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Abstract: The decreasing uncertainties in theoretical predictions and experimental mea-
surements of several hadronic observables related to weak processes, which in many cases
are now smaller than O(1%), require theoretical calculations to include subleading cor-
rections that were neglected so far. Precise determinations of leptonic and semi-leptonic
decay rates, including QED and strong isospin-breaking effects, can play a central role in
solving the current tensions in the first-row unitarity of the CKM matrix. In this work
we present the first RBC/UKQCD lattice calculation of the isospin-breaking corrections
to the ratio of leptonic decay rates of kaons and pions into muons and neutrinos. The
calculation is performed at fixed lattice spacing (a−1 ' 1.730 GeV) on a 483 × 96 volume
with Nf = 2 + 1 dynamical quarks close to the physical point and domain wall fermions
in the Möbius formulation are employed. Long-distance QED interactions are included
according to the QEDL prescription and the crucial role of finite-volume electromagnetic
corrections in the determination of leptonic decay rates, which produce a large systematic
uncertainty, is extensively discussed. Finally, we study the different sources of uncertainty
on |Vus|/|Vud| and observe that, if finite-volume systematics can be reduced, the error from
isospin-breaking corrections is potentially sub-dominant in the final precision of the ratio of
the CKM matrix elements.

Keywords: CKM Parameters, Hadronic Matrix Elements and Weak Decays, Lattice QCD,
Standard Model Parameters
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1 Introduction

Flavour physics offers a unique opportunity in the search for new physics at the precision
frontier of the Standard Model (SM). Discrepancies between SM predictions and experi-
mental observations of processes where yet undiscovered particles or fields may play a tiny
but measurable role can in fact be signals of new physics beyond the SM. In the hadronic
sector, the study of processes mediated by the weak force gives access to the elements of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix describing quark-flavour mixing. The accurate
determination of the CKM matrix elements Vud and Vus is of crucial importance to test the
first-row unitarity |Vud|2 + |Vus|2 + |Vub|2 = 1 imposed by the SM and to probe emerging
tensions that are approaching the 3σ confidence level [1–3]. A complete understanding of
SM processes like the leptonic and semi-leptonic decay modes of pseudoscalar mesons or
nuclear beta decays which underpin these constraints is therefore necessary to test CKM
unitarity and eventually put bounds on the new physics energy scale and couplings.

In particular, in this work we are concerned with the precision determination of the ratio
|Vus|/|Vud| obtained by combining the experimental leptonic decay rates of the pion (πµ2) and
kaon (Kµ2) into a muon and a neutrino with hadronic matrix elements which parameterize
the SM prediction. Given the non-perturbative dynamics of strong interactions at low
energies, these theoretical determinations can be obtained in a reliable and systematically
improvable way from first principles lattice field theory computations. Lattice QCD has
now entered the precision era and is able to provide many hadronic quantities with percent
precision, e.g. the ratio of kaon and pion leptonic decay constants fK/fπ and the kaon semi-
leptonic decay (K`3) vector form factor f+(0), which play a central role in the determination
of the CKM quantities |Vus|/|Vud| and |Vus|, respectively [2]. To date, most lattice QCD
computations in flavour physics neglect isospin-breaking (IB) effects, namely the inclusion
of electromagnetism and the difference of the up and down quark masses, which are required
to go beyond percent level precision. These contributions have been historically included
using effective field theories such as chiral perturbation theory (χPT) [4–6], where, however,
it can be difficult to systematically assess uncertainties emerging from effective expansions.
The RM123+Southampton (RM123S) collaboration pioneered the first lattice calculations
beyond the QCD isospin limit [7, 8], although with an extrapolation of the result from
unphysical quark masses. In this work we provide a first determination of the IB effects in
fK/fπ using an ab initio computation of lattice QCD and QED using a regularization with
good chiral properties directly at physical quark masses, and examine its impact on the
determination of |Vus|/|Vud|. The calculation is performed on a single 483 × 96 lattice with
spacing a−1 ' 1.730 GeV.

When electromagnetism is included, leptonic decay amplitudes can no longer be
factorised into QCD and non-QCD contributions, as the lepton can interact with the
pseudoscalar meson. Additionally, this new interaction generates infrared (IR) divergences
which only cancel when summing diagrams containing virtual and real photon corrections [9].
Thus, the decay rate can be properly written including these effects as

Γ(P± → `±ν[γ]) = lim
ΛIR→0

[Γ0(ΛIR) + Γ1(ΛIR)] , (1.1)

– 1 –
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where we indicate the contribution to the decay rate with virtual photon corrections as Γ0
(virtual decay rate), and that with one real photon in the final state as Γ1 (real decay rate),
and where ΛIR is an arbitrary IR energy cutoff (e.g. a photon mass). A practical strategy
for non-perturbative computations was put forward by the RM123S group in ref. [10] (and
applied in successive calculations [7, 8]), which consists in defining the inclusive rate as the
sum of two contributions which are separately IR safe, namely

Γ(P± → `±ν[γ]) = lim
ΛIR→0

[
Γ0(ΛIR)− Γuni

0 (ΛIR)
]

+ lim
Λ′IR→0

[
Γuni

0 (Λ′IR) + Γ1(Λ′IR)
]
, (1.2)

where we note that different IR regulators can be used in both terms, as will be the case
in practice. The quantity Γuni

0 (ΛIR) corresponds to the universal (structure-independent)
IR-divergent part of the virtual decay rate, which can be computed perturbatively assuming
the decaying meson to be a point-like particle. This term also exactly cancels the divergence
in Γ1(Λ′IR), when evaluated with Λ′IR as an IR regulator.

In principle, both virtual and real decay rates should be computed non-perturbatively
since photons with sufficiently high energy can resolve the internal structure of the decaying
meson. While there is no choice for virtual corrections, as all photon modes contribute to
the rate, one can impose a cut on the real photon energy, ωcut

γ , such that its sensitivity to
the structure of the meson is suppressed. In this case Γ1(ΛIR) can be computed analytically
in perturbation theory in the point-like approximation, namely Γpt

1 (ωcut
γ ,ΛIR). As predicted

by χPT [6] and confirmed by lattice calculations [10, 11], structure-dependent contributions
are negligible for the decay channels studied in this work, namely the decay of pions or kaons
into muons and neutrinos, and therefore at our level of precision we can reliably consider
Γ1(ΛIR) ' Γpt

1 (ωmax
γ ,ΛIR), where ωmax

γ is the maximum photon energy kinematically allowed.
We will focus on the non-perturbative calculation of the virtual decay rate Γ0 and will use
the finite spatial extent of the lattice, L, along with a suitable prescription for QED in a
finite volume called QEDL, as an IR regulator [12]. The real decay rate will be evaluated in
the well-motivated point-like approximation and directly in infinite volume, regularizing
the IR divergence with a photon mass Λ′IR = mγ in eq. (1.2). Thus, we follow the approach
outlined in refs. [8, 10].

Going beyond the isospin-symmetric limit, the leading corrections to the pseudoscalar
decay rates from the electromagnetic fine structure constant αem ≈ 1/137 and from the
renormalized (e.g. in MS at 2GeV) up-down quark mass difference (mR

d −mR
u )/ΛQCD ∼ 1%

are both of the order of 1%, which we denote universally by O(ε) = O[αem, (mR
d−mR

u )/ΛQCD].
The correction to the ratio of kaon and pion decay rates is then parameterized by δRKπ,
which can be expressed through the relation [1]

Γ(K+ → µ+νµ[γ])
Γ(π+ → µ+νµ[γ]) = |Vus|2

|Vud|2
mπ

mK

(m2
K −m2

µ)
(m2

π −m2
µ)
f2
K

f2
π

(1 + δRKπ) + O(ε2) , (1.3)

where O(ε2) is understood as a second-order correction in (αem, (mR
d −mR

u )/ΛQCD). The
specific choice defining the isospin-symmetric theory, implicit in the definition of fK/fπ,
will be the subject of section 2, where we discuss the consistency with other choices in the
literature and the advantage of simulating with close-to-physical quark masses. With that
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in mind, we anticipate our final result for the leading IB corrections to f2
K/f

2
π as

δRKπ = −0.0086 (3)stat.(+11
−4 )fit(5)disc.(5)quench.(39)vol. , (1.4)

where the first error is statistical, while the others are systematic uncertainties and will be
discussed in section 6. We note that our result is compatible with the only other lattice
determination by the RM123S collaboration [8] and with χPT [13]

δRRM123S
Kπ = −0.0126 (14), (1.5)

δRχPT
Kπ = −0.0112 (21). (1.6)

All these numbers are dependent on a choice of scheme to define the separation of isospin-
breaking effects. However, as we will discuss later in this paper, one can provide quanti-
tative evidence that the prescriptions used in the results above are close enough so that
the prescription-dependence lies well below the quoted uncertainties. In addition to our
numerical result, one of the main findings of this work is a refined investigation of the large
power-law finite-size corrections which are induced by the QEDL treatment of electromag-
netism in a finite volume, and are reflected in a large systematic error in our result. As
the leading structure-dependent finite-size effects are now known to be negligible [14], the
dominant point-like corrections which are investigated in section 3 exhibit unexpectedly
large higher-order corrections. In that section, the connection between the Euclidean
correlation functions and the hadronic matrix elements of interest is outlined. The details
of the lattice implementation using domain wall fermions and the gauge ensemble generated
by the RBC/UKQCD collaboration may be found in section 4, while the analysis of the
numerical data including the estimation of the systematic effects is detailed in section 5.
The discussion of the result and the implications for the extraction of |Vus|/|Vud| are found
in section 6, before the conclusion.

2 Isospin-breaking corrections

Leptonic decays of pions and kaons are low-energy processes that can be studied in an
effective Fermi theory where the W -boson is integrated out, and the process is mediated
by a local four-fermion interaction. At first order in the Fermi constant GF , we can then
assume that low-energy observables can be predicted to a high degree of precision within a
theory of QCD+QED. We will refer to this as the full or physical theory in the rest of the
paper. In the full theory, quantities like the meson decay constant fP entering eq. (1.3) are
ambiguous as they are defined in the unphysical iso-symmetric limit of QCD (iso-QCD)
where mu = md and αem = 0. Such unphysical definitions are related to the fact that QCD
and QCD+QED interactions generate different ultraviolet (UV) divergences and hence
require different renormalization procedures to fix the bare parameters of the respective
actions. In order to give a meaning to (iso-)QCD observables within the full QCD+QED
theory, additional renormalization conditions are then required.

The discussion in this section is divided in two: first, we will discuss how to non-
perturbatively renormalize the full theory on the lattice and make well-defined physical

– 3 –



J
H
E
P
0
2
(
2
0
2
3
)
2
4
2

predictions in the continuum limit. Then, we will define QCD and its iso-symmetric
limit, which is employed in our numerical lattice calculation and fixes the definition of
IB corrections. However, the discussion here is general and not restricted to lattice QCD
calculations. In fact, the definitions of the QCD+QED, QCD and iso-QCD theory discussed
in the rest of the section hold for any other non-perturbative approach (like e.g. effective
field theories).

2.1 Renormalizing the full theory

In the full QCD+QED theory with Nf flavours of quarks, once a UV regulator is introduced
(in our case the lattice spacing a), the action depends only on the bare quark masses in
lattice units m̂ = (m̂1, . . . , m̂Nf ) and the bare strong and electromagnetic couplings, g and
e, respectively. In this theory every physical observable can be predicted once the bare
parameters of the action are defined and the regulator is removed. Note that, since we
are only working at first order O(ε) in the IB effects, we can neglect the running of the
electromagnetic coupling and safely fix it to its Thomson limit, eφ = (4παφem)1/2 with αφem =
1/137.035999084 (21) [15], without the need to impose a specific renormalization condition.
Moreover, when working at first order in αem and when a lepton is also included in the theory,
its massm` can be renormalized perturbatively in the usual way by imposing that its on-shell
value coincides with the experimental one, i.e. mφ

` = mPDG
` = 105.6583755 (23)MeV [1]. The

superscript φ is used to denote quantities evaluated in the physical (QCD+QED) theory.
At a fixed value of the bare strong coupling g, we define the bare lattice quark masses in

the full theory m̂φ by identifying Nf + 1 dimensionful quantities, which we assume without
loss of generality1 to have mass dimension 1, namely Mφ

1 , . . . ,M
φ
Nf
,Λφ, and requiring the

following ratios to take on the correct values when e is also at its physical value eφ,

[M̂j

Λ̂

]2
(g, eφ, m̂φ) =

(Mφ
j

Λφ
)2
, for j = 1, · · · , Nf . (2.1)

Here, the M̂j and Λ̂ denote the same quantities evaluated in lattice units at the physical
point (g, eφ, m̂φ). For later use, we define this point as σφ = (g, eφ, m̂φ). Note that the
procedure for fixing m̂φ must be performed at every value of the coupling g, so in this sense
we can think of the bare quark masses as a function of this coupling, m̂φ(g). Moreover, the
lattice quantities appearing on the left-hand side of eq. (2.1) are considered to be evaluated
in the infinite volume limit. In practice, in the full QCD+QED theory, electromagnetic
interactions can generate sizeable power-like finite-volume effects and should be removed,
as discussed in section 3.3. Once the bare quark masses m̂φ are determined, we can predict
any other quantity X̂φ in lattice units and in the full theory as a function of g, namely

X̂φ(g) = X̂(g, eφ, m̂φ(g)) . (2.2)

1In practice one only requires Nf + 1 quantities that can be used to form Nf independent dimensionless
ratios.

– 4 –
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From this, we can give a physical value to a as a function of g using a suitable dimensionful
external input. For concreteness, we envision using Λφ

a(g) = Λ̂φ(g)
Λφ . (2.3)

With this definition, one can predict dimensionful quantities as

Xφ(g) = a(g)−[X]X̂φ(g) , (2.4)

where [X] is the mass dimension of X. As a consequence of asymptotic freedom, the limit
g → 0 implies a(g)→ 0, and for renormalized quantities the equation above has a g → 0
limit which is cutoff independent. At non-zero g and a there is a family of choices that
have the same continuum limit. For a given discretization of the QCD+QED action, this
family is defined by (i) the set of Nf ratios that we use to define m̂(g), and (ii) the physical
quantity Λφ that we use to set the scale.

In this calculation we employ three flavours of quarks, so we require four hadronic
observables to fix the bare quark masses m = (mu,md,ms) and the scale, which we choose
to be M = (M1,M2,M3) = (mπ+ ,mK+ ,mK0) and Λ = mΩ− . The physical values of such
hadronic masses are taken as their experimental measurements, reported in the PDG [1],
i.e. Mφ = (mPDG

π+ ,mPDG
K+ ,mPDG

K0 ) = (139.57039 (18), 493.677 (16), 497.611 (13)) MeV and
Λφ = mPDG

Ω− = 1672.45 (29) MeV.

2.2 Defining QCD and its isospin-symmetric limit

The calculation of IB corrections requires the definition of an isospin-symmetric limit of
QCD. If we write the parameters of the bare QCD+QED Lagrangian as σ = (g, e, m̂),
then the point σφ = (g, eφ, m̂φ) identifies the full theory defined above in section 2.1.
Points where e = 0 correspond instead to the bare parameters for a QCD Lagrangian,
that we denote as σQCD = (gQCD, 0, m̂QCD), where the vector m̂QCD = (m̂QCD

u , m̂QCD
d , m̂QCD

s )
contains the QCD bare quark masses, with m̂QCD

u 6= m̂QCD
d . Therefore, we see that defining

QCD within the full QCD+QED theory consists of choosing one point by imposing an
additional renormalization condition. The same holds for iso-QCD theories, all belonging
to the set identified by σ(0) = (g(0), 0, m̂(0)), with m̂(0) = (m̂(0)

ud, m̂
(0)
ud, m̂

(0)
s ), i.e. with δm = 0.

Here we denoted the average light quark mass as mud = (mu + md)/2 and the up-down
quark mass difference as δm = mu −md. Again, the definition of a given iso-QCD theory
requires imposing specific renormalization conditions. The possibility of choosing different
renormalization prescriptions for the definition of QCD and iso-QCD translates into a
scheme dependence in any observable computed in such theories.

Since there are many possible valid choices such that the IB corrections are small,
there is no single generally accepted scheme and lattice collaborations have used in the past
different prescriptions to define the iso-QCD theory [2]. Although no significant differences
have been observed so far in the use of different schemes [2], when aiming at sub-percent
precision calculations the ambiguities related to the different renormalization prescriptions
adopted might become relevant when comparing results for (scheme-dependent) iso-QCD
observables or IB effects. We therefore advocate that lattice collaborations be as clear and
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transparent as possible in defining the scheme used to define iso-QCD in their calculations,
and eventually agree on a common reference scheme.

In this work we adopt a scheme very similar to that introduced by the BMW Col-
laboration in refs. [16–18], which relies on the use of the neutral mesonic observables
MBMW = (Mud, ∆M, MKχ), where

M2
ud = 1

2
(
M2

uu +M2
dd

)
, ∆M2 = M2

uu −M2
dd , M2

Kχ = 1
2
(
m2
K+ +m2

K0 −m2
π+

)
,

(2.5)
and M2

qq denotes the squared mass of the connected q̄q neutral pseudoscalar mesons. One
can show that the leading-order partially-quenched chiral corrections to such quantities are
given by [16, 19]

M2
ud = 2BmQCD,R

ud + · · · , ∆M2 = 2BδmQCD,R + · · · , M2
Kχ = 2BmQCD,R

s + · · · , (2.6)

where B is the QCD chiral condensate, the superscript R denotes the QCD-renormalized
quark masses in a given scheme (e.g. MS at 2GeV) and the ellipses are next-to-leading
order SU(3) chiral corrections [19]. An important feature of this choice of variables is the
systematic absence of O(αem) corrections at leading order. Therefore, these specific meson
masses are expected to be dominated by the part proportional to the quark masses, allowing
comparisons with quark-mass schemes like the Gasser-Rusetsky-Scimemi (GRS) one [20]
without the need of using short-distance schemes (e.g. the MS scheme) to renormalize the
quark masses.

In this scheme we assume that the bare strong coupling of any unphysical theory
identified by the vector σ? is kept equal to that of the full theory, i.e. σ? = (g, e?,m?).
The bare quark masses of QCD and iso-QCD are then obtained by imposing the following
renormalization conditions, respectively

[M̂BMW

m̂Ω

]2
(g, 0, m̂QCD) =

([
M̂ud
m̂Ω

]2
(g, eφ, m̂φ) ,

[∆M̂
m̂Ω

]2
(g, eφ, m̂φ) ,

[
M̂Kχ

m̂Ω

]2
(g, eφ, m̂φ)

)
, (2.7)

[M̂BMW

m̂Ω

]2
(g, 0, m̂(0)) =

([
M̂ud
m̂Ω

]2
(g, eφ, m̂φ) , 0 ,

[
M̂Kχ

m̂Ω

]2
(g, eφ, m̂φ)

)
. (2.8)

The above conditions can be extended beyond Nf = 3 flavours by choosing ratios of hadron
masses with a dependence on the heavier quarks. The lattice spacings for the two theories
can be evaluated by imposing the additional conditions

aQCD(g) = m̂Ω(g, 0, m̂QCD)
mPDG

Ω−
and a(0)(g) = m̂Ω(g, 0, m̂(0))

mPDG
Ω−

. (2.9)

In principle, one could also impose the simpler condition aQCD(g) = a(0)(g). Since the UV
divergences of the two theories do not depend on quark masses, the difference between the
two approaches would result in cut-off effects that eventually vanish in the continuum limit.
However, in this work, the quantities we aim to compute are dimensionless, and therefore
we will not need, in practice, to make dimensions explicit in the (iso-)QCD theory.
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2.3 Computing isospin-breaking effects on the lattice

Once the bare parameters of both the full theory and iso-QCD have been determined
through the renormalization procedure described above, one can define the expansion of a
QCD+QED observable X̂(σφ) around the iso-QCD point σ(0) as

X̂(σφ) = X̂(σ(0)) + δX̂(σ(0)) + O(ε2) , (2.10)

where the quantity δX̂(σ(0)) encodes the leading order IB corrections of O(ε) relative to
the specific iso-QCD point σ(0). Suppose now that the lattice setup used for the calculation
has been tuned to some iso-QCD point σ = (g, 0, m̂), close to the physical point σφ. In
practice this point is generally the result of a simulation-parameter tuning procedure and
might differ from the iso-QCD point defined in the previous section, i.e. σ 6= σ(0). However,
we assume that this simulation point is sufficiently close to σφ, σ(0), and σQCD that the
value of X̂ at any of those points can be described accurately enough by a linear correction
to the simulation point. This is a fairly strong assumption that would not be valid in a
number of lattice calculations, particularly when working at non-physical quark masses
where non-linear corrections are expected to be sizeable. However, as we will demonstrate
in section 5.2, this applies to the close-to-physical point simulations used in this work. More
explicitly, under this linearity assumption the physical value of X̂ can be written as

X̂(σφ) = X̂(σ) + αφem
∂X̂

∂αem
(σ) +

Nf∑
q=1

(m̂φ
q − m̂q) ∂X̂

∂m̂q
(σ) + O(ε̄2) , (2.11)

where the O(ε̄2) represent any second order corrections in m̂φ
q − m̂q and αem, which we

consider to be of similar size to higher-order isospin-breaking corrections O(ε2) that are
taken to be negligible and are discarded throughout this work. This expanded power-
counting is necessary as some isospin-symmetric parameters like ms and mud might be
slightly mistuned at the simulation point. If we consider X̂ to be the ratio of hadron masses
in eq. (2.1), by using lattice data for X̂(σ) and its derivatives, and applying the linear
equation above, we can solve the resulting system to obtain the lattice bare quark masses
for the physical point m̂φ.

A similar equation is obtained by linearizing the first term on the right-hand side
of eq. (2.10),

X̂(σ(0)) = X̂(σ) +
Nf∑

q=1
(m̂(0)

q − m̂q) ∂X̂

∂m̂q
(σ) + O(ε̄2) , (2.12)

and can be solved for m̂(0) applying the renormalization conditions in eq. (2.8). Combin-
ing eqs. (2.11) and (2.12), the isospin-breaking correction in eq. (2.10) can be identified as

δX̂(σ(0)) = αφem
∂X̂

∂αem
(σ) +

Nf∑
q=1

(m̂φ
q − m̂(0)

q ) ∂X̂

∂m̂q
(σ) . (2.13)

The QCD masses and X̂(σQCD) can be determined using analogous linear expansions.
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We can then define a separation of δX̂(σ(0)) into a contribution due to the strong
isospin breaking (SIB) and another due to electromagnetic interactions, namely

δX̂SIB(σ(0)) = X̂(σQCD)− X̂(σ(0)) =
Nf∑

q=1
(m̂QCD

q − m̂(0)
q ) ∂X̂

∂m̂q
(σ) , (2.14)

δX̂γ(σ(0)) = X̂(σφ)− X̂(σQCD) = αφem
∂X̂

∂αem
(σ) +

Nf∑
q=1

(m̂φ
q − m̂QCD

q ) ∂X̂

∂m̂q
(σ) , (2.15)

such that
X̂(σφ) = X̂(σ(0)) + δX̂SIB(σ(0)) + δX̂γ(σ(0)) + O(ε2) . (2.16)

The definition of isospin-breaking effects provided in eqs. (2.10) and (2.13) for hadronic
observables in lattice units can be rewritten in terms of quantities expressed in physical
units making use of eqs. (2.3) and (2.4). For this discussion we make the arbitrary (but
simple) choice that the same dimensionful quantity Λφ adopted in eq. (2.3) to define the
scale in the full theory is used to define the scale in all other theories (as done in eq. (2.9)
above). This gives (see also eq. (B15) of ref. [8])

X(σφ) = (a(0))−[X]
[
X̂(σ(0)) + δX̂(σ(0))− [X] a

φ − a(0)

a(0)
X̂(σ(0))

]
+ O(ε2) ,

where the isospin-breaking correction to the lattice spacing amounts to

δa

a(0) = aφ − a(0)

a(0)
= 1

Λ̂(σ)

[
αφem

∂Λ̂
∂αem

(σ) +
Nf∑

q=1
(m̂φ

q − m̂(0)
q ) ∂Λ̂

∂m̂q
(σ)

]
.

As already stressed at the end of the previous section, in this work we compute dimensionless
quantities ([X] = 0), and hence the corrections to the lattice spacing will play no role in
the calculation.

From the above discussion it is clear that in order to determine IB corrections one
needs to evaluate numerically the linear coefficients of the expansion of a given observable
in terms of αem and quark mass shifts. The QED effects have been computed in the past
by different collaborations following two approaches. On the one hand, one can include
QED gauge links in the fermion operator to be inverted and produce QCD+QED quark
propagators to construct hadronic correlation functions, as introduced first in ref. [21], and
used in a wide range of lattice calculations [2]. On the other hand, it is possible to obtain
the same corrections by perturbatively expanding the path integral for X̂ with respect to
αem, with the result of evaluating diagrams with electromagnetic current insertions, as
originally proposed by the RM123 collaboration in refs. [22, 23]. In the following, the latter
method will be adopted to determine the IB corrections to hadron masses and to the ratio
of the leptonic decay rates of kaons and pions into muons. The implementation of the
method will be discussed in section 4.

2.4 Scheme ambiguities

The isospin decomposition in eq. (2.16), as discussed in section 2.2, depends on the pre-
scriptions in eqs. (2.7) and (2.8), although the physical observable, X̂(σφ), is not. Varying
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these prescriptions will lead to different bare masses m̂QCD
q and m̂(0)

q , which generate the
scheme-dependence of δX̂SIB and δX̂γ through eqs. (2.14) and (2.15). In principle this
ambiguity is an O(ε) effect on m̂QCD

q and m̂(0)
q , and therefore the ambiguity on the iso-

symmetric component X̂(σ(0)) can potentially be as large as the isospin-breaking corrections
δX̂(σ(0)) themselves. It is therefore important to identify classes of schemes which are
phenomenologically relevant with a minimal level of ambiguity.

For instance, the GRS scheme [20] assumes that the renormalized quark masses and the
renormalized strong coupling constant, in a given scheme and at a chosen renormalization
scale, are kept constant for any value of αem. This scheme itself depends then on a choice of
renormalization procedure for these quantities. The GRS scheme is generally the prescription
used in phenomenological calculations, such as chiral perturbation theory predictions for
weak decay rates including the ones discussed in this paper [4–6]. It is therefore attractive
for lattice calculations to use prescriptions which produce predictions close to the GRS
scheme. Defining precisely such a class of schemes is a rich technical topic which is relevant
for precision physics, and will be the topic of a future publication based on the lattice
data presented in this paper. The BMW variables chosen here are designed to be hadronic
quantities providing an isospin decomposition close to the GRS scheme, and in section 5.2
we will explicitly check that by comparing with existing results from ref. [8].

3 Matrix elements from Euclidean correlation functions

As discussed in section 1, the inclusion of IB corrections in the calculation of decay rates is
complicated by the appearance of IR divergences, generated by O(αem) QED corrections
to the decay amplitude. In this calculation we adopt the RM123S method of eq. (1.2)
to regularize IR divergences. We choose two separate regulators for the two terms. In
particular, we compute the virtual decay rate on the lattice using the finite volume with
the QEDL prescription as an IR regulator, while the real decay width is evaluated in
perturbation theory using a photon mass, namely

Γ(P± → `±ν[γ]) = lim
L→∞

[
Γ0(L)− Γuni

0 (L)
]

+ lim
mγ→0

[
Γuni

0 (mγ) + Γ1(ωmax
γ ,mγ)

]
. (3.1)

The first bracketed term removes the universal (structure-independent) logarithmic IR
divergence and finite volume effects (FVE) up to O(1/L) [24, 25]. Recently, the O(1/L2)
corrections to Γ0(L) have been calculated in QEDL, including structure-dependent contri-
butions, in ref. [14]. Thus, we can extend eq. (3.1) to

Γ(P+ → µ+νµ[γ]) = lim
L→∞

[
Γ0(L)− Γ(2)

0 (L)
]

+ lim
mγ→0

[
Γuni

0 (mγ) + Γ1(ωmax
γ ,mγ)

]
, (3.2)

where Γ(2)
0 (L) contains the finite-volume effects up to O(1/L2) and will be discussed in

detail in section 3.3. Here, we only note that the residual finite-volume effects in the
quantity Γ0(L) − Γ(2)

0 (L) now begin at O(1/L3). The second bracketed term in eq. (3.2)
has been instead calculated analytically in ref. [10] and is reported below in section 3.4.
For convenience, we distinguish the two contributions, the one computed on the lattice
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with a finite volume and the one evaluated in perturbation theory with a massive photon,
respectively as

Γlatt
P (L) ≡

[
Γ0(L)− Γ(2)

0 (L)
]

and Γpert
P (mγ) ≡

[
Γuni

0 (mγ) + Γ1(ωmax
γ ,mγ)

]
. (3.3)

We can expand these expressions at leading order in the IB corrections

Γlatt
P (L) = Γtree

P

[
1 + δRlatt

P (L)− δR(2)
P (L)

]
+ O(ε2) , (3.4)

Γpert
P (mγ) = Γtree

P δRpert
P (ωmax

γ ,mγ) + O(ε2) , (3.5)

having defined

Γ0(L) = Γtree
P

[
1 + δRlatt

P (L)
]

+ O(ε2) and Γ(2)
0 (L) = Γtree

P

[
1 + δR

(2)
P (L)

]
+ O(ε2) . (3.6)

It follows that, writing the leptonic decay rate as

Γ(P+ → µ+νµ[γ]) = Γtree
P

(
1 + δRP

)
+ O(ε2) (3.7)

its leading IB correction is given by

δRP = lim
L→∞

[
δRlatt

P (L)− δR(2)
P (L)

]
+ lim
mγ→0

δRpert
P (ωmax

γ ,mγ) . (3.8)

The outline of the rest of the section is as follows. In section 3.1 we give our definition
of Γtree

P and derive the corresponding correction δRlatt
P (L) at finite volume in terms of

IB corrections to matrix elements and meson masses. Then, in section 3.2 we describe
how to obtain such corrections starting from Euclidean lattice correlation functions. The
subtraction of QEDL finite-volume effects δR(2)

P (L) and the calculation of the real photon
emission in perturbation theory are then discussed in sections 3.3 and 3.4, respectively.

3.1 Virtual corrections to the leptonic decay rate

We focus here on the determination of the matrix element associated to the virtual decay of
a positive pseudoscalar meson, P+ → `+ν`, without including real photons in the final state.
As this is an IR divergent quantity, we assume that an IR regulator is in place throughout
the section. For concreteness, we regulate IR divergences on a finite volume of size L
adopting the QEDL prescription [12] to remove the spatial zero modes of the lattice photon
propagator (see section 3.3). At the lowest order in QED and QCD, pseudoscalar mesons
decay into a lepton-neutrino pair via the exchange of a W -boson between the constituent
quarks of the meson and the leptons. Since for both pions and kaons the process P+ → `+ν`
has a momentum transfer much smaller than the W -boson mass mW , we can study it in an
effective theory with a local four-fermion interaction described by the effective Hamiltonian

HW = GF√
2
V ∗q1q2 OW (3.9)

where GF is the Fermi constant and V ∗q1q2 the relevant CKM matrix element. The four-
fermion operator mediating the process is

OW ≡ JρH J
ρ
L =

(
q̄2 γ

ρ(1− γ5) q1
) (
ν̄` γ

ρ(1− γ5)`
)
, (3.10)
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P+

`+

ν`

q1

q2

Figure 1. Feynman diagram of the tree-level contribution to the weak decay of a positive
pseudoscalar meson P+ ∈ {π+,K+} into a lepton-neutrino pair. The double-square vertex represents
the effective weak Hamiltonian eq. (3.9).

with q1 being a u-type quark and q2 a d-type quark and JρH and JρL denoting the weak
(V − A) hadronic and leptonic currents, respectively. The Feynman diagram associated
with this tree-level term is represented by figure 1.

When including QED at O(αem), the UV corrections to matrix elements of the local
operator OW differ from those of the Standard Model and a matching between the two
theories is therefore needed. This is usually performed in the so-called W -regularization [26,
27], and we refer to refs. [8, 10] for detailed discussions on the argument. After the inclusion
of QCD and QED at O(αem) and assuming that chiral symmetry is preserved, the effective
Hamiltonian reads2

HW = GF√
2
V ∗q1q2

(
Z0 + αem

4π δZ
)
OW . (3.11)

Here Z0 is the non-perturbative QCD renormalization constant of the operator OW . The
quantity δZ encodes instead the short-distance matching between the effective theory in
the W -regularization and the Standard Model, as well as the electromagnetic corrections to
the matching of the four-fermion operator OW renormalized non-perturbatively in a given
scheme to the W -regularization one. If OW is a lattice operator and the regularization
used for the fermionic action introduces an explicit chiral symmetry breaking, then the
operator OW undergoes an additive renormalization due to the mixing with other lattice
operators with different chirality and the mixing pattern would be more complicated than
that in eq. (3.11) (see e.g. refs. [8, 10]). In the lattice calculation presented in this work,
however, chiral fermions are employed and therefore in the following we will consider the
operator OW renormalizing multiplicatively as in eq. (3.11), with Z0 = ZV = ZA. Moreover,
if a mass-independent scheme is adopted to renormalize the four-fermion operator, then the
quantities Z0 and δZ will be the same regardless of the masses of the particles involved in the
process. As a consequence, the contribution of the electromagnetic corrections proportional
to δZ will cancel in the calculation of our quantity of interest, δRKπ = δRK − δRπ,
entering eq. (1.3).

In the full theory the (IR regulated) virtual decay rate can be written as

Γ0(L) = K |MP |2 , (3.12)

where K is a factor containing the electro-weak coupling, the CKM matrix elements
and the integration over the two-body phase space, while |MP |2 =

∑
r,s |Mrs

P |2 is the
2When including electromagnetic corrections at O(αem), the Fermi constant GF has to be defined

accordingly. This is conventionally obtained from the muon lifetime including one-loop electromagnetic
corrections and reads GF = 1.16634 × 10−5 GeV−2 [28, 29].
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magnitude squared of the QCD+QED virtual amplitude summed over the lepton and
neutrino polarisations r and s. In the rest frame of the decaying meson P (pP = 0) the
on-shell lepton and neutrino (Euclidean) momenta, p` = (iω`,p`) and pν = (iων ,pν), are
such that p` + pν = 0 and the decay rate can be written in terms of

K = G2
F

16π |Vq1q2 |
2 1

2mP

(
1− m2

`

m2
P

)
, (3.13)

and the renormalized QCD+QED matrix element

Mrs
P (p`) = Z ĎMrs

P (p`) = Z 〈`+, r,p`; ν`, s,pν |OW |P+,0〉φ . (3.14)

Here ĎMrs
P (p`) is the bare matrix element computed in the full QCD+QED theory, as

indicated by the superscript φ, while the factor Z = Z0 + α
4π δZ denotes the renormalization

constant of the weak operator OW entering the effective Hamiltonian of eq. (3.11). Note that
|MP (p`)|2 = |MP (|p`|)|2 is a rotationally symmetric function of the lepton momentum p`
in the continuum and infinite-volume limit. Energy conservation (mP = ω` + ων) has also
been employed to rewrite

|p`| = ων = mP

2

(
1− m2

`

m2
P

)
and ω` = mP

2

(
1 + m2

`

m2
P

)
. (3.15)

We may expand now the QCD+QED squared matrix element |MP (p`)|2 in eq. (3.12)
around the iso-symmetric QCD point keeping the lepton momentum to its physical value as

|MP (p`)|2 = |M(0)
P (p`)|2 + δ|MP (p`)|2 + O(ε2) . (3.16)

In iso-QCD the matrix element factorizes into a hadronic and leptonic part, namely

|M(0)
P (p`)|2 = Z2

0 | 〈`+, r,p`; ν`, s,pν |OW |P,0〉
(0) |2

= Z2
0 |A

(0)
P |

2 |L(p`)|2 , (3.17)

where
Z0A(0)

P ≡ −Z0 〈0|J0
H |P,0〉

(0) = Z0 〈0|q̄2 γ
0γ5 q1|P,0〉

(0) = im(0)
P fP (3.18)

is the iso-QCD renormalized axial matrix element expressed in terms of the mass m(0)
P of

the meson state |P,0〉(0) and the decay constant fP , while

Lrs(p`) = 〈`+, r,p`; ν`, s,pν |J0
L|0〉

(0) = ūrν(pν) γ0(1− γ5) vs` (p`) (3.19)

is the tree-level leptonic tensor with vr` (p`) = 〈`+, r,p`|`|0〉(0) and ūrν(pν) = 〈ν`, s,pν |ν̄`|0〉(0)

the free Dirac spinors. We have considered here only the ρ = 0 component of OW (eq. (3.10))
since this is the only one contributing to the axial matrix element in the meson rest frame.
Using the completeness relations for spinors in Euclidean space∑

r,r′

vr
′
` (p`)v̄r` (p`) = −i/p` −m` ,

∑
s,s′

usν(pν)ūs′ν (pν) = −i/pν , (3.20)
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one gets

|L(p`)|2 =
∑
r,s

|Lrs(p`)|2 = 8|p`|(ω` − |p`|) = 4m2
`

(
1− m2

`

m2
P

)
(3.21)

and hence

|M(0)
P (p`)|2 = Z2

0 |A
(0)
P |

2 |L(p`)|2 = 4m2
`

(
1− m2

`

m2
P

)2

m(0) 2
P f2

P . (3.22)

Following the convention of the PDG [1], we define the “tree-level” decay rate as

Γtree
P = K |Mtree

P |2 = K
(
mP

m(0)
P

)2
|M(0)

P |
2 = G2

F

8π |Vq1q2 |
2m2

`

(
1− m2

`

m2
P

)2
mP f

2
P , (3.23)

i.e. with all masses defined in the full theory and only the decay constant fP defined in
iso-QCD. Combining the above eqs. (3.14), (3.16) and (3.23) with eq. (3.4) we obtain

δRlatt
P = δ|MP (p`)|2

|M(0)
P (p`)|2

− 2 δmP

m(0)
P

= 2
(
δAP
A(0)
P

− δmP

m(0)
P

+ δZ
Z0

)
, (3.24)

where we have defined the leading IB corrections to the meson mass δmP ,

mP = m(0)
P + δmP + O(ε2) , (3.25)

and those to the bare matrix element as

δAP
A(0)
P

≡ Re
{
−
∑
r,s δ

ĎMrs
P (p`)

[
Lrs(p`)

]†
A(0)
P |L(p`)|2

}
. (3.26)

As discussed above, the quantity δZ/Z0 does not depend on the masses of the decaying
meson and hence our target quantity δRlatt

Kπ is given by

δRlatt
Kπ = 2

(
δAK
A(0)
K

− δmK

m(0)
K

)
− 2

(
δAπ
A(0)
π
− δmπ

m(0)
π

)
. (3.27)

We can distinguish three kinds of corrections to the matrix element, that we denote as

δAP = δAf
P + δAnf

P + δA`P . (3.28)

The first term contains corrections involving only the quarks and these are proportional to
either the quark fractional charges or to the bare quark mass splittings. These are obtained
from the corrections to the bare matrix element

[
δ ĎMrs

P (p`)
]f =

[1
2
∑
q,q′

eqeq′
∂2

∂eq∂eq′
+
∑

q
(m̂φ

q − m̂(0)
q ) ∂

∂m̂q

]
ĎMrs
P (p`)

∣∣∣∣
σ(0)

(3.29)

= −Lrs(p`)
[1

2
∑
q,q′

eqeq′
∂2

∂eq∂eq′
+
∑

q
(m̂φ

q − m̂(0)
q ) ∂

∂m̂q

]
AφP
∣∣∣∣
σ(0)

,
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P+

`+

ν`

q1

q2

(a)

P+

`+

ν`

q1

q2

(b)

P+

`+

ν`

q1

q2

(c)

P+

`+

ν`

q1

q2

(d)

P+

`+

ν`

q1

q2

(e)

P+

`+

ν`

q1

q2

(f)

P+

`+

ν`

q1

q2

(g)

P+

`+

ν`

q1

q2

(h)

Figure 2. Quark-connected Feynman diagrams contributing to the leading IB corrections to the
weak decay. The wiggly lines correspond to photons, and the diamond-shaped vertices are scalar
insertions.

with eq1 = +2/3|e| and eq2 = −1/3|e|, and AφP the axial matrix element evaluated in
the full theory. σ(0) indicates that the quantities are evaluated in the target iso-QCD
theory, σ(0) = (g, 0, m̂(0)) as discussed in section 2.2. Since in this case the decay amplitude
factorizes into a hadronic and a leptonic part, we refer to these contributions as “factorizable”.
The relevant diagrams contributing to these corrections are depicted in figures 2(a)–2(e)
and 3(a)–3(e). The second term in eq. (3.28) corresponds instead to the “non-factorizable”
corrections to the matrix element where a photon is exchanged between a quark and the
charged lepton (e` = −|e|). These are given by

[
δ ĎMrs

P (p`)
]nf =

[1
2e`

∑
q
eq

∂2

∂eq∂e`

]
ĎMrs
P (p`)

∣∣∣∣
σ(0)

, (3.30)

and the corresponding diagrams are shown in figures 2(f)–2(g) and 3(f). Finally, the third
term in eq. (3.28) consists in the O(e2

` ) contribution of the lepton self-energy in figure 2(h),
which is proportional to A(0)

P with a factor that can be computed analytically in perturbation
theory,

[
δ ĎMrs

P (p`)
]` =

[1
2e

2
`

∂2

∂e2
`

]
ĎMrs
P (p`)

∣∣∣∣
σ(0)

= −A(0)
P

[1
2e

2
`

∂2

∂e2
`

]
Lrsφ (p`)

∣∣∣∣
σ(0)

, (3.31)

with Lrsφ (p`) = 〈`+, r,p`; ν`, s,pν |J0
L|0〉

φ. This perturbative correction, however, cancels in
the difference [Γ0(L)− Γ(2)

0 (L)] in eq. (3.2) and therefore can be neglected in practice in
the calculation. Of course, the lepton self-energy must be included in Γpert

P (mγ).
Due to the numerical difficulty of evaluating the quark disconnected diagrams in figure 3

on the lattice, in this work we employ the electro-quenched approximation. This consists in
treating the sea quarks as if they were electrically neutral and hence, in practice, neglecting
the diagrams in figure 3. The deviations from this approximation are expected to be small,

– 14 –



J
H
E
P
0
2
(
2
0
2
3
)
2
4
2

P+

`+

ν`

q1

q2

(a)

P+

`+

ν`

q1

q2
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Figure 3. Quark-disconnected Feynman diagrams contributing to the leading IB corrections to the
weak decay.

and we assign an associated systematic uncertainty in our final prediction. We are currently
working on overcoming this approximation and the progress of our preliminary study has
been reported in ref. [30].

3.2 Extracting matrix elements from Euclidean correlation functions

The IB corrections to meson masses, δmP , and to the decay amplitude, δAP , which are
needed to compute δRlatt

P in eq. (3.24), can be obtained from the study of the large time
behaviour of suitably defined Euclidean correlation functions. Here the correlation functions
are studied in the continuum and in a volume with infinite temporal extent. The subtraction
of the effects due to the finite spatial extent of the lattice, L, are discussed later in section 3.3,
while finite-time corrections to these quantities will be addressed in section 4.3, together
with the details on the lattice implementation of the correlation functions.

Tree-level correlation function: we start by defining the tree-level correlation function
for the decay P+ → `+ν`, with the aim of extracting the tree-level matrix element A(0)

P

defined in eq. (3.18). As discussed in section 3.1, in the absence of QED the matrix element
for the operator OW is factorisable into a hadronic and a leptonic part. As a consequence,
we can extract the hadronic matrix element A(0)

P from a pure QCD two-point correlation
function without the need of including leptons in the calculation. Let φ†P (x) = q̄1(x)γ5q2(x)
be the interpolating operator for the pseudoscalar meson P+ and define the Euclidean
correlation functions

CPA(t) ≡
∫

d3x 〈0|T
[
A0(t,x)φ†P (0)

]
|0〉 , CPP(t) ≡

∫
d3x 〈0|T

[
φP (t,x)φ†P (0)

]
|0〉 , (3.32)

with A0(x) = q̄2(x)γ0γ5q1(x) the temporal component of the hadronic axial current and
the meson being projected on zero spatial momentum. For simplicity, we use translational
invariance to create the meson at the origin. In practice, lattice correlators have been
computed for several positions xP = (tP ,xP ) and then shifted and averaged over all the
volume to improve the statistical precision (see section 4.3). Note that these are generic
correlation functions evaluated at a given point σ. Fixing t > 0, the correlation functions
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in eq. (3.32) have the following spectral decomposition

CPA(t) = AP ZP2mP
e−mP t + . . . , CPP(t) = |ZP |2

2mP
e−mP t + . . . , (3.33)

where ZP = 〈P,0|φ†(0)|0〉 and the ellipses stand for contributions of heavier states that
decay exponentially faster than the leading terms. The combined study of the two correlation
functions evaluated in iso-QCD allows one to extract the meson mass m(0)

P and the matrix
elements Z(0)

P and A(0)
P .

Factorizable correlators: when IB corrections only involve the constituent quarks of
the decaying meson, the matrix element is still factorizable into a hadronic and a leptonic
part. Also in this case we can make use of the correlation functions in eq. (3.32). Defining
the leading factorizable corrections to the correlators as

δC f
PA(t) =

[1
2
∑
q,q′

eqeq′
∂2

∂eq∂eq′
+
∑

q
(m̂φ

q − m̂(0)
q ) ∂

∂m̂q

]
CPA(t)

∣∣∣∣
σ(0)

(3.34)

and analogously for δC f
PP(t), one gets the following decomposition for their ratios with the

corresponding tree-level correlators

Rf
PA(t) ≡ δC f

PA(t)
C(0)

PA(t)
= δAf

P

A(0)
P

+ δZP

Z(0)
P

− δmP

m(0)
P

(1 +m(0)
P t) + . . . , (3.35)

Rf
PP(t) = δC f

PP(t)
C(0)

PP(t)
= 2 δZP

Z(0)
P

− δmP

m(0)
P

(1 +m(0)
P t) + . . . , (3.36)

from a Taylor expansion of the spectral decomposition of the form eq. (3.33). The slope in
t of the above ratios corresponds to the mass shift δmP , and by combining the constant
coefficients we can obtain the correction δAf

P /A
(0)
P .

Non-factorizable correlators: in order to obtain the non-factorizable IB corrections to
the decay amplitude, we start defining the following QCD+QED correlation function

CP`(t, t`) =
∫

d3x d3x` d3xν e−ipν ·xν−ip`·x` 〈0|T
[
ν(t`,xν)¯̀(t`,x`)OW (0)φ†P (−t,−x)

]
|0〉 , (3.37)

where for simplicity we have set the temporal coordinate of the neutrino and the lepton
to be equal. Also in this case we have used translational invariance to insert the weak
Hamiltonian at the origin. Fixing t > 0 and t` > 0 we have that in iso-QCD the above
correlator becomes

C(0)
P` (t, t`) = −〈0| JρH(0) φ†P (−t,pP = 0) |0〉 × Sν(t`,pν |0) γρ(1− γ5)S`(0|t`,p`) , (3.38)

with

Sν(t`,pν |0) =
∫

d3xν e−ipν ·xνSν(t`,xν |0) = e−ωνt`
2ων

∑
s

usν(pν)ūν(pν) , (3.39)

S`(0|t`,p`) =
∫

d3x` e−ip`·x`S`(0|t`,x`) = − e−ω`t`
2ω`

∑
r

vr` (p`)v̄r` (p`) . (3.40)
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Using eq. (3.33) we get the following spectral decomposition in iso-QCD

C(0)
P` (t, t`) = −

∑
r,s

e−m
(0)
P te−ω`t`e−ωνt`
8m(0)

P ω`ων
Z(0)
P urν(pν)

{
A(0)
P L

rs(p`)
}
v̄s` (p`) + . . . , (3.41)

with Lrs(p`) defined in eq. (3.19). Note that C(0)
P` (t, t`) is a matrix in Dirac space and that

tracing with γ0
L = γ0(1− γ5) gives

Tr
[
γ0
LC

(0)
P` (t, t`)

]
= −e−m

(0)
P te−ω`t`e−ωνt`
8m(0)

P ω`ων
Z(0)
P A

(0)
P |L(p`)|2 + . . . . (3.42)

We now define the non-factorizable correlator as

δCnf
P`(t, t`) =

∫
d4x d4y 〈0|T

[
JρH(0)V µ(x)φ†P (−t,pP = 0)

]
|0〉 ×∆µν(x− y)

× Sν(t`,pν |0) γρ(1− γ5)S`(0|y) γν S`(y|t`,p`) , (3.43)

where V µ(x) =
∑Nf

q=1 V
µ

q (x) is the Euclidean quark electromagnetic current and ∆µν(x− y)
the photon propagator. Here we have used V ν

` (y) = ¯̀(y)γν`(y) for the leptonic electro-
magnetic current. The correlator in eq. (3.43) is obtained by applying the derivatives
of eq. (3.30) to the QCD+QED correlator CP`(t, t`). The asymptotic behaviour of the
non-factorizable correlator is

δCnf
P`(t, t`) =

∑
r,s

e−m
(0)
P te−ω`t`e−ωνt`
8m(0)

P ω`ων
Z(0)
P urν(p`)

[
δ ĎMrs

P (p`)
]nf

v̄s` (p`) + . . . . (3.44)

Tracing the correlator with γ0
L and making use of eq. (3.26) we can obtain the desired

non-factorizable correction to the decay amplitude as

Rnf
P` = Re

[
Tr
[
γ0
L δC

nf
P`(t, t`)

]
Tr
[
γ0
LC

(0)
P` (t, t`)

] ] = δAnf
P

A(0)
P

+ . . . . (3.45)

3.3 Subtraction of finite-volume effects

In the calculation presented in this work we adopt the QEDL prescription, first introduced
in ref. [12]. As discussed in a number of publications [12, 31–33], charged states are not
well-defined in a naive implementation of finite-volume QED (in which periodic boundary
conditions are applied to the photon fields). The QEDL approach solves this by discarding
the zero spatial-momentum mode of the photon on each energy slice. The resulting
momentum-space photon propagator in Feynman gauge then takes the simple form

∆µν
L (k0,k) = δµν

1− δk,0
k2

0 + k2 . (3.46)

This prescription solves the issue of zero-mode singularities in a periodic volume, at the cost
of violating locality in space at finite volume. Nevertheless, this theory has a well-defined
and local limit if the infinite-volume extrapolation is performed before the continuum
limit. Additionally, QEDL has been the dominant prescription so far in high-precision
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lattice QCD+QED calculations, including radiative corrections to leptonic decays [7, 8] and
isospin-breaking corrections to the muon anomalous magnetic moment [18, 34]. Alternative
strategies exist which preserve locality, such as introducing a photon mass [35] or using
non-periodic boundary conditions [36]. However, these approaches affect other fundamental
symmetries (gauge invariance and charge conservation, respectively) and their finite-volume
behaviour for processes such as weak decays is currently not as well studied as in the case
of QEDL.

As it is described in detail in ref. [14], the Feynman rules of QEDL can be used to
predict the L dependence of any lattice quantity by representing the latter in terms of
QCD vertex functions at fixed order in QED. In particular, this allows one to analytically
predict the power-like volume dependence, order by order in 1/L, for the virtual-photon
contribution to the leptonic decay rate targeted in this work. This strategy is already
implicit in eq. (3.2), where the subtracted quantity in the first term, denoted by Γ(2)

0 (L), is
defined as the analytic QEDL prediction through O(1/L2).

An extension of Γ(2)
0 (L) to n orders in 1/L can be written as

Γ(n)
0 (L) = Γtree

0

[
1 + δR

(n)
P (L)

]
, (3.47)

where

δR
(n)
P (L) = 2 αem

4π

(
ỸP (L) +

n∑
i=0

YP, i
Li

)
, (3.48)

isolates the O(αem) contribution of direct interest to us. The first term in parentheses,
ỸP (L), combines the infinite-volume universal (point-like) contributions to the decay rate
with those that are logarithmic in L.3 The functional form is given by [14, 24]

ỸP (L) = −5
4 + 2 log

(
m`

mW

)
+ 2 log

(
m`L

2π

)
+ 2 log r`
|v`|

[
log mPL

2π + log m`L

2π − 1
]
, (3.49)

with v` = p`/ω` defining the 3-velocity of the lepton and r` = m`/mP the lepton-
pseudoscalar mass ratio.

Equation (3.49) depends only on the masses of particles and is, in this sense, universal or
structure-independent. In fact, one can show that the same is true for YP, 0 and YP, 1, while
for YP, n>1 structure dependence enters through contributions from, e.g., form factors and
their derivatives. For this reason, the point-like approximation can be used to calculate YP, 0
and YP, 1 and the full machinery introduced in ref. [14] is first required for the determination
of YP, 2 and higher-order coefficients.

3In the notation of ref. [14] this quantity can be defined introducing a photon mass λ as

ỸP (L) = lim
λ→0

[
Y uni
P, IV(λ) + YP, log log Lλ2π

]
.
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A summary of the knowledge to-date on these coefficients is given by the following:

YP, 0 = c3 − 2 (c3(v`)−B1(v`))
2π + 2 (1− log 2) ,

YP, 1 = −(1 + r2
` )2c2 − 4 r2

` c2(v`)
mP (1− r4

` )
, (3.50)

YP, 2 = −F
P
A

fP

4π
[
(1 + r2

` )2 − 4 r2
` c1(v`)

]
mP (1− r4

` )
+ 8π

[
(1 + r2

` )c1 − 2 c1(v`)
]

m2
P (1− r4

` )
,

YP, 3 = 32π2c0 (2 + r2
` )

m3
P (1 + r2

` )3 + Y sd
P, 3 ,

where cj and cj(v`) are known finite-volume coefficients, and B1(v`) is a known special
function. These quantities are all defined in ref. [14].

In YP, 2, the structure-dependent ratio FPA /fP appears where FPA is the on-shell zero-
momentum axial form factor describing radiative leptonic decays and fP is the iso-QCD
pseudoscalar decay constant. A key message is that, while the full result including structure
dependence is known for YP, 2, the same is not true for YP, 3, for which the structure-
dependent piece, denoted Y sd

P, 3, has yet to be determined. As a result, the finite-volume
subtractions available currently include δR(2)

P (L) and δR(3),pt
P (L), where Y sd

P, 3 is set to zero
in the latter. In this work we use δR(2)

P (L) to determine our central value and take the
absolute difference |δR(3),pt

P (L)− δR(2)
P (L)| to estimate a systematic uncertainty associated

with neglected finite-volume effects.
Finally, we also need to consider finite-size effects from QED corrections to the meson

mass mP . For the finite-volume state with zero spatial momentum, these are given
by [14, 25, 31–33]

∆m2
P (L) = e2m2

P

{
c2

4π2mPL
+ c1

2π(mPL)2 + m2
P 〈r2

P 〉
3(mPL)3 + C

(mPL)3 + O
[ 1

(mPL)4

]}
, (3.51)

where 〈r2
P 〉 is the squared electromagnetic charge radius known from experiments, dispersion

theory and lattice simulations [1, 2], and C is an unknown contribution, arising from the
branch-cut in the Compton amplitude evaluated with zero spatial momentum for both the
photon and the pseudoscalar. In this work we use the predicted volume dependence through
O(1/L2) to estimate the infinite-volume pseudoscalar mass. As with the decay rate, we
take the difference between the 1/L2 and partial 1/L3 results as a systematic uncertainty.

3.4 Inclusion of real photon emission

Lastly, we need to include the contributions from a real photon emission, namely the
quantity δRpert

P (ωmax
γ ) in eq. (3.8). To this end, we adopt the formulation discussed in detail

in ref. [10]. Most notably, if the photon energy threshold, ωcut
γ , is small enough, one may

treat the initial hadron as a point-like particle and compute the inner bremsstrahlung term
analytically. However, since structure-dependent contributions are negligible for the decays
studied in this work, we can set ωcut

γ to the maximum value allowed for the photon energy,
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namely ωmax
γ = mP (1− r2

` )/2. We report here the result obtained in ref. [10],

δRpert
P (ωmax

γ ) = lim
mγ→0

δRpert
P (ωmax

γ ,mγ)

= αem
4π

[
3 log

(
m2
P

m2
W

)
− 8 log(1− r2

` )−
3 r4

`

(1− r2
` )2 log r2

` − 81 + r2
`

1− r2
`

Li2(1− r2
` )

+ 13− 19 r2
`

2(1− r2
` )

+ 6− 14 r2
` − 4(1 + r2

` ) log(1− r2
` )

1− r2
`

log r2
`

]
. (3.52)

4 Lattice methodology

In this section we discuss the lattice implementation of the correlation functions relevant
for the calculation of IB corrections to the leptonic decay rate and give the details of our
lattice setup.

4.1 Lattice QCD+QED path integrals

As anticipated in section 2, IB corrections are computed in this work using the RM123
perturbative method [22], which consists in expanding the path integral for a given physical
observable around the iso-QCD point. In practice, since our lattice setup has been tuned
to an iso-symmetric point different from the target one described in section 2, we follow a
two-step procedure to get our perturbative corrections. This consists in expanding both the
full QCD+QED and the iso-QCD path integral around the simulation point, and get the
desired correction as the difference of the two.

Let 〈Ô〉σφ be the expectation value of an observable Ô calculated (in lattice units) in
terms of the discretized Euclidean path integral in the full QCD+QED theory with bare
parameters σφ = (g, eφ, m̂φ),

〈Ô〉σφ = 1
Zφ

∫
D[U ]D[A]D[ψ, ψ̄] Ô[ψ, ψ̄, U,A;σφ] e−SF [ψ,ψ̄,U,A;σφ] e−Sγ [A] e−

1
g2 SG[U ]

, (4.1)

with SF [ψ, ψ̄, U,A;σφ] being the fermionic action, and Sγ [A] and SG[U ] the QEDL and QCD
gauge actions, respectively. Zφ denotes instead the QCD+QED partition function. Here we
keep the discussion general and allow the observable Ô to depend on the electromagnetic
coupling eφ. Let 〈Ô〉σ(0) be the corresponding expectation values calculated in the target
iso-QCD theory, σ(0) = (g, 0, m̂(0)),

〈Ô〉σ(0) = 1
Z(0)

∫
D[U ]D[ψ, ψ̄] Ô[ψ, ψ̄, U ] e−SF [ψ,ψ̄,U ;σ(0)] e−

1
g2 SG[U ]

, (4.2)

and 〈Ô〉σ that evaluated at the simulation point σ = (g, 0, m̂), which is obtained from the
previous equation by substituting σ(0) → σ.

The expansion of 〈Ô〉σφ around the simulation point σ is then given by

〈Ô〉σφ = 〈Ô〉σ + 〈δÔ〉σ − 〈Ô δSF 〉σ + 1
2 〈Ô (δSF )2〉σ + O(ε̄2) . (4.3)
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The correction 〈δÔ〉σ in eq. (4.3) only appears if the observable O itself depends on the
electromagnetic coupling eφ, which is not the case for the correlation functions studied in
this work. The quantity δSF is instead the IB correction to the lattice fermionic action, i.e.

δSF =
∑
x

∑
f

[
(m̂φ

f − m̂f) Ŝf(x) + i ef V̂
µ

c,f(x)Âµ(x)− 1
2 e

2
f T̂

µ
f (x)Â2

µ(x)
]

+ O(ε̄2) . (4.4)

Here Sf(x) = ψ̄f(x)ψf(x) is the scalar density, while V µ
c,f(x) and Tµf (x) are the electromagnetic

conserved current and the seagull (or tadpole) current, respectively, which depend on the
lattice regularization adopted (see e.g. refs. [22, 37]). The hats denote that all quantities
are expressed in lattice units. In this work, however, we employ a definition of the fermion-
photon coupling similar to the continuum one, where we use the renormalized local vector
current, V µ

f (x) = ZV ψ̄f(x)γµψf(x), instead of the electromagnetic conserved one and do
not include the tadpole current.4 This results in

δSF =
∑
x

∑
f

[
(m̂φ

f − m̂f) Ŝf(x) + i ef V̂
µ

f (x)Âµ(x)
]

+ O(ε̄2) , (4.5)

and the two approaches are expected to differ just by cut-off effects. The comparison of the
two approaches has been thoroughly investigated, and we report on that in appendix A.
Since the simulation point and the iso-QCD point only differ by the choice of the quark
masses, the expansion of the iso-QCD path integral around the simulation point is given by

〈Ô〉σ(0) = 〈Ô〉σ +
∑

f
(m̂(0)

f − m̂f) 〈Ô Ŝf〉σ + O(ε̄2) . (4.6)

From eqs. (4.3) and (4.6) it is then clear that IB corrections are obtained by computing
correlation functions at the simulation point with the insertion of the operators Sf(x) and
V µ

f (x). We repeat that throughout this paper we work in the electro-quenched approximation.
In practice, the bare parameters of the sea quark are kept fixed to their simulated values,
which amounts to neglecting all quark-line disconnected diagrams.

In the perturbative approach adopted in this work the U(1) gauge fields Aµ(x) are
generated as stochastic fields sampled according to the QEDL gauge action in Feynman
gauge [23, 37]

Sγ [A] = 1
V

∑
k:k 6=0

k̄2∑
µ

|Ãµ(k)|2 with k̄µ = 2
a

sin
(
akµ

2

)
, (4.7)

with Ãµ(k) being the photon field in momentum space, so that the expectation value
〈Aµ(x)Aν(y)〉γ reproduces the photon propagator ∆µν(x− y).

4.2 Lattice setup

For this calculation, we generate correlators for a (L/a)3 × (T/a) = 483 × 96 lattice using
Möbius Domain Wall Fermions (DWF) [38] with close-to-physical masses. The Domain wall
height and the length of the fifth dimension are aM5 = 1.8 and Ls/a = 24, respectively. See

4Note that for leptons ZV = 1 and hence V µ` (x) = ¯̀(x)γµ`(x).

– 21 –



J
H
E
P
0
2
(
2
0
2
3
)
2
4
2

ref. [39] for more details. The QCD gauge configurations are generated by the RBC/UKQCD
collaboration using the Iwasaki gauge action [40] with bare coupling β = 2.13. The sea
quark masses are m̂sea

ud = 0.00078 for the light quarks and m̂sea
s = 0.0362 for the strange

quark. We work in a unitary setup where we choose the valence light-quark masses to
have the same value as the sea, m̂ud = m̂sea

ud and similarly for the valence strange quarks,
m̂s = m̂sea

s . In this setup, that we refer to as our simulation point σ, the lattice spacing
has been determined without QED to be 1/a = 1.7295 (38)GeV and the simulated pion
mass of this ensemble is mπ = 139.15 (36)MeV, corresponding to mπL = 3.863 (6).

To reduce the computational cost of inverting the Dirac operator for near-physical light
quarks, we employ zMöbius fermions, which are a rational approximation of the Möbius
formalism (see ref. [41] and references therein), together with the deflation eigenvectors
generated by the RBC/UKQCD collaboration for this 483 × 96 ensemble. Light-quark
propagators can then be obtained with a smaller value of Ls, thereby reducing the simulation
cost. This rational approximation of the Möbius DWF action must be corrected for, and
we defer this discussion to appendix B.

4.3 Implementation of the hadronic correlators

We now turn to discuss the lattice implementation of the correlation functions introduced
in section 3.2, where the relations with the corresponding matrix elements were obtained
in the continuum and infinite-volume limit. As explained in section 4.1, IB corrections
to the expectation value of a given observable can be obtained in the iso-QCD simulated
theory by inserting additional operators in the correlation function [22]. As we discuss
in the following this is obtained, in practice, by iteratively inverting the Dirac operator
using suitable sources to get the appropriate sequential propagators. All the correlation
functions used in this calculation are generated using a set of 60 statistically independent
QCD configurations and are then resampled with the bootstrap method. The QED gauge
fields Aµ are generated using one stochastic source on each QCD gauge configuration. In
this way the averages over QED and QCD gauge configurations are simultaneous. The
inversions of the Dirac operator and the quark field contractions have been performed using
the Grid/Hadrons software framework [42–44].

In this calculation we study the decay of the meson P+ in its rest frame, pP = 0.
To create the meson we use gauge-fixed wall sources. This corresponds to defining a
zero-momentum interpolating operator of the form

φ†P (t) ≡ φ†P (t,pP = 0) = a6 ∑
x1,x2

q̄1(t,x1)γ5q2(t,x2) , (4.8)

and evaluating expectation values of this operator fixed to Coulomb gauge. Any gauge-fixed
expectation value involving φ†P (t) can be re-expressed as a gauge invariant correlator with
an alternative operator that includes a Wilson line between the quark fields. Crucially, the
gauge-invariant equivalent is local in time so that we can perform spectral decompositions
using the standard Hilbert space of lattice QCD with pseudoscalar quantum numbers.5

Note that using such definition of the meson interpolating operator, the dimensions of
5The same would not be true for gauge fixings that affect temporal gauge links. The idea of equivalence
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the correlators are different from those described in section 3.2 because of the additional
integration over the spatial coordinates of the quark fields.

Tree-level correlation function: the tree-level correlation functions in eq. (3.32) are
implemented at the simulation point in terms of quark propagators as

CPA(t) = a3 ∑
x

〈
Tr
[
Sq2(t,x|0)† γ0 Sq1(t,x|0)

]〉
, (4.9)

CPP(t) = a6 ∑
x1,x2

〈
Tr
[
Sq2(t,x2|0)† Sq1(t,x1|0)

]〉
, (4.10)

where we have used γ5-hermiticity, Sq(t2,x2|t1,x1) = γ5Sq(t1,x1|t2,x2)†γ5, and defined the
quark propagator with one end projected on zero momentum as

Sq(t1,x1|t2) ≡ Sq(t1,x1|t2,p = 0) = a3∑
x2

Sq(t1,x1|t2,x2) , (4.11)

while the symbol 〈 · 〉 denotes the average over the gauge configurations. Note that here we
have generated the pseudoscalar meson at tP = 0 for simplicity. In the lattice calculation
we have instead evaluated the correlation functions on each gauge configuration inserting
the source at every timeslice tP /a = {1, . . . , T/a = 96} and then shifted and averaged over
the source positions to improve the statistical uncertainty.

By considering the asymptotic form for the pseudoscalar correlator in eq. (3.33) on a
torus with period T in the temporal direction and periodic boundary conditions we obtain

CPA(t) = AP ZP2mP

{
e−mP t − e−mP (T−t)} , (4.12)

L3CPP(t) = |ZP |2

2mP

{
e−mP t + e−mP (T−t)} , (4.13)

having neglected exponentially suppressed contributions of excited states.

Factorizable correlators: let us define the sequential propagators obtained by inserting
the correction to the fermionic action δSF (see eq. (4.5)) along the quark line as

S(1)
q (x|y) = eq S

A
q (x|y) + (m̂φ

q − m̂q)SSq (x|y) , (4.14)

where

SAq (x|y) = i a4ZV
∑
z

Sq(x|z)γµAµ(z)Sq(z|y) and SSq (x|y) = a3∑
z

Sq(x|z)Sq(z|y) . (4.15)

We can analogously define the sequential quark propagator with a double insertion of δSF ,
which generates the quark self-energy, as

S(2)
q (x|y) = e2

q S
self
q (x|y) + O(ε̄2) (4.16)

between gauge-invariant and gauge-fixed formulations is discussed in the context of QED in a seminal paper
by Dirac [45] and more recently in ref. [46].
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with
Sself

q (x|y) = −a8Z2
V

∑
z,w

Sq(x|z)γµAµ(z)Sq(z|w)γνAν(w)Sq(w|y) . (4.17)

Note that the propagators S(1)
q (x|y) and S(2)

q (x|y) are both γ5-hermitian.
The factorizable correlators δC f

PA(t) and δC f
PP(t) can then be evaluated in terms of

such sequential propagators. We define

δC f
PA(t) = 4παem δC

em
PA(t) +

∑
q

(m̂φ
q − m̂(0)

q ) δCS,qPA (t) (4.18)

=
∑

q
e2

q δC
self,q
PA (t) + eq1eq2 δC

exch
PA (t) +

∑
q

(m̂φ
q − m̂(0)

q ) δCS,qPA (t) ,

and analogously δC f
PP(t), where

δCself,q1
PA (t) = a3∑

x

〈
Tr
[
Sq2(t,x|0)†γ0Sself

q1 (t,x|0)
]〉
,

δCself,q2
PA (t) = a3∑

x

〈
Tr
[
Sself

q2 (t,x|0)†γ0Sq1(t,x|0)
]〉
,

δCexch
PA (t) = a3∑

x

〈
Tr
[
SAq2(t,x|0)†γ0SAq1(t,x|0)

]〉
, (4.19)

δCS,q1
PA (t) = a3∑

x

〈
Tr
[
Sq2(t,x|0)†γ0SSq1(t,x|0)

]〉
,

δCS,q2
PA (t) = a3∑

x

〈
Tr
[
SSq2(t,x|0)†γ0Sq1(t,x|0)

]〉
,

and

δCself,q1
PP (t) = a6 ∑

x1,x2

〈
Tr
[
Sq2(t,x2|0)†Sself

q1 (t,x1|0)
]〉
,

δCself,q2
PP (t) = a6 ∑

x1,x2

〈
Tr
[
Sself

q2 (t,x2|0)†Sq1(t,x1|0)
]〉
,

δCexch
PP (t) = a6 ∑

x1,x2

〈
Tr
[
SAq2(t,x2|0)†SAq1(t,x1|0)

]〉
, (4.20)

δCS,q1
PP (t) = a6 ∑

x1,x2

〈
Tr
[
Sq2(t,x2|0)†SSq1(t,x1|0)

]〉
,

δCS,q2
PP (t) = a6 ∑

x1,x2

〈
Tr
[
SSq2(t,x2|0)†Sq1(t,x1|0)

]〉
,

having used again γ5-hermiticity together with eq. (4.11). Note that the symmetries of the
correlators ensure that δCself,u

PP = δCself,d
PP and δCself,u

PA = δCself,d
PA , as well as δCS,uPP = δCS,dPP

and δCS,uPA = δCS,dPA when mu = md = mud. The five correlators in eq. (4.19) correspond to
the hadronic part of the Feynman diagrams shown in figures 2(a)-(e), respectively.

For the factorizable correlators, correcting the asymptotic behaviour in eqs. (3.35)
and (3.36) for finite-time T effects with (anti-)periodic boundary conditions and neglecting
the contribution of excited states results in

Rf
PA(t) = δAf

P

AP
+ δZP

ZP
− δmP

mP
fPA(t, T ) , (4.21)

Rf
PP(t) = 2 δZP

ZP
− δmP

mP
fPP(t, T ) , (4.22)
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with

fPA(t, T ) = 1 +mP

{
T
2 − (t− T

2 ) coth
[
mP (t− T

2 )
]}
, (4.23)

fPP(t, T ) = 1 +mP

{
T
2 − (t− T

2 ) tanh
[
mP (t− T

2 )
]}
, (4.24)

and fPA(t, T ) = fPP(t, T ) ≈ 1 +mP t for t� T/2.
In the following we will make use of the notation Rx

PA(t) (and analogously for Rx
PP(t))

with x = {self,q ; exch ; S,q}. This has to be interpreted as the contributions to Rf
PA(t) com-

ing from the corresponding corrections to the correlator δC f
PA(t) in eq. (4.18). Equivalently,

we can decompose the correction to the meson mass up to O(ε2) as follows

δmP = 4παem δm
em
P +

∑
q

(m̂φ
q − m̂(0)

q ) δmS,qP (4.25)

=
∑

q
e2

q δm
self,q
P + eq1eq2 δm

exch
P +

∑
q

(m̂φ
q − m̂(0)

q ) δmS,qP .

For the mesons studied in this work we have q = {u,d} for δmπ+ , q = {u, s} for δmK+ ,
q = {d, s} for δmK0 , q = {u, u} for δMuu and q = {d, d} for δMdd .

Non-factorizable correlators: the non-factorizable correlator introduced in eq. (3.43)
can also be evaluated on the lattice by using the sequential propagators described above.
Defining

δCnf
P`(t, t`) = eq1e` δC

nf,q1
P` (t, t`) + eq2e` δC

nf,q2
P` (t, t`), (4.26)

and using eq. (4.11) one has

δCnf,q1
P` (t, t`) =

〈
Tr
[
Sq2(0|−t)† γρL S

A
q1(0|−t)

]
× Sν(t`,pν |0) γρL S

A
` (0|t`,p`)

〉
, (4.27)

δCnf,q2
P` (t, t`) =

〈
Tr
[
SAq2(0|−t)† γρL Sq1(0|−t)

]
× Sν(t`,pν |0) γρL S

A
` (0|t`,p`)

〉
, (4.28)

which correspond to the Feynman diagrams in figures 2(f) and 2(g), respectively. Here
we have defined the (sequential) propagator of an anti-lepton with the insertion of an
electromagnetic current and projected on definite external momentum as

SA` (0|t`,p`) = i a7 ∑
z,x`

S`(0|z)γµAµ(z)S`(z|t`,x`) e−ip`·x` . (4.29)

The tree-level correlator of eq. (3.38) evaluated at the simulated iso-symmetric point takes
the form

CP`(t, t`) =
〈
Tr
[
Sq2(0|−t)† γρL Sq1(0|−t)

]〉
× Sν(t`,pν |0) γρL S`(0|t`,p`) . (4.30)

Also in this case translational invariance has been used to simplify the notation such that
the weak current is inserted in the origin. However, lattice correlators have been computed
by inserting the weak current on all possible timeslices tH/a = {1, . . . , T/a = 96} and at
all positions xH , and then averaged over the volume. The lepton propagator has been
computed for 8 different lepton source-sink separations t`/a = {12, 16, . . . , 40} and its
momentum is chosen in such a way that energy and momentum are conserved in the process.
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Some comments concerning lattice lepton propagators are in order. First, we note that
when evaluated on a torus, the lepton propagator S`(0|t`,p`) takes the form (neglecting
possible contact terms)

S`(0|t`,p`) = −
∑
r

[e−ω`t`
2Ω`

vr` (p`)v̄r` (p`) + e−ω`(T−t`)

2Ω`
ur`(−p`)ūr`(−p`)

] 1
1 + e−ω`T . (4.31)

The backward signal has a different Dirac structure compared to the forward one and
(2Ω`)−1 appears in the residue at the pole, with lima→0 Ω` = ω`. Such a backward term
would contribute to the traces in eq. (3.45). However, this contribution is not related to the
matrix elementMrs

P (p`) of our interest and therefore it has to be subtracted. To this end
it is possible to define a projector Pv`(p`) only onto the forward-propagating part, namely

S`(0|t`,p`) · Pv`(p`) = −e−ω`t`
2Ω`

∑
r

vr` (p`)v̄r` (p`)
1

1 + e−ω`T . (4.32)

The definition and derivation of the projector Pv`(p`) is discussed in appendix C.3. Note
that the same feature would appear also in the lattice neutrino propagator. However,
being electrically neutral, the neutrino does not couple to the photon and, in addition, the
term e−ωνt`/(2ων) in its time-momentum representation (see eq. (3.39)) cancels in the ratio
of eq. (3.45). Therefore we can amputate the neutrino propagator and substitute it with
the (continuum) completeness relation [

∑
s u

s
ν(pν)ūν(pν)]cont = −i/pν .

The lattice correlators employed in the numerical calculation are then defined as

δC̃nf,q1
P` (t, t`) = −i

〈
Tr
[
Sq2(0|−t)† γρL S

A
q1(0|−t)

]
× /pν γ

ρ
L S

A
` (0|t`,p`) · Pv`(p`)

〉
,

δC̃nf,q2
P` (t, t`) = −i

〈
Tr
[
SAq2(0|−t)† γρL Sq1(0|−t)

]
× /pν γ

ρ
L S

A
` (0|t`,p`) · Pv`(p`)

〉
, (4.33)

C̃P`(t, t`) = −i
〈
Tr
[
Sq2(0|−t)† γρL Sq1(0|−t)

]〉
× /pν γ

ρ
LS`(0|t`,p`) · Pv`(p`) .

The spectral decompositions of δC̃nf
P`(t, t`) and C̃P`(t, t`), taking into account also the

backward propagation of the meson on the torus, become6

δC̃nf
P`(t, t`) = 1

L3

∑
r,s

e−ω`t`
4mPΩ`

{
e−mP t + κP` e−mP (T−t)}ZP urν(p`)

[
δ ĎMrs

P (p`)
]nf

v̄s` (p`) , (4.34)

C̃P`(t, t`) = 1
L3

∑
r,s

e−ω`t`
4mPΩ`

{
e−mP t − e−mP (T−t)}ZP urν(p`) {−APLrs(p`)} v̄s` (p`) , (4.35)

where Ω` = Ω`(1 + e−ω`T ) and κP` (which has a residual dependence on t`) parametrizes
the correction to the matrix element due to the interaction of the backward propagating
meson and the lepton. It follows that eq. (3.45) becomes

Rnf
P`(t, t`) = Re

[
Tr
[
γ0
L δC̃

nf
P`(t, t`)

]
Tr
[
γ0
L C̃P`(t, t`)

] ] = δAnf
P

AP
fP`(t, T ) , (4.36)

6Note that the spectral decomposition for δC̃nf
P`(t, t`) given in eq. (4.34) is valid only for t < T − t`. In

this work we restrict the analysis of non-factorizable correlators in the region t < T/2, where the condition
t < T − t` is satisfied for all values of t` used.
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where

fP`(t, T ) = 1
2
{
(1 + κP`)− (1− κP`) coth

[
mP (t− T

2 )
]}
≈ 1 for t� T

2 . (4.37)

For the lepton propagator we use the free Shamir DWF action [47] with aM5 = 1.0 and
Ls/a = 8. The Feynman rules for the free DWF propagator have been derived in ref. [48] and
we give details of the relevant Feynman rules in the conventions used in the Grid software
framework [42, 43] in appendix C.1. We have determined the bare input mass for the lepton
such that the pole mass of the free propagator corresponds to the physical muon mass
mφ
µ = 105.6583755 MeV [1]. This results in a bare input lepton mass of aminput

` = 0.06107
when using a previous determination of the lattice spacing a−1 = 1.730 GeV [39]. Details
on how to determine the input bare mass for a desired target pole mass of the free Shamir
DWF propagator are given in appendix C.2.

We use twisted boundary conditions [49–52] for the lepton propagator in order to
fix the momentum of the lepton such that energy and momentum are conserved at the
weak Hamiltonian. This is the case when the momentum of the lepton is given by |p`| =
mP
2 (1−(m`/mP )2) for the pseudoscalar meson at rest. For the determination of |p`| we used

the physical mass for the muon m` ≡ mφ
µ and the simulation point masses mP for pion and

kaon as determined previously in ref. [53] on this gauge ensemble. We find a|p`| = 0.017054
for the pion and a|p`| = 0.13783 for the kaon. We distribute the momentum of the lepton
equally in all three spatial directions, such that p` = − |p`|√3 {1, 1, 1}.

Omega baryon correlators: before closing the section we give details about the corre-
lators for the Ω− baryon, which is employed in the renormalization conditions imposed in
section 2 to fix the bare parameters of the QCD+QED, QCD and iso-QCD actions. We
define the zero momentum two-point function as

CΩΩ(t) = a3

2
∑
i

∑
x
〈0|T

[
ψiΩ(t,x) sψiΩ(0)

]
|0〉 , (4.38)

where the operator sψµΩ(x) = ψµΩ
†(x)γ0 denotes the spin-3/2 interpolating operator for the

Ω− and we have summed over the spatial directions i. One form of baryon interpolator is
given by

ψµΩ(x) = εabc P+ sa(x)
[
sTb (x)Cγµ sc(x)

]
(4.39)

where the s represent the strange quark fields, C is the charge conjugation matrix C = iγ2γ0,
and Roman indices identify color components of the fields. The projector P+ = (1 + γ0)/2
ensures that the interpolating operator ψ̄µΩ generates states with positive parity quantum
number (P = +1) and annihilates states with negative parity quantum number (P = −1).
In order to improve the signal for the correlation function, in this calculation we employ
Gaussian smearing for the strange quark fields s̃(t,x) = a3∑

y exp[−(x− y)2/(2σ2)]s(t,y)
with a width of σ/a = 9, which requires gauge fixing of the QCD gauge configurations.

One feature of lattice baryon interpolating operators is that, on a torus, they couple to
negative parity states propagating backward in time. As a consequence, assuming ground
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state dominance, the correlator has the form

CΩΩ(t) =
(
|ZΩ|2 e−mΩt + | sZΩ|2 e−sωΩ(T−t)

)
P+ (4.40)

where sωΩ is the energy of the state with parity P = −1. The operator-state overlaps
for a state with spin projection s ∈ {±3

2 ,±
1
2} are defined by ZΩ u

µ
s = 〈0|ψµΩ(0) |Ω, s〉 and

sZΩ γ5u
µ
s = 〈0|ψµΩ(0) |sΩ, s〉, where uµs is the positive energy solution to the spin-3/2 Rarita-

Schwinger equation (see e.g. [54] for a recent review), and |Ω, s〉 and |sΩ, s〉 are states with
positive and negative parity respectively. In addition, quarks with anti-periodic boundary
conditions in time have been assumed. Since baryon correlators are significantly affected by
an exponential signal-to-noise-ratio problem, we restrict our analysis of the correlator to
the time region t� T/2. In this interval we can then neglect the backward propagating
signal and take for t� 0,

C̃ΩΩ(t) = 1
2 Tr

[
CΩΩ(t)] ≈ |ZΩ|2 e−mΩt . (4.41)

In analogy with eq. (4.18), we can define the IB corrections to the correlator as

δC̃ΩΩ(t) = 4παem δC̃
em
ΩΩ(t) + (m̂φ

s − m̂s) δC̃S,sΩΩ(t) (4.42)

= e2
s
[
δC̃self,s

ΩΩ (t) + δC̃exch
ΩΩ (t)

]
+ (m̂φ

s − m̂s) δC̃S,sΩΩ(t) ,

where C̃self,s
ΩΩ (t) and C̃exch

ΩΩ (t) denote the corrections due to the photon exchange between the
constituent-strange quarks and C̃S,sΩΩ(t) the correction given by the insertion of the quark
scalar density on the quark lines. The ratio with the iso-QCD correlator has then the
following asymptotic behaviour

RΩΩ(t) = δC̃ΩΩ(t)
C̃ΩΩ(t)

= 2 δZΩ
ZΩ
− δmΩ t . (4.43)

Also in this case we can decompose the correction to the Ω− mass as

δmΩ = 4παem δm
em
Ω + (m̂φ

s − m̂s) δmS,sΩ . (4.44)

Details on the quark contractions for the Ω− correlator, as well as a discussion on the
derivation of its spectral decomposition can be found in appendix D.

5 Numerical analysis

The virtual IB corrections to the ratio of inclusive decay rates evaluated on the lattice, as
defined in eq. (3.27), is built from the IB corrections to the kaon and pion decay amplitudes
and to their masses. As discussed in the previous section, such quantities can be extracted
from the large-time behaviour of suitably defined Euclidean lattice correlators. In this
section, the strategy for extracting the relevant quantities from lattice correlators using a
global-fit analysis is presented. Due to the various classes of correlators involved in this
calculation, we adopt a data-driven approach to standardize the fitting criteria, which we
explain below.
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5.1 Strategy for correlator fits

Extracting physical quantities from lattice correlators using a fit procedure requires that
optimal fit ranges are identified for each correlator. In our work, when multiple lattice
correlators have fit parameters in common, e.g. the meson mass mP , these data are
fitted simultaneously fully taking into account such a constraint including the statistical
correlation between the data. In this way, all parameters can be extracted from 7 independent
frequentist fits.

In the case of the analyses of factorizable corrections, there are 12 correlators to study
for the kaon, while for the pion the flavour symmetries of the correlation functions reduce
the number of independent ones to 8. These correlators are listed below in eq. (5.4). The
functional forms of the fit ansätze used for the correlators are based on the spectral decom-
positions eqs. (4.12), (4.13), (4.21) and (4.22), where only the ground-state contribution is
included. For both mesons the tree-level correlators depend on two parameters, while all the
factorizable correlators depend on 3 parameters each, namely a constant term containing
the relative corrections to the matrix elements AP and ZP , the correction to the meson
mass and the simulation point mass mP entering the tanh/coth functions in eqs. (4.23)
and (4.24). The exact relation between the fit parameters and the physical quantities of
interest is given in eqs. (5.5)–5.7. Since all the correlators for a given meson depend on the
same simulation point mass, we combine the fits as described below. For what concerns
the non-factorizable pion and kaon correlators, we decide instead to fit the ratios Rnf

P`(t, t`)
using a constant fit ansatz, i.e. setting fP`(t, t`) = 1 in eq. (4.36). This approximation
corresponds to neglecting the contribution of backward signals and excited states and does
not have a significant effect on the χ2 for the range considered. In this case there is then
only one parameter for each meson. The Ω− correlators, due to the usual rapidly degrading
signal-to-noise ratio in baryon correlators, are also fitted in a region of small t, where we
can safely neglect the contribution of the backward propagating baryon and excited states.
This simplifies the fit ansätze for the tree level correlator C̃ΩΩ, and the ratios Rem

ΩΩ and
RS,sΩΩ to those given in eqs. (4.41) and (4.43), respectively. Both the ansätze have two free
parameters.

In order to select the best fit ranges we choose those with the maximum value for
the Akaike Information Criterion (AIC) [55, 56] similarly to the strategy followed by
refs. [18, 32, 57]

w = exp
[
− 1

2 (χ2 − 2ndof)
]
, (5.1)

where ndof = ndata − npar is the number of degrees of freedom of the fit and the χ2 function
is defined as

χ2 = (C−CM(a))TΣ−1(C−CM(a)) . (5.2)

Here C is a vector containing the data (i.e. the time correlators), CM(a) the corresponding
model as a function of the fit parameters a and Σ the covariance matrix

Σ = 1
nB − 1

nB∑
i=1

(Ci − 〈C〉)(Ci − 〈C〉)T , (5.3)
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with nB the number of bootstrap samples. The AIC weight function favours fits that have
minimal χ2 with the largest ndof possible, which penalises fits with a low χ2 per degree of
freedom resulting from over-fitting the data.

The datasets C used for the 7 analyses can be summarized as follows

1. Cf
K = (CKx, Rself,u

Kx , Rself,s
Kx , Rexch

Kx , RS,uKx , R
S,s
Kx) with x = (K,A) ,

2. Cf
π = (Cπy, Rself,u

πy , Rexch
πy , RS,uπy ) with y = (π,A) , 3. Cnf

K = (Rnf
K`) , (5.4)

4. Cnf
π = (Rnf

π`) , 5. CΩ = (CΩΩ) , 6. Cem
Ω = (Rem

ΩΩ) , 7. CS,sΩ = (RS,sΩΩ) .

The corresponding sets of fit parameters a are

1. af
K = (aK ,aself,u

K , aself,s
K , aexch

K , aS,uK , aS,sK ) ,

2. af
π = (aπ,aself,u

π , aexch
π , aS,uπ ) , 3. anf

K = (anf
K`) , (5.5)

4. anf
π = (anf

π`) , 5. aΩ = (aΩΩ) , 6. aem
Ω = (aem

ΩΩ) , 7. aS,sΩ = (aS,sΩΩ) ,

where we have defined

aP = (mP , |ZP |2, APZP ) , ax
P =

(
δmx

P , 2 δZ
x
P

ZP
,
δAx

P

AP
+ δZx

P

ZP

)
, anf

P` = δAnf
P

AP
, (5.6)

aΩΩ = (mΩ, |ZΩ|2) , ax
ΩΩ =

(
δmx

Ω, 2 δZ
x
Ω

ZΩ

)
. (5.7)

In the case of the factorizable correlators, however, the bootstrap covariance is rank-
deficient as the number of original samples ncfg = 60 is smaller than the dimension of the
covariance matrix. Some form of regularisation is then required to make the χ2-problem
well-conditioned. To this end we choose to neglect the covariance between the rows of
Cf

K and Cf
π with and without photon lines. This choice is motivated by the fact that the

correlation matrix is approximately block diagonal, and furthermore, we verified that the
optimum parameters do not change significantly if correlation is also neglected between the
correlation functions with different operator insertions. Finally, to reduce the number of
degrees of freedom further, only a subsequence of correlator data separated by the thinning
parameter ∆t are included in the fit, which are reported for each fit in table 1. The regulated
χ2 thus defined, the best-fit parameters are determined by minimizing the χ2 function for a
given fit range.

The choice of the fit ranges for each correlator is made using two different approaches
depending on the number of possibilities. For non-combined fits, like those on the Ω
correlators, the maximum number of fit ranges spanning the region t ∈ [0, T/2− 1] (with
T/a = 96) is 1128. In the case of non-factorizable diagrams, including also all possible
ranges in the lepton-time variable t`, the maximum number of fit ranges is of O(105). In
this case it is computationally feasible to do fits for all possible fit ranges and to compare
the values of w. However, applying the same strategy to the combined factorizable fits
would be computationally unfeasible, as the maximum number of possible fits is O(1024) or
O(1036) for pion and kaon, respectively. To find good fit range(s) with large AIC we utilize
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ncorr npar ndof ∆t/a χ2 p-value
1 12 18 80 2 49.98 1.00
2 8 12 95 2 65.00 0.99
3 5 1 24 2 21.42 0.61
4 3 1 32 2 29.41 0.60
5 1 2 7 1 5.14 0.64
6 1 2 9 1 5.32 0.81
7 1 2 6 1 1.73 0.94

Table 1. Details of the fits with highest AIC weight for the 7 analyses performed in this work and
presented in figures 4–8, 19 and 20: number of correlators (ncorr), number of parameters (npar),
number of degrees of freedom (ndof), size of thinning interval (∆t/a), chi-squared (χ2) and one-sided
p-value.
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(a) pion
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Figure 4. Tree-level correlators CPP(t) and |CPA(t)| for pion (a) and kaon (b). The solid lines
with error band correspond to the best fits of the data.

a genetic algorithm as described in appendix E to perform the optimization. The outcome
of this procedure is a set of fit ranges and their associated AIC weights w from each analysis.
There is, however, a large multiplicity of good fit results. In order to capture the variability
in the resulting good fits, we consider the 5 fits from each analysis that correspond to the
highest AIC. This is an arbitrary and seemingly small number, which however already leads
to a large multiplicity of nfit = 57 = 78125 alternative combinations for the fit parameters.
The propagation of the variations due to these alternatives to the final results is discussed
in section 5.3.

Here we only show the representative best fits of the correlators for each analysis,
i.e. those corresponding to the highest AIC weight. In figure 4 the tree-level pion and
kaon correlators of eqs. (4.12) and (4.13) are shown on a logarithmic scale, their slope
being related to the tree-level meson mass mP . The electromagnetic corrections due to the
exchange of photons between the two constituent quarks and to the u-quark self-energy
are reported in figures 5 and 6, respectively, normalized by the tree-level diagrams. In this
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Figure 5. Factorizable diagram with a photon exchanged between the two constituent quarks,
Rexch

PP (t) and Rexch
PA (t), for pion (a) and kaon (b). The solid lines with error band correspond to the

best fits of the data.
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Figure 6. Factorizable diagram with u-quark self-energy correction, Rself,u
PP (t) and Rself,u

PA (t), for
pion (a) and kaon (b). The solid lines correspond to the best fits of the data.

case the slopes of the correlators correspond to the corrections to the meson mass δmexch
P

and δmself,u
P (see eqs. (4.21) and (4.22)). The correction due to the scalar insertion on the

u-quark leg is shown instead in figure 7.
The non-factorizable correlators Rnf

P` defined in eq. (4.36) are reported in figure 8 for
both pions (left) and kaons (right). The expected time behaviour fP`(t, T ) is visible from
the data, with plateaus in the region t� T/2. The dependence on the lepton source-sink
time separation t` is suppressed by the use of the projector on the forward propagating
signal (see appendix C.3 for more details). The constant fits to the data corresponding
to the highest value of the AIC weight are reported in the figures, while the grey points
identify the data which are not included in any of the top 5 best fits selected in our analysis.
The details for the best fits are reported in table 1 for the 7 analyses performed in this work.
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Figure 7. Factorizable diagram with a scalar insertion along the u-quark line, RS,uPP (t) and RS,uPA (t),
for pion (a) and kaon (b). The solid lines correspond to the best fits of the data.
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Figure 8. Non-factorizable diagram Rnf
P`(t, t`) for pion (a) and kaon (b), for multiple values of

lepton source-sink separation t`/a. The solid lines correspond to the best fits of the data. The grey
points denote the data that are not included in any of the top 5 best fits.

5.2 Tuning of the bare parameters

From each of the fits performed in the factorizable analyses (1) and (2) outlined in eqs. (5.4)
and (5.5) we obtain an estimate of the masses of the charged pion, the charged and neutral
kaon and the neutral BMW mesons at the simulation iso-QCD point, together with their
leading IB corrections. Analogously, we obtain the mass of the Ω− baryon and its corrections
from the analyses (5), (6) and (7). Imposing the renormalization conditions in section 2,
we can then obtain the relevant mass shifts (m̂φ − m̂(0)), (m̂QCD − m̂(0)) and (m̂φ − m̂QCD)
that allow one to define the IB correction δX̂(σ(0)) to a given observable X̂, as well as
its decomposition into strong isospin-breaking and electromagnetic effects (see eqs. (2.14)
and (2.15)).
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The mass shift (m̂φ − m̂) from the physical to the simulation point is obtained by
imposing eq. (2.1) and simultaneously solving the following system of equations

M2
j

m2
Ω

[
1+2αem

(
δMem

j

Mj
− δm

em
Ω

mΩ

)
+2

∑
q

(
δMS,qj

Mj
− δm

S,q
Ω

mΩ

)
(m̂φ

q−m̂q)
]

=
(M2

j

m2
Ω

)PDG

, (5.8)

where j = 1, 2, 3 and M = {mπ+ ,mK+ ,mK0}. Finite-volume effects are applied to the
meson masses on the right-hand side of eq. (5.8) making use of the formula in eq. (3.51).
Once the vector (m̂φ − m̂) is known, the QCD mass shifts (m̂QCD − m̂) are obtained
from eq. (2.7) using the BMW mesons N = {Mud,∆M,MKχ} and solving the system

N2
j

m2
Ω

[
1 + 2

∑
q

(
δNS,qj

Nj
− δmS,qΩ

mΩ

)
(m̂QCD

q − m̂q)
]

= (5.9)

N2
j

m2
Ω

[
1 + 2αem

(
δNem

j

Nj
− δmem

Ω
mΩ

)
+ 2

∑
q

(
δNS,qj

Nj
− δmS,qΩ

mΩ

)
(m̂φ

q − m̂q)
]
,

with j = 1, 2, 3. Finally, the iso-QCD point is determined solving the system in eq. (2.8) for
(m̂(0) − m̂), namely for j = 1, 2, 3

N2
j

m2
Ω

[
1 + 2

∑
q

(
δNS,qj

Nj
− δmS,qΩ

mΩ

)
(m̂(0)

q − m̂q)
]

= (5.10)

N2
j

m2
Ω

[
1 + 2αem

(
δNem

j

Nj
− δmem

Ω
mΩ

)
+ 2

∑
q

(
δNS,qj

Nj
− δmS,qΩ

mΩ

)
(m̂φ

q − m̂q)
]
(1− δj,2) .

Using only the best fit from each of the analyses (i.e. the one corresponding to the
highest AIC weight), we obtain the following bare quark masses in lattice units

 m̂(0)
ud

δm̂(0)

m̂(0)
s

 =

0.00068 (2)
0

0.0353 (4)

 ,

 m̂QCD
ud

δm̂QCD

m̂QCD
s

 =

0.00068 (2)
−0.0010 (4)
0.0353 (4)

 ,

m̂
φ
ud

δm̂φ

m̂φ
s

 =

0.00068 (2)
−0.0010 (4)
0.0352 (4)

 .
(5.11)

The difference between the simulation point and the physical point is given by

m̂ud − m̂φ
ud

δm̂− δm̂φ

m̂s − m̂φ
s

 =

0.00010 (2)
0.0010 (4)
0.0010 (4)

 , (5.12)

and an important feature to notice is the similar size between the deviations in m̂ud, m̂s,
and δm̂φ. This justifies the linearity assumption made in section 2.3, where we assumed
that the m̂ud and m̂s corrections to match with the physical point were of the same size as
the isospin-breaking effects.
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Figure 9. Histogram displaying the distribution of δRlatt
Kπ . The blue and green error bands are the

statistical and fit systematic errors, respectively.

Finally, we also obtain the following ratios[M(0)

m(0)
Ω

]2
=
(
0.006530 (4), 0.08761 (3), 0.08761 (3)

)
, (5.13)

[MQCD

mQCD
Ω

]2
=
(
0.006530 (4), 0.08653 (2), 0.08869 (3)

)
, (5.14)[Nφ

mφ
Ω

]2
=
(
0.006530 (4), −0.00464 (2), 0.08434 (2)

)
. (5.15)

Assuming m(0)
Ω = mφ

Ω, we can form the ratio in eq. (5.13) using the iso-QCD meson masses
in the GRS scheme quoted in ref. [8],

[M(0)

m(0)
Ω

]2

GRS
=
(
0.00652 (2), 0.08746 (4), 0.08746 (4)

)
. (5.16)

The pion component agrees between the two schemes, the difference in the kaon part is
more significant, but represents only a per-mille relative difference, which as we will see in
section 6 is well covered by our systematic errors.

5.3 Estimation of model uncertainties

As described in section 5.1, the fit-scan procedure selects a set of fit ranges and their
associated AIC weights from each of the seven analyses. We choose to consider the five
best fits from each analysis, thus obtaining a total of nfit = 78125 determinations of the
fit parameters for each bootstrap sample. We can then combine the fit parameters, tune
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the bare-quark masses and use eq. (3.27) to get nfit estimates of δRlatt
Kπ for each bootstrap.

In order to extract a value from this set, we build a histogram of the nfit values of δRlatt
Kπ

reweighting each entry with the total AIC weight for that choice of analyses, namely

wtot =
7∏
i=1

wi = exp
[
− 1

2

7∑
i=1

(χ2
i − 2ndof,i)

]
. (5.17)

Here the summation applies because the seven analyses are independent. The relative size
of the nfit different weights informs us which predictions are preferable over others. The
choice of limiting our study to only the fit ranges associated to the top five AIC weights in
each analysis is motivated by the fact that, with this reweighting procedure, the exponential
suppresses the relatively inferior fit results. We checked, however, that varying the input
parameters of the genetic algorithm used for the factorizable analyses and hence varying the
best fits selected, yields consistent results (see appendix E). Given the reweighted histogram
built from the nfit values of δRlatt

Kπ , which is shown in figure 9, we determine the central value
for this quantity as the median of the histogram. Choosing the median instead of the mean
makes the result not subject to drastic variations due to outlier predictions. In figure 9 the
median is indicated in blue together with its statistical error, while the green error bar is the
fit systematics. The statistical error is estimated from the variance of the bootstrap samples
of the medians, while the systematic error is determined from the distribution of δRlatt

Kπ as
the 2σ interval around the central value (i.e. the central 95% band). The distribution of
δRlatt

Kπ in figure 9 shows two peaks. They suggest that there are two sets of fit intervals with
statistically distinct fit results but with comparably good AIC weights. However, we note
that both peaks are covered by our systematic error. Alternative strategies were attempted
to stress the stability of our result, including different assumptions about correlation and
different weight functions,7 all leading to results within the quoted systematic uncertainty.
The value obtained for δRlatt

Kπ is then

δRlatt
Kπ = −0.0101 (3)stat.(+11

−4 )fit . (5.18)

6 Results

The finite-volume lattice estimate of δRlatt
Kπ obtained in the previous section can be combined

with the function δR
(n)
P (L) discussed in section 3.3 in order to subtract the logarithmic

divergence and power-like electromagnetic finite-volume effects up to O(1/L2). The pre-
diction of δRKπ is then obtained according to eq. (3.8) by adding the contribution of the
real-photon emission δRpert

Kπ (ωmax
γ ), which is computed in perturbation theory [10] and

reported in eq. (3.52). To evaluate the finite-volume correction, we compute eqs. (3.48)
and (3.50) using the finite-volume coefficients determined in ref. [14] and the simulation
point meson masses and decay constants, together with F πA and FKA from χPT at O(p4)
and O(p6), respectively [11, 58, 59]. For our lattice of size L48 ≡ 48a we get

δR
(2)
Kπ(L48) = δR

(2)
K (L48)− δR(2)

π (L48) = −0.00730 . (6.1)
7We tried the flat distribution, the two-sided p-value, Bayesian model averaging [32, 57] and ad-hoc

functions favouring high number of degrees of freedom with small χ2.
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Evaluating eq. (3.52) for the physical values of the meson masses mπ and mK [1] we obtain
instead

δRpert
Kπ (ωmax

γ ) = δRpert
K (ωmax

γ )− δRpert
π (ωmax

γ ) = −0.00583 . (6.2)

Combining the previous results and including all sources of systematic uncertainties,
which we are going to discuss in the rest of the section, our result for δRKπ obtained at
L = L48 amounts to

δRKπ = −0.0086 (3)stat.(+11
−4 )fit(5)disc.(5)quench.(39)vol. . (6.3)

The first error is statistical, and it is obtained from the variance of the bootstrap distribution
of δRlatt

Kπ . The second error is the systematic uncertainty associated with our fit strategy and
estimated as the 2σ interval around the median of the distribution of δRlatt

Kπ (see figure 9),
as discussed in section 5.3.

The calculation presented in this work has been performed on a single lattice spacing
and, as a consequence, we are not able to extrapolate δRlatt

Kπ to the continuum limit. Thus, we
quote a systematic uncertainty associated with the residual O(a2) discretization effects. This
is estimated as (aΛ)2 with a−1 = 1730 MeV and Λ = 400 MeV [34]. This gives (aΛ)2 ∼ 5%,
which is applied to the central value of δRlatt

Kπ before the finite-volume subtraction and
results in −0.0086 (5)disc..

Electromagnetic interactions involving sea quarks have been neglected in this work.
Such electro-quenching effects are SU(3) and 1/Nc suppressed for O(αem) contributions
and expected to be of ∼ O(10%) [16] of the QED correction to the rate. Separating δRlatt

Kπ

into its electromagnetic and strong-isospin breaking contributions (δRlatt
Kπ)γ and (δRlatt

Kπ)SIB

(according to the separation scheme outlined in section 2) we take the 10% of the e.m. part
(δRlatt

Kπ)γ as our electro-quenching error. Using the median of the (δRlatt
Kπ)γ distribution,

(δRlatt
Kπ)γ = −0.0047, we get −0.0086 (5)quench..
As discussed above, we use the finite-volume correction including the full 1/L2 scaling

(denoted by δR
(2)
P (L)) in order to determine our central value for the infinite-volume

observable δRP . We then estimate the systematic uncertainty, associated with the truncation
of the finite-volume expansion, by forming the difference between δR(2)

P (L) and the correction
including the point-like 1/L3 contribution (denoted by δR(3),pt

P (L)). These quantities are
given explicitly by combining eqs. (3.48)–3.50 from section 3.3.

Since we are only targeting the difference between pion and kaon decay rates, the
finite-volume correction we actually require is the difference

δR
(n)
Kπ(L) = δR

(n)
K (L)− δR(n)

π (L) . (6.4)

The systematic uncertainty on this is then estimated via

σL ≡ δR(3),pt
Kπ (L)− δR(2)

Kπ(L) , (6.5)

= αem
2π

32π2

(mπL)3

[ 2 + (m`/mπ)2

[1 + (m`/mπ)2]3 −
2 + (m`/mK)2

[1 + (m`/mK)2]3
m3
π

m3
K

]
, (6.6)

where we have given the explicit expression as it will play a crucial role in our error budget.
We stress that σL is positive. As we will see below, both δR(2)

Kπ(L) and the final observable
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δRKπ are negative. This implies that, if one were to estimate δRKπ using δR(3),pt
Kπ (L), the

result would be reduced (a negative number with increased magnitude) as compared to the
central value we report using δR(2)

Kπ(L).
To give numerical results for δR(n)

Kπ, we require values for the meson masses and decay
constants, the muon and W -boson mass, and also values for the form factors FKA and F πA.
As above, we take FKA and F πA from χPT at O(p6) and O(p4), respectively [11, 58, 59], and
meson masses and decay constants from our simulation. The full set of inputs is then

mπ = 0.1395GeV , mK = 0.4992 GeV ,

mµ = 0.1057 GeV , mW = 80.38 GeV ,

fπ = 0.1310 GeV , fK = 0.1564 GeV ,

F π, χPT
A = 0.0119 , FK,χPT

A = 0.0340 ,

(6.7)

where results for FA are reported to three digits, all other numbers to four digits and
uncertainties are neglected, since these are completely subdominant in our determination.

Substituting these values into the expressions for δR(n)
Kπ(L) and evaluating at the lattice

volume used in this calculation, L48, one finds

δR
(1)
Kπ(L48) = −0.00468 , δR

(2)
Kπ(L48) = −0.00730 , δR

(3),pt
Kπ (L48) = −0.00337 .

From these numerical results it is clear that the convergence appears quite poor for the
volume used. In particular the ratio

σL48

δR
(2)
Kπ(L48)

' −0.54 , (6.8)

implies that the finite-volume correction is assigned a 54% systematic error in our method.
As emphasized above, this is due to the fact that we have only incomplete knowledge of
the correction through 1/L3, since the structure-dependent piece has not been calculated.
Propagating this through eq. (3.8), we obtain

δRKπ = −0.0086 (39)vol. . (6.9)

We close this section by presenting additional information on the finite-volume expansion,
making use of the analytic results of ref. [14] as well as data from the previously published
lattice calculation by the RM123S group [8]. This calculation uses a different lattice
discretization and also extrapolates from heavier-than-physical pions. A key advantage
relative to this work, however, is that it includes results at multiple volumes. The data are
displayed in figure 10, separately for δRπ and δRK . The results are for mπ ≈ 320MeV and
mK ≈ 580MeV, and four different volumes.

Our aim is to examine this data in light of a key conclusion of ref. [14], namely that the
structure-dependent part of YP, 2 (the 1/L2 coefficient) is numerically negligible. As this was
not known at the time, the approach of ref. [8] was to subtract the point-like 1/L prediction
and to numerically investigate the residual volume dependence. The circular data points
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Figure 10. The volume-dependence of (a) δRπ and (b) δRK based on data taken from ref. [8]
supplemented with analytic knowledge from ref. [14]. The L dependence is presented at fixed,
heavier-than-physical quark masses corresponding to mπ ≈ 320MeV and mK ≈ 580MeV. As
indicated in the legend and described in detail in the text, the various points correspond to different
subtractions and the curves to fits of residual L dependence.

in figure 10, labelled in the legend as “1/L subtracted”, show the result of this analysis
and coincide to figure 9 of ref. [8]. As can be seen from the 1/L-subtracted data and the
dashed curves in figure 10, a linear description vs. 1/L2 for the residual volume dependence
is realistic. This results in a numerical prediction for the structure dependence that is much
larger than the analytic result of ref. [14]. Another way to reach this same conclusion is to
examine the residual L dependence in the pointlike 1/L2 subtracted data. The fact that
this shows a clear residual slope was interpreted as the effect of the structure dependence at
1/L2. This can also be seen in figure 10 in the square data points labelled “1/L2 subtracted”
(strictly, here we subtract the full 1/L2 behaviour and ref. [8] the point-like part, but the
distinction is numerically insignificant.)

We argue that the puzzle is resolved by the observation that the data is equally well
described by 1/L3 behaviour. To explore this we first subtract the point-like 1/L3 prediction
and find that the L dependence is reduced. This is shown in figure 10 as the diamonds,
labelled in the legend as “1/L3 pointlike subtracted”. We then perform a fit of the form
a+ b/L3 to the point-like 1/L3-subtracted data. We find this describes the data reasonably
and can be interpreted as an estimate of the residual 1/L3 behaviour, again arising from
structure dependence.8 The three solid curves in figure 10 show the result of the a+ b/L3

fit for each of the three subtraction scenarios. We stress that the curves are related by
analytic terms and that only one fit was performed.

From these considerations, we conclude that the L→∞ limit is challenging for QEDL
and that analytical knowledge of the L dependence can be of great importance in controlling
the systematic error associated to these extrapolations. We are working on several directions

8Given the discussion above, the reader might note that we are mimicking the approach of ref. [8] but
one order higher in 1/L. To this point we stress one key difference; the point-like 1/Ln contributions are
known to vanish for n > 3.
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to address this issues, including an analytic determination of the structure dependence at
1/L3, both in the continuum and at finite lattice spacing (where the interplay between
cut-off effects and finite volume effects is not trivial due to the non-locality of QEDL [60]).
As is discussed in ref. [14], this will require evaluating a branch-cut contribution (similar
to that appearing for the pseudoscalar mass in eq. (3.51)). In addition, when working
with physical pion masses at such level of precision, exponentially suppressed finite-volume
effects might become relevant and require a careful investigation.

We now turn to the determination of |Vus|/|Vud|. For this purpose, symmetrizing the
fit systematic in eq. (6.3) and summing in quadrature all the errors but the “vol.” one, we
get δRKπ = −0.0086 (13)(39)vol.. Combining this result with the value of the iso-QCD ratio
fK/fπ we can predict |Vus|/|Vud| at leading order in IB corrections as

|Vus|
|Vud|

=
[Γ(K+ → µ+νµ[γ])

Γ(π+ → µ+νµ[γ])
mK

mπ

(m2
π −m2

µ)
(m2

K −m2
µ)

]1/2 fπ
fK

(
1− 1

2 δRKπ
)
. (6.10)

Averaging9 the Nf = 2 + 1 lattice results reviewed in FLAG [2, 39, 61–67], and using the
PDG average for the ratio of experimental decay widths [1], we obtain

|Vus|/|Vud| = 0.23154 (28)exp. (15)δRP (45)δRP ,vol. (65)fP , (6.11)

where the first error comes from the experimental measurements, the second is our uncer-
tainty on δRKπ excluding the finite-volume systematics quoted separately, and the last
error comes from the average of lattice determinations for fK/fπ. Interestingly, we find
that the error from fK/fπ dominates the uncertainty on |Vus|/|Vud|. The same conclusion
is obtained using the RM123S result. In fact, taking δRRM123S

Kπ = −0.0126 (14) and the
Nf = 2 + 1 + 1 average fK/fπ = 1.1966 (18) from ref. [8], one obtains (|Vus|/|Vud|)RM123S =
0.23131 (28)exp (17)δRP (35)fP . This is a clear motivation for future new computations of
fK/fπ on the lattice, with the aim of reducing the uncertainty by a factor 2 to 3 to bring
it below the current experimental uncertainties on the decay width ratio. Finally, the
second-largest uncertainty in eq. (6.11) comes from the challenges with finite-volume QED
as discussed above. It is foreseeable that this conservative uncertainty will be drastically
reduced in the near future, which can be done through the addition of multiple volumes
to compute the 1/L3 coefficient or the usage of a different QED formulation with smaller
volume corrections. In conclusion, there are identified ways forward to reduce in the short-
term future the two main systematic errors on |Vus|/|Vud|, and beyond those the precision
reached on δRKπ is sufficient and below the experimental input uncertainties.

7 Conclusions

The study of light-meson leptonic decays is of great relevance for the extraction of the
CKM matrix elements |Vus| and |Vud|, especially in light of current outstanding 3σ tensions

9FLAG does not quote an average for fK/fπ, but for the isospin-corrected ratio fK+/fπ+ . We produced
the value fK/fπ = 1.1930 (33) following exactly the averaging procedure described in the review. Although
iso-QCD has been tuned in slightly different ways in the calculations entering this average, from the
corresponding values of mπ and mK we expect scheme ambiguities to be below the quoted uncertainty (see
discussion in sections 2.4 and 5.2).
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in the first-row unitarity [1, 3]. To either confirm or resolve such tensions, a combined
effort of both theory and experiment is necessary. New experimental measurements and
analyses are possible for some facilities (e.g. at NA62, as suggested by the authors of
ref. [3]) and can help to clarify the situation. On the theoretical side, precise and controlled
calculations of leptonic and semi-leptonic decay rates, including non-perturbative effects
of strong interactions, as well as QED and strong isospin-breaking effects, would allow
stringent tests of the SM.

In this paper we have presented the first physical-quark-mass lattice calculation of the
leading isospin-breaking effects on the ratio of the rates of kaon and pion decays into muons.
This has been performed using chiral domain wall fermions with close-to-physical masses on
a single gauge ensemble, i.e. at a fixed value of the lattice spacing and on a finite volume.
Finite-volume QED interactions have been regulated according to the QEDL prescription
by removing the spatial zero mode of the photon propagator and the electro-quenched
approximation has been employed, thus assigning zero electric charge to the sea quarks.
Including all sources of systematic uncertainty, we obtain

δRKπ = −0.0086 (3)stat.(+11
−4 )fit(5)disc.(5)quench.(39)vol. . (7.1)

This result is compatible with the lattice result obtained by the RM123S collaboration [8],
as well as with the χPT estimate of ref. [13].

Although our statistical error is very competitive with e.g. the RM123S calculation, the
final precision of our estimate of δRKπ is affected by a large systematic uncertainty. This is
dominated by the error associated with residual finite-volume effects, which amounts to
around 45% of the central value of δRKπ. The origin of such a large uncertainty, as explained
in section 6, is due to the lack of knowledge of structure-dependent effects at O(1/L3), which
are specific to the QEDL prescription. The discussion in section 6 emphasises the crucial
role of finite-volume effects in the extraction of δRKπ and the need for a dedicated study of
the O(1/L3) contributions. Two ways of reducing the finite-volume systematic error will
be explored in future calculations. On the one hand, work is in progress to understand
and determine the 1/L3 finite-volume QEDL contributions. On the other hand, performing
the same calculation on multiple volumes can certainly help to extrapolate to the infinite-
volume limit. Repeating the calculation on gauge ensembles with different lattice spacings
would also allow to reduce the systematic uncertainties associated to discretization effects.
For what concerns electro-quenching, a plan is in place to overcome this approximation
calculating quark-disconnected electromagnetic corrections. The progress of our preliminary
study has been reported in ref. [30].

To conclude, our calculation provides an important step towards future flavour physics
precision tests. The anticipated extensions of the calculation presented in this work, resulting
in smaller systematic uncertainties, will allow for a new theoretical prediction for the ratio
|Vus|/|Vud|. However, as discussed at the end of section 6, a real progress will only be possible
if also the precision of the iso-QCD decay constants fK/fπ is improved. At this point, the
uncertainties coming from theoretical predictions will no longer dominate over those from
experimental inputs in the extraction of |Vus|/|Vud|. We are currently also investigating the
prospects for a non-perturbatve determination of the leading isospin-breaking corrections
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to semi-leptonic K → π`ν decays, which are relevant for an independent determination of
|Vus|. Together, these results will provide novel and stringent precision tests of the CKM
matrix unitarity.
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A Comparison of local and conserved electromagnetic currents

A.1 Theory

A certain freedom always exists in the detailed choice of how to discretize local composite
fields in a lattice calculation. In particular, various equally valid discretizations can be
defined that differ in their renormalization and cut-off effects. In this work, we use the
(ultra-)local discretization of the electromagnetic current on the lattice, defined as

V µ
fg(x) = ZVψ̄f (x)γµψg(x) . (A.1)

This is an extension of the current appearing in eq. (4.5), as here we allow the possibility
of an off-diagonal flavour current in order to simplify the discussion of particular quark
contractions in isolation.

The local current does not exactly satisfy the QED Ward-Takahashi identity. In other
words, the coupling to the photon field breaks QED gauge invariance explicitly for non-zero
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lattice spacing. In addition to introducing a finite renormalization of the electromagnetic
current at order αem, the lack of gauge symmetry implies that new singularities may arise
when the position of the current coincides with other local fields. Such short-distance effects
occur, for example, when the vertex is integrated over the space-time volume and as a result
coincides with the axial current as in the first correlation function defined in eq. (4.19). By
contrast, when gauge-invariance is preserved using a discretization of the current which is
exactly conserved, singularities associated with overlapping operators are highly constrained
by the Ward-Takahashi identities.

Nevertheless, by power counting one can show that in our set-up no such extra diver-
gences arise, nor is the automatic O(a) improvement of the chiral fermion discretization
spoiled. To see this, first consider diagram (a) of figure 2. We examine the limit in which
both electromagnetic vertices approach the position of the axial current. To identify this di-
agram in isolation we introduce fictitious valence-quark flavours denoted 1, 2, 3, 4 (discussed
in more detail below) and write

a8 1
x2

[
V µ

12(x)V µ
23(x)Aν34(0)

]
x→a= δZAA

ν
14(0) + O(a2) . (A.2)

Here the factor x−2 on the left-hand side arises from the short-distance behaviour of the
photon propagator and the a8 arises from the discretized space-time measure. The three
key claims in this equation, all justified in the following paragraphs, are (i) that no power
divergences (positive powers of 1/a) arise, (ii) that the constant order simply defines a
contribution to the renormalization of the axial current, and (iii) that the leading corrections
that vanish as a→ 0 are O(a2) rather than O(a).

We have introduced additional (degenerate) flavours 1, 2, 3, 4 in the paradigm of a
partially quenched theory to isolate the contribution from the diagram of interest. This
flavour structure ensures that only operators with energy dimension greater than or equal
to three can contribute to the right-hand side, since all contributing operators must carry
anti-1 and 4 quantum numbers, and must therefore be built from at least two quarks. The
difference between the lowest dimension of operators contributing (three) and the dimension
on the left-hand side (nine) is therefore six, and this leads to a 1/a6 scaling accompanying
the quark bilinear. This is however cancelled by the power of a8/x2 → a6 on the left-hand
side, implying that no power divergences arise. This demonstrates point (i) above.

Without any additional symmetries, all rotationally covariant quark bilinears could
contribute. However, in our set-up we have an approximate chiral symmetry, broken due
to an exponentially suppressed contribution from the finite extent of the fifth dimension.
Taking this to be negligible, we need only catalogue dimension three operators with the
correct chiral rotation properties, and the {1,4} axial-current is the unique choice with
dimension three. Thus, the effect of breaking gauge invariance results in an additional
renormalization of the axial current at the next-to-leading order in the electromagnetic
coupling. This demonstrates point (ii) above.

Finally, the discrete lattice chiral symmetry [68] forbids mixing with dimension-four
operators with the appropriate definition [69], which might otherwise introduce linear lattice
artefacts in such off-shell correlation functions. This is our third and final point (iii) and
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Figure 11. A comparison of the QED correction to the pion mass from the exchange (left) and the
self energy+tadpole (right) diagrams between the local and conserved currents.

a similar analysis of the remaining diagrams illustrates that the use of the local current
poses no particular difficulties with our chosen discretization. We now turn to a numerical
demonstration that the discrepancy in δRKπ between this current and the conserved vector
current at fixed lattice spacing has a value consistent with our expectations for an O(a2)
effect.

A.2 Numerical check

We perform a numerical test on a smaller 243 × 64 lattice using Shamir-Domain-Wall
fermions [70], with aM5 = 1.8 and Ls/a = 16. We limit the statistics to 10 QCD configura-
tions, with interpolating operator inserted on every other timeslice (32 in total). The pion
mass for this ensemble is mπ ≈ 339.789MeV.

The difference between the formulation of local and conserved electromagnetic current
is the presence of a tadpole diagram in the latter, which arises from the second derivative
of the Dirac operator with respect to the electric charge. We may extract the contributions
to the QED mass corrections from correlator ratios via

δmx
P = − Rx

PP(t+ 1)−Rx
PP(t)

fPP(t+ 1, T )− fPP(t, T ) , (A.3)

where x = {self, q1 ; self, q2 ; exch} while the ratios Rx
PP(t) and the function fPP(t, T ) are

defined in eqs. (4.22) and (4.24), respectively. The result for pions is shown in figure 11. For
the exchange diagram where the electromagnetic current is inserted on both propagators,
we notice that the use of the renormalized local current or the conserved current give
very similar results. However, in the case where there are two current insertions on the
same quark propagator, the presence of the tadpole contributes additionally to the mass
correction, as expected. This discrepancy will manifest in the results obtained from the
combined fits performed on the tree-level and factorizable correlators.

Since, for this numerical check, we are working on a gauge ensemble away from the
physical point we simply define the iso-QCD point to be equal to the simulation one,
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local conserved
(δm̂2

π+)e.m. 0.005476 (38) 0.009160 (30)
(δM̂2

uu)e.m. 0.000434 (39) 0.005782 (29)
(δm̂2

K+)e.m. 0.008148 (47) 0.012260 (54)
(δm̂2

K0)e.m. 0.0005142 (98) 0.002250 (13)
(δAπ+/Aπ)f 5.388 (49)× 10−2 1.1743 (64)× 10−1

(δAK+/AK)f 2.218 (48)× 10−2 5.265 (57)× 10−2

(δAπ+/Aπ)nf 5.374 (59)× 10−2 5.287 (43)× 10−2

(δAK+/AK)nf 4.493 (41)× 10−2 4.494 (48)× 10−2

Table 2. Comparison of photon corrections to meson masses and to the decay amplitude computed
using local and conserved current.

i.e. σ(0) = σ, such that m(0)
P = mP . Furthermore, the (fictitious) physical point σφ is

defined imposing the following conditions(
mφ
π+
)2 = m2

π + (mPDG
π+ )2 − (mPDG

π0 )2
, (A.4)(

mφ
K+
)2 = m2

K + 1
2
[(
mPDG
K+

)2 − (mPDG
K0

)2]
, (A.5)(

mφ
K0
)2 = m2

K −
1
2
[(
mPDG
K+

)2 − (mPDG
K0

)2]
, (A.6)

i.e. we keep the pion and kaon mass splittings at their experimentally measured values (taken
from PDG [1]). These conditions allow us to obtain the quark mass shifts (m̂φ− m̂) needed
to compute IB corrections. The physical value of αem is tuned instead to its Thomson limit,
as done in section 2.

In table 2 we report the photon corrections to the meson masses, as well as the
factorizable and non-factorizable contributions to the decay amplitude, obtained using
either the conserved electromagnetic current or the renormalized local vector current. We
see that all diagrams except the non-factorizable correction give as expected significantly
different results using the two different approaches. However, when combining these
corrections with those obtained from the insertion of the scalar density,

∑
x(m̂φ

q − m̂q)Ŝq(x)
(see eq. (4.5)), the estimates for a physical observable obtained with the two approaches
become comparable. In fact, this is the case for δRlatt

Kπ ,(
δRlatt

Kπ

)
loc = −7.04 (20)× 10−3 ,

(
δRlatt

Kπ

)
cons = −6.91 (20)× 10−3 . (A.7)

We can see that the two results are compatible with each other, the difference (δRlatt
Kπ)loc −

(δRlatt
Kπ)cons being consistent with zero within errors. The slightly larger value (∼ 2%) of

(δRlatt
Kπ)loc can be associated to O(a2) cut-off effects, which as explained in the previous

subsection are expected to contribute.

B zMöbius to Möbius correction

The zMöbius DWF action [41] is an approximation of the Möbius DWF action [38] and is
used in this work due to faster numerical convergence. The real parameters of the Möbius
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DWF action are matched to complex ones in the zMöbius DWF action, using the Remez
algorithm, leading to a reduced Ls dimension. On the ensemble used in this work, an
Ls/a = 24 is used for Möbius and Ls/a = 10 for zMöbius.

A further drastic improvement in the iterations needed for a light-quark inversion
is achieved via deflation: we compute the lowest Nvec = 2000 eigenvectors of the Dirac
operator to obtain a starting guess, reducing computational cost of light-quark inversions
substantially.

For the light-quark inversions using the Möbius action, for which we do not have
eigenvectors available on disk, we employ the Möbius accelerated DWF (MADWF) algo-
rithm [71]. This algorithm constructs a guess for the final solve by transforming the 5D
Domain-Wall Dirac operator D5D

DW via Pauli-Villars solves into a 4D approximation of the
overlap operator D4D

ov . The solution of the D4D
ov inversion is then used to reconstruct an

approximated solution for D5D
DW. Using this solution as a guess for the final solve on D5D

DW
leads to an overall reduction in computational cost. One key insight used in this work
is that the Domain-Wall Dirac operator D5D

DW does not have to be the same in the first
and last step of this algorithm. For our light-quark solves with the Möbius action, we
therefore produced the guess of the MADWF algorithm using a zMöbius Dirac operator,
allowing us to benefit from deflation. We found that the zMöbius MADWF guess was able
to significantly speed up the final Möbius solve. Compared to an undeflated light-quark
Möbius solve, the deflated zMöbius solve has an iteration count reduced by a factor 20 and
the MADWF Möbius solve with a deflated zMöbius MADWF guess is faster by a factor 10.

To correct for the bias introduced by the zMöbius approximation, we perform an
all-mode averaging (AMA) [72] correction step. Within AMA, for each observable O we
compute the estimator 〈Õ〉M using the Möbius action from two source times (tsrc = 0, T/2).
On the same source times, we compute the cheaper estimator 〈Õ〉zM using the zMöbius
action. Finally, we compute another zMöbius estimator 〈O〉zM from all 96 source times
available on the ensemble used in this work. The final bias-corrected estimator is then
given by

〈O〉 = 〈O〉zM + 〈Õ〉M − 〈Õ〉zM . (B.1)

A comparison of the magnitude of bias correction 〈Õ〉M − 〈Õ〉zM to the statistical error
of the estimator 〈O〉zM is shown in figure 12. We find that the correction is negligible on
most observables, with the exception of the non-factorisable correlation functions and the
pion two-point correlation function.

C Free domain wall fermion propagators

In this appendix we discuss the free domain wall fermion propagators, which have been
used for the implementation of the lepton in the non-factorizable correlation functions.
Throughout this section all quantities are expressed in lattice units.
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Figure 12. Comparison of the magnitude of the zMöbius-to-Möbius bias correction (blue circles)
to the statistical error of the zMöbius estimators (orange squares) for the π and K meson. All plots
show the correlations functions, in lattice units, computed using point sources and wall sinks. In
the pion two-point correlation function (top left) the correction is larger than the noise, while for
the kaon two-point function (top right) the correction is smaller than our statistical precision. In
the non-factorisable correlation functions (bottom plots) signal and correction are of compatible
magnitude.

In this work we use the following convention for the five-dimensional Shamir-Domain-
Wall-Fermion-Dirac operator [42, 43]

Ds,t(x, y) = −δs,t
1
2
∑
µ

[
(1− γµ)Uµδy,x+µ + (1 + γµ)U †µδy,x−µ

]
− δs,t(M5 − 1− 4)δx,y

− δt,s+1P−δx,y − δt,s−1P+δx,y +mδx,yδs,Lsδt,1P− +mδx,yδs,1δt,LsP+ (C.1)

where s, t ∈ {1, Ls} label the slices in the fifth dimension and M5 is the Domain Wall
height. The Domain Wall Fermion action is given by

S[Ψ,Ψ, U ] = −
∑
x,y

Ls∑
s,t=1

Ψs(x)Ds,t(x, y) Ψt(y) . (C.2)

The physical quark fields are given by

q(x) = P−Ψ1(x) + P+ΨLs(x) and q(x) = Ψ1(x)P+ + ΨLs(x)P− , (C.3)

with P± = (1± γ5)/2.
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C.1 Feynman rules for free propagator

A derivation of the free Domain-Wall-Fermion propagator in momentum space can be found
in ref. [48]. However, the conventions used for the five dimensional Dirac operator in ref. [48]
differ from the ones given in eq. (C.1) and thus, in the following, we give results for the
convention used in our work. These can be obtained by following the same steps as the
derivation in ref. [48].

The free momentum-space action is given by

D̃st(p) = i
∑
µ

γµ sin pµδst +
(
W (p)δs,t − δs−1,t +mδs,1δt,Ls

)
P+

+
(
W (p)δs,t − δs+1,t +mδLs,1δt,1

)
P− , (C.4)

with
W (p) = 1−M5 + 2

∑
µ

sin2 pµ
2 . (C.5)

The inverse of the operator in eq. (C.4) (i.e. the propagator) can be written as

Ss,t(p) = −
(
i
∑
µ γµ sin pµδsu + (W+

m)su
)
GRu,t P+ −

(
i
∑
µ γµ sin pµδsu + (W−m)su

)
GLu,t P− , (C.6)

where we use the notation

(W+
m)st = −W (p)δst + δs+1,t −mδs,Lsδt,1 , (C.7)

(W−m)st = −W (p)δst + δs−1,t −mδs,1δt,Ls , (C.8)

and define

GRs,t =
(∑

µ

sin2 pµ +W−mW
+
m

)−1

s,t

, GLs,t =
(∑

µ

sin2 pµ +W+
mW

−
m

)−1

s,t

. (C.9)

Following the steps in ref. [48] for the conventions used in this work, the inverses in eq. (C.9)
can be calculated and are given by

GRs,t = G(s, t) +A++eα(s+t) +A+−eα(s−t) +A−+eα(−s+t) +A−−eα(−s−t) , (C.10)

GLs,t = G(s, t) +B++eα(s+t) +B+−eα(s−t) +B−+eα(−s+t) +B−−eα(−s−t) , (C.11)

where
G(s, t) = A

(
eα(Ls−|s−t|) + e−α(Ls−|s−t|)

)
, (C.12)

with
A = 1

2|W | sinhα ·
1

2 sinh (αLs)
, (C.13)

and α can be defined via

coshα =
1 +W 2 +

∑
µ sin2 pµ

2|W | . (C.14)
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The coefficients A±± and B±± are determined such that the boundary conditions (s = 1, Ls)
in Ds,tSt,u = δs,u are fulfilled

A++ = A

F

(
e−2αLs − 1

)
e−α

(
e−α − |W |

)
(1−m2) ,

A−− = A

F

(
1− e2αLs

)
eα (eα − |W |) (1−m2) ,

B++ = A

F

(
e−2αLs − 1

) (
1− e−α|W |

)
(1−m2) ,

B−− = A

F

(
1− e2αLs

)
(1− eα|W |) (1−m2) ,

A+− = A−+ = B+− = B−+ = A

F
2|W | sinh(α)

(
1 + 2m cosh(αLs) +m2

)
,

(C.15)

with

F = eαLs
[
1− |W |eα +m2(|W |e−α − 1)

]
+ e−αLs

[
|W |e−α − 1 +m2(1− |W |eα)

]
− 4|W |m sinh(α) . (C.16)

NB: the five dimensional free propagator in eq. (C.6) can be projected to four dimensions by

S4D(p) = P−S1,1(p)P+ + P+SLs,Ls(p)P− + P−S1,Ls(p)P− + P+SLs,1(p)P+ . (C.17)

It can be shown that in the infinite Ls limit, the four dimensional propagator is given by

S4D −→
−i
∑
µ γµ sin pµ +m(1−W e−α)

−(1− |W |eα)−m2(|W |e−α − 1) for Ls →∞ (C.18)

in agreement with the expression given in ref. [73].

C.2 Pole mass of the free propagator

For the calculation of the QED correction from the factorisable diagram, we want to fix
the free lepton propagator to the physical muon mass as its pole mass. In the following
we describe how to determine the correct input-mass parameter m for the free propagator
to reproduce a desired pole mass. The 4D propagator can be written with a common
denominator A/F (see eqs. (C.13) and (C.16))

(
A

F

)−1
= 2|W | sinh(α)2 sinh(αLs)

{
eαLs

[
1− |W |eα +m2(|W |e−α − 1)

]
− 4|W |m sinh(α) + e−αLs

[
|W |e−α − 1 +m2(1− |W |eα)

] }
.

(C.19)

We now have to find mpole where (A/F )−1|p2=−m2
pole

= 0. (A/F )−1 has some trivial zeros,
where sinh(α) = 0, which we are not interested in. We are interested in the case F = 0, i.e.

F
∣∣
p2=−m2

pole
≡ Fpole = 0 . (C.20)
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In practice, we want to choose a desired pole mass m2
pole (e.g. the muon mass) and determine

the input mass m that corresponds to this pole mass, i.e. we have to solve with respect
to m:

Fpole = eαpoleLs
[
1− |Wpole|eαpole +m2(|Wpole|e−αpole − 1

)]
− 4|Wpole|m sinh(αpole)

+ e−αpoleLs
[
|Wpole|e−αpole − 1 +m2(1− |Wpole|eαpole

)]
= 0 ,

(C.21)
with

Wpole = 1−M5 + 2
∑
µ

sin2
(
pµpole

2

)
, coshαpole =

1 +W 2
pole +

∑
µ sin2

(
pµpole

)
2|Wpole|

. (C.22)

This is a simple quadratic equation in m and the solutions are easily obtained from

m = −p2 ±

√(
p

2

)2
− q , (C.23)

with

p = −4|Wpole| sinh(αpole)
eαpoleLs(|Wpole|e−αpole − 1) + e−αpoleLs(1− |Wpole|eαpole)

, (C.24)

q = eαpoleLs(1− |Wpole|eαpole) + e−αpoleLs(|Wpolee−αpole − 1)
eαpoleLs(|Wpole|e−αpole − 1) + e−αpoleLs(1− |Wpole|eαpole)

. (C.25)

For large Ls one finds

m −→ ±
√
− 1− |Wpole|eαpole

|Wpole|e−αpole − 1 for Ls →∞ . (C.26)

In figure 13 we show the effective mass of a free propagator calculated using our implemen-
tation in Grid from Feynman rules (see appendix C.1) on a 243 × 64 lattice. The plot on
the left corresponds to a Domain Wall height of aM5 = 1.0, while the plot on the right
to aM5 = 1.2, both with length Ls/a = 8 in the fifth dimension. Red points show the
numerical results for the effective mass, the solid green line shows the target pole mass of
ampole = 0.05, while the dashed blue line is the required input mass determined according
to eqs. (C.23)–C.25. For large-enough times t the effective mass of the free propagator
plateaus at the desired target value of the pole mass ampole = 0.05. The deviation from the
plateau at small t is due to unphysical poles in the free Domain Wall Fermion propagator
(see, e.g., the discussion in ref. [74]).

C.3 Projectors on definite spinor structure

Euclidean free Dirac spinors satisfy the following on-shell Dirac equations

D(iω,p)u(p) = 0 , D(−iω,−p) v(p) = 0 , (C.27)
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Figure 13. The effective mass of a free propagator calculated from Feynman rules on a 243 × 64
lattice for aM5 = 1.0 (left) and aM5 = 1.2 (right).

where D(p) is the Dirac operator in momentum space and ω is the energy satisfying
the dispersion relation D(iω,p)D(−iω,−p) = 0. The spinors also respect the following
completeness relations

∑
r

ur(p)ūr(p) = D(−iω,−p) ,
∑
r

vr(p)v̄r(p) = −D(iω,p) , (C.28)

and orthogonality relations

v̄r(−p) Γ0 u
s(p) = 0 , ūr(p) Γ0 u

s(p) = 2E δrs , ūr(p)us(p) = 2M δrs ,

ūr(−p) Γ0 v
s(p) = 0 , v̄r(p) Γ0 v

s(p) = 2E δrs , v̄r(p) vs(p) = −2M δrs ,
(C.29)

where E andM are quantities that in the continuum limit reduce to lim
a→0
E =

√
m2 + |p|2

and lim
a→0
M = m, respectively.

As discussed in section 4.3, the external anti-lepton propagator projected on momentum
p`, when evaluated on the lattice with finite time T and anti-periodic boundary conditions
takes the following form (neglecting possible contact terms)

S`(0|t`,p`) =
{

e−ω`t` D(iω`,p`)
2Ω`

− e−ω`(T−t`) D(−iω`,p`)
2Ω`

}
× 1

1 + e−ω`T (C.30)

= −
∑
r

{
e−ω`t` vr(p)v̄r(p)

2Ω`
+ e−ω`(T−t`) ur(−p)ūr(−p)

2Ω`

}
× 1

1 + e−ω`T ,

where we observe that the backward signal has a different Dirac structure compared to the
forward one. Here Ω` is a quantity that in the continuum limit gives lim

a→0
Ω` =

√
m2
` + |p`|2 .

By using the orthogonality relations above and the fact that

D(−iω,p)−D(iω,p) = 2E Γ0 , (C.31)
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Figure 14. Comparison of the pion non-factorizable correlator Rnf
π` obtained without the use of

the projector Pv(p`) (a) and with the backward-propagating signal removed (b).

we can define two projectors

Pv(p) = {D(−iE,p)−D(iE,p)}−1 [−D(iE,p)]
= {ut(−p)ūt(−p) + vs(p)v̄s(p)}−1 [vr(p)v̄r(p)] ,

Pu(−p) = {D(−iE,p)−D(iE,p)}−1D(−iE,p)
= {ut(−p)ūt(−p) + vs(p)v̄s(p)}−1 [ur(−p)ūr(−p)] ,

(C.32)

such that for the lepton propagator we have

S`(0|t`,p`) · Pv(p`) = −
∑
r

{
e−ω`t` vr(p`)v̄r(p`)2Ω`

}
× 1

1 + e−ω`T ,

S`(0|t`,p`) · Pu(−p`) = −
∑
r

{
e−ω`(T−t`) ur(−p`)ūr(−p`)

2Ω`

}
× 1

1 + e−ω`T .
(C.33)

In order to construct the projectors Pv(p`) and Pu(−p`) we then compute on the lattice
the free domain-wall lepton propagator S`(t`,−p`|0), projected on definite momentum −p`,
having the following temporal behaviour

S`(t`,−p`|0) =
∑
r

{
e−ω`t` ur(−p)ūr(−p)

2Ω`
+ e−ω`(T−t`) vr(p)v̄r(p)

2Ω`

}
× 1

1 + e−ω`T . (C.34)

Since the definitions of the projectors in eq. (C.32) do not depend on the spinor normalization
2Ω`(1 + e−ω`T ), because it cancels out in the matrix multiplications, they can be easily
obtained from the free lattice lepton propagator just by extracting and combining the
coefficients of the forward and backward exponentials.

The effect of using the projector Pv(p`) on the non-factorizable correlator Rnf
P` defined

in eq. (4.36) is shown in figures 14 and 15 for the pion and kaon decay, respectively (computed
with zMöbius fermions). We note that the backward signal is drastically suppressed and
the dependence on the lepton source-sink separation t` is barely visible for t� T/2. The
use of these projectors makes then a crucial difference in the extraction of a clear signal
from the lattice data.
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Figure 15. Comparison of the kaon non-factorizable correlator Rnf
K` obtained without the use of

the projector Pv(p`) (a) and with the backward propagating signal removed (b).

(a) (b) (c) (d) (e) (f)

Figure 16. All Feynman diagrams corresponding to the tree-level correlation function C̃ΩΩ(t).
Points connecting two propagators are contractions of a diquark pair, and dashed magenta portions
of a propagator indicate contraction with a transposed quark field.

D Correlation functions for the Ω baryon

In this appendix we discuss the construction of the Ω− baryon correlation functions used
in this work, as well as their spectral representation. We begin by considering the Wick
contractions for the tree-level iso-QCD correlator given in eq. (4.38), of which there are 6
contributions. These are shown diagrammatically in figure 16, where the points connecting
two propagators are contractions of a diquark pair in eq. (4.39), and dashed magenta
portions of a propagator indicate contraction with a transposed quark field. The colour
structure of these contractions is not represented in these diagrams.

For the QED corrections to this correlator, we require two insertions of the quark-
photon interaction iZV

∑
x ss /As (see eq. (4.15)) which corresponds to a photon propagator

connecting the quark legs, as well as a quark-disconnected contribution that is omitted in
this work. Taking for example diagram (a) in figure 16, the corresponding QED corrections
are shown in figure 17 where (a), (b) and (c) are the exchange diagrams contributing
to δC̃exch

ΩΩ (t) and (d), (e) and (f) are the self energy diagrams contributing to δC̃self,s
ΩΩ (t)

in eq. (4.42). Similarly, quark-mass corrections are given by the insertion of the scalar
density

∑
x s̄s (see eq. (4.15)). Again taking diagram (a) in figure 16 as an example, the mass

corrections are given by the diagrams in figure 18, as well as a disconnected contribution
that is also omitted.

Once the Ω− correlators have been constructed, their spectral representation must be
evaluated. First note that the interpolator in eq. (4.39) contains a parity projector P+
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(a) (b) (c) (d) (e) (f)

Figure 17. All (connected) Feynman diagrams contributing to Re.m.
ΩΩ (t) originating from the

tree-level contribution shown in figure 16 (a). Similar diagrams exist for the other contributions.

(a) (b) (c)

Figure 18. All (connected) Feynman diagrams contributing to RS,sΩΩ(t) originating from the tree-
level contribution shown in figure 16 (a). Similar diagrams exist for the other contributions.

which causes sψµΩ to create states of positive parity, but also annihilate states of negative
parity. Therefore, the ground state spectral representation will have the form

CΩΩ(t) =a3

2
∑
i

∑
s

[
〈0|ψiΩ(0) |Ω, s〉 〈Ω, s| sψiΩ(0) |0〉

2mΩ
e−mΩt (D.1)

−〈
sΩ, s|ψiΩ(0) |0〉 〈0| sψiΩ(0) |sΩ, s〉

2sωΩ
e−sωΩ(T−t)

]
,

where the relative sign change between the forward and backward-propagating components
comes from assuming anti-periodic boundary conditions in time on the quarks, and therefore
also on the baryon fields. We have additionally distinguished the notation of the rest energy
of the negative parity state sωΩ from the positive parity one mΩ due to the fact that, at
the physical point, the negative parity Ω− baryon is not simply a single state in the QCD
Fock space, but is instead a resonance in the ΞK channel and therefore there is a whole
spectrum of finite volume multi-particle states contributing in the backward time direction.
However, this does not complicate our analysis since we are restricted to early times where
the backward propagating contributions are negligible.

The operator-state overlaps have the form

〈0|ψµΩ(0) |Ω, s〉 = ZΩu
µ
s , 〈Ω, s| sψµΩ(0) |0〉 = Z∗Ωsuµs , (D.2)

〈Ω̄, s|ψµΩ(0) |0〉 = sZΩγ5v
µ
s , 〈0| sψµΩ(0) |Ω̄, s〉 = sZ∗Ωsvµs γ5 , (D.3)

where uµs and vµs are the positive and negative energy solutions to the spin-3/2 Rarita-
Schwinger equation respectively (see e.g. [54] for a recent review), and the γ5 is present in
the negative parity matrix elements to obtain the correct transformation properties. Using
Euclidean conventions, the completeness relations for zero momentum spinors with mass m
are given by

∑
s

uissujs = 2mP+

(
δij − 1

3γ
iγj
)
,

∑
s

vissv
j
s = −2mP−

(
δij − 1

3γ
iγj
)
, (D.4)
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Figure 20. Ratios of Ω− baryon QED corrections (a) and quark mass corrections (b) to the
tree-level correlator, Re.m.

ΩΩ (t) and RS,sΩΩ(t) respectively, in red and the fit to the data in blue.

which result in the form of the correlator given in eq. (4.40). The spectral representation
of the QED and quark mass corrections to this tree-level correlator are simply found by
expanding the two parameters ZΩ and mΩ to first order in the respective isospin breaking
parameter.

Figure 19 shows the log effective mass of the tree-level correlator C̃ΩΩ(t) along with
the fit result of the iso-QCD mass. It should be noted that the fit was performed to the
correlator and not directly to the effective mass. The value obtained for the mass of the
Ω− baryon, m̂Ω = 0.967 (3) for the best fit shown in figure 19, is in agreement with that
obtained in ref. [39] using the same gauge ensemble. Figure 20 shows the ratio of the
QED and ms corrections of the Ω− correlator to the tree-level result, Re.m.

ΩΩ (t) and RS,sΩΩ(t)
respectively. Included is the fit to this ratio using the linear fit model given in eq. (4.43).
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E Determining best fits with a genetic algorithm

In this appendix, we discuss in detail the setup of the genetic algorithm (GA) used in
the data analysis described in section 5.1 to select best correlator fits. After summarising
the purpose of a GA, we describe the genetic operators used, and we present the GA
hyperparameters used to produce the factorisable analysis fit results in section 5.

GAs form a class of global optimizers which stochastically evolve a set of candidate
solutions toward ones which maximize/minimize a given objective function. The evolution
process is inspired by natural selection in biological systems by proposing new solutions
attempting to combine best features from a previous generation of solutions. Because of
this analogy, the set of candidate solutions is generally referred as the population, and the
state of the population at a given iteration of the algorithm is called a generation. The step
between one generation to the next is done via genetics-inspired operators called crossover
and mutation operators. The crossover operator aims at producing a better solution to the
optimisation problem by combining two members of the current generation. The mutation
operator make arbitrary random changes to members of the current generation, increasing
the space of solutions explored by the algorithm.

In the context of the factorisable analyses, a population member is a vector τ =
(τ (1), . . . , τ (ncorr)) where each component is a fit interval τ (j) = [t(j)min, t

(j)
max] for the j-th cor-

relator, and ncorr is the total number of correlators to fit. The objective function here
is the AIC weight introduced in section 5.1, which we aim at maximising. The space of
all possible fits is finite, although it contains a very large number of elements. However,
this finiteness guarantees that at least one solution to the optimisation problem exists. A
high-level description of the algorithm is as follows:

1. in each generation, begin with an initial population of {τ k} with P0 elements;

2. evolve {τ k} with genetic operators to produce noff new elements (called offspring);

3. compute the AIC for all population members through χ2 minimization as described
in section 5.1;

4. choose among {τ k} the best P0 fit ranges with the largest AIC weights and discard
all other elements;

5. repeat steps 2-4 until a termination condition is satisfied.

Let us now introduce the genetic operators. Consider two candidate fit intervals in
the initial population, τ k and τ k′ . The crossover operator, X, generates a new τ with
fit intervals from either of the parent members based on random numbers 0 ≤ pj ≤ 1 for
1 ≤ j ≤ ncorr That is,

τ k′′ ≡ X
(
τ k, τ k′

)
=
{
X
(
τ

(1)
k , τ

(1)
k′
)
, . . . , X

(
τ

(ncorr)
k , τ

(ncorr)
k′

)}
, (E.1)

where

X
(
τ

(j)
k , τ

(j)
k′
)

=

τ
(j)
k if pj < 0.5,
τ

(j)
k′ otherwise.

(E.2)
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This is repeated until one obtains a population size of P > P0. The mutation operator, M ,
then mutates the population at a given rate m. That is, for some randomly drawn value of
p (0 ≤ p ≤ 1), one has

M
(
τ k
)

=

τP+1, if p < m

τ k otherwise,
(E.3)

with
τP+1 ≡

{
τ

(1)
P+1, . . . ,M

(
τ

(j)
P+1

)
, . . . , τ

(ncorr)
P+1

}
(E.4)

where the index j (1 ≤ j ≤ ncorr), is also randomly drawn. The mutation M
(
τ

(j)
P+1

)
is a fit

interval where either tmin or tmax or both have been modified randomly.
With the operators defined, we can discuss the GA parameters used for this work. To

begin, the free parameters in a GA are: the size of the initial population, P0; the crossover
rate, which is parametrised in this work by the population size after crossover P ; the
mutation rate m; the weight function to optimize w; the maximum number of generations
Gmax and the termination condition. We studied three GA setups to check the validity of
our fit conclusions. These are summarised in table 3. First, let

w̄N = 1
N

N∑
i=1

wi (E.5)

be the average of the top N weights in each generation. In all three setups, we aim to
maximize the AIC in each GA run, which terminates when the average of the N = 5 top fit,
w̄5, does not improve over 1000 successive generations. If this condition cannot be satisfied,
we impose a cut-off when a GA run exceeds Gmax generations. In practice, however, none
of the runs hit this cut-off limit. To accelerate the GA in its exploration of the τ -space, we
cache all fit results during the process.

Let the label ‘GA X-Y ’ refer to a GA setup with a population size P0 = X which
has been run multiple times until obtaining a total of Y candidates. Across the different
runs are varied the initial condition of the algorithm and the random number sequence
used in the genetic operators. We consider 3 different setups GA 5-2000, GA 25-2000, and
GA 25-5000, summarised in table 3. Additionally, figure 21 compare the AICs of the 2000
outcomes, sorted by their weights in descending order. It is worth commenting on two
features. First, the best AIC fits in both setups are very similar, demonstrating some level
of independence between the optimal solution found and the hyperparameters of the GA.
Beyond that, it is clear that the range of AIC weights is narrower in GA 25-2000 than GA
5-2000 for both pion and kaon. This suggests that a population size of P0 = 25 allows one
to discover more optimal solutions than P0 = 5 for a given target number of candidates.
This is expected as the algorithm will try more candidates at each generation. However,
this also suggests that the P0 = 5 set of runs is not saturating its exploration of the best
AIC fit space. To address this, the GA 25-5000 setup was designed to check that such
saturation was achieved for GA 25-2000. In table 4, we give the average number of distinct
fits explored by each setup for each analysis. As we can see, considerably increasing the
number of GA runs in the P0 = 25 case does not lead to a significant volume of new fits
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GA 5-2000 GA 25-2000 GA 25-5000
number of runs 400 80 200

P0 5 25 25
P 20 100 100
m 0.3 0.3 0.3

Gmax 25000 10000 10000
termination cond. n. 1 w̄5 unchanged for 1000 generations
termination cond. n. 2 GA exceeds Gmax

total GA candidates 2000 2000 5000

Table 3. Table of three different GA setups used in this work. All setups maximize the AIC weight.
w̄5 is defined in the text below eq. (E.5).
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Figure 21. Comparison of the 2000 GA candidates between two setups GA 5-2000 and GA 25-2000,
sorted in descending order of AIC weights, for π (left) and K (right) meson correlator analysis.

tried, meaning that the additional runs were to a large extent redundant in terms of optimal
solutions found.

Ultimately, as it is generally the case with GAs in this type of context, it is not possible
to demonstrate with absolute certainty that the GA found the best fits without knowing the
exact solution to the problem. However, we remind the reader that the main aim here is to
establish a representative spread in our final result for δRKπ in order to assign a systematic
error related to the selection of fit ranges. To check the stability of our systematic error
under variations of the GA setup, we take the top 5 fits of both GA 25-2000 and GA 25-5000
setups and generate an AIC-weighted histogram of δRlatt

Kπ for each setup. These are shown
in figure 23, along with their median and the fit systematic errors as defined in section 5.3.
We see that they lead to very similar conclusions in terms of median and systematic spread,
and we consider that as a compelling evidence that the GA is converging on a set of fit
candidates which is representative enough to estimate the fit range selection systematic
uncertainty. Finally, the GA 25-5000 setup was used to produce the final result of this work.
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Figure 22. Comparison of the GA candidates between setups GA 25-5000 and GA 25-2000, sorted
in descending order of AIC weights, for the π (left) and K (right) meson correlator analysis.

Analysis GA 5-2000 GA 25-2000 GA 25-5000
π 4085.915 32854.5375 33767.365
K 4726.1425 34430.625 33975.085

Table 4. The average total number of fits tried per GA setup for each meson correlator analysis.

1

10

100

−0.0108 −0.0104 −0.01 −0.0096 −0.0092 −0.0088

×1072

w
to

t

δRlatt
Kπ

GA 25-5000
GA 25-2000

fit sys.

Figure 23. AIC-weighted histogram generated from top 5 fits of each analysis as described in
section 5.3. The median of each histogram and the fit systematics are superimposed on the histogram.
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