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McDIPPER: A novel saturation-based 3+1D initial-state model for heavy ion collisions
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We present a new three-dimensional resolved model for the initial state of ultrarelativistic heavy-ion collisions,
based on the k⊥-factorized color glass condensate (CGC) hybrid approach. The MCDIPPER framework responds
to the need for a rapidity-resolved initial-state Monte Carlo event generator which can deposit the relevant
conserved charges (energy, charge, and baryon densities) both in the midrapidity and forward (backward) regions
of the collision. This event-by-event generator computes the gluon and (anti-) quark phase-space densities using
the IP-Sat model, from where the relevant conserved charges can be computed directly. In the present work
we have included the leading-order contributions to the light flavor parton densities. As a feature, the model
can be systematically improved in the future by adding next-to-leading-order calculations (in the CGC hybrid
framework) and extending to lower energies by including subeikonal corrections to the channels included. We
present relevant observables, such as the eccentricities and flow decorrelation, as tests of this new approach.
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I. INTRODUCTION

It is widely accepted that during heavy ion collisions
(HICs) a strongly interacting medium of quarks and gluons
is produced, the quark-gluon plasma (QGP) [1,2]. The QGP
medium expands into the vacuum, and after a violent initial
pre-equilibrium stage its subsequent space-time evolution can
be effectively described by relativistic viscous hydrodynam-
ics. During the expansion of this fluid, spatial anisotropies
of the initial state are converted into momentum-space final-
state particle multiplicity correlations. These correlations and
anisotropies inherited by the final state can be found along
both transverse and longitudinal directions with respect to the
collisional axis.

It is a known result of this area of study that particle
correlations in the transverse plane reveal strong azimuthal
angle modulation, quantified by the so-called flow harmonics,
vn [3]. However, recently the scrutiny of the longitudinal
structure of the vn and also higher correlations shows a
nontrivial rapidity dependence [4–7]. These interesting results
call for an improvement of the hydrodynamical models used,
which often focus on the midrapidity region and thus rely on
a boost-invariant prescription. The evolution of the medium
in a 3+1D fashion has been successfully applied by such
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hydrodynamical codes as MUSIC [8] and VHLLE [9]. Once the
reader has chosen the model of their preference, what is left
is to specify the initial condition for the 3+1D, where they
can chose from an array of models, including extended Monte
Carlo (MC)-Glauber modeling [10,11], deposition via string-
hadron transport [12,13], and color string dynamics [14],
among others [15–17].

In this work we present a new framework to compute
event-by-event (EbE) longitudinally resolved initial condi-
tions based on the general ideas of saturation physics. So
far initial-state models based on saturation physics, such as
IP-Glasma [18,19], EKRT [20,21], or MC-KLN [22], have
primarily been designed to describe the initial state around
midrapidity in 2+1D hydro simulations. Despite various at-
tempts to extend saturation-based models to 3+1D [23–27],
so far all of these calculations exploit the fact that in the
high-energy limit the cross section for gluon production in-
creases rapidly, quickly overtaking that of stopping of valence
quarks. However, even in the high-energy limit, the so-called
fragmentation region in the forward and backward rapidity
directions is populated by the stopping of near-collinear par-
tons containing a high portion of the energy and charge of
the colliding nuclei. Evidently, in the forward- and backward-
rapidity regions the net densities of the conserved electric
(Q) and baryon (B) charges are nonvanishing due to the
stopping of valence partons. Hence, to properly describe the
3+1D initial state in heavy-ion collisions, one needs to ac-
count not only for the (gluon-dominated) energy deposition at
midrapidity, but also one for the (valence-quark-dominated)
energy and charge deposition in the fragmentation region.
Evidently, a proper treatment of the fragmentation region also
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becomes important when trying to connect initial-state models
based on saturation physics, developed for high energies, with
initial-state models at lower energies based, e.g., on hadronic
transport approaches [13].

The central objective of this paper is to exploit first-
principles calculations of quark and gluon scattering pro-
cesses in high-energy QCD to develop an initial-state model
for the deposition of energy and the conserved (u, d, s)
charges in heavy-ion collisions. Specifically, we will use
leading-order cross-section calculations in the kT -factorized
dilute-dense limit of the color glass condensate effective the-
ory of high-energy QCD [28,29] to deduce the initial spectra
of quark [30–32] and gluon production [28,29,33–35] and
infer the densities of energy and conserved (u, d, s) charges
by taking appropriate moments of the spectra. By including
event-by-event nucleon position fluctuations as well as real-
istic parametrizations of the valence parton distributions [36]
and the dipole scattering amplitude (IPSat) [37,38], we de-
velop an efficient Monte Carlo generator, MCDIPPER, for
the initial energy- and charge-density profiles. Within this
first study, we further benchmark the model at the hand
of multiplicity measurements and provide additional results
for the longitudinal structure of initial charge-density pro-
files as well as the longitudinal decorrelation of initial-state
eccentricities.

This paper is organized as follows: In Sec. II we present
an extensive outline of the MCDIPPER overview, where in
Sec. II A we detail the master formulas of the framework,
namely, single gluon and quark production from the k⊥-
factorized CGC formalism, as well as the building blocks for
the framework. In Sec. II B we introduce two different sets
of input models, the Golec-Biernat–Wusthoff (GBW) and the
IP-Sat model, which will be used to benchmark the MCDIPPER

framework. In Sec. II C we briefly explain the Monte Carlo
sampling used to generate the event-by-event initial condi-
tions. Subsequently, Sec. II D contains a description of the
code, namely, an explanation of how the aforementioned parts
and models are used to produce rapidity-resolved EbE HIC
initial states. The final subsection in the section corresponds
to the fitting procedure to the free parameter of the framework,
the so-called K factor.

In Sec. III we give an overview of the generalities of the
framework, a study on the different dependencies on the en-
ergy and charge deposition. We explore the thickness, energy,
and space-time rapidity dependencies, for both saturation
models presented in Sec. II B. This is performed system-
independently, meaning that we analyze charge deposition
before the event generation. In Sec. IV we explore the EbE ob-
servables of the code, where we estimate multiplicity, finding
good agreement with data. We also present results for rapidity-
resolved transverse energy and charge deposition, as well as
the long-distance initial correlations, the spatial eccentricities.
We discuss also the rapidity correlations which arise with the x
dependence of the saturation models, where we present com-
putations for flow decorrelations. We end by summarizing our
findings and presenting the future possible research avenues
for this framework in Sec. V. Additionally, in Appendix A
we review the collinear limit of the single gluon production
formula, valid in the far-fragmentation regions.

II. MODEL DESCRIPTION

The central idea of our initial-state model is to calculate
the energy and charge deposition in high-energy heavy-
ion collisions within the dilute-dense approximation of the
CGC [28,29,37,38]. Based on this formalism, the single in-
clusive gluon (dNg/d2xd2pdy) and (net-) quark distributions
dNq̄−q/d2xd2pdy as a function of (momentum) rapidity y
transverse momentum p and transverse position x are com-
puted by evaluating the leading-order cross sections for the
transverse-momentum-dependent dipole gluon distributions
from the IP-Sat model [38–40] and collinear parton distribu-
tions (PDFs) from the LHAPDF library [36]. Since at leading
order in the high-energy limit the phase-space distributions
are proportional to δ(y − ηs) [41], where ηs is the space-
time rapidity, these distributions also provide the structure
of the initial state in space-time rapidity upon the straight-
forward identification of y = ηs. By taking moments of the
single inclusive gluon and (net-) quark distributions, we can
then directly compute the initial 3+1D profiles of energy (e)
and u, d, s charge distributions (nu/d/s). By including also
fluctuating nucleon positions according to the MC-Glauber
model [42,43], our publicly available implementation MCDIP-
PER [44] thereby provides event-by-event initial conditions for
all the conserved charges in the light flavor sector of QCD.

Since our model is based on high-energy QCD cross-
section calculations, it has the advantages that (a) the number
of free parameters in the model is extremely small and (b) it
can in principle be improved to higher-order accuracy as next-
to-leading-order cross-section calculations become available.
Since most of the input information can be extracted alterna-
tively, e.g., from deep inelastic scattering (DIS) experiments,
the current version of the model only has a single free pa-
rameter, namely, as we will discuss shortly, a so-called K
factor, entering the normalization of the gluon production
cross section.

A. Single inclusive gluon and quark production

Now that we have laid out the basic ideas underlying the
MCDIPPER, we proceed to provide the detailed expressions
for the single inclusive gluon production and valence quark
stopping cross sections from the literature along with the de-
scription of the calculation of the associated contributions to
the energy and charge densities. In order to provide a compact
overview, the leading-order diagrams included in MCDIPPER

are depicted in Fig. 1.
Based on the k⊥-factorized CGC formalism, the single in-

clusive spectrum of gluons dNg

d2xd2pdy produced in a high-energy
collision as a function of transverse momentum p, momentum
rapidity y, and transverse position x can be expressed as the
convolution of the unintegrated gluon distributions �(x, x, q)
of the projectile and target as [35,45]

dNg

d2xd2pdy
= g2 Nc

4π5
(
N2

c − 1
)

p2

∫
d2q

(2π )2

d2k
(2π )2

× �1(x1, x, q) �2(x2, x, k)

× (2π )2δ(2)(q + k − p), (1)
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FIG. 1. Diagrammatic representation for the leading-order processes included in the MCDIPPER framework. (Left) Single gluon production
of a gluon with transverse moment p and rapidity y from the interaction of two CGCs with gluon distributions �1(x1, q) and �2(x2, k). (Right)
Deposition of a single quark with transverse momentum p an rapidity y from the stopping of a collinear quark from the incoming projectile
with momentum fraction x and virtuality p2.

where x1/2 = p√
sNN

e±y denotes the light-cone momentum frac-
tion in the projectile and target, g is the strong-coupling
constant, and Nc = 3 denotes the number of colors. We note
that the above formula, which exhibits k⊥ factorization, can be
rigorously derived in the case of dilute-dense or dense-dilute
treatment of the projectile-target system. However, it has also
been demonstrated explicitly that Eq. (1) provides a very good
description of the energy deposition, even in the case of dense-
dense collisions [34,46], which justifies its use in the present
context.

Within the CGC framework of small-x physics, the unin-
tegrated gluon distribution function (uGDF) of the participant
nucleus i = (1, 2) can be expressed in terms of the correlation
function of lightlike Wilson lines [47–49]. Specifically,

�i(xi, x, q) = π
(
N2

c − 1
)

g2Nc
k2 Dadj(x, x, q), (2)

where the adjoint dipole Dadj(x, x, q) is defined in momentum
space as

Dadj(x, x, q) = 1

N2
c − 1

∫
s
tradj

[
U adj

x+s/2U
adj,†
x−s/2

]
eiq·s. (3)

Here U adj
x+s/2 and U adj,†

x−s/2 denote adjoint lightlike Wilson lines
at transverse positions x ± s/2, such that the transverse-
momentum scale q is the Fourier transform of the relative size
of the dipole s with fixed average position x. By substituting
the above definitions into Eq. (1), one obtains the following
expression for single gluon production explicitly in terms of
the (adjoint) dipole amplitude:

dNg

d2xd2pdy
= N2

c − 1

16π4αsNc

∫
d2q

(2π )2

d2k
(2π )2

q2k2

p2

× Dadj(x1, x, q) Dadj(x2, x, k)

× (2π )2δ(q + k − p). (4)

While at leading order the single inclusive production of
gluons is due to radiative processes, the leading-order contri-
bution to single inclusive quark production in the high-energy
limit originates from the stopping of collinear quarks inside
the projectile/target nuclei due to multiscattering off the con-
stituents of the other nucleus. By accounting for the stopping
of quarks and antiquarks from both nuclei, the single inclusive

distribution
dNq f

d2xd2pdy for an (anti-)quark of flavor f ( f̄ ) can be

expressed as [32,50]

dNq f

d2xd2pdy
= x1qA

f (x1, p2, x) Dfun(x2, x, p)

(2π )2

+ x2qA
f (x2, p2, x) Dfun(x1, x, p)

(2π )2
, (5)

where qA
f (x1/2, Q2, x) are the collinear quark distributions

inside the two nuclei (see below), and the kinematics of
x1,2 is the same as for single inclusive gluon production.
Intuitively, this expression can be understood as the deflec-
tion of a (collinear) quark inside the projectile due to the
transverse momentum transfer accumulated in multiple in-
teractions with gluons from the target nucleus. By including
all possibilities of multiple scattering, the quark receives
a transverse-position-dependent color rotation expressed in
terms of a lightlike (fundamental) Wilson line in the amplitude
and complex conjugate amplitude. It is then straightforward
to show that the probability of producing an in-medium quark
(noncollinear), as in Eq. (5), is just the product of the proba-
bilities of finding a collinear quark of flavor f in the incoming
projectile with the probability of a single quark to be deflected
by scattering off the target [51], as described by the fundamen-
tal dipole distribution

Dfun(x, x, q) = 1

Nc

∫
s
trfun[Ux+s/2U

†
x−s/2] eiq·s. (6)

By assuming local Gaussian correlations of color charges
inside the nucleus, the fundamental and adjoint dipole gluon
distribution in Eqs. (4) and (5) can be related to each other (in
coordinate space) as

Dadj(x, x, s) = [Dfun(x, x, s)]CA/CF , (7)

and we will employ this relation throughout this work.
With regard to the collinear quark/antiquark distributions,
we simply assume that these can be described in terms of
uncorrelated partons, which are distributed in transverse space
according to the local density of protons (p) and neutrons (n).
The corresponding distributions are then given by

uA(x, Q2, x) = up(x, Q2) Tp(x) + un(x, Q2) Tn(x),

dA(x, Q2, x) = dp(x, Q2) Tp(x) + dn(x, Q2) Tn(x), (8)

sA(x, Q2, x) = Tp(x) sp(x, Q2) + Tn(x) sn(x, Q2),

044916-3



GARCIA-MONTERO, ELFNER, AND SCHLICHTING PHYSICAL REVIEW C 109, 044916 (2024)

for u, d, s flavor quarks/antiquarks, where by Tp/n(x) =∑A
i=1 t (x − xi ) δi,p/n we denote the thickness function of pro-

tons and neutrons inside the nucleus,

t (x) = 1

2πBG
exp

[
− x2

2 BG

]
, (9)

where the nucleon size, BG = 0.156 fm2, is determined
through fits to the HERA data [38,40]. The thickness function
of an individual nucleon is then normalized as

∫
d2x t (x) = 1

such that
∫

d2x [Tp(x) + Tn(x)] = A for each nucleus. In this
work we use only a Gaussian profile for the individual nucle-
ons.

Since the parton distributions of the neutron are not well
constrained, we will assume isospin symmetry, which means
that the neutron PDFs are equivalent to the proton PDFs after
applying u ↔ d , i.e., up/n = dn/p, such that Eq. (8) simplifies
to

uA(x, Q2, x) = u(x, Q2) Tp(x) + d (x, Q2) Tn(x),

dA(x, Q2, x) = d (x, Q2) Tp(x) + u(x, Q2) Tn(x), (10)

sA(x, Q2, x) = (Tp(x) + Tn(x)) s(x, Q2),

where we dropped the subscript (p) in all distributions.
While at first sight the expressions in Eqs. (1) and (5)

appear to be rather distinct, it is worth noting that in the
forward limit, the single gluon production formula, yields a
result equivalent in form to Eq. (5). In this limit the gluon
distribution of the projectile is evaluated at large x, where the
projectile becomes dilute, and the uGDF can be expanded to
leading twist [47,52]. By integrating over the small intrinsic
transverse momentum of the projectile gluon (up to the trans-
verse momentum transfer from the target), the uGDF then
reduces to a collinear gluon PDF, yielding an expression simi-
lar to Eq. (5) (see Appendix). We finally note that, in the same
spirit, the renormalization scale Q2 of the quark distributions
in Eq. (5) is set equal to the transverse momentum transfer
from the target nucleus (Q2 = p2), as this choice ensures that
the transverse momentum of the quark remains smaller than
the transverse momentum transfer p from the target, justifying
the collinear factorization treatment.

Based on the single inclusive spectra of quarks and gluons
in Eqs. (1) and (5), it is then straightforward to compute
the local energy-density and charge distributions. Specifically,
the total energy density is determined as the first moment of
the single-particle distributions, namely,1

(eτ )0 =
∫

d2p |p|
⎡
⎣Kg

dNg

d2xd2pdy
+

∑
f , f̄

dNq f

d2xd2pdy

⎤
⎦

y=ηs

,

(11)

1We note that in our numerical implementation, we add an in-
frared regulator by virtue of the replacement 1/p2 → 1/(p2 + m2)
to circumvent numerical problems when computing the contribution
around an integrable singularity. However, since the integral is UV
dominated and infrared finite even in the absence of a regulator, this
regulator has no significant effect on the results

while the conserved charges, ni, with i = (u, d, s), are com-
puted using the zeroth moment of the distribution, namely,

(n f τ )0 =
∫

d2p
[

dNq f

d2xd2pdy
− dNq̄ f

d2xd2pdy

]
y=ηs

. (12)

We note that the above expressions for single inclusive
quark and gluon production provide the leading-order process
in the high-energy limit. In the future this treatment could
be systematically improved by including higher-order correc-
tions, such as, e.g., the contributions of quark–antiquark pair
production by gluon fusion [47,53]. Naturally, a systematic
order-by-order improvement of the model also applies to the
inclusive gluon production processes, which will include ra-
diative corrections at next-to-leading order [50,54,55].

B. Saturation models

Now that we have established the formalism to compute
the energy and conserved charge deposition, we continue to
discuss the relevant input from saturation physics. Within this
exploratory study, we will consider two different saturation
models, namely, the GBW model and the IP-Sat model, noting
that in both cases, the relevant parameters have been deter-
mined previously from the analysis of DIS data.

1. GBW model

We first consider a simple impact parameter de-
pendent generalization of the Golec-Biernat–Wusthoff
model [37,38,56], where the fundamental dipole gluon
distribution is given by

Dfun(x, q) = 4π

Q2
F (x, x)

exp

[
− k2

Q2
F (x, x)

]
. (13)

Clearly, the key advantage of this model lies in its simplic-
ity. Due to the particularly simple Gaussian form of the dipole
gluon distribution, it is possible to obtain analytic expressions
for the dipole gluon distribution both in transverse position
and momentum space. Similarly, the adjoint dipole distribu-
tion also exhibits the same Gaussian shape, with the difference
that the saturation scale is replaced by the adjoint saturation
scale Q2

F → Q2
A with Q2

A = (CA/CF ) Q2
F . Based on fits to DIS

data [38,40], the kinematic dependence of the saturation scale
is given phenomenologically by the relation

Q2
F (x, x) = Q2

p,0 x−λ (1 − x)δ (Tp(x) + Tn(x))σ0, (14)

where Q2
p,0 = 0.152 GeV2, λ = 0.215, and σ0 ≡ 2πBG de-

note the effective transverse area of the nucleon, such that
(Tp(x) + Tn(x))σ0 essentially counts the density of nucleons
per unit transverse area, and δ = 1 is introduced to regulate
the large x behavior.

2. IP-Sat model

We will also consider the IP-Sat model [37,38], which
provides a more realistic expression for the interaction of a
color dipole with a nucleus, as it includes the perturbative tail
of large transverse momentum transfers. In the IP-Sat model,
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the fundamental dipole is given by

Dfun(x, x, s) = exp

[
−π2s2

2 Nc
αS (μ2) xg(x, μ2) T (x)

]
, (15)

where μ2 = μ2
0 + C/s2, and g(x, μ2) is the parton distribution

function, which is initialized at a scale μ0 via the parametriza-
tion

xg
(
x, μ2

0

) = ag x−λg (1 − x)5.6. (16)

This initial condition is evolved along the kinematic range of
μ2 using LO DGLAP evolution. In this work we include the
results using the parameter set extracted in Ref. [40], which
fixes the mass of the charm quark mass to mc = 1.27 GeV,
called in this framework Set 1. In the code we also include the
necessary files to generate data based on a second parameter
set, for which the mass of the charm is fixed to mc = 1.4 GeV,
or Set 2.

Based on the above IP-SAT parametrization, the adjoint
dipole can be extracted in coordinate space according to
Eq. (7) and the corresponding momentum-space gluon distri-
butions required for the calculation of the energy and charge
deposition are then obtained by a numerical Fourier transform
with respect to the relative transverse position s.

C. Event-by-event sampling

Based on the above formalism, we can obtain the average
energy and charge deposition profiles for a given config-
uration of the nucleon positions. Evidently, it would be
possible to include further subnucleonic fluctuations, e.g., of
the spatial and momentum distribution of valence partons;
however, this is beyond the scope of the present work, and
we will restrict ourselves to event-by-event fluctuations of
the nucleon positions. Our procedure follows common prac-
tice, but for the sake of completeness, we will document it
below.

The starting point of the event generation is the sam-
pling of the positions of the individual nucleons in each
nucleus from a Wood-Saxon distribution, for which we in-
clude deformation effects for the nuclei which present such
properties [57].

Now that we know the positions of each nucleon, two
incoming nucleons are set to interact via rejection sampling
of the nucleon overlap probability distribution [58],

dP(b)

d2b
= 1 − exp(−σg TNN (b))∫

d2b[1 − exp(−σg TNN (b))]
, (17)

where σg represents the total effective partonic cross section at
a given collision energy, and TNN stands for the nucleon-
nucleon overlap, which can be computed

TNN (b) =
∫

d2s t

(
s + b

2

)
t

(
s − b

2

)
. (18)

Specifically, for the Gaussian nucleon thickness in Eq. (9),
the normalization factor of the overlap distribution has the

following analytical solution,

σ inel
eff (σ̃ ) =

∫
d2b[1 − exp(−σgTNN(b))]

= 4π2 BG

[
log

(
σg

4πBG

)
+ 


(
0,

σg

4πBG

)
+ γE

]
,

(19)

where 
(w, z) = ∫ ∞
z dt tw−1 e−t is the incomplete Gamma

function, and γE is the Euler-Mascheroni constant. By match-
ing σeff,inel(σg) = σinel(

√
sNN) to the inelastic nucleon-nucleon

cross section, for which we employ the parametrization in
Ref. [58],

σinel = 25.2 + 0.05 log(
√

sNN) + 0.56 log2(
√

sNN)

+ 45.2(
√

sNN)−0.9 + 33.8(
√

sNN)−1.1mb, (20)

we can then determine the σg at each center-of-mass energy.2

Nucleons that undergo at least one inelastic interaction
with another nucleon are counted as participants in the colli-
sion and contribute to the overall thickness function Tp/n(x) of
the respective nucleus that determines the energy and charge
deposition. Nucleons that do not interact inelastically with any
other nucleon are commonly referred to as spectators and are
simply disregarded in the calculation of energy and charge
deposition.

D. Structure of the code

Now that we have described the model, we briefly com-
ment on the numerical implementation MCDIPPER [44].
Clearly, the bottleneck of the numerical implementation of
Eqs. (11) and (12) is the numerical integration required for the
calculation of the energy and charge densities for every point
in the three-dimensional (x, ηs) space. However, since for a
given center-of-mass energy

√
s and PDF set the transverse

profiles depend only on the space-time rapidity η and the
nuclear thickness T1/2 of the colliding nuclei, the relevant
information can be pretabulated, allowing for an efficient gen-
eration of event-by-event profiles of the conserved charges.

Below we illustrate this at the example of quark production
and refer to the documentation [44] of MCDIPPER for a more
concise introduction to the code itself. Single inclusive quark
production of a quark with flavor f depends linearly on the nu-
clear thickness Ti(x) of the projectile (the nucleus containing
the collinear quark) and nonlinearly on the thickness Tj (x) of
the target (the nucleus containing small-x gluons), such that,

2What it is useful from Eq. (19) is that one can find general dimen-
sionless solutions if one expresses it as

σ̃inel ≡ σinel

2π BG
= π [log(σ̃g) + 
(0, σ̃g) + γE ], (21)

where we have used that σ̃ = σ/(2π BG). This is very convenient, as
it will allow the code to have a permanent solution, parametrized in
a fit function, regardless of the BG parameter. The solution of (21)
is very well behaved and can be fitted easily with a polynomial
function. We use a fifth-order polynomial to describe the function ac-
curately (to an error <0.05% in the relevant ranges, 50–13 000 GeV).

044916-5



GARCIA-MONTERO, ELFNER, AND SCHLICHTING PHYSICAL REVIEW C 109, 044916 (2024)

e.g., the u charge density per unit rapidity can be expressed as
[cf. Eq. (12)]

(nuτ )0 = T1,p(x)
(

n(0)
u,12(T2(x)) − n(0)

ū,12(T2(x))
)

+ T1,n(x)
(

n(0)
d,12(T2(x)) − n(0)

d̄,12
(T2(x))

)
+ T2,p(x)

(
n(0)

u,21(T1(x)) − n(0)
ū,21(T1(x))

)
+ T2,n(x)

(
n(0)

d,21(T1(x)) − n(0)
d̄,21

(T1(x))
)
, (22)

where Ti/ j,p/n(x) is the density of proton/neutrons in nucleus
i/ j, and

n(k)
f ,i j (Tj (x)) =

∫
d2p |p|k xiq f (xi, p2) Dfun(x j, Tj (x), p)

(2π )2

(23)

are simple moments of the single-inclusive quark–antiquark
distribution, which depend on the transverse position x only
through the nuclear thickness Tj (x). By pretabulating the ex-
pressions in Eq. (23) for a given center-of-mass energy

√
s as a

function of rapidity η and thickness Tj (x), it is then possible to
directly evaluate Eq. (22) without the need for any additional
numerical integration.

Similarly, one can also calculate and pretabulate the
deposited energy per unit rapidity, (eτ )0(x), as a three-
dimensional function of the space-time rapidity η and the
nuclear thickness T1(x), T2(x) of the two nuclei for a given
center-of-mass energy

√
s. Even though the calculation of

these tables typically requires two to three CPU hours3—for a
three-dimensional (3D) grid with 101 points in all T1, T2 and
ηs directions—the generation of an individual event is then
very efficient and only requires 20–25 CPU seconds, when
computed on a grid with 101 points in rapidity and 256 × 256
points in the transverse plane.

E. Determination of the K factor

We already explained above that there is only one free
parameter in the model Kg, which enters the calculation of
the energy deposition in Eq. (11) and supposedly accounts
for higher-order corrections in the leading-order expression to
single inclusive gluon production in Eq. (1). We note that the
introduction of such a parameter is a well-known procedure
and has been employed in many previous works using the
hybrid formalism [59–61]. In this work we determine Kg by
matching our results to the experimentally measured values of
transverse energy per unit rapidity at midrapidity in min.bias
p+p and p+Pb collisions, i.e.,〈

dE⊥
dy

〉
exp

=
〈

dEq,⊥
dy

〉
+ Kg

〈
dEg,⊥

dy

〉
. (24)

3The running time depends on the collisional energy. Lower en-
ergies require relatively shorter computation times, since the more
rapidity cells are kinematically restricted or prohibited, which means
that the x values in the integrand are outside of the allowed ranges,
fewer points in the grid need to be accessed.

Experimental values for the transverse energy per unit rapidity
are determined from the ALICE data as in Ref. [62],〈

dE⊥
dy

〉
= 〈m⊥〉 1

ftot

dNch

dy

≈ 〈m〉
ftot

√
1 + a2J−1(a, η)

dNch

dη
, (25)

where 〈m⊥〉 and 〈m〉 = 0.215 ± 0.001 are the average trans-
verse mass and rest mass of all measured particles, respec-
tively. The prefactor ftot = 0.55 ± 0.01 stands for the ratio of
charged particles to the total number produced. The parameter
a = 〈p⊥〉/〈m〉 is used to approximate 〈m⊥〉. Additionally, we
need the Jacobian J (a, η) =

√
1 + 1/(a cosh η)2 to convert

the pseudo-rapidity-dependent measured results into rapidity.
The transverse energy deposited is then matched to the

midrapidity value for p-p and p-Pb minimum bias collisions
using the relation (24). The experimental errors are propa-
gated accordingly to the Kg factor. Using this prefactor fitting
scheme, we obtain Kg,GBW = 1.25 and Kg,IP−Sat = 1.85.

III. GENERAL FEATURES OF THE MODEL

Before we proceed to present results for observables re-
lating to the transverse and longitudinal structure of our
initial-state model, we find it important to further illustrate
some of its general features.

We first showcase the rapidity dependence of energy and
charge deposition in Fig. 2, where the top panels show the
initial energy (eτ )0 per unit rapidity, carried by quark (q) and
gluon (g) degrees of freedom, while the bottom panels show
the deposited amount of baryon (B) and electric (Q) charge
(τn)0 per unit rapidity. Different columns show the space-time
rapidity dependence of the deposition profile, for different
configurations of the nuclear thickness in the colliding nuclei,
for a symmetric configuration T1,p = T2,p = 2 f m−2 (left) and
an asymmetric configuration T1,p = 1 f m−2, T2,p = 4 f m−2

(right). Different colored curves in each panel correspond
to two different center-of-mass energies,

√
sNN = 200 GeV

(blue) and
√

sNN = 2.76 TeV (red). Before we comment on
the detailed features, it is important to emphasize that all the
dependencies on space-time rapidity, center-of-mass energy,
and nuclear thickness are entirely determined by the x and
T dependence of the uGDFs and PDFs, and if not stated
otherwise, we employ the IP-Sat and the CT18NNLO PDF
sets for the following figures.

When considering symmetric thickness profiles, shown in
the left column of Fig. 2, we find that the energy deposition at
midrapidity is dominated by the gluonic contribution eg. Nev-
ertheless, both at Relativistic Heavy Ion Collider (RHIC) and
Large Hadron Collider (LHC) energies the quark contribution
to the energy deposition eq is non-negligible. By moving out
to larger rapidities, the relative contribution of quarks to the
energy deposition increases; at the same time, valence charge
is deposited at large rapidities, resulting in pronounced peaks
in the net baryon (B) and net electric charge (Q) distribu-
tion. By comparing the results for different center-of-mass
energies, one finds that the gluon dominance at midrapidity
increases with increasing center-of-mass energy, which results
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FIG. 2. Energy (upper panels) and electric and baryon charge deposition (lower panels) as a function of space rapidity ηs for three different
collisional energies,

√
sNN = 0.2, 2.76, 5.02 TeV, computed using the IP-Sat model with the CT18NNLO PDF set. The results here shown are

presented for two different sets of fixed thickness, T1,p = T2,p = 2 fm−2 (left panels) and T1,p = 1 fm−2, T2,p = 4 fm−2 (right panels). The
neutron density is fixed to zero for both projectiles for this representation, meaning T1,n = T2,n = 0.

in a rapid rise of the overall energy deposition. Conversely,
the overall amount of net-charge deposition exhibits a much
weaker dependence on the center-of-mass energy, as the peaks
mainly shift out to larger rapidity for increasing center-of-
mass energy. By looking at the results in the right column
of Fig. 2, one finds that the energy and charge deposition
for asymmetric thickness profiles features highly asymmetric
rapidity distributions. Clearly, the peaks in the energy and
charge deposition move away from midrapidity, indicating
that geometric fluctuations in the transverse plane can induce
nontrivial modulations of the rapidity profiles on an event-by-
event basis. While the energy deposition due to quarks only
shows a relatively weak forward(backward) asymmetry, this
effect is much more pronounced for the energy deposition
of gluons and the charge deposition due to valence quark
stopping.

By comparing the results for the IP-Sat and GBW model,
as depicted exemplarily in Fig. 3 for a center-of-mass energy√

sNN = 2.76 TeV, we can gauge the sensitivity to the under-
lying unintegrated gluon distributions (UGDs). While the total
energy and charge deposition turns out to be rather similar be-
tween the two saturation models, moderate differences emerge
in the rapidity dependence of the energy and charge deposition
that we attribute to the rather different p dependence of the
UGDs in the IP-Sat and GBW model.

Next we investigate the dependence of the energy and
charge deposition on the nuclear thickness, as shown in Fig. 4,
where we fix the nuclear thickness T p

1 = 2 fm−2 of protons
of one of the nuclei and vary the nuclear thickness of protons

T p
2 of the other nucleus. Neutron thicknesses of both nuclei

T 1/2
n are set to zero in this comparison. Irrespective of the

underlying saturation model (GBW or IP-Sat), the T1 and
T2 dependence energy and charge deposition are governed
by the T dependence of the valance parton flux and the
saturation scales of both nuclei. Interestingly, the quark and
gluon contributions to the energy deposition exhibit a rather
different T dependence. In the case of the gluon contribution
eg, one observes a rapid rise for Q(2)

s < Q(1)
s followed by a

saturation of growth for Q(2)
s > Q(1)

s . Conversely, the energy
deposition due to quark stopping eq exhibits a steady rise
across the entire range of T values depicted in Fig. 4. It is
particularly important to point out that due to the asymme-
try in the saturation scales, the energy deposition profiles at
different rapidities and center-of-mass energies are different
both with regard to the T1 and T2 dependence as well as
in the overall normalization. Notably, this behavior can be
intuitively understood in the GBW model if the x dependence
of the UGDs in Eq. (1) is approximated by self-consistently
evaluating x1/2 = Q1/2

s (x)/
√

sNN e±y instead of accounting for
full p dependence of the UGDs. Since the p dependence of x
is ignored in this approximation, one can integrate analytically
as in Ref. [63] to obtain an expression for the energy density.
Such an expression will depend on the saturation scales para-
metrically as follows:

eg ∝ Q2
s,1Q2

s,2

(
Q4

s,1 + 7
2 Q2

s,1Q2
s,1 + Q4

s,2

)
(
Q2

s,1 + Q2
s,2

)5/2 , (26)
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FIG. 3. Energy (upper panels) and electric and baryon charge deposition (lower panels) as a function of space rapidity ηs for
√

sNN = 2.76
TeV, computed using both the IP-Sat and GBW model with the CT18NNLO PDF set. The results shown are presented for two different sets
of fixed thickness, T1,p = T2,p = 2 fm−2 (left panels) and T1,p = 1 fm−2, T2,p = 4 fm−2 (right panels). The neutron density is fixed to zero for
both projectiles for this representation, meaning T1,n = T2,n = 0.

FIG. 4. Energy (upper panels) and electric and baryon charge deposition (lower panels) as a function of the proton thickness T2,p for fixed
T1,p = 2 fm−2 and collisional energy

√
sNN = 2.76 TeV, computed using both the IP-Sat and GBW model with the CT18NNLO PDF set. The

results here shown are presented for two different sets of fixed space-time rapidity, ηs = 0 (left panels) and ηs = 3 (right panels).
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FIG. 5. Comparison of the energy density (top), electric charge
density Q (middle), and baryon charge-density B (bottom) deposition
when using different PDFs. Here are pictured the conserved charges
when using the CT18NLO, CT18NLO, and CT14NNLO sets. As
the reader can easily see, while the energy density changes around
the fragmentation region, Q and B do not change, as expected. The
former is due to differences in the parametrization of the sea-quark
PDFs.

where according in the small-x limit, x1/2 =
Q1/2

s (x)/
√

sNN e±y can be self-consistently solved to fit
the analytical expression

Q2
s,1/2 ∝ T

2
2+λ

1/2 e∓ 2λ
2+λ

η(
√

sNN )
2λ

2+λ . (27)

We depict this result, Eq. (26), as a gray line in Fig. 4. Even
though such a simple parametrization can approximately de-
scribe the behavior over a large range of nuclear thickness,
it fails to describe important details that emerge from the
nontrivial x dependence of the underlying parton distributions.

Before we turn to phenomenological results, we finally
investigate the sensitivity of the energy and charge deposition
to the underlying PDF set. We provide a compact summary of
our results in Fig. 5, where we compare the rapidity depen-
dence of energy and charge deposition for the CT18NNLO,
CT18NLO, and CT14NNLO PDF sets. Since the large-x
structure of the valence quark PDFs is well constrained, the
charge deposition profiles are virtually unchanged. Slight dif-
ferences emerge for the energy deposition, which probes the
sea quark PDFs, particularly at larger rapidities where the
small x is explored. Nevertheless, the profiles are remarkably
stable with regard to the PDF uncertainties.

FIG. 6. Charged particle yield as a function of centrality for√
sNN = 200 GeV (top),

√
sNN = 2.76 GeV (center), and

√
sNN =

5.02 GeV (bottom). Experimental data shown in the figure for
Au-Au at

√
sNN = 200 GeV is from Ref. [64], Pb-Pb collisions at√

sNN = 2.76 TeV from Refs. [65,66], and
√

sNN = 5.02 TeV from
Refs. [67,68]. The bands represent the uncertainties in η/s and C∞
for the estimates presented here, where they correspond to variations
of C∞ = 0.8 − 1.15 and η/s = 0.08 − 0.24.

IV. OBSERVABLES

Now that we have established the basic features of our
initial-state model, we continue to contrast the model with
experimental results at RHIC and LHC. Clearly, the results
presented below are meant to provide only a general idea of
the behavior of the MCDIPPER model, as we anticipate more
detailed phenomenological studies to be performed based on
full 3+1D initial state + hydrodynamics + hadronic cascade
simulations in the future.

Before we explore the full 3D structure of the model, it
is important to crosscheck that observables at midrapidity
can be reasonably well described within we model. We first
investigate the centrality dependence of the charged parti-
cle multiplicity dNch/dy, which following Ref. [70] can be
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FIG. 7. Eccentricities in the IP-Sat (full symbols) and GBW (empty symbols) models as a function of centrality, ηs. We show here the
n = 2, 3, 4 harmonics (blue squares, red circles, and yellow diamonds, respectively) for Pb-Pb collisions at 2.76 TeV at midrapidity ηs = 0.
Included is a comparison to TRENTo [10,63] and IP-Glasma [69] models.

estimated directly from the initial energy-density profile as

〈
dNch

dy

〉
= 4

3

Nch

S
C3/4

∞

(
4π

η

s

)1/3(
π2

30
νeff

)1/3

×
∫

d2x[τe(y, x)]2/3
0 , (28)

where νeff = 40, S/Nch = 7.5. We present the results in Fig. 6,
where we compare the centrality dependence of dNch/dy
to experimental measurement at RHIC [64] and LHC en-
ergies [65–68]. Bands signify the uncertainties in η/s and
C∞ in these estimates and correspond to variations of C∞ =
0.8–1.15 and η/s = 0.08–0.24. We find that within these
uncertainties, the model describes the centrality dependence
of the data rather well; also, the energy dependence of
the charged particle multiplicity is well described within
MCDIPPER.

Next we turn to the behavior of event-by-event eccentrici-
ties at midrapidity, which provides knowledge about collective

flow and geometric fluctuations. We present our results for
the cumulants ε2{2}, ε3{2}, and ε4{2} in Fig. 7, where we
plot εn{2} as a function of centrality. The eccentricities are
computed using the definition

εn(y) =
∫

d2r⊥|r⊥|n ein(φ−�n )[e(y, r⊥)τ ]0∫
d2r⊥[e(y, r⊥)τ ]0

, (29)

with εn{2} =
√

〈|εn|2〉, see Ref. [25]. Different panels show
the results for Au + Au collisions at RHIC (top) and
Pb+Pb collisions at LHC (center,bottom), and we also com-
pare the results of the MCDIPPER to calculations in the
TRENTo [10,63]4 and IP-Glasma [69] models. We find excel-
lent agreement with the IP-Glasma model for central collision

4We use parameters extracted from a Bayesian analysis from
Ref. [71], namely, N = 20.013, p = 0.038, and w = 0.985, in the
TRENTo parametrization.
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(a) (b)

FIG. 8. Energy (a) and charge (b) profiles for different rapidity windows in a single 5.02-TeV Pb+Pb event in the 0% − 5% centrality
class. The energy profiles are given for gluon energy deposition (a, upper panels) and quark energy density (a, lower panels). The rapidity
windows are chosen for η = 0 (left panels) and η = 4 (left panels). In (b) the deposited electric (b, upper panels) and baryon (b, lower panels)
charges are shown for the same rapidity windows.

<50% centrality and small differences for larger centralities.
We find that in comparison to the TRENTo model, the eccen-
tricities obtained in our model are rather large, as has already
been observed in earlier comparisons of the MC-Glauber and
MC-KLN models, which are similar in spirit. Given the fact
that the two rather different models TrENTO and IP-Glasma
can both describe the experimental results rather well, it seems
likely—with suitable adjustment of hydrodynamic evolution
parameters—experimental results for collective flow can also
be described by MCDIPPER.

Now that we have characterized the most important prop-
erties, our initial-state model at midrapidity, we continue
with the exploration of the three-dimensional structure of
the model. Before we investigate any concrete observables,
it proves insightful to illustrate the features of the model
at the example of the energy and charge profile in a single
event. Different panels in the left part of the figure show the
energy deposition due to quarks (bottom) and gluons (top)
at midrapidity (left) and forward rapidity (right); the right
part of the figure shows the corresponding electric (top) and
baryon (bottom) charge deposition profiles at midrapidity and
forward rapidity. Generally, the geometric fluctuations of the
energy and charge profiles are dictated by the positions of
the nucleons inside the colliding nuclei. However, due to the
different dependencies on the nuclear thickness of the two
nuclei (cf. Sec. II C), these fluctuations leave a different im-
print on the energy and charge profiles at different rapidities.
One observes, for example, that the relative fluctuations of the
energy-density profile are larger at midrapidity than at forward
rapidity, see Fig. 8. Similarly, the geometric fluctuations of
the charge density are also different than those of the energy

density, and on an event-by-event basis none of the charge
profiles is symmetric with regard to the forward and backward
rapidity direction. Since all of these features naturally emerge
within our framework, it will be interesting to further explore
the phenomenological consequences of these findings in the
future.

Next we consider the rapidity dependence of the energy
and charge deposition profiles in Fig. 9, which we obtain
by averaging over several events and integrating over trans-
verse space. Different columns in Fig. 9 show the results
for RHIC and LHC energies, while different curves in each
panel show the results for different centralities. While the
energy profiles are relative flat around midrapidity, they do
not exhibit a clear midrapidity plateau, which as discussed in
Sec. III can primarily be attributed to the rapidity dependence
of the gluon energy deposition. Charge deposition profiles for
the net-electric and net-baryon charge are peaked at forward
and backward rapidities, with the peaks moving out to larger
rapidities with increasing center-of-mass energy. By compar-
ing the profiles at RHIC and LHC energies, one also finds
a stronger suppression of net-baryon number and net-electric
charge at midrapidity for LHC energies, which is consistent
with measurements of the hadrochemistry. However, note that
over the course of the space-time evolution of a heavy-ion
collision, the initial charge deposition profiles are subject to
diffusion and thus cannot be directly compared with experi-
mental data.

Despite the fairly pronounced rapidity dependence of the
energy-density and charge profiles, we find that the rapidity
dependence of the spatial eccentricities is rather weak. This
can be observed in Fig. 10, in which the three panels show
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FIG. 9. Transverse deposition of energy (top panels), electric charge (central panels), and baryon charge (lower panels). Results are
presented for Au-Au collisions at

√
sNN = 200 GeV (left panels) and Pb-Pb collisions at

√
sNN = 200 GeV (right panels) for different centrality

classes. The computation is performed using the IP-Sat model with the CT18NNLO PDF set.

the rapidity dependence of the event-by-event eccentricities
ε2{2}, ε2{3}, and ε2{4} for three selected centrality classes,
0% − 5%, 10% − 20% and 30% − 40%. Except at very large
rapidities in the forward and backward direction, the eccen-
tricities are almost flat across the entire range of rapidities.
Notably, in this regime the results of the GBW and IP-Sat
saturation models can also differ significantly from each other,
which can be attributed to the fact that the two models exhibit
a rather different behavior at large x, which is probed in the
far forward and backward regions.

Ultimately, we also investigate the longitudinal decorrela-
tion of the event geometry, which following the experimental
procedure [5,6] can be quantified by the forward and back-
ward ratio [4,72,73]

rn(ηa, ηb) = 〈εn(−ηa)ε∗
n (ηb)〉

〈εn(ηa)ε∗
n (ηb)〉 . (30)

Our results are compactly summarized in Figs. 11 and 12,
where we present the decorrelation ratios r2 (left), r3 (middle),

and r4 (right) for 5% − 10% (top) and 30% − 40% centrality
(bottom) at RHIC and LHC energy. Besides the results from
the MCDIPPER, we also show experimental measurements
from the STAR [5] (preliminary) and CMS [6] Collaborations
for the ratios r2 and r3 based on the final state vns. We first note
that in comparison to experimental data, our model generally
tends to underestimate the decorrelation of the event geometry
with varying ηa. One obvious explanation is that the model
is missing additional sources of fluctuations; in particular,
the current model treats the valence content of the nuclei
in terms of inclusive (average) PDFs and does not take into
account event-by-event fluctuations of the energy-momentum
fractions carried by valence partons. Naturally, including such
fluctuations, e.g., along the lines of Ref. [74], will induce
additional sources of geometric fluctuations in the model and
thereby increase the slope of the rapidity decorrelation. We
also observe large discrepancies for the longitudinal decorre-
lation between the IP-Sat and GBW model, which we found
can be attributed to the rather different large x behavior in

044916-12



McDIPPER: A NOVEL SATURATION-BASED 3 + 1D … PHYSICAL REVIEW C 109, 044916 (2024)

FIG. 10. Eccentricities in the IP-Sat (full symbols) and GBW
(empty symbols) models as a function of space-time rapidity, ηs.
We show here the n = 2, 3, 4 harmonics (in descending order) for
Pb-Pb collisions at 2.76 TeV and three centrality classes, 0% − 5%,
10% − 20%, and 30% − 40%.

these models,5 which is probed at the reference rapidity ηb. In
fact, when comparing the results across such large rapidity
intervals, the underlying physics changes dramatically, as,
e.g., in our model the energy densities in the forward regions
are no longer dominated by gluon radiation but rather by quark

5The approach x → 1 can be quantified by taking the
second moment of the dipole function, namely, 〈k2〉i =∫

d2kk2 Di (x, x, q)/
∫

d2k Di (x, x, q), where the representation
is given by i = (adj, fun) for the fundamental case. In the Gaussian
GBW case, Eq. (15), this corresponds trivially to Q2

i ∼ (1 − x)δ ,
with δ = 1 as defined. Nevertheless, the IP-Sat corresponds to a
more nuanced case, as the effective extracted δ presents dependence
on the thickness function, with δ ∼ 4.6–5.6.

stopping. Generally speaking, the simultaneous description
of the midrapidity and fragmentation region provides a chal-
lenge for any theoretical description that is not QCD. Even
though the choice of a large reference rapidity ηb certainly
has advantages from an experimental point of view, it would
be very interesting and highly informative to perform such
measurements within a more restricted rapidity range where
theoretical models developed for the physics around midra-
pidity remain applicable.

V. CONCLUSIONS

We present a novel approach to calculate energy and charge
deposition in high-energy heavy-ion collisions based on the
leading-order cross-section calculations in the color glass con-
densate (CGC) effective theory of high-energy QCD. Since
the underlying quark and gluon distributions can be inde-
pendently constrained from DIS measurements, the resulting
model, MCDIPPER, only features a single free parameter Kg

that is supposed to account for higher-order corrections to the
leading-order perturbative cross sections.

Based on this framework, the model makes concrete pre-
dictions for the dependence of energy and charge deposition
on the nuclear thickness, center-of-mass energy, and space-
time rapidity, which naturally emerge from the x, Q2 and T
dependence of the underlying (nuclear) parton distributions.
We therefore believe that the model is not only useful for
immediate phenomenological applications, but may also aid
the development of parametric models of the longitudinal and
transverse structure of the initial state of high-energy heavy-
ion collisions.

Our first comparisons with experimental measurements
show promising results, except for the longitudinal decorre-
lation of the transverse geometry, which is underestimated
in the current implementation of the model. However, as we
discussed, this may hint at the necessity to include addi-
tional sources of event-by-event fluctuations, particularly of
the valence quark distributions, which provides an interesting
direction for future investigations.

Based on our analysis, we also noticed that the physics
in the far forward and backward regions, which are domi-
nated by nuclear fragmentation, is distinctly different than
the physics around midrapidity, which is dominated by new
particle production, making it hard to describe and interpret
measurements that correlate the different rapidity regions.
Even though the development of a comprehensive model
remains an interesting theoretical challenge, it may also be
beneficial to study, e.g., decorrelation observables within a
more restricted rapidity range where the underlying physics
remains the same.

Finally, we note that the model, as it is firmly grounded
in QCD, is in principle systematically improvable by includ-
ing higher-order perturbative corrections [53] and subleading
terms in the eikonal expansion [75]. Even though this is a
rather challenging task, we believe that this is still a promising
avenue, as with the operation of a future electron-ion collider,
a more and more precise knowledge of the underlying (nu-
clear) parton distributions will emerge.
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FIG. 11. Flow decorrelation of initial spatial eccentricities rn in Au-Au collisions
√

s = 200 GeV for the GBW and IP-Sat models. In
this figure we present the results for the harmonics n = 2, 3, 4, (left), (center), and (right) panels, respectively, and a reference rapidity of
ηb = 2.5–4.7 [5].

FIG. 12. Comparison of the decorrelation of initial spatial eccentricities rn of Pb-Pb collisions
√

s = 2.76 TeV for the GBW and IP-
Sat models. In this figure we present the results for the harmonics n = 2, 3, 4 and a reference rapidity of ηb = 4.4–5.0. The black squares
correspond to experimental data from the CMS Collaboration [6].
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APPENDIX: COLINEAR LIMIT

In this section we show a brief derivation of the collinear
limit for the gluon production formula, Eq. (1). This formula
has also been derived in the hybrid formalism [32], and it
is valid for gluon forward and backward kinematics, where
a large-x gluon scatters a dense target. For us this means
particularly large |ηs| regions.

We start by integrating the momentum conservation δ func-
tion,

dNg

d2xd2pdy
= g2 Nc

4π5
(
N2

c − 1
)

p2

∫
d2q

(2π )2

× �1(x1, x, q) �2(x2, x, p − q). (A1)

For simplicity we focus specifically in the forward region,
where ηs > 0 and is large. In this case the right-moving nu-
cleon has x1 ∼ 1, while the left-moving nucleon possesses
the opposite behavior, x2 � 1. Since the characteristic scale,
the saturation scale, of these distributions increases with de-
creasing x, at forward rapidities �1 will peak at small values
of k⊥. Since �2 will be dominated by large modes, we can
take the limit in which |p| > |q| and expand around it. For
the purposes of this work, we can keep only the zeroth
order, �2(x2, x, p − q) → �2(x2, x, p), while higher correc-
tions come as gradients in q. In this way we get a simplified
formula, namely,

dNg

d2xd2pdy
= 1

(2π )2
x gA(x1, x, p) Dadj(x2, x, p), (A2)

where we have defined the nuclear PDF as

xgA(x, x, p2) = N2
c − 1

16π4αsNc

∫ |q|<|p|
d2q q2 Dadj(x, x, q).

(A3)

Notice that our definition of the gluon distribution is defined
with dependence to the transverse position in the nucleus,
which makes it in fact a parton density. For the case of the
total nuclear PDF, we start by integrating with respect to the
transverse position x,

xgA(x, p2) = N2
c − 1

16π4αsNc

∫
d2x

∫
d2q q2 Dadj(x, x, q)

= N2
c − 1

16π4αsNc

∫
d2x

∫
d2s

∫
d2q q2

× eiq·s 1

N2
c − 1

tradj
[
U adj

x+s/2U
adj,†
x−s/2

]
, (A4)

where we have used the definition of the dipole, Eq. (3), in the
last line. By defining x1 = x + s/2 and x2 = x − s/2, we can
transform our formula to

xgA(x, p2) = 1

16π4αsNc

∫
d2x1

∫
d2x2

∫
d2q

× eiq·(x1−x2 ) tradj
[(

∂iU
adj
x1

)(
∂iU

adj,†
x2

)]
. (A5)

The last line is obtained via partial integration. Using the
definition of the Wilson line,

U adj
x = exp

[
−ig

∫ ∞

−∞
dx+ A−

a (x+, x) T a

]
, (A6)

where T a are the generators of the SU(3) in the adjoint repre-
sentation, one can express the trace in Eq. (A8) in the dilute
limit to be

tradj
[(

∂iU
adj
x1

)(
∂iU

adj,†
x2

)]

= g2 Nc

∫ ∞

−∞
dx+

1

∫ ∞

−∞
dx+

2 〈[∂iA
−
a (x+

1 , x1)][∂iA
−
a (x+

2 , x2)]〉.
(A7)

Mixing it all together, we get the expression

xgA(x, p2) = 2

(2π )3

∫
d2q q2

∫
d2x1

∫
d2x2

×
∫ ∞

−∞
dx+

1

∫ ∞

−∞
dx+

2 eiq·(x1−x2 )

× 〈A−
a (x+

1 , x1)A−
a (x+

2 , x2)〉. (A8)

This result is consistent with the definition of the gluon
transverse-momentum distribution (TMD) in Ref. [76], which
can be obtained from the definitions of TMD found in the
literature; see Refs. [77–80] and references therein.
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