1,2].
As the Nambu-Goto string is a toy model for vortex lines in
QCD, cf. [3–5] for recent works and reviews in this
direction, a determination of a for noncritical dimensions
is desirable. Using the Polchinski-Strominger action [6],
Hellerman and Swanson [7] computed the Regge intercepts
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for open and closed Nambu-Goto strings. Here J1;2 and J3;4
are angular momenta in the 1–2 and 3–4 planes in which
the closed string rotates. Regarding this result, two aspects
are puzzling:

(i) For the covariantly quantized string, a is a constant
which is independent of the ratio of the angular
momentum components, in contrast to (1) forD ≠ 26.

(ii) In the limit J3;4 → 0, the closed string degenerates
to two straight open strings with the same end-
points. One would thus expect aopen ¼ aclosed,

which, however, only holds forD ¼ 26. Even worse,
for D < 26, aclosed diverges in the limit J3;4 → 0.

Due to this seeming inconsistency in noncritical dimen-
sion, it seems desirable to verify (1) with other methods.
The result for the open string, including a generalization
to masses at the endpoints, was recently rederived in [8]
using a semiclassical approximation, i.e., by quantizing the
perturbations around classical rotating string solutions, and
using a local renormalization procedure to extract quantum
corrections to the energy. Here, we perform the analogous
analysis for closed strings, also verifying (1).
The semiclassical quantization procedure in principle also

allows us to compute the spectrum of excitations of the
classical rotating solutions. In [8] it was shown that for
the open string (at least for the low-lying excitations) the
semiclassical approach leads to the same spectrum of
physical excitations as the covariant quantization scheme.
Here, we show that for the closed string the spectrum of
excitations in the semi-classical theory is too large, i.e., there
are semi-classical excitations that do not correspond to
physical excitations of the full nonperturbative covariantly
quantized theory. That such phenomena are possible in gauge
theories is well known: For example, already at the classical
level, Yang-Mills theory is not linearization stable [9], i.e.,
solutions to the linearized equations are not necessarily
tangent to the manifold of solutions of the full equations,
i.e., do not derive from a curve in the set of solutions of the
full equations. More generally, denoting by s0 the linearized
part of the Becchi, Rouet, Stora, Tyutin (BRST) operator s,
the cohomologyHðs0Þ describing observables in the linear-
ized theory is in general larger than the cohomologyHðsÞ of
the full theory, an elementary example being again provided
by Yang-Mills theory, cf. [10] for example. In the present
case, the reason seems to be that the level-matching condition
is not implemented at the linearized level.
Our perturbative approach is basedon the finding [11] that

in the sense of perturbation theory around nondegenerate
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classical solutions, the Nambu-Goto string can be quantized
for any D, without anomalies. Let us sketch the argument:
Let X∶Σ → ðRD; ηÞ with η ¼ diagð−þ � � � þÞ be the
embedding of the world sheet Σ into the target
Minkowski space and split X into a classical solution X̄
and a perturbation φ, i.e.,

X ¼ X̄ þ γ−
1
2φ; ð2Þ

where γ−
1
2 is seen as a formal expansion parameter. The

Nambu-Goto action is

S ¼ −γ
Z
Σ

ffiffiffi
g

p
d2x ð3Þ

where g is the determinant of the metric induced by the
embedding. The full action is invariant under reparametri-
zations of embedding, giving rise to the BRST transforma-
tion of φ given by

sφa ¼ cμ∂μXa ¼ cμ∂μX̄a þ γ−
1
2cμ∂μφ

a; ð4Þ

with cμ the diffeomorphism (re-parametrization) ghost
vector field. Here roman (greek) indices are target space
(world sheet) indices. Given a gauge condition Tμ½φ� ¼ 0,
one supplements the action (3) by the gauge-fixing action

Sgf ¼
Z
Σ
ðbμTμ½φ� − c̄μsTμ½φ�Þ

ffiffiffī
g

p
d2x; ð5Þ

with ḡ the determinant of the metric ḡμν induced by X̄. This
action is invariant under the BRST transformation defined
by (4) and

scμ ¼ γ−
1
2cν∇̄νcμ; sc̄μ ¼ bμ; sbμ ¼ 0; ð6Þ

where ∇̄ is the Levi-Civita covariant derivative with respect
to ḡμν.
The possible occurrence of anomalies, such as a viola-

tion of the nilpotency of the BRST charge, is governed by
the cohomologies of s and s mod d. The free, i.e., Oðγ0Þ,
part of s is

s0φa ¼ cμ∂μX̄a: ð7Þ

For a nondegenerate classical embedding X̄, ∂μX̄a has
maximal rank. It follows that the fluctuations φa tangential
to the embedding X̄ form trivial pairs with the ghosts cμ and
drop out of the cohomology of s0. Hence, s0 has trivial
cohomology at positive ghost number. By cohomological
perturbation theory [12], this carries over to the cohomol-
ogy of s, and also to the cohomology of s mod d. Hence,
there is a renormalization scheme in which no anomalies
are present, in any order of perturbation theory.

In the following, we will truncate the action at Oðγ0Þ,
i.e., at second order in the dynamical fields φa, cμ, c̄μ, bμ.
This free action is the one relevant for the semiclassical
approximation. Furthermore, we use transversal gauge
[13], where the absence of anomalies at the level of the
free theory is manifest. For this, one chooses

Tμ½φ� ¼ ∂μX̄aφa: ð8Þ

By the equations of motion derived from the free action, the
unphysical fields, i.e., the auxiliary fields cμ, c̄μ, bμ and the
pure gauge perturbations, i.e., those parallel to ∂μX̄a, then
vanish,1 so they can be consistently set to zero at the level
of the free theory.2 In particular, the corresponding free
BRST charge vanishes3 (and is thus also nilpotent). Hence,
expanding the action to Oðγ0Þ and restricting to fluctua-
tions φa normal to the classical embedding X̄ (these vanish
under the action of s0), one arrives at a free theory involving
only physical fields.
The perturbation φ is naturally interpreted as a field

living on the world sheet, so that quantization yields a free
quantum theory on the world sheet. The equations of
motion for φ only depend on the world sheet geometric
data, i.e., the metric and the second fundamental form
induced by the classical embedding X̄. Hence, it seems
natural, in line with the framework of [11], to use methods
from quantum field theory on curved space-time [14,15] for
the renormalization of the free world sheet HamiltonianH0.
This means that renormalization is performed locally, using
the local geometric data. The correspondence between the
world sheet Hamiltonian and the target space energy then
gives corrections to the classical Regge trajectories.
Let us analyze the latter point in more detail. We recall

that in the covariant quantization the ground state energies
EJ for angular momentum J1;2; J3;4 ≥ 0 satisfy

E2 ¼ 4πγðJ1;2 þ J3;4 − 2aÞ; ð9Þ

with γ the string tension, a relation which we call the Regge
trajectory in the following (no extension of the angular
momenta to the complex plane is intended). It is important

1At second order in the perturbation, the fluctuations parallel to
the classical embedding X̄ drop out of the (not yet gauge fixed)
Nambu-Goto action [11]. From this, one easily derives that in
transversal gauge the unphysical fields vanish on-shell at the level
of the free theory.

2The possibility of such a trivial gauge fixing (and also the
triviality of the cohomology of s) is due to the absence of
derivatives of the ghost in the BRST transformation (4). This
feature in particular distinguishes the model from Yang-Mills
theories and general relativity.

3As a consequence of the absence of derivatives of dynamical
fields in the gauge fixing condition (8), the free BRST current,
i.e., the Noether current derived from s0 and the free part of the
action, vanishes. (The Nambu-Goto action S does not contribute
to the free BRST current [11].)
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to note that this ground state is degenerate in the sense that
ground states for fixed J ¼ J1;2 þ J3;4 all have the same
energy EJ. We will be parameterizing the rotating string in
terms of the two radii R1;2, R3;4 in the two planes. In terms
of these, the classical target space energy and angular
momentum are given by

Ē ¼ 2πγR; J̄1;2 ¼ πγR2
1;2; J̄3;4 ¼ πγR2

3;4; ð10Þ

with

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1;2 þ R2

3;4

q
: ð11Þ

Here the bar stands for the values corresponding to the
classical (background) configuration X̄, cf. (2). In our
parametrization, the relation between the world sheet
Hamiltonian H, the quantum correction Eq to the target
space energy E, and the quantum corrections Jq1;2, J

q
3;4 to

the angular momenta J1;2, J3;4 is

Eq ¼ 1

R
ðH þ Jq1;2 þ Jq3;4Þ; ð12Þ

yielding

E2 ¼ ðĒþ EqÞ2
¼ 4π2γ2R2 þ 4πγðH þ Jq1;2 þ Jq3;4Þ þOðR−2Þ
¼ 4πγðJ1;2 þ J3;4 þH0Þ þOðR−1Þ: ð13Þ

By comparison with (9), one can directly read off the
intercept a from the expectation value of H0, i.e.,

a ¼ −
1

2
hH0i: ð14Þ

As the case of elliptic strings is notationally and
computationally much more involved, we chose to first
present our calculation for the case of circular strings, i.e.,
for R1;2 ¼ R3;4, and to discuss the modifications necessary
for the treatment of elliptic strings in a separate section. The
article is thus structured as follows: In the next section, we
discuss the perturbations of classical rotating circular
solutions, and in Sec. III the calculation of the correspond-
ing intercept. Section IV deals with the generalization to the
elliptic case. These calculations are for simplicity per-
formed for D ¼ 6. The straightforward generalization to
general D is discussed in Sec. V. Finally, in Sec. VI, we
compare the spectrum of physical excitations in the
linearized semi-classical theory and the covariant quanti-
zation scheme. We conclude in Sec. VII. An Appendix
contains some intermediate results of our treatment of the
elliptic case.

II. PERTURBATIONS OF CLASSICAL ROTATING
CIRCULAR STRINGS

For an embedding X∶Σ → ðRD; ηÞ the Nambu-Goto
action (3) yields the equations of motion

□gX ¼ 0: ð15Þ

We also recall the target space momentum and angular
momentum derived from the action (3):

Pi ¼
Z

2π

0

δS
δ∂0Xi

dσ ¼ −γ
Z

2π

0

ffiffiffi
g

p
g0ν∂νXidσ; ð16aÞ

Lij ¼
Z

2π

0

�
δS

δ∂0Xj Xi − i ↔ j

�
dσ

¼ γ

Z
2π

0

ffiffiffi
g

p
g0νðXj∂νXi − Xi∂νXjÞdσ: ð16bÞ

Here we assumed Σ to be parametrized by ðτ; σÞ ∈
R × ½0; 2πÞ. The target space energy is given by E ¼ P0.
We parametrize the rotating circular solution as

X̄ðτ; σÞ ¼ Rffiffiffi
2

p

0
BBBBBBBB@

ffiffiffi
2

p
τ

sin τ cos σ

− cos τ cos σ

cos τ sin σ

sin τ sin σ

0

1
CCCCCCCCA
; ð17Þ

where σ ∈ ½0; 2πÞ and R is given by (11). Note that in our
parametrization, the world sheet coordinates τ, σ are
dimensionless. For simplicity, we here assumed that the
target space-time is six dimensional. As discussed in
Sec. V, it is straightforward to add further dimensions
(or to remove the sixth). The induced metric on the world
sheet, in the coordinates introduced above, is a multiple of
the Minkowski metric,

ḡμν ¼
R2

2
ημν: ð18Þ

In particular, the equation of motion (15) can be easily
checked. Energy and angular momentum of the above
solution were given in (10), with R1;2 ¼ R3;4 ¼ Rffiffi

2
p .

Our goal is to perform a (canonical) quantization of the
fluctuations φ around the classical background X̄, cf. (2).
As discussed in the introduction, we may, at the level of the
free theory, restrict to normal fluctuations. We parametrize
these as

φ ¼ fsvs þ fava þ fbvb þ fcvc; ð19Þ
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with vs, va, vb, vc, orthonormal and normal to the world
sheet. Concretely, we choose

vs ¼

0
BBBBBBBB@

0

0

0

0

0

1

1
CCCCCCCCA
; va ¼

ffiffiffi
2

p

0
BBBBBBBB@

1ffiffi
2

p

cos τ cosσ

sin τ cosσ

− sin τ sinσ

cos τ sinσ

0

1
CCCCCCCCA
;

vb ¼

0
BBBBBBBB@

0

sin τ cosσ

− cos τ cosσ

cos τ sinσ

sin τ sinσ

0

1
CCCCCCCCA
; vc ¼

0
BBBBBBBB@

0

cos τ sinσ

sin τ sinσ

sin τ cosσ

− cos τ cosσ

0

1
CCCCCCCCA
: ð20Þ

Here the scalar component fs describes the fluctuations in
the direction perpendicular to the planes of rotation. The
mode fa describes infinitesimal rotations generated by
L1;2 þ L3;4 (va also has a time component, which is present
to make it orthogonal to the world sheet). The mode fb
describes dilations in the subspace spanned by e1, e2, e3, e4
and fc describes combined shears in the planes spanned by
e1, e3 and e2, e4. Subsuming the modes in the planes of
rotation into f ¼ ðfa; fb; fcÞ, we obtain, at Oðγ0Þ, the free
action

S0 ¼ 1

2

Z
ð _f2 − f02 − fTA _f − fTBf0 − fTCf

þ _fs
2 − f0s2Þdσdτ; ð21Þ

where fT is the transpose of f, derivates with respect to τ
are denoted by dots and those with respect to σ by primes
and

A ¼

0
B@

0
ffiffiffi
8

p
0

−
ffiffiffi
8

p
0 0

0 0 0

1
CA;

B ¼

0
B@

0 0 −
ffiffiffi
8

p

0 0 0ffiffiffi
8

p
0 0

1
CA;

C ¼

0
B@

0 0 0

0 −4 0

0 0 4

1
CA: ð22Þ

We see that the scalar field decouples.
From (21), we see that the scalar fluctuations decouple

from the others, grouped into f, termed the planar sector in
the following. We obtain the equations of motion

0 ¼ −f̈s þ f00s ; ð23aÞ

0 ¼ −f̈ þ f00 − A _f − Bf0 − Cf: ð23bÞ

It is easily checked that the symplectic forms for the scalar
and the planar sector are

σðfs; f̃sÞ ¼
Z
Στ

ðfs _̃fs − _fsf̃sÞdσ;

σðf; f̃Þ ¼
Z
Στ

�
f _f

��
A 13
−13 03

� f̃
_̃f

!
dσ ð24Þ

where Στ is the time slice at an arbitrary time τ.
In order to prepare for a canonical quantization, we

identify symplectically normalized mode solutions.4 For
the scalar component, one finds the solutions

f�s;n ¼
1ffiffiffiffiffiffiffiffi
4πn

p e�inσe−inτ ð25Þ

for n ≥ 1. These are normalized with respect to their
symplectic form, i.e.,

σðfαs;n; fβs;mÞ ¼ −iδmnδ
αβ; ð26Þ

where the bar stands for complex conjugation and
α; β ¼ �. There is also a zero mode fq which degenerates
in the symplectic form and can not be normalized. It forms
a canonical pair with a supplementary linearly growing
mode fp, i.e.,

fq ¼
1ffiffiffiffiffiffi
2π

p ; fp ¼ 1ffiffiffiffiffiffi
2π

p τ; ð27Þ

with σðfq; fpÞ ¼ 1. These correspond to position and
momentum in the direction perpendicular to the planes
of rotation, and can be seen as the Nambu-Goldstone
modes for the broken invariance under translations
perpendicular to the planes of rotation. In the determination
of the Regge intercept, these will be discarded, as we have
to fix the momentum.
For the planar sector, we find the positive energy

solutions

f�1;n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πnðn2 − 1Þ
p ð�i

ffiffiffi
2

p
;∓ n; nÞe�inσe−inτ; ð28aÞ

4For an exposition of canonical quantization in the presence of
single time derivatives in the action, we refer to the Appendix of
[16]. Our results, in particular regarding the behavior of modes
that degenerate in the symplectic form, are in complete agreement
with the general properties derived there.
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f�2;n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16πðn − 1Þp ð∓ i
ffiffiffi
2

p
;�1; 1Þe�iðn−2Þσe−inτ; ð28bÞ

f�3;n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16πðnþ 1Þp ð�i
ffiffiffi
2

p
;�1; 1Þe�iðnþ2Þσe−inτ: ð28cÞ

These are again normalized with respect to the symplectic
form, analogously to (26), with a few exceptions, which we
now discuss in detail.
For n ¼ 0, the modes f�1 degenerate to a single mode,

which is degenerate in the symplectic form. There is
another linearly growing solution complementing it, so that

fθ ¼
1ffiffiffiffiffiffi
2π

p ð1; 0; 0Þ; ð29aÞ

fλ ¼
1ffiffiffiffiffiffi
2π

p
�
−τð1; 0; 0Þ þ 1ffiffiffi

2
p ð0; 1; 0Þ

�
; ð29bÞ

form a canonical pair,

σðfθ; fλÞ ¼ 1: ð30Þ

Recalling that fa could be identified as an infinitesimal
rotation generated by L1;2 þ L3;4, we can see these as
Goldstone modes for the broken L1;2 þ L3;4 invariance. We
should think of fθ as an angle and fλ as the corresponding
angular momentum variable.5 This is further supported
below. Furthermore, as shown in the next section, these
modes are not relevant for the determination of the Regge
intercept.
The modes f2 and f3 do not degenerate in the symplectic

form for n ¼ 0, so they are not conventional null modes.
However, f�2;0 does not fulfill the normalization (26) (the
sign is changed). It should thus be interpreted as a negative

energy mode. Note that f�2;0 ¼ if�3;0, so f�3;0 and if�2;0 are
symplectic pairs of a positive and a negative energy
solution. As L1;3 þ L2;4 and L1;2 − L3;4 both commute
with L1;2 þ L3;4, it is suggestive to regard the modes f�3;0 as
the generators of these rotations.6 This is explicitly checked
below. Also note that “positive energy” might be a
misnomer, as one can easily check that these modes do
not contribute to the free Hamiltonian, see below. It follows
that these modes lead to a degeneracy of the ground state.
This reflects the classical ground state degeneracy dis-
cussed in the Introduction.

For n ¼ 1, the modes f1 and f2 degenerate in the
symplectic form and can thus not be normalized.
Omitting the normalization, f�1;1 and f�2;1 are solutions
and f∓1;1 and f�2;1 coincide. It turns out that there are linearly
growing solutions complementing these. We thus have

f�q ¼ 1ffiffiffiffiffiffi
8π

p ð�i
ffiffiffi
2

p
;∓ 1; 1Þe�iσe−iτ; ð31aÞ

f�p ¼ 1ffiffiffiffiffiffi
8π

p ½τð�i
ffiffiffi
2

p
;∓ 1;1Þ þ i

8
ð∓ i3

ffiffiffi
2

p
;∓ 1;1Þ�e�iσe−iτ:

ð31bÞ

Together with their complex conjugates, these form canoni-
cal pairs,

σðf�q ; f�p Þ ¼ 1; σðf�q ; f�p Þ ¼ 1; ð32Þ

with all other combinations vanishing. Hence, f�q ; f�q can

be interpreted as positions and f�p ; f�p as the corresponding
momenta. We thus have four canonical pairs of position and
momenta. These have the natural interpretation as center-
of-mass positions and momenta in the sub-space spanned
by e1, e2, e3, e4, i.e., as the Nambu-Goldstone modes for
the broken invariance under translations in this subspace.
Similarly to the scalar null modes fq, fp, these will be
discarded in the determination of the Regge intercept.
An analogous identification of these special modes for

the open string was made in [8,17]. It can also be checked
explicitly: Writing

f ¼
X
α∈�

� X
r∈f1;2;3g

X
n∈Nr

ðaαr;nfαr;nÞ þ ðqαfαq þ pαfαpÞ þ H:c:
�

þ θfθ þ λfλ; ð33aÞ

fs ¼
X
n∈Ns

X
α∈�

ðaαs;nfαs;n þ H:c:Þ þ qfq þ pfp; ð33bÞ

where

Ns ¼ fn ≥ 1g; N1 ¼ N2 ¼ fn ≥ 2g; N3 ¼ fn ≥ 0g;
ð34Þ

and the coefficients q, p, θ, λ are real, one finds, for the
expansion of the energy, angular momenta, and momenta,
cf. (16),

E ¼ Ēþ
ffiffiffiffiffiffiffiffi
2πγ

p
λþOðγ0Þ; ð35aÞ

L1;2 þ L3;4 ¼ L̄1;2 þ L̄3;4 þ
ffiffiffiffiffiffiffiffi
2πγ

p
RλþOðγ0Þ; ð35bÞ

L1;2 − L3;4 ¼
ffiffiffiffiffiffiffiffi
2πγ

p
Rℜðaþ3;0 − a−3;0Þ þOðγ0Þ; ð35cÞ

5However, we draw attention to the sign of the term linear in τ
in (29b) compared to (29a), which was introduced in order to
have usual sign in (30). The same phenomenon occurs for the
open string, and in fact also for an analogous semiclassical
treatment of the hydrogen atom [8].

6Also L1;4 − L2;3 commutes with L1;2 þ L3;4, but it generates
reparametrizations.
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L1;3 þ L2;4 ¼
ffiffiffiffiffiffiffiffi
2πγ

p
Rℑðaþ3;0 þ a−3;0Þ þOðγ0Þ; ð35dÞ

P1=3 ¼
ffiffiffiffiffiffiffiffi
2πγ

p
ℑð∓ pþ þ p−Þ þOðγ0Þ; ð35eÞ

P2=4 ¼
ffiffiffiffiffiffiffiffi
2πγ

p
ℜð�pþ − p−Þ þOðγ0Þ; ð35fÞ

P5 ¼
ffiffiffiffiffiffiffiffi
2πγ

p
pþOðγ0Þ: ð35gÞ

This supports the identification of the modes fp, fλ, f�p ,
f�3;0 with (angular) momenta discussed above.
Canonical quantization now proceeds as follows: One

introduces annihilation and creation operators â�r;n, â��
r;n for

r ∈ fs; 1; 2; 3g, n ∈ Nr, fulfilling

½âαr;n; âβ�r0;n0 � ¼ δαβδrr0δnn0 : ð36Þ

Furthermore, one introduces position operators q̂; θ̂; q̂�;q̂��

and momenta p̂; λ̂; p̂�; p̂�� with commutation relations

½q̂; p̂� ¼ i; ½θ̂; λ̂� ¼ i;

½q̂α�; p̂β� ¼ iδαβ; ½q̂α; p̂β� ¼ 0: ð37Þ

The complex positions q̂� and momenta p̂� can be repre-
sented on L2ðR2Þ with canonical position and momentum
operators q̂�i , p̂

�
i as

q̂� ¼ 1ffiffiffi
2

p ðq̂�1 þ iq̂�2 Þ; p̂� ¼ 1ffiffiffi
2

p ðp̂�
1 þ ip̂�

2 Þ: ð38Þ

In particular, with (35e), (35f), this implies

P1=3 ¼ ffiffiffiffiffi
πγ

p ð∓ p̂þ
2 þ p̂−

2 Þ þOðγ0Þ; ð39aÞ

P2=4 ¼ ffiffiffiffiffi
πγ

p ð�p̂þ
1 − p̂−

1 Þ þOðγ0Þ: ð39bÞ

The canonically conjugate positions are thus

X1=3 ¼ ð2 ffiffiffiffiffi
πγ

p Þ−1ð∓ q̂þ2 þ q̂−2 Þ þOðγ−1Þ; ð40aÞ

X2=4 ¼ ð2 ffiffiffiffiffi
πγ

p Þ−1ð�q̂þ1 − q̂−1 Þ þOðγ−1Þ: ð40bÞ

That these are the correct center of mass (cms) positions
can indeed be explicitly checked. For example, up to a
reparametrization, the combination

ffiffiffiffiffiffiffiffi
2πγ

p
ℑðfþq − f−q Þ para-

metrizes a shift by one unit in direction e1.
Canonical quantization then proceeds by replacing the

coefficients in (33) by the hatted corresponding operators.
One can then explicitly check the fulfilment of the
canonical equal time commutation relations, as dictated
by the symplectic form (24). Omitting the positions and

momenta (this will be justified below) we thus have
quantum fields f̂s, f̂ with two-point functions

wsðx; x0Þ ≔ hΩjf̂sðxÞf̂sðx0ÞjΩi
¼
X
n∈Ns

X
α∈�

fαs;nðxÞfαs;nðx0Þ; ð41aÞ

wp;ijðx; x0Þ ≔ hΩjf̂iðxÞf̂iðx0ÞjΩi

¼
X3
k¼1

X
n∈Nk

X
α∈�

fαk;n;iðxÞfαk;n;jðx0Þ; ð41bÞ

where in the second equation i, j run over the labels
ða; b; cÞ.

III. THE WORLD SHEET HAMILTONIAN

The free Hamiltonian corresponding to the free action
(21) is

H0 ¼ 1

2

Z
2π

0

ð _f2 þ f02 þ fTCf þ fTBf0 þ _f2s þ f0s2Þdσ:

ð42Þ

In terms of the creation and annihilation and position and
momentum operators introduced in the previous section,
this Hamiltonian formally reads as

H0 ¼ 1

2

� X
r∈fs;1;2;3g

X
n∈Nr

X
α∈�

nðâαr;nâα�r;n þ âα�r;nâαr;nÞ þ p̂2 − λ̂2
�

þ
X
α∈�

ðp̂α�p̂α þ ip̂αq̂α� − ip̂α�q̂αÞ: ð43Þ

Rewriting the last term in (43) in terms of the position
and momentum operators introduced in (38), one obtains

X
α∈�

ðp̂α�p̂α þ ip̂αq̂α� − ip̂α�q̂αÞ

¼
X
α∈�

�
1

2
ððp̂α

1Þ2 þ ðp̂α
2Þ2Þ þ p̂α

1q̂
α
2 − p̂α

2q̂
α
1

�
: ð44Þ

By (39), (40), the last two terms are precisely the leading
order term of the cms contribution to the angular momen-
tum −L1;2 − L3;4. As a cms contribution to the angular
momentum does not change the energy (for a given
momentum), this term must be present in H0, due to
(12). For the determination of the Regge trajectory, such a
cms contribution should of course be absent. Hence, we
choose a state in which the expectation value of the last two
terms in (43) vanishes.
To evaluate the rest mass, we should work at vanishing

spatial momentum. Obviously, we may choose a state in
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which the expectation values of ðp̂α
1Þ2 þ ðp̂α

2Þ2 and p̂2 are
arbitrarily small. We can hence neglect the momenta
in (43).7

We now argue that also the λ̂2 term in (43) should be
neglected. First, we recall that in (12), the quantum correc-
tions Eq, Lq

1;2, L
q
3;4 are obtained by expanding the classical

expressions (16a) for the target space energy E ¼ P0 and
(16b) for the angular momentum in φ, neglecting the zeroth
order (classical) terms. The world sheet Hamiltonian H
generates (world sheet) time translations on the world
sheet. The quantum target space energy Eq, should generate
time translations in target space. However, the background
world sheet is rotating in the 1-2 and the 3-4 plane and so
are the vectors va, vb, vc parameterizing the fluctuations.
The correct relation between H and Eq is thus (12), where
the factor 1

R corrects the different scaling of target space
time X0 and world sheet time τ, and Lq

1;2 þ Lq
3;4 corrects for

the missing rotation. One can easily check (12) explicitly
up toOðφ2Þ, which is the relevant order for our purposes. A
further relation between the quantum target space energy
Eq and the world sheet Hamiltonian H is

Eq ¼ 1

R
H mod

1

R
; ð45Þ

which follows from the fact that a world sheet translation
τ ↦ τ þ 2π corresponds to a target space translation
X0 ↦ X0 þ 2πR. Comparison with (12) shows that the
spectrum of Lq

1;2 þ Lq
3;4 should be discrete,

Lq
1;2 þ Lq

3;4 ∈ Z: ð46Þ

This of course matches the expectation for the spectrum of
(the sum of) angular momentum operators. Note that this is
a nonperturbative statement, which cannot be deduced from
the expansion of Lq

1;2 þ Lq
3;4 in φ. Due to (35b), this means

that the spectrum of λ̂ is discrete. In particular, we may
choose the eigenstate of eigenvalue 0, corresponding to
fixing the angular momentum L1;2 þ L3;4 to the classical
value, up to corrections of Oðγ0Þ. By (35a), this is also an
eigenstate of E, again up to corrections of Oðγ0Þ.
We now come to the evaluation of the expectation value

of H0 (with the (angular) momenta set to zero). As in [8],
we follow the proposal [11] to employ a locally covariant
renormalization technique [14] developed for QFT on
curved space-times. Concretely, the expectation value of
Wick squares (possibly with derivatives) is determined as
follows:

hΩjð∇αϕ∇βϕÞðxÞjΩi ¼ lim
x0→x

∇α∇0βðwðx; x0Þ − hðx; x0ÞÞ
ð47Þ

Here α, β are multiindices, w is the two-point function in
the state Ω, defined as on the left-hand side (l.h.s.) of (41),
and h is a distribution which is covariantly constructed
out of the geometric data, the Hadamard parametrix.
For physically reasonable states, the difference w − h is
smooth, so that the above coinciding point limit exists and
is independent of the direction from which x0 approaches x.
For our purposes, it is advantageous to perform the limit

of coinciding points from the time direction, i.e., we take
x ¼ ðτ; σÞ, x0 ¼ ðτ þ t; σÞ, and t → þ0. Performing the
summation in (41a), we find

1

2
ð∂0∂0

0 þ ∂1∂1
0Þwsðx; x0Þ

¼ 1

2π

X∞
n¼1

neinðtþiεÞ

¼ −
1

2πðtþ iεÞ2 −
1

24π
þOðtÞ: ð48Þ

For a minimally coupled scalar field with a variable mass
m2ðxÞ in two dimensional space-time, the Hadamard
parametrix is given by (see, e.g., [18])

hðx; x0Þ ¼ −
1

4π

�
1þ 1

2
m2ðxÞρðx; x0Þ þOððx − x0Þ3Þ

�

× log
ρεðx; x0Þ

Λ2
; ð49Þ

where ρ is the Synge world function, i.e., 1
2
times the

squared (signed) geodesic distance of x and x0, cf. [19], and
Λ is a length scale (the “renormalization scale”). For the
local covariance, it is crucial that Λ is fixed and does not
depend on any geometric data [14]. Inside of the logarithm,
the world function is equipped with an iε prescription as
follows:

ρεðx; x0Þ ¼ ρðx; x0Þ þ iεðτ − τ0Þ: ð50Þ

For the scalar part, the mass term is absent. We thus find,
for the coinciding point limit from the time direction,8

1

2
ð∂0∂0

0 þ ∂1∂1
0Þhs ¼ −

1

2πðtþ iεÞ2 þOðtÞ: ð51Þ

For the scalar contribution to the energy, we thus obtain
7As a consistency check, we note that the leading order

contribution to E2 of the terms quadratic in the momenta is
given by 2πγðp̂2 þPα;iðp̂α

i Þ2Þ, cf. (13). With (35e), (35f), and
(35g), we thus see that the momenta contribute ðPiÞ2 to E2, up to
corrections of Oðγ−1

2Þ, as expected.
8Here and in the following, OðtÞ also includes terms of the

form t log t.
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hH0
si ¼

Z
2π

0

hH0
sðσÞidσ ¼ −

1

12
: ð52Þ

For the planar contribution to the energy density, we
compute

1

2
Tr½ð∂0∂0

0 þ ∂1∂1
0 þ Cþ B∂1

0Þwpðx; x0Þ�

¼ 1

2π

�X∞
n¼1

neinðtþiεÞ þ 2
X∞
n¼2

neinðtþiεÞ
�

¼ −
3

2πðtþ iεÞ2 −
3

24π
−
1

π
þOðtÞ: ð53Þ

In order to obtain the planar parametrix, it is convenient to
absorb the first order derivatives in the equation of motion
(23b) by introducing suitable covariant derivatives, analo-
gously to the procedure followed in [20] for the construc-
tion of retarded and advanced Green’s functions. It is
straightforward to check that with

A0 ¼
ffiffiffi
2

p
0
B@

0 1 0

−1 0 0

0 0 0

1
CA;

A1 ¼
ffiffiffi
2

p
0
B@

0 0 1

0 0 0

−1 0 0

1
CA;

M2 ¼ 2

R2

0
B@

0 0 0

0 −1 0

0 0 1

1
CA; ð54Þ

and the covariant derivative

∇μ ¼ ∂μ þ Aμ; ð55Þ

the planar part of the free action can be written as

S0
p ¼ −

1

2

Z
ðḡμν∇μf∇νf þ fTM2fÞ ffiffiffiffiffiffi

−ḡ
p

d2x: ð56Þ

We thus can interpret M2 as a “mass term”. Denoting by
1ðx; x0Þ the parallel transport from x0 to xwith respect to the
covariant derivative, the parametrix for the planar sector is
then given by

hpðx; x0Þ ¼ −
1

4π

2
641ðx; x0Þ − 1

2

0
B@

0 0 0

0 1 0

0 0 −1

1
CAðx − x0Þ2

þOððx − x0Þ3Þ

3
75 log

R2ðx − x0Þ2 þ iεðτ − τ0Þ2
4Λ2

;

ð57Þ

with ðx − x0Þ2 the usual Minkowski square. The parallel
transport can be Taylor expanded around coinciding points,
i.e., in Δx ¼ x − x0 as

1ðx;x0Þ¼1−AμΔxμþ
1

2
ðAνAμþ∂μAνÞΔxμΔxνþOðΔx3Þ:

ð58Þ

Using these results, one computes

1

2
Tr½ð∂0∂0

0 þ ∂1∂1
0 þ Cþ B∂1

0Þhpðx; x0Þ�

¼ −
3

2πðtþ iεÞ2 −
1

π
þOðtÞ: ð59Þ

To obtain this result, one notes that the last two terms on the
l.h.s. are irrelevant, due to the trace and the direction from
which the coinciding point limit is taken. The first two
terms on the l.h.s. yield

−
1

2π
Tr

�
1þ tA0 þ 1

2
ðA0A0 þ ∂0A0Þt2
t2

þ −A0 − ðA0A0 þ ∂0A0Þt
t

�
; ð60Þ

with the first term stemming from the action of all
derivatives on the log, whereas the second term stems
from the action of one time derivative on 1 and one on the
log. For the planar contribution to the energy, we thus
finally obtain

hH0
pi ¼ −

3

12
: ð61Þ

Adding this to the scalar contribution (52) and using (14),
we obtain the intercept a ¼ 1

6
, consistent with (1) forD ¼ 6.

As shown in Sec. V, this consistency persists to all
dimensions and general ellipticity.
We note that there is no logarithmic divergence in the

coinciding point limit of the world sheet energy density,
and thus no renormalization ambiguity associated to
the choice of the scale Λ. The reason is that the only
renormalization ambiguity at the order considered here is a
supplementary Einstein-Hilbert term, which however van-
ishes on our flat background (it is generically irrelevant for
closed strings due to the Gauß-Bonnet theorem), cf. also the
discussion at the end of the next section.

IV. GENERALIZATION TO THE
ELLIPTIC CASE

To treat the case of an elliptic string, we use, instead of
(17), the classical solution
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X̄ðτ; σÞ ¼

0
BBBBBBBB@

Rτ

R1;2 sin τ cos σ

−R1;2 cos τ cos σ

R3;4 cos τ sin σ

R3;4 sin τ sin σ

0

1
CCCCCCCCA
; ð62Þ

where σ ∈ ½0; 2πÞ and R is given by (11). We also introduce
the angle θ ∈ ½0; π

2
� parametrizing R1;2 and R3;4 by

R1;2 ¼ R cos θ; R3;4 ¼ R sin θ: ð63Þ

Two limiting cases are of particular interest: For θ → π
4
, one

recovers the circular case, whereas for θ → 0, one finds two
straight open strings attached at the endpoints.
The induced metric on the world sheet, in the coordinates

introduced above, is

ḡμν ¼
R2

2
ð1 − cos 2θ cos 2σÞημν: ð64Þ

As this is conformal to the Minkowski metric, the equation
of motion (15) can be easily checked. Energy and angular
momentum of the above solution were given in (10). The
scalar curvature is given by

R ¼ 8

R2

cos22θ − cos 2θ cos 2σ
ð1 − cos 2θ cos 2σÞ3 : ð65Þ

Hence, unless θ ¼ π
4
, i.e., for R1;2 ¼ R3;4, the world sheet

has intrinsic curvature.
Perturbations of this classical solution are described

again in the form (2), (19), but for the vectors va, vb,
vc, orthonormal and normal to the world sheet, we now
choose

va ¼
1

MN

0
BBBBBBBB@

N

2 cos θ cos τ cos σ

2 cos θ sin τ cos σ

−2 sin θ sin τ sin σ
2 sin θ cos τ sin σ

0

1
CCCCCCCCA
;

vb ¼
ffiffiffi
2

p

M

0
BBBBBBBB@

0

sin θ sin τ cos σ

− sin θ cos τ cos σ

cos θ cos τ sin σ

cos θ sin τ sin σ

0

1
CCCCCCCCA
;

vc ¼
ffiffiffi
2

p

N

0
BBBBBBBB@

0

sin θ cos τ sin σ

sin θ sin τ sin σ

cos θ sin τ cos σ

− cos θ cos τ cos σ

0

1
CCCCCCCCA
; ð66Þ

where

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos 2θ cos 2σ

p
; N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos 2θ cos 2σ
p

:

ð67Þ

In the limit of the circular string, these coefficients tend to 1
and the above vectors coincide with the vectors used
in Sec. II.
The free part of the action still has the form (21), but now

with A, B, C replaced by

A ¼ 2

M2N

0
B@

0
ffiffiffi
2

p
sin 2θ 0

−
ffiffiffi
2

p
sin 2θ 0 M cos 2θ sin 2σ

0 −M cos 2θ sin 2σ 0

1
CA; ð68aÞ

B ¼
ffiffiffi
8

p
sin 2θ

MN 2

0
B@

0 0 −1
0 0 0

1 0 0

1
CA; ð68bÞ

C ¼ 1

M4N 4

0
B@

−B=4 0 3MN 2 sin 4θ sin 2σ=
ffiffiffi
2

p

0 −N 4ðM4 þ 3sin22θÞ 0

3MN 2 sin 4θ sin 2σ=
ffiffiffi
2

p
0 −M4N 4 þM2sin22θð4N 2 þM2Þ

1
CA; ð68cÞ
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where we denoted

B ¼ cos 2θ cos 2σ − 5 cos 6θ cos 2σ þ 8cos22θðcos 4σ − 1Þ
þ 4cos32θ cos 6σ: ð69Þ

The equation of motion (23a) for the scalar part is not
modified, whereas the equation of motion (23b) for the
planar part is replaced by

0 ¼ −f̈ þ f00 − A _f − Bf0 − ðCþ B0=2Þf; ð70Þ

the modification being due to the fact that B is no longer
constant. The symplectic form of the planar part is still of
the form (24), with the modified A, of course. The free
Hamiltonian is still given by (42), again with the modified
B, C.
The symplectically normalized mode solutions for the

scalar excitations are still given by (25), (27). Those for the
planar sector are tedious to derive. The results are stated in
the Appendix. For our purposes, the important point about
these mode solutions is not their explicit form, but that they
have exactly the same frequencies as in the circular case.
Canonical quantization proceeds in complete analogy to the
circular case. Renormalization, however, is affected by the
curvature of the elliptic string. We aim to perform it in a
locally covariant way, i.e., with respect to the local

geometric data. Hence, we rewrite the free action in a
geometric form as in (56), now with

A0 ¼
ffiffiffi
2

p
0
BB@

0 sin 2θ
M2N 0

− sin 2θ
M2N 0 cos 2θ sin 2σffiffi

2
p

MN

0 − cos 2θ sin 2σffiffi
2

p
MN

0

1
CCA;

A1 ¼
ffiffiffi
2

p
0
BB@

0 0 sin 2θ
MN 2

0 0 0

− sin 2θ
MN 2 0 0

1
CCA; ð71aÞ

M2 ¼ 2

R2M2

0
BBB@

4cos22θsin22σ
M4N 2 0

ffiffi
2

p
sin 4θ sin 2σ
M3N 2

0 − 2sin22θ
M4 0ffiffi

2
p

sin 4θ sin 2σ
M3N 2 0 2sin22θ

M2N 2

1
CCCA:

ð71bÞ

For the scalar part, one proceeds analogously, with the
derivative the usual one, and a vanishing “mass” M2.
Furthermore, as the metric is no longer flat, but given by
(64), the expression for the world function becomes more
complicated. It can be Taylor expanded in coordinates
around coinciding points as [21]

ρðx; x0Þ ¼ 1

2
ḡμνðxÞΔxμΔxν þ AμνλðxÞΔxμΔxνΔxλ þ BμνλρðxÞΔxμΔxνΔxλΔxρ; ð72aÞ

Aμνλ ¼ −
1

4
∂ðμḡνλÞ; ð72bÞ

Bμνλρ ¼
1

12
∂ðμ∂νḡλρÞ −

1

24
gστ
�
1

4
∂σ ḡðμν∂ jτjḡλρÞ − ∂σ ḡðμν∂λḡρÞτ þ ∂ðμḡνjσj∂λḡρÞτ

�
; ð72cÞ

where Δx ¼ x − x0. One thus finds, for a metric of the form ḡμν ¼ fðσÞημν,

ρ¼1

2
fðσÞð−Δτ2þΔσ2Þþ1

4
f0ðσÞΔτ2Δσ− 1

96
fðσÞ−1f0ðσÞ2Δτ4þ

�
1

48
fðσÞ−1f0ðσÞ2− 1

12
f00ðσÞ

�
Δτ2Δσ2þOðΔx5;Δσ3Þ;

ð73Þ

and hence, for the coinciding point limit from the time direction,

1

2
ð∂0∂0

0 þ ∂1∂1
0Þhs ¼ −

1

2πðtþ iεÞ2 þ
1

32π

f02

f2
−

1

48π

f00

f
þOðtÞ: ð74Þ

For the metric (18), this yields

1

2
ð∂0∂0

0 þ ∂1∂1
0Þhs ¼ −

1

2πðtþ iεÞ2 þ
cos22θsin22σ

8πð1 − cos 2θ cos 2σÞ2 −
cos 2θ cos 2σ

12πð1 − cos 2θ cos 2σÞ þOðtÞ: ð75Þ
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For the scalar contribution to the energy density, we thus obtain

hH0
sðσÞi ¼ −

1

24π
−

cos2 2θ sin2 2σ
8πð1 − cos 2θ cos 2σÞ2 þ

cos 2θ cos 2σ
12πð1 − cos 2θ cos 2σÞ : ð76Þ

In the degenerate limit θ → 0, this gives

lim
θ→0

hH0
sðσÞi ¼ −

1

12π sin2 σ
; ð77Þ

in accordance with the result obtained for the open string
[8]. Integration over σ yields

hH0
si ¼ −

1

12 sin 2θ
¼ −

1

24
ðtan θ þ cot θÞ: ð78Þ

For the planar part, the computation of the expectation
value of the Hamiltonian density is challenging. However,

we are only interested in the total Hamiltonian. Noting that
it can still be expressed in terms of creation and annihilation
operators as in (43), the computation of the expectation
value, point-split in time direction, proceeds, up to the
factor 2π, as in the second line of (53). For the contribution
from the two-point function, we thus obtain

−
3

ðtþ iϵÞ2 −
3

12
− 2: ð79Þ

The parametrix for the planar part is

hpðx; x0Þ ¼ −
1

4π

�
1ðx; x0Þ þ 1

2
M2ðxÞρðx; x0Þ þOððx − x0Þ3Þ

�
log

ρεðx; x0Þ
Λ2

; ð80Þ

with M2 and the parallel transport now defined by (71). Using (58) and (73), one finds

1

2
Tr½ð∂0∂ 0

0 þ ∂1∂ 0
1 þ Cþ B∂ 0

1Þhpðx; x0Þ� ¼ −
3

2πðtþ iϵÞ2 −
sin22θð17 − 5 cos 4σÞ þ 80ðcos4σsin4θ þ cos4θsin4σÞ

32πM4

−
cos 2θðcos 2θ − cos 2σÞ

2πM4
log

�
−
R2ðtþ iεÞ2M2

4Λ2

�
þOðtÞ: ð81Þ

Integrating this over σ, we obtain

−
3

ðtþ iϵÞ2 −
1

4
−
7

8
ðtan θ þ cot θÞ: ð82Þ

Subtracting now (82) from (79), we obtain the expression
for the planar contribution to the free Hamiltonian expect-
ation value

hH0
pi ¼ −2þ 7

8
ðtan θ þ cot θÞ: ð83Þ

As a consistency check, we note that the coefficient of
the logarithm in the last term in (81) can be also expressed,
using (65), as

−
R

ffiffiffī
g

p
8π

; ð84Þ

meaning that a change in the renormalization scale Λ
corresponds to finite renormalization of the Einstein-
Hilbert term. By the analysis of [14] this is the only

renormalization ambiguity for the world sheet energy
density H0ðσÞ in a locally covariant renormalization
scheme. For the closed string, the contribution of this term
to the Hamiltonian H0 vanishes, by the Gauß-Bonnet
theorem, so that the obtained result is unambiguous.

V. THE GENERALIZATION TO
ARBITRARY DIMENSIONS

For the case of general dimension D, one has to consider
D − 5 scalar fields, i.e., instead of vs defined in (20), we
consider vs;i ¼ e4þi, for i ¼ 1;…; D − 5 and ej the canoni-
cal basis vectors of ðRD; ηÞ. Instead of the single coefficient
fs, we also have fs;i. With these, the free part of the action
(21) is modified to

S0 ¼ 1

2

Z �
_f2 − f02 − fTA _f − fTBf0 − fTCf

þ
XD−5

i¼1

½ _fs;i2 − f0s;i
2�
�
dσdτ: ð85Þ
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We see that at this order, the perturbations in the directions
orthogonal to the rotation subspace spanned by e0 − e4
completely decouple, i.e., we are dealing with D − 5
independent copies of the scalar field previously consid-
ered. It follows that vacuum expectation value of the free
Hamiltonian in D target space dimensions is

hH0i ¼ ðD − 5ÞhH0
si þ hH0

pi

¼ −2 −
D − 26

24
ðtan θ þ cot θÞ: ð86Þ

Using (14), we obtain the Regge intercept

a ¼ 1þD − 26

48
ðtan θ þ cot θÞ: ð87Þ

Using that by (63) and (10) we have cot θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J12=J34

p
, this

result can be seen to coincide with the result (1) obtained
in [7].
Expanding the action beyond second order in the

perturbation, the different scalar modes fs;i will of course
couple among each other and with the planar modes, so the
simple linear scaling with the dimension is expected not to
hold beyond the semi-classical approximation.
Let us finally comment on the origin of the divergence

for θ → 0; π
2
, i.e., J3=4 → 0 or J1=2 → 0. In this limit, the

closed string is flattened to two straight open strings
joined at the folds σ ¼ 0; π. In particular, the scalar
curvature (65) diverges at these folds. This leads to a
nonintegrable divergence of the local energy density at
the folds, as seen in (77). In the case of the open string
[8], the same nonintegrable divergence occurred, but it
could be removed using geodesic curvature boundary
counterterms. This procedure can not be applied in the
present case, as the closed string does not possess
boundaries.9

VI. THE SPECTRUM OF PHYSICAL
EXCITATIONS

Let us recall some ingredients of the covariant quantiza-
tion of the closed Nambu-Goto string. To simplify notation,
we set πγ ¼ 1. We have two sets A�μ

m of oscillators, for
right- and left-moving excitations, fulfilling

½Aαμ
m ; Aβν

n � ¼ mδmþnδ
αβημν: ð88Þ

One identifies

pμ ¼ 1

2
A�μ
0 ð89Þ

as the center of mass momentum. There are also two
sets L�

m of Virasoro generators. Furthermore, there is the
angular momentum operator

Jμν ¼ −i
X
α∈�

X
n≥1

1

n
ðAαμ

−nAαν
n − μ ↔ νÞ: ð90Þ

One has the commutation relations

½Lα
m; ζ · A

β
−k� ¼ kδαβζ · Aα

m−k;

½J12; ζ · Aα
−k� ¼ ζ12 · Aα

−k;

½J34; ζ · Aα
−k� ¼ ζ34 · Aα

−k; ð91Þ
with ζ ¼ ðζ0;…; ζD−1Þ a target space vector and

ζ12 ¼ ð0;−iζ2; iζ1; 0;…; 0Þ;
ζ34 ¼ ð0; 0; 0;−iζ4; iζ3; 0;…; 0Þ: ð92Þ

We also recall that physical states Φ have to fulfill the
conditions

ðL�
m − δmaÞjΦi ¼ 0 ð93Þ

for all m ≥ 0. In particular, we recall that

L�
0 ¼ 1

8
p2 þ

X
n≥1

A�
−n · A�

n : ð94Þ

The physical state of minimum energy for given angular
momentum l1;2 in the 1-2 plane and l3;4 in the 3-4 plane,
with l1;2, l3;4 positive even numbers, is given by

jl1;2;l3;4i ¼ ðξ · Aþ
−1Þl1;2=2ðξ̃ · Aþ

−1Þl3;4=2ðξ · A−
−1Þl1;2=2

× ðξ̃ · A−
−1Þl3;4=2j0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2l1;2 þ 2l3;4 − 4aÞ

q
i;

ð95Þ
with j0;Mi denoting a ground state with vanishing spatial
momentum and rest mass M and

ξ ¼ 1ffiffiffi
2

p ð0; 1; i;0;…; 0Þ; ξ̃ ¼ 1ffiffiffi
2

p ð0; 0; 0; 1; i; 0;…;0Þ:

ð96Þ
Note that we have to evenly excite left- and right-movers in
order to fulfill the physicality condition (93) for m ¼ 0. We
thus recover the Regge trajectory (9). We introduce the
notation

M2
l ¼ 2ð2l1;2 þ 2l3;4 − 4aÞ: ð97Þ

Let us discuss what the analog of a scalar excitation of
the state (95) would look like. Naively, we would choose a
unit vector θ in the subspace orthogonal to the one spanned
by X0—X4, and act with the creation operator θ · A−1
(and adjust the momentum, i.e., the mass accordingly).

9For θ ¼ 0 one could of course define the energy to be twice
that of a single open string, but that does not remedy the
divergence as θ → 0.
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However, in order to fulfill both equations (93) for m ¼ 0
with the same a, we also have to excite a right-moving
mode. It follows that minimal excitations of (95) in the
directions perpendicular to X0—X4 are given by

jl1;2;l3;4; θ; θ̃i ¼ ðθ · Aþ
−1Þðθ̃ · A−

−1Þðξ · Aþ
−1Þl1;2=2

× ðξ̃ · Aþ
−1Þl3;4=2ðξ · A−

−1Þl1;2=2

× ðξ̃ · A−
−1Þl3;4=2j0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

l þ 8

q
i: ð98Þ

Here we adjusted the rest mass in order to fulfill the
physicality condition (93). We see that in the covariant
scheme, the minimal scalar excitation leads to a shift

ΔM2 ¼ 8 ð99Þ
of the rest mass squared.
Let us now consider the situation in the semiclassically

quantized string. As is obvious from (43), the minimal
scalar excitation, âþ�

s;1 or â
−�
s;1, raises the expectation value of

H0 by 1. According to (13), and taking πγ ¼ 1 into
account, this leads to a shift

ΔM2 ¼ 4 ð100Þ
of the rest mass squared. We thus see that, at the linearized
level considered here, the semiclassically quantized string
exhibits physical excitations10 that are not present in the
covariantly quantized string. The point is that in the
semiclassical scheme (at the linearized level) no condition
on the equal excitation of left- and right-movers is present.
Presently, it is unclear whether this is remedied at higher
order in perturbation theory or not (and thus represents a
nonperturbative effect).

VII. CONCLUSION

We computed semiclassical corrections to the energy
of rotating closed Nambu-Goto strings. Special care was
taken to renormalize in a local and covariant way, using
techniques developed in the context of QFT on curved
space-times. This calculation represents one of the few
analytically tractable nontrivial applications of these
techniques (needed for example for the calculation of
backreaction effects in cosmological [22] or black hole
spacetimes [23]). Our results agree with those obtained [7]
via the Polchinski-Strominger action, which provides a
mutual consistency check.
The results obtained imply a discrepancy with the

covariant quantization scheme for D < 26, where the
intercept a is only constrained by a ≤ 1, but independent
of the ellipticity. In contrast, in [7] and the present work, the
intercept a is computed, but found to depend on the
ellipticity forD ≠ 26. We also showed that in our linearized
approximation there are physical excitations not present in
the covariant quantization scheme, even for D ¼ 26. It
would be interesting to learn whether this is remedied at
higher order in perturbation theory, similar to linearized
Yang-Mills theory containing more observables than the
full nonlinear theory, or whether this constitutes a non-
perturbative effect.

APPENDIX: THE PLANAR MODES
IN THE ELLIPTIC CASE

The (not symplectically orthonormalized) positive fre-
quency planar mode solutions in the elliptic case are
given by

f�1;n ¼
1

MN
½
ffiffiffi
2

p
ð�

ffiffiffi
2

p
i;∓ nN sin 2θ; nM sin 2θÞe�inσ þ ð�iðnþ 1Þ cos 2θ; 0; 0Þe�iðn−2Þσ

þ ð∓ iðn − 1Þ cos 2θ; 0; 0Þe�iðnþ2Þσ�e−inτ; ðA1aÞ

f�2;n ¼
1

MN
½2 cos 2θð�2i;∓ nN ; nMÞe�inσ þ ð∓ 2iðn − 1Þ cos2 2θ; 0; 0Þe�iðnþ2Þσ

þ ð�iA−;�2nN ð1 −
ffiffiffi
2

p
sin 2θÞ; 2nMð1 −

ffiffiffi
2

p
sin 2θÞÞe�iðn−2Þσ�e−inτ; ðA1bÞ

f�3;n ¼
1

MN
½2 cos 2θð�2i;∓ nN ; nMÞe�inσ þ ð�2iðnþ 1Þ cos2 2θ; 0; 0Þe�iðn−2Þσ

þ ð�iAþ;�2nN ð1 −
ffiffiffi
2

p
sin 2θÞ; 2nMð1 −

ffiffiffi
2

p
sin 2θÞÞe�iðnþ2Þσ�e−inτ; ðA1cÞ

where n ≥ 2 and

A∓ ¼ ð1� 3n ∓ ðn ∓ 1Þ cos 4θ ∓ ffiffiffi
8

p
n sin 2θÞ: ðA2Þ

10We recall that at the order considered here, we could set all unphysical (auxiliary and pure gauge) fields to zero. The remaining ones
are physical (commute with the free BRST charge) and likewise are the corresponding excitations.
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The mode solution (A1c) can also be extended to n ¼ 1. The zero energy mode f�3;0 is now given by

f�3;0 ¼ 4 cos 2θ

�
�

ffiffiffi
8

p
i

MN
;∓ 1

M
;
1

N

�

þ
�
�

ffiffiffi
2

p
i
3þ cos 4θ ∓ 2 sin 2θ

MN
;�2

ðcos θ ∓ sin θÞ2
M

; 2
ðcos θ ∓ sin θÞ2

N

�
e−2iσ

þ
�
�

ffiffiffi
2

p
i
3þ cos 4θ � 2 sin 2θ

MN
;�2

ðcos θ � sin θÞ2
M

; 2
ðcos θ � sin θÞ2

N

�
e2iσ: ðA3Þ

The modes f�q , which we interpreted as position operators in the planes of rotation, are now given by

f�q ¼ 1

MN
½ð�

ffiffiffi
2

p
i;−N ;MÞðcos θ � sin θÞeiσ þ ð�

ffiffiffi
2

p
i;N ;MÞðcos θ ∓ sin θÞe−iσ�e−iτ: ðA4Þ

There is also a corresponding linearly growing mode f�p , however, for its homogeneous part, i.e., the part not linearly
growing in time, we were only able to derive an ODE, and not to explicitly solve it. Likewise, for the generalization of the
mode fθ describing rotations generated by L1;2 þ L3;4, we find

fθ ¼
�
2ðcos4θcos2σ þ sin4θsin2σÞ

MN
; 0;

sin 4θ sin 2σ

4
ffiffiffi
2

p
N

�
; ðA5Þ

again with an unknown homogeneous part of the corresponding linearly growing mode fλ.

[1] C. Rebbi, Dual models and relativistic quantum strings,
Phys. Rep. 12, 1 (1974).

[2] J. Scherk, An introduction to the theory of dual models and
strings, Rev. Mod. Phys. 47, 123 (1975).

[3] J. Sonnenschein and D. Weissman, Rotating strings con-
fronting PDG mesons, J. High Energy Phys. 08 (2014) 013.

[4] J. Sonnenschein and D. Weissman, Glueballs as rotating
folded closed strings, J. High Energy Phys. 12 (2015) 011.

[5] B. B. Brandt and M. Meineri, Effective string description of
confining flux tubes, Int. J. Mod. Phys. A 31, 1643001
(2016).

[6] J. Polchinski and A. Strominger, Effective String Theory,
Phys. Rev. Lett. 67, 1681 (1991).

[7] S. Hellerman and I. Swanson, String Theory of the Regge
Intercept, Phys. Rev. Lett. 114, 111601 (2015).

[8] J. Zahn, Semiclassical energy of open Nambu-Goto strings,
Phys. Rev. D 97, 066028 (2018).

[9] J. M. Arms, The structure of the solution set for the Yang-
Mills equations, Math. Proc. Cambridge Philos. Soc. 90,
361 (1981).

[10] F. Brandt, N. Dragon, and M. Kreuzer, All consistent Yang-
Mills anomalies, Phys. Lett. B 231, 263 (1989).

[11] D. Bahns, K. Rejzner, and J. Zahn, The effective theory of
strings, Commun. Math. Phys. 327, 779 (2014).

[12] O. Piguet and S. P. Sorella, Algebraic Renormalization,
Lecture Notes in Physics (Springer, NewYork, 1995), Vol. 28.

[13] H. Kleinert, The membrane properties of condensing
strings, Phys. Lett. B 174, 335 (1986).

[14] S. Hollands and R. M. Wald, Local Wick polynomials and
time ordered products of quantum fields in curved space-
time, Commun. Math. Phys. 223, 289 (2001).

[15] S. Hollands and R. M. Wald, Quantum fields in curved
spacetime, Phys. Rep. 574, 1 (2015).

[16] S. A. Fulling, Aspects of Quantum Field Theory in Curved
Space-Time (Cambridge University Press, Cambridge,
England, 1989).

[17] J. Zahn, The excitation spectrum of rotating strings with
masses at the ends, J. High Energy Phys. 12 (2013) 047.

[18] Y. Decanini and A. Folacci, Hadamard renormalization of
the stress-energy tensor for a quantized scalar field in a
general spacetime of arbitrary dimension, Phys. Rev. D 78,
044025 (2008).

[19] E. Poisson, The motion of point particles in curved space-
time, Living Rev. Relativity 7, 6 (2004).

[20] C. Bär, N. Ginoux, and F. Pfäffle, Wave Equations on
Lorentzian Manifolds and Quantization (European Math-
ematical Society, Zürich, Switzerland, 2007).

[21] A. C. Ottewill and B. Wardell, Quasi-local contribution to
the scalar self-force: Non-geodesic motion, Phys. Rev. D 79,
024031 (2009).

[22] T.-P. Hack, Cosmological Applications of Algebraic
Quantum Field Theory in Curved Spacetimes (Springer,
New York, 2016).

[23] L. E. Parker and D. J. Toms, Quantum Field Theory
in Curved Spacetime (Cambridge University Press,
Cambridge, England, 2009).

MAREK KOZOŇ and JOCHEN ZAHN PHYS. REV. D 100, 106005 (2019)

106005-14

https://doi.org/10.1016/0370-1573(74)90031-3
https://doi.org/10.1103/RevModPhys.47.123
https://doi.org/10.1007/JHEP08(2014)013
https://doi.org/10.1007/JHEP12(2015)011
https://doi.org/10.1142/S0217751X16430016
https://doi.org/10.1142/S0217751X16430016
https://doi.org/10.1103/PhysRevLett.67.1681
https://doi.org/10.1103/PhysRevLett.114.111601
https://doi.org/10.1103/PhysRevD.97.066028
https://doi.org/10.1017/S0305004100058813
https://doi.org/10.1017/S0305004100058813
https://doi.org/10.1016/0370-2693(89)90211-6
https://doi.org/10.1007/s00220-014-1955-7
https://doi.org/10.1016/0370-2693(86)91111-1
https://doi.org/10.1007/s002200100540
https://doi.org/10.1016/j.physrep.2015.02.001
https://doi.org/10.1007/JHEP12(2013)047
https://doi.org/10.1103/PhysRevD.78.044025
https://doi.org/10.1103/PhysRevD.78.044025
https://doi.org/10.12942/lrr-2004-6
https://doi.org/10.1103/PhysRevD.79.024031
https://doi.org/10.1103/PhysRevD.79.024031

