
 

Quantum critical diffusion and thermodynamics in Lifshitz holography
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We present the full charge and energy diffusion constants for the Einstein-Maxwell dilaton (EMD) action
for Lifshitz spacetime characterized by a dynamical critical exponent z. Therein we compute the fully
renormalized static thermodynamic potential explicitly, which confirms the forms of all thermodynamic
quantities including the Bekenstein-Hawking entropy and Smarr-like relationship. All thermodynamics are
based on a direct computation of the free energy. Our exact computation demonstrates a modification to the
Lifshitz-Ward identity for the EMD theory. For transport, we target our analysis at finite chemical potential
and include axion fields to generate momentum dissipation. While our exact results corroborate anticipated
bounds, we are able to demonstrate that the diffusivities are governed by the engineering dimension of the
diffusion coefficient, ½D� ¼ 2 − z. Consequently, a β function defined as the derivative of the trace of
the diffusion matrix with respect to the effective lattice spacing changes sign precisely at z ¼ 2. At z ¼ 2,
the diffusion equation exhibits perfect scale invariance and the corresponding diffusion constant is the pure
number 1=ds for both the charge and energy sectors, where ds is the number of spatial dimensions. Further,
we find that as z → ∞, the charge diffusion constant vanishes, indicating charge localization. Deviation
from universal decoupled transport obtains when either the chemical potential or momentum dissipation are
large relative to temperature, an echo of strong thermoelectric interactions.
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I. INTRODUCTION

Because most condensed matter systems do not conform
to the full Lorentz symmetry and contain dynamical behav-
ior characterized by Lifshitz transitions [1–4], tailoring the
AdS=CFT program to condensedmatter systems such as the
cuprates requires a considerable extension. The simplest
proffer to engineer such a nonrelativistic setup is a Lifshitz
geometry characterized by a dynamical critical exponent z
[5–9]. A metric ansatz that encodes the features of both the
dynamical exponent and a finite temperature is the form

ds2 ¼ dr2

r2fðrÞ − r2zfðrÞdt2 þ r2dx⃗2ds ; ð1Þ

which defines a horizon by the largest root of fðrþÞ ¼ 0 and
boundary at r → ∞ where f → 1. This ansatz encapsulates
the scaling symmetry

r → c−1r; t → czt; xi → cxi ð2Þ

at the boundary. For z ≠ 1, this metric ansatz cannot be a
vacuum solution to the Einstein equations. Indeed, such a
Lifshitz geometry requires a nontrivial bulk stress-energy
tensor. Herein lies the problem: there is no unique way of
engineering the requisite stress-energy tensor.
A full analytic solution to an asymptotically Lifshitz

geometry that features a black hole can be constructed via
an Einstein-Maxwell-dilaton (EMD) action. This model is a
direct extension of the anti–de Sitter (AdS)-Reissner-
Nordström black hole to z ≠ 1. This action is well known
in the literature as it has served as the workhorse for most of
the Lifshitz papers [10–16].
Our work addressed the open problem of the construction

of the transport properties in a fully renormalized solution to
the EMD action that features both a chemical potential and a
set of spatially dependent axion fields that induce momen-
tum dissipation for general z and dimensionality. The action
is addressed completely at the level of the static background
and direct current (DC) transport. This range of analysis
allows us to compute the set of both static susceptibilities
and conductivities under a uniform “Lifshitz charge,”which
by the Einstein relations obtain the full set of thermoelectric
diffusion constants.We are able to compare and contrast our
results with universal features of diffusivity by Blake et al.
[17,18]. They consider the limits of decoupled charge and
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thermal diffusion, and we find exact agreement in this limit.
However, we find deviations from such behavior when
matter interactions are cranked such that the thermoelectric
coupling is significant.
A significant result, Fig. 1, we obtain once all the dust

settles is that the length dependence of the transport
properties, although they are governed by several indepen-
dent scales ranging from the chemical potential to the
strength of momentum dissipation, are ultimately con-
trolled by the engineering dimension [D] of the diffusion
constants; by inspection of the diffusion equation,
½D� ¼ 2 − z. Consequently, the effective β function [19],

β≡ ∂
∂l

ðtrDÞT
v2B

; ð3Þ

should exhibit universal features as a function of the
characteristic length scale l. In Eq. (3), we measure the
diffusion matrix D against the characteristic scale v2B=T,
defined in terms of the butterfly velocity and the temper-
ature [17]. We find that sgnðβÞ ¼ sgnð2 − zÞ, indicating a
fixed point at z ¼ 2. At the scale-invariant point z ¼ 2,
diffusion is given exactly by the dimensionless number

Dðz ¼ 2Þ ¼ 1

ds
: ð4Þ

Our diffusion constants are strictly positive unlike the
previous results with restricted range of validity for z
[20,21]. We find z ¼ 2 corresponds to the fixed point
associated with the length dependence of the diffusivities,
in direct analogy with the β function in Anderson

localization [19]. Our conclusion here is made possible
entirely because we have a regularizable boundary theory.
We find in general that diffusivity bounds [22,23] do

indeed exist for Lifshitz holography, with two possible
violations. The first for z ¼ 1, as is standard, has a divergent
energy diffusion constant in the absence of momentum
dissipation, caused by the inability of any sourced momen-
tum to relax. The second occurs at z → ∞, whereupon
charge becomes completely localized and does not diffuse,
manifest in the vanishing of the upper bound in the
respective diffusion constant.
As a final important note, our exact treatment finds that

the Ward identity associated with the Lifshitz symmetry in
the EMD model. We find that the boundary stress-energy
tensor Ta

b and dilaton response λϕOϕ obey

zT t
t þ Txi

xi þ λϕOϕ ¼ 0; ð5Þ

which aligns with the encoding of the Lifshitz symmetry via
dilatation. This is a slight contrast to the usual identity which
omits any contribution from the dilaton. In spite of this, these
results are not contradictory in the context of [14,15] for
instance, due to an alternative construction of the boundary
theory and the dual stress-energy tensor. In fact, due to the
nebulous nature of the interpretation of the boundary
geometry, there is some leeway in the formulation.

II. AN ABRIDGED HISTORY OF
LIFSHITZ HOLOGRAPHY

The short history of Lifshitz holography is one of many
fits and starts. The initial advance [5] in this context
supplemented the standard bulk Lagrangian with two gauge
fields, a 1-form and a 2-form both, coupled together via a
topological term that controls the dynamical exponent
z. Though a clean analytic construction, it is restricted to
ds ¼ 2 spatial dimensions and is not amenable to emblack-
ening factors which would encode a horizon.
Several other models have been proposed and analyzed

[24], such as the Einstein-Proca model [25,26]. However
the EMD model imbibes the most robust features for
thermodynamics. One of the long-standing issues with this
theory is the absence of a renormalization scheme for the
boundary action, unlike AdS [27]. Without such a scheme,
there is no real interpretation of the response functions
and thermodynamics of the system. While some models
could be worked out under specific conditions—the z ¼ 2
Schrödinger symmetry [28] a case in point—or certain
response functions obtained such as the specific heat [29],
the general theory remained elusive [30]. One of the
culprits is the Uð1Þ field responsible for turning on
z ≠ 1 is poorly behaved at the boundary. There have been
several proposals for dealing with this divergence. The
original proposition for handling this divergence was to
perform a Legendre transformation [13] to instead consider

FIG. 1. Heuristic plot of the β function defined as the derivative
of the trace of the diffusion matrix with respect to the system size.
At z ¼ 2, the diffusion coefficient is a universal dimensionless
constant determined solely by the number of spatial dimensions.
Away from z ¼ 2, the diffusion constants (either charge or
energy) have opposite slopes relative to an increase in the system
size indicating a fixed point at z ¼ 2. Regardless of z, β
asymptotes to zero as the system size increases, indicating the
bounded nature of the diffusivities. At z ¼ 2, the diffusion
equation is scale invariant.
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the stable dual Uð1Þ current as the fundamental variational
instead of the electric field.
The Legendre transformation alone leaves the scheme

incomplete. An alternative was proposed. Kiritsis and
Matsuo’s hydrodynamic ansatz, wherein the constant
parameters controlling the static solution are promoted to
slowly varying functions of time and space, permits an
analytic solution to the induced fluctuation equations. As
its title suggests, this formulation allows all thermodynamic
quantities to be expressed as components of a nonrelativ-
istic fluid. The controlled expansion allows them to make
contact with a renormalization scheme without performing
a Legendre transformation. Their solution involves an
infinite series of counterterms involving the divergent
Uð1Þ field and supports slowly varying transport properties.
The next stride was made by Cremonini et al. who

examined the transverse modes of the EMD theory [31,32].
Previous attempts on this model ignored the crucial
coupling between the two Uð1Þ fields [33,34], which must
be present for a nontrivial solution. Cremonini et al. sought

heat and charge transport response functions of the system
at low frequencies. Therein, their program enabled a
renormalization of specifically the transverse modes: they
(1) perform the Legendre transformation for the divergent
Uð1Þ field, (2) build a second Arnowitt-Deser-Misner
(ADM) breakdown to separate time and space in the
boundary with a timelike shift, and (3) renormalize the
theory in terms of the corresponding Uð1Þ current and
timelike shift. A feature of this scheme is that the counter-
terms actually depend on both the non-normalizable and
normalizable modes of the model. A renormalization
scheme depending upon the theory’s renormalizable modes
is usually problematic, but in fact the counterterms can be
state dependent for systems perturbed by irrelevant oper-
ators [35].

III. ACTION AND STATIC BACKGROUND

We suppose the EMD action

I ¼ −
Z
M

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∇ϕÞ2 − VðϕÞ − 1

4

X2
q¼1

ZqðϕÞF2
q −

1

2
XðϕÞ

Xds
I¼1

ð∇χIÞ2
�
−
Z
∂M

ffiffiffiffiffiffi
−γ

p
2K þ Ic:t:; ð6Þ

where Ic:t: is a smattering of counterterms to give us well-
defined boundary action. Here,M is a ds þ 2-dimensional
Lorentzian manifold and ∂M is its boundary. This action
features two Uð1Þ fields, one which will serve to assist
turning on a nontrivial z ≠ 1 solution and one which
generates a standard chemical potential μ, a straight
extension of the usual AdS-Reissner-Nordström black hole.
The axion fields will generate momentum dissipation. This
action yields the equations of motion

Eab ¼ Rab −
1

2
∇aϕ∇bϕ −

1

ds
VðϕÞgab

−
1

2

X2
q¼1

ZqðϕÞ
�
Fq;acFq;b

c −
1

2ds
F2
qgab

�

−
1

2
XðϕÞ

Xds
i¼1

∇aχi∇bχI ¼ 0; ð7aÞ

Dϕ ¼ □ϕ − V 0ðϕÞ − 1

4

X2
q¼1

Z0
qðϕÞF2

q −
1

2
X0ðϕÞ

Xds
I¼1

ð∇χIÞ2

¼ 0; ð7bÞ
Ma

q ¼ ∇bðZqðϕÞFab
q Þ ¼ 0; ð7cÞ

ΞI ¼ ∇aðXðϕÞ∇aχIÞ ¼ 0: ð7dÞ

This system has a static solution, with matter fields
given by

ϕ ¼ λϕðln rþ ϕ1Þ; λϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dsðz − 1Þ

p
;

VðϕÞ ¼ −ðzþ ds − 1Þðzþ dsÞ;

ZqðϕÞ ¼ e
2
λq
λϕ
ϕ
; XðϕÞ ¼ e

2
λχ
λϕ
ϕ
;

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þ
zþ ds

s
edsϕ1ðrzþds − rzþdsþ Þdt; λ1 ¼ −ds;

A2 ¼ μ2

�
1 −

�
rþ
r

�
zþds−2

�
dt; λ2 ¼ z − 1;

χI ¼ kδIixi; λχ ¼ −ðz − 1Þ; ð8Þ

and the emblackening factor

fðrÞ ¼ 1þ zþ ds − 2

2ds

μ22e
2ðz−1Þϕ1

r2þ

�
rþ
r

�
2ðzþds−1Þ

þ 1

2ðz − dsÞ
k2e−2ðz−1Þϕ1

r2zþ

�
rþ
r

�
2z
−M

�
rþ
r

�
zþds

;

ð9Þ

where M is the mass of the black hole,

M ¼ 1þ zþ ds − 2

2ds

μ22e
2ðz−1Þϕ1

r2þ
þ 1

2ðz − dsÞ
k2e−2ðz−1Þϕ1

r2zþ
:

ð10Þ
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Note that this solution demands z ≥ 1. For the critical case
ds ¼ z, a logarithmic singularity obtains, and the emblack-
ening factor takes the form

fðrÞ ¼ 1þ z − 1

z
μ22e

2ðz−1Þϕ1

r2þ

�
rþ
r

�
4z−2

−
�
1þ z − 1

z
μ22e

2ðz−1Þϕ1

r2þ
−
1

2

k2e−2ðz−1Þϕ1

r2zþ
ln

�
rþ
r

��

×

�
rþ
r

�
2z
: ð11Þ

For the analysis in this paper, we will avoid this singularity
and forbid k ≠ 0 for this critical case, as it inherently would
not modify the thermodynamics after renormalization.
The temperature is

T¼ rzþ1
þ f0ðrþÞ

4π

¼ rzþ
4π

�
zþds−

ðzþds−2Þ2
2ds

μ22e
2ðz−1Þϕ1

r2þ
−
1

2

k2e−2ðz−1Þϕ1

r2zþ

�
;

ð12Þ

derived by eliminating the conical singularity at the horizon.

IV. RENORMALIZATION

In order to have a well-defined boundary action, and
therefore dictionary, we must have a renormalization
scheme to ensure all divergences are removed.
As the divergent terms can be arranged in a power

series that necessarily terminates, for finite z and ds, any
divergence can be balanced by a finite number of counter-
terms. If our action’s variation can be expressed as

δI ¼
Z
∂M

X
n

ΠðϕÞ
n δϕn; ð13Þ

where we have symplectic data and the products of all the

variations δϕn and their radial conjugate momenta ΠðϕÞ
n are

Oð1Þ as r → ∞, then we have ascertained a renormalized
boundary action. This scheme can be implemented not
requiring a full, generalized solution but rather utilizing
details of specific solutions only as necessary. The scheme
for the low-frequency transverse transport properties was
first laid out in [32]. If the reader seeks a more generalized
approach beyond the scope of specific solutions, it is wise
to turn to the radial Hamilton-Jacobi equations to define a
boundary potential via a functional derivative expansion, as
in [36,37]. For our purposes, we need only examine the
possible forms of nontrivial counterterms to ascertain the
renormalized action within the scope of our solution.

The variation of the action (6) yields

δI ¼
Z
∂M

�
1

2
Tabδγab −

X2
q¼1

JaqδAq;a þOϕδϕ

�
; ð14Þ

Tab ¼ 2
ffiffiffiffiffiffi
−γ

p ðKab − KγabÞ; Jaq ¼
ffiffiffiffiffiffi
−γ

p
NbZqðϕÞFab

q ;

Oϕ ¼ ffiffiffiffiffiffi
−γ

p
Na∇aϕ; ð15Þ

where Na is a unit vector normal to the boundary
hypersurface foliating the bulk spacetime along the radial
direction, and Kab ≡∇ðaNbÞ. We have neglected the
conjugate momenta for the axions as they vanish at the
level of the static background and will not contribute to
the DC currents. We absolutely do not have renormalized
symplectic data, with the most glaring issue being that A1 is
divergent. However, its conjugate momentum is Oð1Þ;
hence we can switch to a stable scheme via a Legendre
transformation. We select the counterterms

Ic:t: ¼
Z
∂M

�
A1;aJa1þcðvolÞ0

ffiffiffiffiffiffi
−γ

p þc
ðJ2

1
Þ

0

J21ffiffiffiffiffiffi−γp
Z1ðϕÞ

þ �� �
�
;

ð16Þ

where we can see the first term switches our potential to
vary under J1 instead of A1, changing the boundary
condition from Dirichlet to Neumann, as proposed in
[13]. We will thusly refer to this action as IN . While A2

and J2 already combine to yield an Oð1Þ boundary
contribution, we must yet ensure the other responses are
renormalized. Note that J21 counterterm is necessary for a
finite response but it can also take the interpretation of a
double-trace deformation. Equipped with these counter-
terms, we define the new responses as

Ta
b ¼ 2

ffiffiffiffiffiffi
−γ

p �
Ka

b − Kδab þ
1

2
cðvolÞ0 δab

�

þ 2c
ðJ2

1
Þ

0ffiffiffiffiffiffi−γp
Z1ðϕÞ

�
Ja1J1;b −

1

2
J21δ

a
b

�
þ � � � ; ð17aÞ

A1;a ¼ A1;a þ
2c

ðJ2
1
Þ

0 J1;affiffiffiffiffiffi−γp
Z1ðϕÞ

þ � � � ; ð17bÞ

Oϕ ¼ ffiffiffiffiffiffi
−γ

p
Na∇aϕ − c

ðJ2
1
Þ

0

Z0
1ðϕÞ

Z1ðϕÞ2
J21ffiffiffiffiffiffi−γp þ � � � : ð17cÞ

We find that

cðvolÞ0 ¼ zþ 2ds − 1; c
ðJ2

1
Þ

0 ¼ 1

2ðzþ dsÞ
ð18Þ

is sufficient. These counterterms are in agreement with
those used to analyze DC conductivities in [32]. Note that
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implicit in the ellipses are remaining counterterms, but the
outlined contributions are the only terms that contribute to
the finite action. All other terms will simply cancel
divergences without contributing to the free energy and
are worked out accordingly in Appendix A.
If we substitute in our static solution, we will find as

r → ∞,

T t
t ¼ dsMrzþdsþ þ � � � ; ð19aÞ

Txi
xj ¼ −Mrzþdsþ δij þ � � � ; ð19bÞ

A1;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þ
zþ ds

s
edsϕ1

�
M
2
− 1

�
rzþdsþ þ � � � ; ð19cÞ

Oϕ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dsðz − 1Þ

p M
2
rzþdsþ þ � � � : ð19dÞ

Also note that the stress-energy tensor is actually trace-
less, which is a bit surprising for a Lifshitz theory as this is
usually indicative of a scale-invariant theory, though it is
not a necessary condition. Regardless, the Lifshitz scaling
symmetry is manifestly encoded as a dilatation. This is
reflected in the new Ward identity,

zT t
t þ Txi

xi þ λϕOϕ ¼ 0: ð20Þ

This modification to the Ward identity for the anisotropic
Weyl transformation [38] is perhaps not so strange. Unlike
the pure AdS case, there is no simple interpretation of the
boundary metric. Under separate constructions such as the
Newton-Cartan background,modifications are expected [39].
While this renormalization machinery is sufficient for the

static background, when it comes to the currents we will
find that z ≠ 1 causes the scaling of the source terms to be
divergent. We can remove the source terms from our
boundary action with a simple reformulation of our
intrinsic metric,

γabdxadxb ¼ −n2
�
dt −

ni
n2

dxi
�

2

þ σijdxidxj; ð21Þ

which functions akin to an inverted ADM formalism,
which we further discuss in Appendix C.

V. FREE ENERGY

The free energy can be computed from the on-shell
action. The Ricci scalar

R¼ 1

2
ð∇ϕÞ2þ

�
1þ 2

ds

�
VðϕÞ

þ
�
1

4
−

1

2ds

�X2
q¼1

ZqðϕÞF2
qþ

1

2
XðϕÞ

Xd
I¼1

ð∇χIÞ2 ð22Þ

can be plugged in to yield the on-shell bulk action

Iðo:s:Þbulk ¼ −
Z
M

ffiffiffiffiffiffi
−g

p �
2

ds
VðϕÞ − 1

2ds

X2
q¼1

ZqðϕÞF2
q

�
; ð23Þ

which we can expressly integrate. Combining with our
boundary terms, we find that the full on-shell boundary
action is

Iðo:s:ÞN ¼ WN

T

¼ volds
rzþdsþ
T

�
−zþ ðz − 2Þðzþ ds − 2Þ

2ds

μ22e
2ðz−1Þϕ1

r2þ

þ z
2ðz − dsÞ

k2e−2ðz−1Þϕ1

r2zþ

�
; ð24Þ

where volds is a ds-dimensional spatial volume and WN is
the “Neumann” free energy. We are working in an
ensemble with WNðT;ϕ1; μ2; kÞ, indicating our indepen-
dent variables, where rþðT;ϕ1; μ2; kÞ is an implicit func-
tion that solves Eq. (12). A priori, we notice that the charge
density Jt1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þðzþ dsÞ

p
e−dϕ1 is a function of only

ϕ1, meaning that the parameter ϕ1 directly and single-
handedly sources both the responses μ1 and Oϕ.
Let us compute (and verify) our thermodynamic quan-

tities. In differential form the first law of thermodynamics is
manifest,

dWN ¼ −SdT −Q2dμ2 þ
�
μ1

∂Q1

∂ϕ1

þ voldsλϕOϕ

�
dϕ1

− dsOkdk; ð25Þ

where the entropy S, chargesQ1 andQ2, and dual operator
Ok to the impurity k are given by

S ¼ volds4πr
dsþ ; ð26aÞ

Q1 ¼ volds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þðzþ dsÞ

p
e−dsϕ1 ¼ voldsJ

t
1; ð26bÞ

Q2 ¼ voldsðzþ ds − 2Þμe2ðz−1Þϕ1rzþds−2þ ¼ voldsJ
t
2; ð26cÞ

Ok ≡ −volds
ke−2ðz−1Þϕ1r−zþdsþ

z − ds
: ð26dÞ

Notably, voldsr
dsþ is exactly the surface area of the black

hole and thus S obeys the celebrated Bekenstein-Hawking
relation (where we have chosen GN ¼ 1

16π). The operator
Ok functions analogously to a magnetization in response to
an applied magnetic field [40]. The 1=ds factor is chosen to
normalize the response to one spatial coordinate.
From here, it is possible to compute the system’s internal

energy,
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E ¼ WN þ TS þ μ2Q2;

¼ voldsdsMrzþdsþ ¼ voldsT
t
t; ð27Þ

which again is self-consistent: the energy contained is
proportional to the black hole’s mass, and given by the tt
component of the stress-energy tensor.
Finally, we compute the pressure p. Our system’s trivial

volume dependence means the pressure is just the negated
thermodynamical potential density in the grand canonical
ensemble—namely the density of the “Dirichlet” free
energy WD ¼ WN − μ1Q1—and is given by

p ¼ −
WD

volds
;

¼
�
M −

1

z − ds

k2e−2ðz−1Þϕ1

r2zþ

�
rzþdsþ

¼ −T x1
x1 þ

kOk

volds
: ð28Þ

As expected, turning on impurities creates the disparity
p ≠ −Tx1

x1 . The simple form of the pressure guarantees the
satisfaction of a Smarr-like relation,

ϵþ p ¼ Tsþ
X2
q¼1

μqρq; ð29Þ

where ϵ, s, and ρq are the energy, entropy, and charge
densities respectively.

VI. DC CONDUCTIVITIES

When we consider fluctuations of the bulk spacetime and
fields at the level of slowly varying gradients, the equations
of motion decouple into three separate modes. A so-called
sound mode from which susceptibilities can be derived, a
tensor mode which expresses vorticity of the fluid, and a
vector mode which contains the system’s heat and charge
currents [14,15]. To acquire the DC conductivities, we can
supply linear time sources for the vector mode and extract
the current responses. We take the ansatz,

δds2 ¼ 2r2δgrx1drdx
1 þ 2

�
−
∇T
T

r2zftþ r2δgtx1
�
dtdx1;

ð30aÞ

δAq ¼
�
−∇μqtþ∇T

T
Aq;ttþ δAq;x1

�
dx1; ð30bÞ

δχI ¼ δI1δχ1; ð30cÞ

where the perturbations—without loss of generality due to
rotational symmetry—are sourced along the x1 direction.
The equations of motion come in two batches,

− frz−dsþ1

�
r−zþdsþ3δg0tx1 þ

X2
q¼1

ρqδAq;x1

�0

þ k2XðϕÞδgtx1 ¼ 0; ð31aÞ

jðρqÞ0 ¼ 0;

jðρqÞ ¼ −rzþds−1fZqðϕÞδA0
q;x1 − ρqδgtx1 ; ð31bÞ

which are Etx1 and Mx1
q , and

�
rzþdsþ1
þ f0ðrþÞ−

1

z−ds
k2XðϕÞr2ðz−1Þðr−zþds − r−zþdsþ Þ

�∇T
T

þ
X2
q¼1

ρq∇μq−kXðϕÞrzþdsþ1fðδχ01−kδgrx1Þ¼ 0; ð32aÞ

−k
∇T
T

þ rz−dsþ1½r−zþdsþ3fðδχ01 − kδgrx1Þ�0 ¼ 0; ð32bÞ

which are Erx1 and Ξ1, respectively. We can see Ξ1 ¼ 0
follows from Etx1 ¼ 0. Thus, Erx1 completely decouples
from the other equations and acts as a first-order constraint.
The electric currents jðρqÞ ¼ Jx

1

q are conserved in the
bulk, but we can construct another conserved current by
considering a Killing vector as shown in Appendix B. The
result is

jðqÞ ¼ r3zþds−1f2ðr−2ðz−1Þf−1δgtx1Þ −
X2
q¼1

Aq;tjðρqÞ

jðqÞ0 ¼ 0; ð33Þ

where and the conserved bulk quantity jðqÞ is the boundary
heat current. We demand these functions are regular at the
horizon in ingoing Eddington-Finkelstein coordinates,
given by the transformation

dtþ ¼ dtþ dr
rzþ1f

; ð34Þ

and thus near the horizon we obtain t¼ tþ− 1
4πT lnðr−rþÞ.

Regularity yields the asymptotic relations

δgrx1∼
1

k2XðϕþÞsTðr−rþÞ
�
s∇TþX

q¼1

ρq∇μq

�
; ð35aÞ

δgtx1 ∼
4π

k2XðϕþÞs
�
s∇T þ

X
q¼1

ρq∇μq

�
; ð35bÞ

δAq;x1 ∼
1

4πT
∇μq lnðr − rþÞ; ð35cÞ

where we express our quantities in terms of the entropy and
charge densities and defined ϕþ ¼ ϕðrþÞ. Plugging into
our currents, which are conserved in the bulk, we find
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jðqÞ ¼ −
4πT

k2XðϕþÞ
�
s∇T þ

X2
q¼1

ρq∇μq

�
; ð36aÞ

jðρqÞ ¼ −rds−2þ ZqðϕþÞ∇μq
−

4πρq
k2XðϕþÞs

�
s∇T þ

X2
p¼1

ρp∇μp

�
: ð36bÞ

The heat current is related to the energy current via

jðqÞ ¼ jðϵÞ −
X2
q¼1

μqjðρqÞ; ð37Þ

which of course is a measure of energy flow in excess of the
energy due to charge transfer. Thus, the energy current is
given by

jðϵÞ ¼−rds−2þ
X2
q¼1

ZqðϕþÞμq∇μq

−
4πðsTþP

2
q¼1μqρqÞ

k2XðϕþÞs
�
s∇Tþ

X2
p¼1

ρp∇μp

�
: ð38Þ

VII. ENERGY AND CHARGE DIFFUSION

Let us consider the diffusion of energy and charge in our
system. From hereon we can simply work with densities.
The energy and charges follow continuity equations,

∂tϵþ∇ · jðϵÞ ¼ 0; ∂tρq þ∇ · jðρqÞ ¼ 0: ð39Þ
In the Neumann ensemble, gradients of T, ϕ1 and μ2 source
gradients of energy and charge density. We will examine
the diffusion of the system’s energy and electric charge
under the constraint where the “Lifshitz charge” is com-
pletely fixed and uniform; that is, jðρ1Þ ¼ 0 and ∇ρ1 ¼ 0.
Under this constraint,

∇ϵ ¼ ðcμ2 þ μ2ζÞ∇T þ ðTζ þ μ2χÞ∇μ2; ð40aÞ

∇ρ2 ¼ ζ∇T þ χ∇μ2; ð40bÞ

where

cμ2 ¼ T
∂s
∂T

����
ρ1;μ2

¼ −T
∂2wN

∂T2
; ð41aÞ

ζ ¼ ∂s
∂μ2

����
T;ρ1

¼ ∂ρ2
∂T

����
ρ1;μ2

¼ −
∂2wN

∂T∂μ2 ; ð41bÞ

χ ¼ ∂ρ2
∂μ2

����
T;ρ1

¼ −
∂2wN

∂μ22 ; ð41cÞ

the susceptibilities are computable as second-order deriv-
atives of the free energy density wN.
The associated heat and charge currents,

jðqÞ ¼ −κ̄∇T − Tα∇μ2; jðρ2Þ ¼ −α∇T − σ∇μ2;

jðϵÞ ¼ −ðκ̄ þ μ2αÞ∇T − ðTαþ μ2σÞ∇μ2; ð42Þ

are given by, utilizing Eq. (36) and the constraint jðρ1Þ ¼ 0,

κ̄ ¼ 4πsT
Σ1k2XðϕþÞ

; ð43aÞ

α ¼ 4πρ2
Σ1k2XðϕþÞ

; ð43bÞ

σ ¼ rds−2þ Z2ðϕþÞ þ
4πρ22

Σ1k2XðϕþÞs
; ð43cÞ

Σ1 ¼ 1þ ρ21
k2XðϕþÞZ1ðϕþÞr2ds−2þ

; ð43dÞ

whereΣ1measures the response due to application of∇μ1 on
the non-Lifshitz matter. The application of this gradient is
what allows the conductivities to be finite even in the
absence of momentum dissipation, i.e., k → 0. This is an
expected feature in a systemwith two species ofUð1Þ fields,
first observed by Sonner [41] and later by Cremonini and
Pope [31]. Our conductivities calculated through linear time
sources are, of course, identical to the Neumann conductiv-
ities found by Cremonini, Cvetič and Papadimitriou [32].
This conductivity feature is an instance of some of the more
robust behavior a Uð1Þ ×Uð1Þ model can afford.
The continuity equation (39) in concert with the con-

ductivities (42) and susceptibilities (42) yields a diffusion
equation for energy and charge:

� ∂tρ2

∂tϵ

�
¼ D

�∇2ρ2

∇2ϵ

�
; ð44Þ

where the diffusion matrix D is determined from the
conductivity matrix σ and susceptibility matrix χ via the
celebrated Einstein relation,

D ¼ σχ−1: ð45Þ
The diffusion eigenvalues follow

DþD− ¼ κ

cρ2

σ

χ
; ð46aÞ

Dþ þD− ¼ κ

cρ2
þ σ

χ
þ Tσ
cρ2

�
ζ

χ
−
α

σ

�
2

; ð46bÞ

where we define

cρ2 ¼ cμ2 −
Tζ2

χ
ð47Þ

QUANTUM CRITICAL DIFFUSION AND THERMODYNAMICS IN … PHYS. REV. D 103, 026016 (2021)

026016-7



as the specific heat for fixed electric charge—which follows
from Maxwell relations—and

κ ¼ κ̄ −
Tα2

σ
;¼ 4πsT

Σ1k2XðϕþÞ þ 4πρ2
2

rds−2þ Z2ðϕþÞs

ð48Þ

to be the open-circuit thermal conductivity, where no
electric charge can flow. We note that κ is explicitly
dependent on both the metric and A1, in contrast to
traditional holographic systems where κ is explicitly
dependent only upon the form of the metric [18]. This is
a direct consequence of our fixed Lifshitz charge scenario.
We will measure the diffusion eigenvalues relative to the

butterfly velocity,

v2B ¼ 2π

ds
Trz−2þ ; ð49Þ

which will make D�T=v2B pure numbers. This velocity is
proposed to be the characteristic velocity for Lifshitz
geometries and is independent of all matter content [17].
Rescaling Eq. (12) yields

1 ¼ Rz

4π

�
zþ ds −

ðzþ ds − 2Þ2
2ds

μ̃22R
−2 −

1

2
k̃2R−2z

�
; ð50Þ

rþ ¼ T1=zRðμ̃2; k̃Þ; μ̃2 ¼
μ2eðz−1Þϕ1

T
; k̃¼ ke−ðz−1Þϕ1

Tz ;

ð51Þ

and all pure numbers in our system will be functions of the
two parameters μ̃2 and k̃. Written in scaling form, the
determinant and trace of the diffusion matrix are given,
respectively, by

DþD−T2

v4B

¼ zds½2ðzþ dsÞ þ k̃2R−2z� − ðz − 2Þðzþ ds − 2Þ2μ̃2R−2

8π2ðzþ ds − 2Þ½2ðz − 1Þðzþ dsÞ þ k̃2R−2z� ;

ð52aÞ

ðDþ þD−ÞT
v2B

¼ ds
2πðzþ ds − 2Þ

þ zds½2ðzþ dsÞ þ k̃2R−2z� þ ðz− 2Þ½ðz− 2Þ2 − d2s �μ̃22R−2

4πds½2ðz− 1Þðzþ dsÞ þ k̃2R−2z� :

ð52bÞ

We will always order the eigenvalues such that
Dþ ≥ D−. We display a couple of solutions explicitly in
Figs. 2 and 3. Notably, we find the diffusion eigenvalues are

bounded. The bounds can be obtained analytically through
various limits of μ̃2 and k̃ and are given by

max

�
DþT
v2B

�
¼

� ds
2πðz−1Þðzþds−2Þ z < 2

1
2π z ≥ 2

; ð53aÞ

min

�
DþT
v2B

�
¼

� z
4πðz−1Þ z > 2 and z > ds

ds
2πðzþds−2Þ else

; ð53bÞ

max

�
D−T
v2B

�
¼

� z
4πðz−1Þ ds < z < 2

ds
2πðzþds−2Þ else

; ð53cÞ

min

�
D−T
v2B

�
¼

� 1
2π z ≤ 2

ds
2πðz−1Þðzþds−2Þ z > 2

; ð53dÞ

FIG. 2. D�T=v2B for ds ¼ 2 and z ¼ 3=2.
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which are shown in Fig. 4 for ds ¼ f1; 2; 3g, in which the
primacy of z ¼ 2 as the scale-invariant point of the
diffusion equation is evident. To illustrate this further,
we plot Eq. (3) with the length defined as l ¼ 2π=k̃ in
Fig. 5.1 This characteristic length functions as an effective
lattice spacing. As is evident, there is a universal sign
change at z ¼ 2. At z ¼ 2, the diffusion constants are equal
and given by the universal value,

D� ¼ 1

ds
; ð54Þ

as remarked in the Introduction. The universal nature of the
charge and energy diffusion constants stems from the
underlying scale invariance of the diffusion equation when
z ¼ 2. The sign change of β signals a fixed point exists at

z ¼ 2 analogous to the scale invariance that obtains for the
conductance in the case of ds ¼ 2 in Anderson localization
[19]. Necessarily, the diffusion scale v2B=T is also a pure
number at this point, as seen in Eq. (49) where the horizon
dependence vanishes. The marginality of z ¼ 2 has been
noted in other contexts such as a Lifshitz string [42] and the
stability of scalar hair [43]. In particular, the so-called
perfect fluid, which depends only upon its own rest mass
and isotropic pressure, can only exist in concert with

FIG. 3. D�T=v2B for ds ¼ 3 and z ¼ 7=2.

0
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1 2 3 4 5
0
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0.4

FIG. 4. The bounds of D�T=v2B for ds ¼ f1; 2; 3g. The mini-
mum of DþT=v2B asymptotes to 1=4π as z → ∞.

1We could very well have used detD instead of trD, though the
qualitative features are identical.
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Galilean boosts at z ¼ 2 wherein the scale-dependent mass
contribution drops out [44]. Note that we have allowed
noninteger values of ds in our solutions, which can
effectively be obtained through the use of a hyperscaling
violating parameter.
To put our results for the transport in the context of

expected results, we first observe the universal features. In
the decoupling limit where the chemical potential is turned
off, we find the charge and energy diffusion constants
follow

lim
μ̃2→0

σ

χ

T
v2B

¼ ds
2πðzþ ds − 2Þ ;

lim
μ̃2;k̃→0

κ

cρ2

T
v2B

¼ z
4πðz − 1Þ ; ð55Þ

which exactly match the purported decoupled forms in
[17,18]. For z ≥ 2 and z ≥ ds, which heads toward the
decoupling limit of large z, we find these forms match
maxðD−T=v2BÞ and minðDþT=v2BÞ exactly. The limits in
which deviations occur are laid bare in Fig. 3. For D−,
deviation from this behavior is found when μ̃2 ≫ 1, the
limit in which we expect thermoelectric interactions to be
quite strong and so inhibit charge flow. ForDþ, deviation is
found under either the conditions k̃ ≫ 1 or μ̃2 ≫ 1,
emphasizing that energy diffusivity is heavily subject to
all matter interactions.
A limit of interest is z → ∞. In particular, the bounds

indicate clearly that D−T=v2B → 0, signaling that charge
does not diffuse in this limit, only energy. Conventionally,
z → ∞ corresponds to localized critical physics; the
divergence of the critical length guarantees no dynamic
critical behavior can obtain on any appreciable time scale.
For our system, we can interpret this to mean charge must

follow this type of quantum critical behavior but energy
does not. We also notice the saturation of the Dþ diffusion
constant for z ≥ 2, whereupon 1=4π ≤ DþT=v2B ≤ 1=2π.
The upper bound is the typical saturation observed in
the SYK model [45]. Intuitively, this characterizes the fact
that energy diffusivity must be bounded from below and
above, so long as momentum dissipation is present,
regardless of the value of z.

VIII. CONCLUSIONS

From this detailed treatment of Lifshitz holography, we
have been able to derive a series of thermodynamic and
dynamical response functions. Of particular note is the
explicit derivation of both the Bekenstein-Hawking and
Smarr-like relationships, made possible by the exact
computation of the renormalized thermodynamic potential.
Our calculations reveal the universal features of the
diffusion constants near z ¼ 2 even in the complicated
setting in which charge and thermal degrees of freedom are
treated on equal footing. This universality obtains because
of the emergence of a fixed point characterizing the length
dependence of the diffusivities at z ¼ 2. The vanishing of
the charge diffusion constant in the local critical limit of
z → ∞ represents the ultimate deviation from the expected
bounds. Since our treatment fully incorporates thermody-
namics and electrical responses, it should serve as a
template for extracting the coterie of transport coefficients
relevant to quantum critical matter.
In this work, thermodynamic quantities were computed

explicitly working with a derived free energy expression.
We have considered here only diffusion in the context of a
fixed Lifshitz field. It is perhaps possible to relax the
Lifshitz source constraint in this methodology by intro-
ducing a double-trace deformation for A1. Such a parameter
generally would have distinct scaling from any J21 counter-
term already present, and would incorporate a completely
free coefficient to utilize as an independent source, thus
enabling a treatment in the Dirichlet scheme. The various
response functions can be computed through careful and
copious Maxwell relations.
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APPENDIX A: FULL BACKGROUND
RENORMALIZATION

For k ≠ 0, we can have a series of divergent terms in
Eq. (14). Consider counterterms

0 1 2 3 4 5

-0.04

-0.02

0

0.02

0.04

0.06

FIG. 5. Plot of the β function [Eq. (3)] illustrating the
universality of the diffusivities as a function of length for varying
z, using μ̃2 ¼ 1.8 and ds ¼ 3. The qualitative features of β are
independent of the chemical potential and the number of spatial
dimensions. The universal sign change signifies that the length
dependence of the diffusivities is controlled by a fixed point
at z ¼ 2.
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Ic:t: ¼
Z
∂M

X
n¼0

�
cðvolÞn

ffiffiffiffiffiffi
−γ

p þ c
ðJ2

1
Þ

n
J21ffiffiffiffiffiffi−γp
Z1ðϕÞ

��
XðϕÞ

Xds
I¼1

ð∇̂χIÞ2
�n
; ðA1Þ

whose contributions to our boundary responses are

Ta
bjc:t: ¼

X
n¼0

�
XðϕÞ

Xds
J¼1

ð∇̂χJÞ2
�n−1

2XðϕÞ
Xds
I¼1

�
cðvolÞn

ffiffiffiffiffiffi
−γ

p �
1

2
δabð∇̂χIÞ2 − n∇̂aχI∇̂bχI

�

þ c
ðJ2

1
Þ

nffiffiffiffiffiffi−γp
Z1ðϕÞ

�
Ja1J1;bð∇̂χIÞ2 − nJ21∇̂aχI∇̂bχI −

1

2
δabJ

2
1

�
ð∇̂χIÞ2

�
; ðA2Þ

A1;ajc:t: ¼
X
n¼0

�
XðϕÞ

Xds
I¼1

ð∇̂χIÞ2
�n

2c
ðJ2

1
Þ

n J1;affiffiffiffiffiffi−γp
Z1ðϕÞ

; ðA3Þ

Oϕjc:t: ¼
X
n¼0

�
XðϕÞ

Xds
I¼1

ð∇̂χIÞ2
�n�

cðvolÞn
ffiffiffiffiffiffi
−γ

p nX0ðϕÞ
XðϕÞ þ c

ðJ2
1
Þ

n
J21ffiffiffiffiffiffi−γp
Z1ðϕÞ

�
nX0ðϕÞ
XðϕÞ −

Z0
1ðϕÞ

Z1ðϕÞ
��

: ðA4Þ

The covariant derivative ∇̂a is defined from the intrinsic
metric γab. In general, we can increment n to cancel out
higher order powers involving k2 terms that bleed over
from our established action. The constants are given by

cðvolÞn ¼ ϑðvolÞn
ð2n − 1Þðz − 1Þ − 2ds

½4dsðds − zÞ�n ; ðA5Þ

c
ðJ2

1
Þ

n ¼ ϑ
ðJ2

1
Þ

n
1

ðzþ dsÞ½4dsðds − zÞ�n ; ðA6Þ

and are determined recursively from n ¼ 0 with ϑðvolÞn ¼
f−1; 1; 1

2
; 1
2
; 5
8
; 7
8
;…g and ϑ

ðJ2
1
Þ

n ¼ f1
2
; 1
2
; 3
4
; 5
4
; 35
16
; 63
16
;…g.

This is a specific encoding of the renormalization provided
by the Hamilton-Jacobi equations, which expands in a
series of functional derivatives [36,37].
We would like to emphasize that the counterterm series

equation (A1) should terminate finitely in conjunction with
finite z and ds as each term in the series is increasingly
subleading. Hence, the counterterms are not only finitely
numerable but also unique.

APPENDIX B: KILLING VECTOR
CONSERVED QUANTITY

Here we determine the bulk conserved quantity that will
be dual to the heat current as outlined in [46]. Suppose there
exists a Killing vector ξ, defined by

Lξgab ¼ ∇ðaξbÞ ¼ 0; ðB1Þ

which of course can correspond to an infinitesimal diffeo-
morphism. We consider that the Lie derivatives on our
physical observable fields vanishes; that is

LξFq;ab ¼ Lξϕ ¼ LξχI ¼ 0: ðB2Þ

The first of these, rewritten, states that

ðiξdþ diξÞFq ¼ 0; ðB3Þ

and thus we can assume that iξFq is an exact form

iξFq ¼ dθq ðB4Þ

for some functions θq. This also implies that we can express

LξAq ¼ dψq ðB5Þ

for some functions ψq. These identities will allow us to
construct a total derivative by examining

∇b∇aξb ¼ Ra
bξ

b;

¼ 1

ds
VðϕÞξa

þ 1

2

X2
q¼1

�
ξcZqðϕÞFab

q Fq;cb −
1

2ds
ξaZqðϕÞF2

q

�
:

ðB6Þ

This expression can be rearranged as

∇bGab ¼ 1

ds
VðϕÞξa; ðB7Þ

where

QUANTUM CRITICAL DIFFUSION AND THERMODYNAMICS IN … PHYS. REV. D 103, 026016 (2021)

026016-11



Gab ¼ ∇aξb

þ 1

2ds

X2
q¼1

ZqðϕÞ½ðψq − dsθqÞFab
q þ 2ξ½aFb�c

q Aq;c�:

ðB8Þ

To deduce this expression, we use the identities

ξcZqðϕÞFab
q Fq;cb ¼ ∇bðθqZqðϕÞFab

q Þ; ðB9Þ

ξaZqðϕÞF2
q ¼ ∇bð4ξ½aZqðϕÞFb�c

q Aq;c þ 2ψqZqðϕÞFab
q Þ;
ðB10Þ

where the latter of these can be realized from rearranging
the Lie derivative LξFq;ab ¼ ξc∇cFq;ab þ Fq;bc∇aξ

c þ
Fq;ac∇bξ

c ¼ 0. Now, as long as any components of ξ
vanish we can deduce a conserved quantity. By choosing
ξ ¼ ∇t, it is clear that the xi components then generate
conserved quantities, which are dual to the boundary heat
currents.

APPENDIX C: RENORMALIZATION
FOR CURRENTS

With the counterterms provided in Eq. (16), we find that

T x1
t ¼ jðϵÞ ðC1Þ

and as such we would like to construct our boundary theory
such that this is the response to our metric variation.
Presently, we would find that the boundary variation leaves
a source term [46] in the action. This is not a problem for
z ¼ 1, but otherwise this term is divergent. To mollify this
divergence, we can recast the intrinsic metric γab as

γabdxadxb ¼ −n2
�
dt −

ni
n2

dxi
�

2

þ σijdxidxj; ðC2Þ

akin to the ADM formalism but where our boundary
spacetime is instead foliated by the normalized timelike
covector 1

n∇t. Then we can consider the fundamental
variational objects of our theory to be n, ni and σij instead
of the boundary metric. Our variation becomes

δI ¼
Z
∂M

��
−T ttn2 þ T ij ninj

n2

�
δn
n

− T i
t
δni
n2

þ 1

2
T ijδσij þ � � �

�
; ðC3Þ

and now the source term present in the δni term decays.
Additionally, thanks to our formulation of ni as a small
parameter, the response to the normalized variation of the
lapse δn=n is exactly T t

t. Thus nothing about our static
background scheme is modified.

APPENDIX D: LINEAR TIME SOURCES

Linear time sources provide a straightforward scheme for
deducing DC response functions. Additionally, through our
gauge symmetries, they have a clear interpretation as
temperature and chemical potential gradients. We can
transform the metric and Uð1Þ fields as

gab → gab þ Lξgab; ðD1Þ

Aq;a → Aq;a þ LξAq;a þ∇aΛq; ðD2Þ

where ξ parametrizes an infinitesimal coordinate trans-
formation xa → xa þ ξa and each Λq a Uð1Þ transforma-
tion, respectively. For the choices

ξ ¼ −tx1
∇T
T

∇t; ðD3Þ

Λq ¼ tx1∇μq; ðD4Þ

our ansatz sources become

δds2 ¼ 2r2zfx1
∇T
T

dt2; ðD5Þ

δAq ¼ x1
�
∇μq − Aq;t

∇T
T

�
dt; ðD6Þ

which are exactly the gradients we would expect for small
perturbations of T and μq. The form of the temperature
fluctuations are determined by perturbing the period of
Euclidean time, 1=T.
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