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1 Introduction

Two-dimensional integrable sigma models have become of fundamental importance in many
areas of physics, being a class of interacting field theories which can be, in principle, solved
exactly (see e.g. [1] for a recent review). In particular, much of the recent work in this
topic has been carried out for gauge and string theories. In fact, at the worldsheet level,
string theories are described by two-dimensional sigma models, for which integrability has
an important role for obtaining the exact spectrum of the theories. To give a specific
example, note that integrable models arise on the worldsheet description of some string
backgrounds which are relevant for the AdS/CFT duality [2, 3].

Classical integrable models are characterised by the existence of the so called Lax pair,
a couple of fields which linearise the equations of motion of the theory, while satisfying a
Poisson algebra which is in general ultralocal, that is, the Poisson brackets do not contain
derivatives of the Dirac delta.

However, field theories like the one described by the Wess-Zumino-Witten (WZW)
model are non-ultralocal [4], a condition which introduces discontinuous functions in the
Poisson algebra of the monodromy matrices, making it difficult to have a well-defined
algebra of conserved charges. In this case, the quantization of the theory is challenging
and it is actually still an open problem.

But in the classical regime, the one in which we are interested in this paper, it is enough
to verify that the Poisson algebra of currents could be described in terms of a couple of
matrices that fulfill a generalised Yang-Baxter equation. This structure, introduced by
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Maillet in [4, 5], ensures that the global charges of the theory are actually in involution
and conserved.

An important concept that seems to be related to integrability is that of duality,
which plays a key role in theoretical physics, relating apparently different theories. In
particular, integrability and Poisson-Lie T-duality have revealed to be strictly connected [6–
8], the latter being a generalisation of the string T-duality of models with toric-compactified
backgrounds. In fact, Poisson-Lie T-duality, introduced in [9–11], represents a genuine
generalisation since it is not related to toric compactifications and it does not require
isometries at all for the target background. Specifically, symmetry under Poisson-Lie T-
duality transformations is based on the concept of Poisson-Lie dual groups and Drinfel’d
doubles, which we shall briefly review in due course.

In this work we analyse the integrability of a parametric family of Poisson-Lie dual
models which was introduced in [12] by means of current algebra deformation techniques [13–
16]. The resulting current algebra is a two-parameter deformation of the original algebra of
the model, the semi-direct sum (su(2)⊕̇R3)(R), into a fully non-Abelian algebra, following
the procedure adopted by Rajeev and collaborators in [17–19]. By choosing a purely imagi-
nary deformation parameter, one can show that the new current algebra is the Kac-Moody
algebra of the Lorentz group, hereafter identified with its universal covering, SL(2,C). This
is particularly interesting from the point of view of duality, because the Lorentz group is
the Drinfel’d classical double of the group SU(2), the dual group being SB(2,C), the Borel
group of 2 × 2 complex upper triangular matrices with unit determinant and real diago-
nal. The two subgroups SU(2) and SB(2,C) are Poisson-Lie dual groups and the current
algebra takes the form of a bialgebra, su(2) ./ sb(2,C).1

The Hamiltonian of the model is naturally deformed accordingly. The original tar-
get phase space, T ∗SU(2), is thus replaced by the group manifold of the Lorentz group,
SL(2,C), with a two-parameter family of Hamiltonian models. Since the role of the two
subgroups is symmetric, both can play the role of target configuration space, obtaining in
this way the Poisson-Lie T-duality map as an O(3, 3) rotation in the target phase space,
which results in performing an exchange of momenta with configuration space fields. More-
over, a new family of models is obtained with configuration space the group SB(2,C), which
is dual to the previous one by construction.

Let us remark that this construction is based on the approach described in [17].
However, the dual pairs could also be recovered from the family of models considered
in [6, 20, 21], based on an extension of [22], which generate the well-known integrable
λ-deformations, as well as generalisations. λ-models were introduced as integrable defor-
mations of the WZW model, and are related to η-models, which are instead integrable
deformations of the Principal Chiral Model, via Poisson-Lie T-duality and analytic contin-
uation [23–25].

The paper is organized as follows. In section 2, we review the alternative canonical
formulation of the WZW model on SU(2) with SL(2,C) as target phase space, as intro-

1The symbol ‘ ./′ denotes a sum of vector spaces which entails the adjoint action of each addendum on
the other (it is neither direct, nor semidirect).
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duced in [12] and in particular we describe the two-parameter families of Poisson-Lie dual
models. We also briefly review the Drinfel’d double structure of the SL(2,C) Lie group in
terms of its decomposition in terms of SU(2) and SB(2,C).

Section 3 contains the original results of the work: we prove the classical integrability
of the parametric family of dual models by generalising the results of [26].

Finally, conclusions are reported in section 4.

2 Alternative canonical formulation of the SU(2) WZW model

Let G be a connected Lie group (not necessarily semisimple), whose Lie algebra is denoted
by g and let us also consider (Σ, h) to be a two-dimensional orientable (pseudo) Riemannian
manifold.

Let {ei} be a basis in the Lie algebra g, with Xi denoting the corresponding left-
invariant vector fields. Any invariant metric 〈·, ·〉 on g induces a bi-invariant metric on G
defined by 〈Xi, Xj〉 = 〈ei, ej〉 (we denote the metrics with the same symbol). The left-
invariant dual one-forms θi are defined in the usual way: θiXj = δij . The Maurer-Cartan
left-invariant one-form on G, given by Θ = θiei ∈ Ω1(G) ⊗ g, shall be needed in order to
define the sigma model on the group manifold.

The field content of the theory is a group-valued field g : Σ → G, which is the em-
bedding map of the source space Σ into the target group G. Thus, the Maurer-Cartan
one-form is pulled-back to the source space Σ via g, obtaining g∗Θ ∈ Ω1(Σ)⊗ g. If G can
be embedded in GL(n), the latter can be written explicitly as g∗Θ = g−1dg.

The action of the WZW model is thus given by

S = 1
4λ2

∫
Σ
〈g−1dg ∧

′
?g−1dg〉+ κ SWZ , (2.1)

where ? is the Hodge star operator, involving the metric of the source space. Hence, the
first term contains the dynamics while the second one is the so-called Wess-Zumino (WZ)
term

SWZ = − 1
24π

∫
B
〈g̃−1dg̃ ∧

′
d(g̃−1dg̃)〉, (2.2)

which is instead topological. Here B indicates a 3-dimensional manifold whose boundary
is Σ, and g̃ is the extension of the field g to B, i.e. g̃|Σ = g.

Although the WZ term entails the three-manifold B and depends on the extension, it
will finally yield local equations of motion, as one can easily see by computing the variation
of the WZ term. The dependence on the extensions, as well as on the several possibilities
of manifolds with the same boundary, ∂B = Σ, is not a problem at the classical level since
the variation of the action remains the same up to an irrelevant constant term. As long
as suitable normalization conditions are met for the coupling κ, the dependence on the
extension g̃ will give no problems also at the quantum level [27].

By parametrising the two-dimensional source space with local coordinates (t, x) we
have

g−1dg = g−1∂tgdt+ g−1∂xgdx, (2.3)
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which gives

S = 1
4λ2

∫
Σ
d2x 〈g−1∂µg, g−1∂µg〉+ κ

24π

∫
B
d3y εαβγ〈g̃−1∂αg̃, g̃

−1∂β g̃ g̃
−1∂γ g̃〉, (2.4)

where the indices α, β, γ run over the three-dimensional B coordinates and we used Minkow-
ski signature (1,−1) so that ?dt = dx and ?dx = dt.

We shall refer to this as the Wess-Zumino-Witten (WZW) model, although the name
is often reserved to the WZ model supplemented by the condition that the parameter κ
and the coupling constant λ be related in such a way to guarantee conformal invariance of
the quantum model.

As in [17, 26], the manifold Σ is here the 2-dim Minkowski space, which is not the
standard choice in the literature. A clarification is needed in order to define the model
on R1,1. This issue is addressed for example in [28, 29]. One can take the 3-manifold
over which the WZ term is integrated as B = R1,1 × [0, 1] with coordinates (t, x, y) with
extended fields at y = 1, corresponding to the original fields on Σ. In particular, one can
assume the fields to vanish on one of the two Σ boundaries so that there is no contribution
to the action and, since the WZ term only cares about the topology, it is just as one is
shrinking the boundary at y = 0 to a point. The boundary of this new B has only one copy
of Minkowski. The quantization requirement for κ in this case follows from the several
different ways to extend the fields on y 6= 1.

2.1 WZW model on SU(2)

Let us now consider the Lie group SU(2) as target space, with g : R1,1 → SU(2) the
embedding map. The su(2) Lie algebra generators are ei = σi/2, with σi Pauli matrices,
satisfying [ei, ej ] = iεij

kek. The non-degenerate, invariant metric on the algebra is 〈ei, ej〉 =
1
2δij .

The WZW model in this case is invariant under the global SU(2)× SU(2) symmetry.
The first important observation for our approach is that the equations of motion can

be written as a system of two first order partial differential equations:

∂tA− ∂xJ = κλ2

4π [A, J ] (2.5)

∂tJ − ∂xA = − [A, J ] (2.6)

with A =
(
g−1∂tg

)i
ei = Aiei and J =

(
g−1∂xg

)i
ei = J iei the Lie algebra valued currents.

This has also to be supplemented with the boundary condition

lim
|x|→∞

g(x) = 1, (2.7)

which makes the solution for g unique. The elements of G that, at fixed time, satisfy
this boundary condition form an infinite dimensional Lie group G(R) of smooth maps
R 3 x → g(x) ∈ G constant at infinity, equipped with the standard pointwise product.
This is a kind of generalisation of the concept of loop group. The corresponding Lie algebra
g(R) is the space of maps R→ g that are sufficiently fast decreasing at infinity to be square
integrable, and we refer to this as a current algebra.
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2.1.1 Hamiltonian description

We can infer from previous analysis that, in the Lagrangian formulation of the model, the
currents (J i, Ai) play the role of tangent space coordinates of the target, TSU(2)(R) '
(SU(2)×R3)(R), with J i the generalised left coordinates of the configuration space and Ai

the generalised left coordinates of the fibers. This suggests to investigate the Hamiltonian
setting, which is indeed very suited for our purposes.

The Hamiltonian and (equal-time) Poisson brackets which describe the dynamics of
the model are

H1 = 1
4λ2

∫
R
dx〈I2 + J2〉, (2.8)

{Ii(x), Ij(y)} = 2λ2
[
εij

kIk(x) + κλ2

4π εijkJ
k(x)

]
δ(x− y)

{Ii(x), J j(y)} = 2λ2
[
εki

jJk(x)δ(x− y)− δji ∂xδ(x− y)
]

{J i(x), J j(y)} = 0,

(2.9)

where we introduced the canonical momenta I as fiber coordinates of the phase space
P1 = T ∗SU(2)(R). T ∗SU(2) is a Lie group, the semidirect product SU(2) n R3, where
R3 is naturally identified with the dual Lie algebra, su∗(2), spanned by the currents Ii.
Therefore, P1 = (SU(2)n su∗(2))(R). From the form of the Hamiltonian in (2.8) it is clear
that the condition on how quickly the currents decay to zero at infinity is necessary for the
finitness of energy.

As it can be seen from (2.9), the Poisson algebra is homomorphic to the Lie algebra of
P1, namely the affine algebra2 c1 = su(2)(R) ⊕̇ a(R) with a(R) ' su∗(2)(R) Abelian affine.

The phase space P1 may be then alternatively described by the pair (J i, Ii) with J i

the configuration space coordinates and Ii the fiber coordinates. In terms of the latter, the
Hamilton equations of motion read

∂tI − ∂xJ = κλ2

4π [I, J ] (2.10)

∂tJ − ∂xI = − [I, J ] . (2.11)

The model is known to be Poincaré and classically conformally invariant.
The Poisson brackets (2.9) contain terms proportional to derivatives of the Dirac delta,

∂xδ(x − y); therefore, as announced in the introduction, the model is non-ultralocal. The
integrability of these theories becomes then troublesome: it is known that non-ultralocality
introduces discontinuous functions in the Poisson algebra of monodromy matrices so that
the algebra of conserved charges is ill-defined. At the classical level, however, it is still
possible to prove integrability, when the Poisson algebra of currents may be described in
terms of r/s matrices satisfying a deformed Yang-Baxter equation. This is the so called
Maillet r/s structure [4, 5], which gives rise to conserved charges in involution. Scope of
the paper is to show that such a structure exists for the two-parameter family of WZW
models we are going to describe.

2The symbol ⊕̇ stands for the semi-direct sum.

– 5 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
7

2.2 Alternative formulation with deformed phase space and current algebra

The crucial observation on which this work relies is that it is possible to deform the current
algebra (2.9) to a one-parameter family of fully non-Abelian algebras so that the result-
ing brackets, together with a one-parameter family of deformed Hamiltonians, lead to an
equivalent description of the dynamics, albeit with a different target phase space, which
can be identified with the group manifold of SL(2,C).3 As we shall see, this is a relevant
property of the model because SL(2,C) is the Drinfel’d double of SU(2) in a specific de-
composition. In particular, SL(2,C) can be factorized into SU(2) and SB(2,C), which is
nothing but the familiar Iwasawa decomposition, SL(2,C) 3 γ = k · a · n, with k ∈ SU(2),
a · n ∈ SB(2,C), the latter being the Borel subgroup of 2 × 2 complex upper triangular
matrices with unit determinant and real diagonal elements.

In [12] we showed how to perform the deformation of the algebra (2.9) and we in-
troduced new currents that render the bialgebra structure of sl(2,C) manifest. From the
observation that the role of the two subalgebras was not symmetric, we then performed a
further deformation, so to obtain a two-parameter family of WZW models, with a perfectly
symmetric role of the two subalgebras of currents.

2.2.1 A glimpse on the Drinfel’d double structure of SL(2,C)

In this section we will briefly review the Drinfel’d double structure of the SL(2,C) group.
Let us start by considering the well known fact that SL(2,C) can be factorized ac-

cording to SL(2,C) = SU(2) · SB(2,C), where SB(2,C) is the group of 2 × 2 complex
upper triangular matrices with unit determinant and real diagonal. This means that for
any γ ∈ SL(2,C) one can write the product γ = g · `, g ∈ SU(2), ` ∈ SB(2,C) (one can
also consider the “left” decomposition ` · g). It can be shown that the Lie algebras su(2)
and sb(2,C) are maximally isotropic subalgebras of sl(2,C) with respect to the Killing-
Cartan form of the latter, which means that (sl(2,C), su(2), sb(2,C)) is a so-called Manin
triple. For a Lie subalgebra to be maximally isotropic with respect to a non-degenerate
(ad)invariant bilinear form it simply requires that the latter be vanishing on any pair of
elements of the algebra, and the maximal property refers to the fact that the set cannot
be enlarged while still preserving this property.

In fact, let us consider the real form of the sl(2,C) algebra, represented in terms of
rotations and boosts:

[ei, ej ] = iεij
kek

[bi, bj ] = −iεijkek
[ei, bj ] = iεij

kbk.

(2.12)

By using the Cartan-Killing product on sl(2,C) given by 〈v, w〉 = 2Im [Tr(vw)] ∀v, w ∈
sl(2,C), it is easy to show that the linear combinations

ẽi = δij
(
bj + εkj3ek

)
(2.13)

3SL(2,C) as a real manifold is homeomorphic to T ∗SU(2), so that there is no topological obstruction
to the alternative picture we are investigating.
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are dual to the ei generators of the su(2) subalgebra, as 〈ẽi, ej〉 = δij . Moreover, the
subspace spanned by {ẽi}i=1,2,3 is maximally isotropic with respect to the same product,
being 〈ẽi, ẽj〉 = 0, just like it is for the su(2) subalgebra: 〈ei, ej〉 = 0.

The linear combinations in (2.13) close a subalgebra with Lie bracket

[ẽi, ẽj ] = if ijkẽ
k, (2.14)

where the structure constants are computed to be f ijk = εij`ε`3k. This is the Lie algebra of
SB(2,C), which is solvable.

All these properties make (sl(2,C), su(2), sb(2,C)) into a Manin triple. Moreover, the
Lie group SL(2,C) = SU(2) · SB(2,C) may be given the structure of a classical Drinfel’d
double (see e.g. [30] for details), if the two subgroups are endowed with a Poisson structure
which is compatible with the group multiplication. In this case, the two subgroups are said
to be Poisson-Lie dual [30].

The concept of Drinfel’d double is at the very foundation of the Poisson-Lie T-duality [9–
11], and we direct the reader to the existing literature to keep the article short.

We conclude this brief review by mentioning the fact that a positive-definite metric
can be defined on sl(2,C) by slightly modifying the other non-degenerate invariant scalar
product 2Re [Tr(vw)], as follows:

HIJ := ((eI , eJ)) =
(

δij −δipεjp3

−εip3δpj δij + εil3δ`kε
jk3

)
, (2.15)

where we introduced the doubled notation eI = (ei, ẽi). It is easily verified that ((eI , eJ)) =
2Re

[
Tr(e†IeJ)

]
. The restriction of this metric on the subalgebra sb(2,C), which will be

indicated by h, is given by
hij = δij + εil3δ`kε

jk3. (2.16)

2.2.2 Alternative formulation on SL(2,C)

On introducing a doubled notation for which SI ≡ (Ki, Si), let us consider the sl(2,C)(R)
Poisson algebra

{SI(x), SJ(y)} = (Fτ,α)IJ
KSKδ(x− y) + (Cτ,α)IJ ∂xδ(x− y)

together with the Hamiltonian

Hτ,α = λ2
∫
R
dxSI(x) (Hτ,α)IJ SJ(x).

By explicitly writing the algebra in terms of (Ki, Si), with Ki and Si respectively spanning
the sb(2,C)(R) and su(2)(R) subalgebras, the structure constants (Fτ,α)IJ

K and the central
charge (Cτ,α)IJ are specified as follows

{Si(x), Sj(y) } = iαεij
kSk(x)δ(x− y)− α2C δij∂xδ(x− y)

{Ki(x),Kj(y)} = iτf ijkK
k(x)δ(x− y) + τ2C hij∂xδ(x− y) (2.17)

{Si(x),Kj(y) } =
[
iαεki

jKk(x) + iτf jkiSk(x)
]
δ(x− y)− (C ′δji − iτ̄Cεi

j3)∂xδ(x− y)

– 7 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
7

with α, τ , purely imaginary parameters. Hence, it is possible to check [12] that the following
real linear combinations

Si(x) = iα

2λ2(1− τ̄2)(1− ρ2τ̄2)
(
Ii(x)− ρδikJk(x)

)
(2.18)

Ki(x) = 1
2λ2iα(1− τ̄2)(1− ρ2τ̄2)

[
Jk(x)

(
δik − iτ̄ρεi`3δ`k

)
+ Ik(x)

(
−ρτ̄2δik + iτ̄ εik3

)]
lead back to the original dynamics (2.10), (2.11) for the currents I and J , for any α and τ
if the central charges have the form

C = ρ

λ2 (1− ρ2τ̄2)2 , C ′ = − 1 + ρ2τ̄2

2λ2 (1− ρ2τ̄2)2 (2.19)

and

Hτ,α =
( 1

(iα)2
[
(1 + ρ2τ̄4)δij − τ̄2(1 + ρ2)εip3δpqεjq3

] [
iτ̄(1 + ρ2)εip3 + ρ(1 + τ̄2)δip

]
δpj

δip
[
−iτ̄(1 + ρ2)εpj3 + ρ(1 + τ̄2)δpj

]
(iα)2(1 + ρ2)δij

)
(2.20)

where
ρ = κλ2

4π , iτ̄ = iτ iα. (2.21)

The equations of motion for the fields Ki, Si have the following form

∂tSi = −
[
ρ(1− τ̄2)
1− ρ2τ̄2 δi

k + iτ̄
1− ρ2

1− ρ2τ̄2 εi
k3
]
∂xSk + 1− ρ2

1− ρ2τ̄2 δik∂xK
k (2.22)

∂tK
i = −

[
1− ρ2τ̄4

1− ρ2τ̄2 δ
i
k − 2iτ̄ ρ(1− τ̄2)

1− ρ2τ̄2 ε
ik3 − τ̄2(1− ρ2)

1− ρ2τ̄2 ε`i3ε`
k3
]
∂xSk

+
[
ρ(1− τ̄2)
1− ρ2τ̄2 δ

i
k − iτ̄

1− ρ2

1− ρ2τ̄2 εk
i3
]
∂xK

k + 2λ2(1− τ̄2)(1− ρ2τ̄2)εik`SkK`

−2iτ̄λ2(1− τ̄2)(1− ρ2τ̄2)εpikεp`3SkS`. (2.23)

This is a consistent deformation which leads back to the dynamics of the original model,
although the target phase space is now deformed into P2 = SL(2,C). Notice that the role
of the two subalgebras is made symmetric: the limit iτ → 0 reproduces the Kac-Moody
algebra (su(2)⊕̇a)(R), whereas the limit iα→ 0 yields (sb(2)⊕̇a)(R).

2.2.3 Two-parameter family of Poisson-Lie dual models

Because of the symmetric role played by the two current algebras described above, it was
shown in [12] that Poisson-Lie duality could be analysed in an appropriate mathematical
framework. Let us first review the Poisson-Lie symmetry of the models described so far.

Poisson-Lie symmetry is essentially a symmetry of the dynamics which is not a sym-
metry of the geometric tensors characterising the model. However, the failure from being
a symmetry in the standard sense is not arbitrary, but governed by the dual group. In the
Hamiltonian approach (see for example [14, 15, 32–34]) this may be summarized as follows.
Given the generators of the symmetries of the dynamics, closing the Lie algebra of G, say,

– 8 –
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Va ∈ X(M), the Lie derivative of the symplectic form ω w.r.t. Va is different from zero,
being

ιVaω = θ̃a; dθ̃a = −1
2f

a
bcθ̃

b ∧ θ̃c (2.24)

and fabc structure constants of the dual group G∗. Namely, θ̃a, the ‘Hamiltonian’ one-forms
associated with the generators of symmetries, are not closed but obey the Maurer-Cartan
equation of the dual group.

Let us see how this applies to the family of models that we have introduced in the
previous subsection. By considering (Ki, Si) as alternative coordinates for the phase space
P2, one can associate an Hamiltonian vector field to Ki as usual, as XKi := {·,Ki}, which
naturally implies [XKi , XKj ] = −X{Ki,Kj} = −iτf ijk XKk because of the second relation
in (2.17). Therefore, they span the Lie algebra sb(2). Moreover,

ω(XKj , XKk) = {Kj ,Kk}. (2.25)

Their dual one-forms αj , defined by αj(XKk) = δj
k , satisfy the Maurer-Cartan equation

dαi(XKj , XKk) = −αi([XKj , XKk ]) = −iτf jki. (2.26)

Let us consider now (2.24), with Va generators of SU(2). We compute

dιVaω(XKj , XKk) = XKj (ιVaω(XKk))−XKk(ιVaω(XKj ))− ιVaω([XKj , XKk ])

= −XKj (ιX
Kk
ω(Va)) +XKk(ιX

Kjω(Va)) + iτf jk` ω(Va, XK`) (2.27)

which yields, after some algebra

dιVaω(XKj , XKk) = −iτf jk` Va(K
`) (2.28)

namely, on comparing with (2.26), ιVaω is proportional to αa and eq. (2.24) is satisfied.
From the structure of the deformed algebra in (2.17), it is immediate to check that

the role of the two subalgebras is symmetric, so that the analysis of Poisson-Lie symmetry
performed above could be repeated for the sb(2,C) generators. Moreover, the limits iτ → 0
and iα → 0 reproduce the current algebra structures (su(2)⊕̇a)(R) and (sb(2,C)⊕̇a)(R)
respectively. For all other values of the parameters the algebra (2.17) is isomorphic to
sl(2,C)(R).

It is also possible to check that in the limit iτ → 0 one not only recovers the current
algebra structure of the original SU(2) WZW model, but also the dynamics is recovered.
However, in the limit iα→ 0 the Hamiltonian becomes singular, meaning that it is not pos-
sible to obtain a WZW model with target space SB(2,C) from this family. This problem is
of topological nature and one should not have expected a different answer, since, differently
from T ∗SU(2), the cotangent bundle T ∗SB(2,C) is not homeomorphic to SL(2,C). In [12]
we find a way to relate a suitably defined SB(2,C) model to the family described so far
and we refer to that for details.

Going back to the review, the key observation is that by virtue of the symmetry,
one can swap S and K by an endomorphism of the target phase space SL(2,C)(R), T :
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(S,K)|x 7→ (K,S)|x, which is actually an O(3, 3) rotation in the phase space. Explicitly
relabelling the new generators, one can perform the exchange by writing

K̃(x) = S(x), S̃(x) = K(x), (2.29)

and the resulting dynamics is given by the following family of dual Hamiltonians and dual
Poisson brackets

H̃τ,α = λ2
∫
R
dx
[
K̃i(Hτ,α)ijK̃j + S̃i(Hτ,α)ijS̃j + K̃i(Hτ,α)ijS̃

j + S̃i(Hτ,α)ijK̃j

]
,

(2.30)

{K̃i(x), K̃j(y)} = iαεij
kK̃k(x)δ(x− y)− α2Cδij∂xδ(x− y)

{S̃i(x), S̃j(y)} = iτf ijkS̃
k(x)δ(x− y) + τ2Chij∂xδ(x− y)

{K̃i(x), S̃j(y)} =
[
iαεki

jS̃k(x) + iτf jkiK̃k(x)
]
δ(x− y)− (C ′δji − iτ̄Cεi

j3)∂xδ(x− y).
(2.31)

The new two-parameter family of models has for target configuration space the group
manifold of SB(2,C), spanned by the fields K̃i, while the momenta of the target phase
space are now S̃i. Hence, this represents by construction a family of infinite dual models
on the Poisson-Lie dual group. We refer to these two as interpolating models, while the
original SU(2) WZW and the WZW model with target SB(2,C) are referred to as extremal
models.

Although the formulation for the interpolating models has not been obtained from
an action principle, nevertheless it is possible to exhibit an action from which it can be
derived [12]. Finally, classical conformal invariance can be proven to hold.

3 Integrability of the two-parameter family

In order to show the integrability of the models, it is convenient to work with a different
basis for the algebra sl(2,C)(R) where the generators are given by the complex linear
combinations

Si = iαδij
(
Lj +Rj

)
Ki = iτ

[(
−iδij + εj

i3
)
Lj +

(
iδij + εj

i3
)
Rj
]
,

(3.1)

with L and R spanning two commuting copies of the su(2)(R) algebra:

{Li(x), Lj(y)} = εijkL
k(x)δ(x− y) + γLδ

ij∂xδ(x− y)
{Ri(x), Rj(y)} = εijkR

k(x)δ(x− y)− γRδij∂xδ(x− y)
{Li(x), Rj(y)} = 0,

(3.2)

and γL, γR the following central charges

γL = 1
4λ2τ̄(1− ρτ̄)2 , γR = 1

4λ2τ̄(1 + ρτ̄)2 . (3.3)
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The latter are related to the previous ones by γL− γR = C and −τ̄(γL + γR) = C ′. In this
basis the equations of motion acquire a simpler form,

∂tL
i + 1 + τ̄2

2τ̄ ∂xL
i + (1− τ̄2)(1 + ρτ̄)

2τ̄(1− ρτ̄) ∂xR
i − 2λ2(1− τ̄2)(1− ρ2τ̄2)εijkLjRk = 0

∂tR
i − (1− τ̄2)(1− ρτ̄)

2τ̄(1 + ρτ̄) ∂xL
i − 1 + τ̄2

2τ̄ ∂xR
i + 2λ2(1− τ̄2)(1− ρ2τ̄2)εijkLjRk = 0.

(3.4)

The new basis allows to recognise that the family of models admits an associated Lax
connection L(ζ), which is conserved and flat, with ζ the spectral parameter. In fact, it is
possible to show that it admits an associated auxiliary linear system

dψ = Lψ, (3.5)

for some function ψ, with L = Udt+V dx the matrix valued connection one-form, such that
the equations of motion of the models (3.4) can be obtained from the flatness condition of
the Lax connection dL+ L ∧ L = 0,4 or, explicitly:

∂tV (t, x; ζ)− ∂xU(t, x; ζ) + [V (t, x; ζ), U(t, x; ζ)] = 0, (3.6)

for arbitrary ζ. It is possible to check that such a connection is given by:

V = a(ζ)L(t, x) + b(ζ)R(t, x)
U = c(ζ)L(t, x) + d(ζ)R(t, x),

(3.7)

with coefficients

a(ζ) = λ2(1− τ̄2)(1− ρτ̄)
[1− ρ

1− ζ (1− τ̄)− 1 + ρ

1 + ζ
(1 + τ̄)

]
b(ζ) = λ2(1− τ̄2)(1 + ρτ̄)

[1− ρ
1− ζ (1 + τ̄)− 1 + ρ

1 + ζ
(1− τ̄)

]
c(ζ) = λ2(1− τ̄2)(1− ρτ̄)

[1− ρ
1− ζ (1− τ̄) + 1 + ρ

1 + ζ
(1 + τ̄)

]
d(ζ) = λ2(1− τ̄2)(1 + ρτ̄)

[1− ρ
1− ζ (1 + τ̄) + 1 + ρ

1 + ζ
(1− τ̄)

]
.

(3.8)

Because of its dependence on the currents L and R, the Lax connection is valued in the
Lie algebra su(2) or in sl(2,C), depending on the coefficients to be real or complex, also
according to the spectral parameter domain.

Once a Lax connection is found, one can just follow the usual procedure to construct
the monodromy matrix, which is given by5

M(t; ζ) = P̂ exp
(
−
∫
R
dxV (t, x; ζ)

)
, (3.9)

where P̂ exp denotes a path ordered exponential (greater x to the left).
4This condition follows from the consistency of (3.5), by acting with the exterior derivative on both sides

of the equation.
5This is actually the infinite volume limit of the monodromy matrix, the latter being properly defined

asM(t, x, y; ζ) = P̂ exp
(
−
∫ y

x
dx′V (t, x′; ζ)

)
.
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Because of the flatness condition of the Lax connection, the infinite volume limit of
the monodromy matrix is conserved:

∂tM(t; ζ) =M(t; ζ) U(ζ)|x→−∞ −M(t; ζ) V (ζ)|x→+∞ = 0 (3.10)

thanks to the decaying boundary conditions of L and R spanning a current algebra, i.e.
lim|x|→∞ L(x) = lim|x|→∞R(x) = 0.

By definition, M, as a function of ζ, is an element of the loop group of SL(2,C) or
SU(2) depending on the domain of the spectral parameter. In fact, since lim|ζ|→∞ V = 0,
from the definition lim|ζ|→∞M = 1 and by noting that V †(t, x; ζ) = −V (t, x; ζ∗) one has
that M†(ζ)M(ζ) = 1. The latter implies that if ζ ∈ C then M(ζ) ∈ LSL(2,C) or if
ζ ∈ R it is M(ζ) ∈ LSU(2). LG denotes the loop group of the Lie group G, namely
LG =

{
γ : S1 → G | γ ∈ C0 (S1)}, equipped with the standard topology of continuous

maps.

3.1 Maillet r/s structure

Given that the Poisson algebra (3.2) is non-ultralocal, we shall prove the integrability by
showing that it is possible to express the Poisson brackets of the Lax connection in terms
of a couple of matrices, r and s in the notation of Maillet, which satisfy the appropriate
deformation of a Yang-Baxter equation, as in [26].

By using eqs. (3.7) and the Poisson algebra of the L, R currents, eqs. (3.2) one finds,
after some algebra,{

V i(x, ζ), V j(y, ξ)
}

= εijk
[
Γ(ζ, ξ)V k(x, ζ) + Γ(ξ, ζ)V k(y, ξ)

]
δ(x− y)

+ ∆(ζ, ξ)δij∂xδ(x− y),
(3.11)

with

Γ(ζ, ξ) = a(ξ)b(ξ) a(ζ)− b(ζ)
a(ζ)b(ξ)− a(ξ)b(ζ) , (3.12)

∆(ζ, ξ) = b(ζ)b(ξ)γR − a(ζ)a(ξ)γL. (3.13)

In order to use a matrix notation for the algebra, we pose

Γ̂(ζ, ξ) = Γ(ζ, ξ)E, ∆̂ = ∆(ζ, ξ)E (3.14)

with E = δijei ⊗ ej ∈ su(2) ⊗ su(2). We thus define r(ζ, ξ) and s(ζ, ξ) respectively as the
skew-symmetric and symmetric part of Γ̂,

r(ζ, ξ) = 1
2
(
Γ̂(ζ, ξ)− Γ̂(ξ, ζ)

)
s(ζ, ξ) = 1

2
(
Γ̂(ζ, ξ) + Γ̂(ξ, ζ)

)
,

(3.15)

and introduce the matrix notation V1 = V ⊗ 1 and V2 = 1⊗ V , with V = V iei. Then, the
Poisson algebra (3.11) is rewritten as

{V1(x, ζ), V2(y, ξ)} = [r(ζ, ξ), V1(x, ζ) + V2(y, ξ)] δ(x− y)
− [s(ζ, ξ), V1(x, ζ)− V2(y, ξ)] δ(x− y)
− 2s(ζ, ξ)∂xδ(x− y),

(3.16)
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where the r and s matrices explicitly read

r = 2λ2
(
1− τ̄2)
ζ − ξ

[
ζ2 (1− ρ2τ̄2)− 2ζρ

(
1− τ̄2)+ ρ2 − τ̄2

ζ2 − 1

+ξ2 (1− ρ2τ̄2)− 2ξρ
(
1− τ̄2)+ ρ2 − τ̄2

ξ2 − 1

]
E,

(3.17)

s = 2λ2
(
1− τ̄2)
ζ − ξ

[
ζ2 (1− ρ2τ̄2)− 2ζρ

(
1− τ̄2)+ ρ2 − τ̄2

ζ2 − 1

−ξ
2 (1− ρ2τ̄2)− 2ξρ

(
1− τ̄2)+ ρ2 − τ̄2

ξ2 − 1

]
E.

(3.18)

Note that the Poisson brackets in (3.16) are taken at different space points but also at
different values of the spectral parameter. Interestingly, the Jacobi identity for the brack-
ets (3.16), yields an equation for the r and s matrices6

[(r − s)12(ζ1, ζ2), (r + s)13(ζ1, ζ3)] + [(r + s)12(ζ1, ζ2), (r + s)23(ζ2, ζ3)]
+[(r + s)13(ζ1, ζ3), (r + s)23(ζ2, ζ3)] = 0

(3.19)

that is verified by construction, since the original current algebra is already known to satisfy
Jacobi identity. The latter becomes the standard Yang Baxter equation for the matrix r
when s is zero.

As it was already anticipated in section 2, the Poisson brackets between the spatial
components of the Lax connection contain central terms proportional to ∂xδ(x− y), being
therefore referred to as non-ultralocal. In general, this kind of models may exhibit a space-
time dependence for r and s matrices, the general form of the algebra thus being

{V1(x, ζ), V2(y, ξ)} =
(
∂xr(x, ζ, ξ) + [r(x, ζ, ξ), V1(x, ζ) + V2(x, ξ)]

− [s(x, ζ, ξ), V1(x, ζ)− V2(x, ξ)]
)
δ(x− y)−

(
s(x, ζ, ξ) + s(y, ζ, ξ)

)
∂xδ(x− y).

(3.20)

In principle there could be higher derivatives of the delta function; in our case, however,
the r and s matrices are non-dynamical.

Note that the algebra (3.16) is well defined for every value of the parameters (we recall
that τ̄ = iτα), including the limits iτ → 0 and iα→ 0, which are singular for the generators
L and R, as they cease to be independent functions of S and K.

Once the Poisson algebra of the Lax connection has been put in the form (3.16), with
the r and s matrices given by eqs. (3.17), (3.18), we can repeat the analysis performed
in [26], the sole formal difference being in the parameter τ of the ref. [26], which is here
replaced by τ̄ . Therefore, adapting the results of [26], one computes the algebra of mon-
odromy matrices, obtaining

{M1(x, y; ζ),M2 (x, y; ξ)} =
[
r(ζ, ξ),M1(x, y; ζ)M2 (x, y; ξ)

]
+M1(x, y; ζ)s(ζ, ξ)M2 (x, y; ξ)
−M2 (x, y; ξ) s(ζ, ξ)M1(x, y; ζ),

(3.21)

whereM1 =M⊗ 1,M2 = 1⊗M, withM =Mijei ⊗ ej .
6Given a, b ∈ g, r = a ⊗ b, we adhere to the standard notation r12 = a ⊗ b ⊗ 1, r23 = 1 ⊗ a ⊗ b,

r13 = a⊗ 1⊗ b, and analogously for s.
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It can be verified by direct calculation that the Jacobi identity for the latter results in
an equation for the r and s matrices, which coincides with (3.19). As already noticed, it
reduces to the classical Yang-Baxter equation for the matrix r when s is zero. Moreover,
observing that

Γ(ζ, ξ) = r(ζ, ξ) + s(ζ, ξ), −Γ(ξ, ζ) = r(ζ, ξ)− s(ζ, ξ) (3.22)

eq. (3.19) becomes

[Γ̂12(ζ1, ζ2), Γ̂23(ζ2, ζ3)] + [Γ̂13(ζ1, ζ3), Γ̂23(ζ2, ζ3)]− [Γ̂12(ζ2, ζ1), Γ̂13(ζ1, ζ3)] = 0. (3.23)

As a further check of consistency, it can be directly verified that r and s defined in (3.17),
(3.18) do satisfy (3.23).

By virtue of (3.10) the conserved quantities for any value of the parameters are repre-
sented by the infinite volume limit of the monodromy matrices. In order to compute their
Poisson brackets, one needs to calculate the equal points limit of the brackets (3.21). This
requires a careful regularization. The symmetric limit procedure, illustrated in [4] and used
in [26], applies here identically. In the infinite volume limit it was shown to give

{M1(ζ),M2(ξ)} = [r(ζ, ξ),M1M2]. (3.24)

Notice that the latter satisfies Jacobi identity only weakly, namely through the symmetric
limit procedure [26]. Hence, the conserved quantities TrM(ζ) are in involution, it being
Tr (A⊗B) = TrA · TrB, so that

{ TrM(ζ), TrM(ξ)} = Tr {M(ζ),M(ξ)} (3.25)

which is zero because of (3.24). Summarising, it holds

{TrM(ζ),TrM(ξ)} = 0 (3.26)

which, being zero, satisfies the Jacobi identity strongly.
It is worth noticing that in the limit iα → 0, iτ → 0, the matrix pair r, s takes the

known form for the original WZW model, and by considering ρ = 0 one recovers the
Principal Chiral Model.

Finally, we note that we have obtained a four-parameter family of non-ultralocal in-
tegrable models, if we count, besides the two deformation parameters α and τ , the two
coupling constants λ and ρ.

To conclude this section, one can add that, thanks to the duality prescription in sec-
tion 2.2.3, we also have a four-parameter family of Poisson-Lie dual integrable models
having SB(2,C) as target configuration space.

4 Conclusions and outlook

We considered an alternative canonical formulation of the WZW model based on a two-
parameter deformation of the current algebra introduced in [12] and starting from this
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we obtained a four-parameter (taking also coupling constants into account) family of non-
ultralocal integrable models. Being the current algebra of the alternative formulation
homomorphic to the Kac-Moody algebra sl(2,C)(R), it was possible to map the algebra to
the direct sum of two su(2) Kac-Moody algebras, by means of a complex linear change of
basis. In the new basis it was possible to show the integrability of the models in the so-
called Maillet formalism, which is the one suited for non-ultralocal field theories, relying on
the existence of a couple of matrices, so called r and s, satisfying a generalised Yang-Baxter
equation. Such matrices are generally dynamical, but not in this case, where they do not
depend on spacetime variables. As a byproduct, one naturally obtains a four-parameter
family of integrable Poisson-Lie dual models on the dual group SB(2,C).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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