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We investigate the speed of sound and polytropic index of quantum chromodynamics (QCD) matter
in the full phase diagram based on a three-flavor Polyakov-looped Nambu-Jona-Lasinio (PNJL) model.
The speed of sound and polytropic index in isothermal and adiabatic cases all have a dip structure at the low
chemical potential side of the chiral phase transition boundary, and these quantities reach their global
minimum values at the critical end point (CEP) but are not completely zero, where the values in adiabatic
are lightly greater than those in isothermal. Different from the speed of sound, the polytropic index rapidly
form a peak after crossing the chiral phase transition boundary, which is observed for the first time. Along
the hypothetical chemical freeze-out lines, the speed of sound rapidly decreases near the CEP, followed by a
small spinodal behavior, while the polytropic index, especially in isothermal, exhibits a more pronounced
and nearly close to zero dip structure as it approaches the CEP.
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I. INTRODUCTION

Exploring the phase structure of quantum chromody-
namics (QCD) matter and searching for the signals of the
phase transition are significant goals in both theoretical
research and heavy-ion collision experiments. Lattice QCD
(LQCD) simulations indicate the transition between the
quark-gluon plasma (QGP) and the hadronic matter is a
smooth crossover at nearly zero baryon chemical potential
(μB) [1–3]. A first-order phase transition, with a critical end
point (CEP) connecting with the crossover transformation,
is predicted at large baryon chemical potential according to
various effective models, such as the Nambu-Jona-Lasinio
(NJL) model and the quark-meson (QM) model, as well as
through advanced functional methods including the Dyson-
Schwinger equation (DSE) and the functional renormali-
zation group (FRG) [4–13]. In order to find the signal of the

QCD CEP at finite μB, the Beam Energy Scan (BES)
program is currently ongoing at the Relativistic Heavy-Ion
Collider (RHIC) [14,15]. In the BES program, the STAR
experiment has measured the energy dependence of observ-
ables that are sensitive to the CEP and/or first-order phase
transition, including net-proton fluctuations [16,17], pion
HBT radii [18,19], baryon directed flow [20,21], intermit-
tency of charged hadrons [22], and light nuclei yield ratio
(Nt × Np=N2

d) [23–26]. Nonmonotonic energy dependen-
cies were observed in all of these observables, and the
energy ranges where peak or dip structures appear are
around

ffiffiffiffiffiffiffiffiffiffi
sNN

p
≈ 7.7–39 GeV. Those provoking observa-

tions are of great interest, and a more accurate measurement
on BES-II in the near future will provide us more
information about the QCD phase diagram.
The speed of sound (cs), as one of fundamental proper-

ties of substance, can also convey QCD phase structure
information. Lattice QCD, for instance, shows that the
minimum value of the squared speed of sound (c2s) occurs
in the crossover region with T0 ¼ 154� 9 MeV at vanish-
ing baryon chemical potential [27]. The numerical results
from the effective models [28–30] suggest that the speed
of sound is the global minimum at CEP, but it does not
completely vanish in the mean field approximation. The
speed of sound is one of the crucial physical quantities in
hydrodynamics, which carries important information in
describing the evolution of strongly interacting matter and

*liuhe@qut.edu.cn
†jumin@upc.edu.cn
‡wuhaoysu@ysu.edu.cn
§kyois@126.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 074037 (2024)

2470-0010=2024=109(7)=074037(9) 074037-1 Published by the American Physical Society

https://orcid.org/0000-0002-8658-2851
https://orcid.org/0000-0002-4467-8521
https://orcid.org/0000-0001-5221-2919
https://orcid.org/0000-0001-7311-9684
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.074037&domain=pdf&date_stamp=2024-04-30
https://doi.org/10.1103/PhysRevD.109.074037
https://doi.org/10.1103/PhysRevD.109.074037
https://doi.org/10.1103/PhysRevD.109.074037
https://doi.org/10.1103/PhysRevD.109.074037
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


final observables in heavy-ion collision experiments.
The studies in [31–33] indicate that the speed of sound
as a function of charged particle multiplicity hdNch=dηi
can be extracted from heavy-ion collision data. Recently,
the authors [34] estimate the value of cs as well as its
logarithmic derivative with respect to the baryon number
density and try to build a connection with the cumulants of
the baryon number distribution in matter created in heavy-
ion collisions to aid in detecting the QCD CEP.
The first-order phase transition from the hadronic to

quark matter at high baryon densities may also occur in
the interior of massive neutron stars [35,36]. Some recent
studies have shown that quark-matter cores can appear in
massive neutron stars [37–40]. Compared with the hadronic
matter (HM), strange quark matter (SQM) is known to
exhibit markedly different properties. For example, SQM at
very high densities (ρB ≥ 40ρ0) is approximately scale
invariant or conformal, whereas in HM, the degree of
freedom is smaller, and the scale invariance is also violated
by the breaking of chiral symmetry. These qualitative
differences between HM and SQM can be reflected in
the speed of sound, where cs takes the constant c2s ¼ 1=3 in
the exactly conformal matter corresponding to SQM at high
densities. However, c2s in HM varies considerably: Below
saturation density, most hadronic models, such as chiral
effective field theory, indicate c2s ≪ 1=3, while at higher
densities, the maximum of c2s is predicted to be greater than
0.5 [41,42]. Moreover, the behavior of cs as a function of
baryon number density influences the mass-radius relation,
the tidal deformability and gravitational wave and thus is
helpful in understanding the equation of state (EOS) of
neutron star matter and QCD phase structure. A recent
research in Ref. [43] finds that the EOS with a pronounced
peak in the speed of sound leaves a clear and unique
signature in the main frequency of the postmerger gravi-
tational wave (GW) spectrum, which can provide a sensi-
tive probe of the hadron-quark phase transition in the
dense core.
On the other hand, the polytropic index, defined as

γ ≡ ∂ lnP=∂ ln ϵ, can also quantitatively reveal the
differences between HM and SQM. The polytropic index
has the value γ ¼ 1 in conformal quark matter, while the
hadronic models generically predict γ ¼ 2.5 around the
saturation density [44]. Therefore, some researches indicate
the approximate rule that the polytropic index γ < 1.75,
taken as the average of its value at saturation density and
the conformal limit, can be used as a good criterion for
separating quark matter from hadronic matter in the massive
neutron star core [37–40]. In Ref. [45], authors suggest that
more “conservative” criteria γ ≤ 1.6 and c2s ≤ 0.7 can be
used to determine the possible onset of the exotic matter
(likely made of quark matter). Recently, a new conformality
criterion dc < 0.2, defined as being composed of γ and cs,
is seen to be considerably more restrictive than the
criterion γ < 1.75 for quark matter in compact stars [46].

Therefore, the polytropic index could provide a new probe
of the QCD CEP or first-order phase transition in future
experimental exploration.
Based on the significant findings mentioned above from

recent years, in the present study, we focus on investigating
the polytropic index of QCD matter in the full phase
diagram based on a three-flavor Polyakov-looped Nambu-
Jona-Lasinio (PNJL) model. As a crucial intermediate
quantity in the γ calculation process and as a comparison
to γ, we have also correspondingly calculated the full phase
diagram properties of the speed of sound. The definitions of
the speed of sound and polytropic index require specifying
which properties of the system are considered constant.
In this work, we mainly calculate the speed of sound and
polytropic index in the adiabatic and isothermal cases and
analyze the changing behavior of these quantities around
the chiral phase transition boundary and CEP. By con-
structing the hypothetical chemical freeze-out lines, we can
find that both the speed of sound and polytropic index are
close to zero near the CEP. The difference is that the speed
of sound rapidly decreases near the CEP, followed by a
small spinodal behavior, while the polytropic index exhibits
a more pronounced dip structure as it approaches the CEP.

II. THE THEORETICAL MODEL

The thermodynamic potential density of the three-
flavor PNJL model at finite temperature T can be expressed
as [7,11]

ΩPNJL ¼ UðΦ; Φ̄; TÞ − 2Nc

X
i¼u;d;s

Z
Λ

0

d3p
ð2πÞ3 Ei

− 2T
X

i¼u;d;s

Z
d3p
ð2πÞ3 fln½1þ 3Φe−βðEi−μiÞ

þ 3Φ̄e−2βðEi−μiÞ þ e−3βðEi−μiÞ�
þ ln½1þ 3Φ̄e−βðEiþμiÞ

þ 3Φe−2βðEiþμiÞ þ e−3βðEiþμiÞ�g
þ GSðσ2u þ σ2d þ σ2sÞ − 4Kσuσdσs: ð1Þ

In the above, the temperature-dependent effective potential
UðΦ; Φ̄; TÞ as a function of the Polyakov loop Φ and Φ̄ is
expressed as [7]

UðΦ; Φ̄; TÞ ¼ −b · Tf54e−a=TΦΦ̄þ ln½1 − 6ΦΦ̄

− 3ðΦΦ̄Þ2 þ 4ðΦ3 þ Φ̄3Þ�g; ð2Þ

with the parameters a ¼ 664 MeV and b ¼ 0.03 Λ3,
which leads to simultaneous crossovers of chiral restoration
and deconfinement around T ≈ 200 MeV. In Eq. (1), the
factor 2Nc with Nc ¼ 3 represents the spin and color
degeneracy, β ¼ 1=T represents the reciprocal of temper-
ature, and μi denotes the chemical potential of quark with
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flavor i. In our calculation, we have set μu ¼ μd ¼ μs ¼
μB=3, where μB is the baryon chemical potential. GS is
the strength of the scalar coupling, and the K term
represents the six-point Kobayashi-Maskawa-t’Hooft
(KMT) interaction that is required to break the axial
Uð1ÞA symmetry [47]. In the present calculation, we adopt
the values of parameters given in Ref. [48] asGSΛ2 ¼ 3.67,
KΛ5 ¼ 9.29, where Λ ¼ 631.4 MeV is the cutoff value in
the momentum integration. The energy Ei of quarks with
flavor i is expressed as EiðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p
, where Mi

represents the constituent quark mass. In the mean field
approximation (MFA), quarks can be taken as quasipar-
ticles with constituent masses Mi, which is related to
spontaneous chiral symmetry breaking. The constituent
quark mass Mi is determined by the gap equation of

Mi ¼ mi − 2GSσi þ 2Kσjσk; ð3Þ

where mi refers to the masses of the current quarks, which
can be regarded as parameters. In our work, the values
assigned aremu¼5.5MeV for the up quark,md¼5.5MeV
for the down quark and ms ¼ 137.5 MeV for the strange
quark [48]. The σi ¼ hq̄iqii stands for quark condensate,
which serves as the order parameter for the chiral phase
transition. In a chirally symmetric environment, at low
temperatures but high densities, quarks can also form
diquark condensate hqiqii, breaking the color symmetry
and leading to what is known as color superconductivity
(CSC) [49–52]. At very high densities, quarks are believed
to pair up in a unique manner that locks their color and
flavor degrees of freedom together, resulting in a novel
phase of QCD matter like the color-flavor locked (CFL)
phase [53–55]. The diquark condensate are indeed a vital
component to consider in a comprehensive description of
QCD matter under extreme conditions, especially concern-
ing the finite density phase diagram. However, the color
superconducting gap and critical temperature calculated
using the perturbation theory are rather small [53], which is
more likely applicable to the study of cold neutron stars.
In our previous work [56], we have attempted to explore
the role of CFL matter in quark stars. Simultaneously, the
superconducting gap in strongly interacting matter, as
calculated using the NJL model, was found to be signifi-
cantly larger, with a value on the order of approximately
100 MeV [4,57,58]. These studies emphasized the pivotal
role of CSC in the QCD phase diagram and its potential
significance in heavy-ion collisions [59,60]. Thus, the
future works could incorporate diquark condensates into
the analysis to provide a deeper insight into the rich phase
structure of QCD.
In the current work, we primarily focus on the quark

chiral phase transition, and the values of σu, σd, σs,Φ, Φ̄ in
PNJL model can be calculated using the following
equations:

∂ΩPNJL

∂σu
¼∂ΩPNJL

∂σd
¼ ∂ΩPNJL

∂σs
¼ ∂ΩPNJL

∂Φ
¼ ∂ΩPNJL

∂Φ̄
¼0: ð4Þ

The pressure, number density, and entropy density can
be derived using the thermodynamic relations in the grand
canonical ensemble as

P ¼ −ΩPNJL; ρB ¼ −
∂ΩPNJL

∂μB
; s ¼ −

∂ΩPNJL

∂T
; ð5Þ

and energy density can be calculated as

ε ¼ −Pþ Tsþ μBρB: ð6Þ

The speed of sound is the velocity of a longitudinal
compression wave propagating through the medium, which
is a fundamental property of substance [34]. The general
definition of speed of sound is c2s ¼ ∂P=∂ε. It is worth
noting that calculating the speed of sound requires speci-
fying which thermodynamic variables are kept constant.
For the QGP created in relativistic heavy-ion collisions,
it evolves with constant entropy per baryon s=ρB so that
using the adiabatic speed of sound cs=ρB is appropriate.
Differently, the isothermal speed of sound cT is widely used
in neutron star matter. However, the study in Ref. [34]
suggests that the cumulants of the baryon number distri-
bution in heavy-ion collisions can be used to estimate the
isothermal speed of sound squared and its logarithmic
derivative with respect to the baryon number density. This
result provides a new method for obtaining information
about the QCD structure in heavy-ion collisions and
neutron star studies. Using the Jacobian determinant
method and thermodynamic relations, the c2T and c2s=ρB
in terms of T and μB are, respectively, written as

c2T ¼ ρB
Tð ∂s

∂μB
ÞT þ μBð∂ρB∂μB

ÞT
; ð7Þ

and

c2s=ρB ¼
sρBð ∂s

∂μB
ÞT − s2ð∂ρB

∂μB
ÞT − ρ2Bð∂s∂TÞμB þ ρBsð∂ρB∂T ÞμB

ðsT þ μBρBÞ
�ð ∂s

∂μB
ÞTð∂ρB∂T ÞμB − ð∂s

∂TÞμBð∂ρB∂μB
ÞT
� : ð8Þ

Meanwhile, the polytropic index is introduced in [37]
γ ≡ ∂ ln P=∂ ln ε as a criterion for separating hadronic
matter from quark matter (or the exotic matter)
[37,39,40,45,61]. For the isothermal and adiabatic proc-
esses, the polytropic index can be derived using the speed
of sound formulas as

γT ¼
�
∂P
∂ε

�
T

�
P
ε
¼ ε

P
c2T; ð9Þ
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and

γs=ρB ¼
�
∂P
∂ε

�
s=ρB

�
P
ε
¼ ε

P
c2s=ρB : ð10Þ

From the above two expressions, we can see that the speed
of sound serves as an important intermediate quantity in
the calculation of the polytropic index. The differences
between these two quantities might lead to the polytropic
index including more intricate features near the phase
boundary, which could potentially provide a new probe
for exploring the CEP.

III. RESULTS AND DISCUSSIONS

We first discuss the squared speed of sound in the μB − T
plane based on the three-flavor PNJL model. As shown in
Fig. 1, we present the 3D plot and contour map of the
squared speed of sound c2T in panels (a) and (b). The black
dash-dotted and solid lines are, respectively, for the chiral
crossover and first-order phase transition, and the black
dot connecting the chiral crossover and first-order
phase transition represents the CEP. The CEP with μB ¼
950 MeV and T ¼ 98 MeV is found using the present
PNJL model, and it can vary depending on the parameter
space or types of the models. Predictions of CEP from other
effective methods can be found in Refs. [62] and references
therein. One can see that the value of c2T in the chiral
breaking region is mostly less than 0.1. After passing
through the chiral phase transition boundary, c2T rapidly
increases with the restoration of chiral symmetry and
gradually approaches the value c2s ¼ 1=3 of conformal
limit at the high temperature and baryon chemical potential.
It is an expected behavior since the quark condensate
rapidly approaches vanishing during chiral restoration, and
thus, the quark matter at high temperatures and densities

within the PNJL model can be considered as noninteracting
conformal matter. Based on different effective models and
parameter spaces, the similar results for contour map of the
square of the adiabatic sound speed can also be found in
Refs. [29,30], where further discussions extend to results
under different invariant variables. Different from quark
matter, most hadronic models, e.g., an improved isospin-
and momentum-dependent interaction (ImMDI) model,
indicate that the nucleon interactions are proportional to
the baryon density [63,64], leading to a steady increase in
the speed of sound until the speed of light limit at high
baryon density. If the phase transition from hadronic matter
to quark matter has taken place, the value of speed of sound
could have dramatic changes at a certain density. It is
interesting that recent hybrid star research suggests that a
sudden downward step change of the speed of sound occurs
in the hadron-quark phase transition, and it is restored with
the decrease of nucleon and lepton degrees of freedom in
the high density quark phase [39,40]. This dramatic change
in the speed of sound may leave a clear and unique
signature in the main frequency of the postmerger gravi-
tational wave (GW) spectrum. Another significant feature
in Figs. 1(a) and 1(b) is that a dip structure in c2T occurs at
the low chemical potential side of the chiral phase tran-
sition. Especially around the first-order phase transition, the
speed of sound rapidly decreases, and a global minimum
value appears at the CEP. At low temperature and high
chemical potential, there is a region where the value of c2T is
relatively large, which is associated with the quarkyonic
phase. This can be understood as a result of the fact that
the chiral symmetry of light quarks is restored, but the
strange quark is still in chiral breaking. With the increase
of chemical potential, the value of the speed of sound
around the first-order phase transition of the strange
quark decreases again, followed by another increase in
the speed of sound at the higher baryon chemical potential,

FIG. 1. The 3D plot (a) and contour map (b) of squared speed of sound c2T in the μB − T plane based on a three-flavor PNJL model, as
well as the squared speed of sound c2T as functions of μB (c) at T ¼ 50, 100, 150, 200 MeV. In (b), the black dash-dotted and solid lines
are, respectively, for the chiral crossover and first-order phase transition, the black dot connecting the chiral crossover and first-order
phase transition represents the critical end point (CEP), and the gray dashed lines correspond to the contour of the squared speed of
sound. In (c), the red star marks the baryon chemical potential of the CEP, and the black dashed line c2s ¼ 1=3 indicating the conformal
matter limit is also shown for comparison.
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eventually approaching the conformal limit after the chiral
restoration of strange quark.
To better characterize the variation of the speed of sound

at the first-order phase transition, we plot in Fig. 1(c) the
squared speed of sound c2T as functions of μB at a series of
temperatures. We can see the very different behavior of
the speed of sound depending on whether a chiral phase
transition occurs and whether the chiral phase transition
occurs through a smooth crossover or though a first-order
phase transition. For the curve with T ¼ 200 MeV above
the chiral phase transition boundary, the speed of sound is
monotonically increasing with the chemical potential. For
the curve with T ¼ 150 MeV, the speed of sound displays
a spinodal behavior with a small dip around the smooth
crossover. For the curve with T < 100 MeV, we can see a
rapid dive and then a steep rise in c2T caused by the first-
order phase transition. In particular, for the curve with
T ¼ 98 MeV, the point is shown as the red star in panel
(c) where the speed of sound in full phase diagram is a
global minimum and approaches to almost zero at the
chemical potential μB ¼ 950 MeV.
Similar to Fig. 1, we also present the results for adiabatic

speed of sound c2s=ρB in Fig. 2. In comparison with cT , we
can find that these two types of speed of sound only show
some differences at low temperatures and low chemical
potentials. In Ref. [34], the authors utilize the formulas (2)
and (3) to conduct an intuitive analysis of the two types of
speed of sound, and their analyses indicate that the values
of c2s=ρB and c

2
T largely coincide for μB=T ≫ 1, especially in

the limit T → 0, where both expressions for the squared
speed of sound can be written as c2 ¼ 1=μBðdP=dρBÞT .
These analyses are consistent with the results of our
calculations at low temperature and high chemical poten-
tial, as shown in Figs. 1(b) and 2(b). For the high-
temperature and high-density regime following chiral
restoration, where free quarks are formed, both of these
speeds of sound approach the conformal limit. As a result,
their differences are mainly in the region of low temper-
ature and chemical potential. Meanwhile, our results also
point out that although the global minimum values of c2T

and c2s=ρB occur at the CEP, neither of them are exactly zero,

where c2s=ρB ¼ 0.01 is slightly larger than c2T ¼ 0.002. The
similar nonzero behavior of the adiabatic speed of sound at
the CEP also exists in other modeling studies as result of
the mean field approximation [28–30].
Subsequently, we further investigate the 3D plots and

contour maps of the polytropic index γT and γs=ρB as shown
in Figs. 3 and 4. It can be seen that the values of γT and γs=ρB
are almost less than 1.5 in the chiral breaking region.
However, near the chiral phase transition boundary, the two
polytropic indexes quickly drop to a minimum value, then
increase rapidly to the maxima with chiral restoration, and
subsequently decrease again, eventually reaching the value
γ ¼ 1 of conformal limit at high temperature and baryon
chemical potential. From the 3D plots in Figs. 3(a) and 4(a),
we more clearly see the dip and peak structures in the γT
and γs=ρB on either side of the phase boundary, especially
around first-order phase transition. The polytropic index γT
and γs=ρB as functions of μB at various temperatures are
illustrated in panel (c) of Figs. 3 and 4. For the curve with
T ¼ 200 MeV, different from the monotonic increase of
the speed of sound with the chemical potential, both the
two polytropic indexes increase to a maximum value and
then gradually decrease to the conformal limit. Meanwhile,
around the location of the chiral crossover and first-order
phase transition, we can also find the nonmonotonic
behavior of the γT and γs=ρB with a dip and peak structure.
This can be explained by formulas (9) and (10), where the
polytropic index is equal to the squared speed of sound
divided by the factor P=ε. In Fig. 5, for instance, we plot the
squared speed of sound c2T and the factor P=ε as functions
of μB at various temperatures. It can be clearly seen that the
value of P=ε basically matches with that of the squared
speed of sound for μB ≪ μBC

, where μBC
is the baryon

chemical potential of the chiral phase transition, and also
goes close again at high baryon chemical potential, leading
to the fact that the polytropic index is close to 1. Except
for these two regions, the squared speed of sound (the
derivative of P with respect to ε) does not match P=ε.
Around the location of the chiral crossover, as illustrated by

FIG. 2. The same as in Fig. 1 but for the squared speed of sound c2s=ρB .
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the blue lines at T ¼ 150 MeV in the figure, the local
minima of these two quantities are not synchronized,
making the minimum and maximum of the polytropic
index appear at different chemical potentials, but for the

first-order phase transition or the critical point, this
desynchronization gradually diminishes, causing the poly-
tropic index to abruptly jump from a near-zero minimum
value to its maximum at almost the same chemical
potential. Similar to the speed of sound, the two types
of polytropic index reach their minimum value at the CEP
but are not completely zero, where the value in adiabatic is
greater than that in isothermal.
Some studies using the relativistic dissipative hydro-

dynamics show that the speed of sound as a function of
charged particle multiplicity hdNch=dηi can be extracted
from heavy-ion collision data [31–33]. The recent study in
Ref. [34] also suggests that the net-baryon fluctuations in
heavy-ion collisions can be used to estimate the isothermal
speed of sound squared and its logarithmic derivative. In
heavy-ion collision experiments, the net-baryon and net-
charge fluctuations are measured at the chemical freeze-
out. However, the location of the chemical freeze out
cannot be well determined at RHIC-BES energies. There
are several empirical criteria for the chemical freeze-out,
such as fixed energy per particle at about 1 GeV, fixed total
density of baryons and antibaryons, fixed entropy density
over T3, as well as the percolation model and so on

5.0

4.0

3.0

2.0

1.0

0.0

FIG. 4. The same as in Fig. 3 but for the polytropic index γs=ρB .

FIG. 3. The 3D plot (a) and contour map (b) of polytropic index γT in the μB − T plane based on a three-flavor PNJL model, as well as
the polytropic index γT as functions of μB (c) at T ¼ 50, 100, 150, 200 MeV. In (b), the black dash-dotted and solid lines are,
respectively, for the chiral crossover and first-order phase transition, the black dot connecting the chiral crossover and first-order phase
transition represents the critical end point (CEP), and the gray dashed lines correspond to the contour of the squared speed of sound. The
red star in (c) marks the baryon chemical potential of the CEP.

FIG. 5. The squared speed of sound c2T and the factor P=ε as
functions of μB at T ¼ 50, 100, 150, 200 MeV. The solid and
dash-dotted lines represent the results of c2T and P=ε, respectively.
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(see reference [65] and references therein). In order to
compare qualitatively the speed of sound and polytropic
index from the PNJL model with the (future) experimental
results, we obtain the hypothetical chemical freeze-out lines
by rescaling μB of the chiral phase transition boundary of
light quarks with factors of 0.95, 0.98, 0.995, 1.01, and
1.02 corresponding, respectively, to the color dash-dotted
curves in Fig. 6(a). The similar assumption of the chemical
freeze-out lines was made in reference [10,13,66]. We plot
in Figs. 6(b) and 6(c) the squared speed of sound and
polytropic index along the hypothetical chemical freeze-out
lines, where the solid and dashed lines represent the results
in adiabatic and isothermal cases, respectively. For the
hypothetical freeze-out lines over the chiral phase transition
boundary, we can observe a rapid rise in the curves of both
the squared speed of sound and polytropic index after a
slight softening near the CEP. However, the speed of sound
and the polytropic index along the hypothetical freeze-out
lines below the chiral phase transition boundary vary
considerably: The speed of sound rapidly decreases near
the CEP, especially as c2T approaches 0 along the curve with
the factor of 0.995, followed by a small spinodal behavior
and eventually continuing to decrease, while the polytropic
index, especially γT, exhibits a more pronounced and nearly
close to zero dip structure as it approaches the CEP.
Compared to the speed of sound, the polytropic index
could provide a more sensitive probe of the QCD CEP in
future experimental exploration.

IV. SUMMARY AND OUTLOOK

In conclusion, we have investigated the speed of sound
and polytropic index of QCD matter in the full phase
diagram based on a three-flavor Polyakov-looped Nambu-
Jona-Lasinio (PNJL) model. In this work, we mainly

calculate the speed of sound and polytropic index in the
adiabatic and isothermal cases and analyze the changing
behavior of these quantities near the CEP. As a result, we
can find that a dip structure in both c2T and c2s=ρB occurs at
the low chemical potential side of the chiral phase tran-
sition, and these two types of speed of sound have both
reached their global minimum values at the CEP but are not
completely zero, where the value in adiabatic is greater than
that in isothermal. The polytropic index exhibits similar
behavior, but the difference is that it does not increase
monotonically along any isothermal curve in the phase
diagram. Especially around the location of the chiral
crossover and first-order phase transition, we find the
dip and peak structures in the γT and γs=ρB on either side
of the phase boundary. Along the hypothetical chemical
freeze-out lines below the chiral phase transition boundary,
the speed of sound rapidly decreases near the CEP,
followed by a small spinodal behavior, while the polytropic
index, especially γT, exhibits a more pronounced and nearly
close to zero dip structure as it approaches the CEP.
Compared to the speed of sound, the polytropic index
could provide a more sensitive probe of the QCD CEP in
future experiments. However, the polytropic index at
present is mainly applied to the study of the massive
neutron stars. The approximate rule that γ < 1.75 [37] or
γ ≤ 1.6 and c2s ≤ 0.7 [45] can be used as good criteria
for separating quark matter from hadronic matter in the
massive neutron star core. In a recent study [46], the
authors introduced a new conformality criterion dc < 0.2,
defined as being composed of γ and cs, and compared it
with the speed of sound, polytropic index, and normalized
trace anomaly (Δ ¼ 1=3 − c2s=γ). The results point out that
the conformality criterion dc < 0.2 is seen to be consid-
erably more restrictive than the criterion γ < 1.75 for quark

FIG. 6. The hypothetical chemical freeze-out lines (a) by rescaling μB of the chiral phase transition boundary with factors of 0.95,
0.98, 0.995, 1.01, and 1.02, as well as the squared speed of sound (b) and polytropic index (c) along the hypothetical chemical freeze-out
lines. The black dash-dotted and solid lines in (a) are, respectively, for the crossover and first-order phase transition, but the solid and
dashed lines in (b) and (c) represent the results of the speed of sound and polytropic index in isothermal and adiabatic cases, respectively.
The black dot in (a) connecting the crossover and first-order phase transition represents the CEP, and the red stars in (b) and (c) mark the
baryon chemical potential of the CEP.
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matter in compact stars [46]. Additionally, the authors in
Ref. [34] built a connection between the speed of sound and
the cumulants of the baryon number in heavy-ion collisions
to detect CEP. Further, it is worth looking forward to some
observations related to the speed of sound and polytropic
index being found and applied to the search for critical end
point in heavy-ion collisions and the study of compact star
and gravitational wave.
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