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Abstract

The mass and coupling of the axial-vector tetraquark T 0
bc;ūd̄

(in a short form T 0
bc

) are calculated by 
means of the QCD two-point sum rule method. In computations we take into account contributions arising 
from various quark, gluon and mixed vacuum condensates up to dimension 10. The central value of the 
mass m = (7105 ± 155) MeV lies below the thresholds for the strong and electromagnetic decays of the 
T 0
bc

state, and hence it transforms to conventional mesons only through the weak decays. In the case of 
m = 7260 MeV the tetraquark T 0

bc
becomes the strong- and electromagnetic-interaction unstable particle. 

In the first case, we find the full width and mean lifetime of T 0
bc

using its semileptonic decays T 0
bc

→
T +
cc;ūd̄

lνl (l = e, μ, τ ), where the final-state tetraquark is a scalar state. We compute also partial widths of 

the nonleptonic weak decays T 0
bc

→ T +
cc;ūd̄

π−(K−, D−, D−
s ), and take into account their effects on the 

full width of T 0
bc

. In the context of the second scenario we calculate partial widths of S-wave strong decays 

T 0
bc

→ B∗−D+ and T 0
bc

→ B
∗0

D0, and using these channels evaluate the full width of T 0
bc

. Predictions for 
�full = (3.98 ± 0.51) × 10−10 MeV and mean lifetime τ = 1.65+0.25

−0.18 ps of T 0
bc

obtained in the context of 
the first option, as well as the full width �full = (63.5 ± 8.9) MeV extracted in the second scenario may be 
useful for experimental and theoretical exploration of double-heavy exotic mesons.
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1. Introduction

During last two decades double-heavy tetraquarks as real candidates to stable four-quark states 
became objects of intensive studies. In the pioneering papers [1–3] it was demonstrated that a 
heavy Q and light q quarks may form the stable exotic mesons QQq̄q̄ provided the ratio mQ/mq

is large enough. These results were obtained in the context of a potential model with the additive 
pairwise interaction, but even models with relaxed restrictions on the confining potential led to 
the similar conclusions. Indeed, in accordance with Ref. [4] the isoscalar axial-vector tetraquark 
T −

bb;ud
(or T −

bb) turns to be strong-interaction stable state that lies below the BB
∗

threshold. It 
is worth noting that an only constraint imposed in Ref. [4] on the potential was its finiteness 
at close distances of two particles. Therefore, T −

bb decays to conventional mesons only through 
weak processes and has a long lifetime, which is important for its experimental exploration. A 
situation with the tetraquarks Tbc;q̄q̄ ′ and Tcc;q̄q̄ ′ was not clear, because bc and cc diquarks might 
constitute both stable and unstable states.

In years followed after this progress, various models of high energy physics were used to in-
vestigate the double-heavy tetraquarks TQQ [5–12]. An interest to these problems was renewed 
by results of the LHCb Collaboration which measured parameters of the doubly charmed baryon 
�++

cc = ccu [13]. These parameters were used in Ref. [14] to evaluate the mass and analyze pos-
sible decay channels of T −

bb. Predictions obtained there confirmed the stability of T −
bb against the 

strong and electromagnetic decays to B−B
∗0

and B−B
0
γ , respectively. The strong-interaction 

stable nature of the tetraquarks T −
bb, T −

bb;us
, and T 0

bb;ds
was demonstrated in Ref. [15] by invoking 

heavy-quark symmetry relations. The mass and coupling of T −
bb was evaluated in our work [16]

as well, in which we estimated also its full width and mean lifetime using the semileptonic decay 
channel T −

bb → Z0
bc;ud

lν̄l .
Another class of four-quark mesons, namely one that contains the heavy diquarks bc is 

on agenda of physicists as well. The scalar and axial-vector tetraquarks bcud are particles of 
special interest, because they may form strong-interaction stable compounds. But calculations 
performed in the context of different approaches lead to controversial results. Thus, the Bethe-
Salpeter method predicts the mass of the scalar tetraquark Z0

bc;ud
(in what follows Z0

bc) at around 
6.93 GeV, which is below the threshold 7145 MeV for S-wave strong decays to heavy mesons 
B−D+ and B0D0 [17]. Recent analysis demonstrated that Z0

bc lies 11 MeV below this threshold 
[14], whereas the authors of Ref. [15] found the masses of the scalar and axial-vector tetraquarks 
bcud equal to 7229 MeV and 7272 MeV, respectively. These predictions make kinematically 
allowed their strong decays to ordinary B−D+/B

0
D0 and B∗D mesons.

It is interesting that lattice calculations prove the strong-interaction stabile nature of the axial-
vector tetraquark udbc, because its mass is below the DB∗ threshold [18]. However, the authors 
could not decide would this exotic meson decay weakly or might transform also to the final state 
DBγ . The stability of JP = 0+ and 1+ isoscalar tetraquarks bcud was confirmed in Ref. [19], 
in which it was found that JP = 0+ state is a strong- and electromagnetic-interaction stable, 
whereas JP = 1+ may also transform through the electromagnetic interaction.

In the context of the QCD sum rule approach the spectroscopic parameters of the scalar 
tetraquark Z0

bc were calculated also in our work [16]. For the mass of Z0
bc our computations 

predicted mZ = (6660 ± 150) MeV, which is considerably below the threshold 7145 MeV. The 
electromagnetic decay modes Z0

bc → B
0
D0

1γ and B∗D∗
0γ are also among forbidden processes, 

because relevant thresholds exceed 7600 MeV and are higher than the mass of Z0 . In other 
bc
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words, in accordance with our results the scalar tetraquark Z0
bc is a strong- and electromagnetic-

interaction stable, and transforms due to weak decays, which were used to find its full width and 
mean lifetime [20].

In the present article we study the axial-vector tetraquark T 0
bc;ud

(hereafter T 0
bc) by computing 

its spectroscopic parameters, full width and mean lifetime. The mass m and coupling f of T 0
bc

are evaluated in the framework of the QCD two-point sum rule method by taking into account 
vacuum expectation values of the local quark, gluon and mixed operators up to dimension ten. 
The mass of T 0

bc extracted in the present work m = (7105 ±155) MeV contains theoretical errors 
typical for sum rule computations, hence, there are two options to find its full width and estimate 
mean lifetime. Thus, the central value of the mass is lower than the thresholds 7190 MeV and 
7286 MeV for strong S-wave decays of T 0

bc to final states B∗−D+/B
∗0

D0 and B−D∗+/B
0
D∗0, 

respectively. This mass is also lower than the threshold 7145 MeV for the electromagnetic decays 
D+B−γ /D0B

0
γ . Therefore, in this case the full width and lifetime of the exotic meson T 0

bc

should be determined from its weak decays. But considering the maximum theoretical prediction 
for m = 7260 MeV, one sees that it is higher than the threshold for strong decays B∗−D+/B

∗0
D0

and electromagnetic transitions D+B−γ /D0B
0
γ . Realization of this scenario means that the 

width of the tetraquark T 0
bc is determined mainly by strong decays, because partial widths of 

weak and electromagnetic processes are very small and can be neglected.
To calculate the full width of the tetraquark T 0

bc, we consider both scenarios. In the first case 
m = 7105 MeV we evaluate partial widths of the processes T 0

bc → T +
cc;ud

lνl (l = e, μ and τ ) 

by treating the final-state tetraquark T +
cc;ud

(in what follows T +
cc ) as a scalar particle. These de-

cays run due to transition b → W−c. The differential rates of these semileptonic decays are 
determined by the weak form factors Gi(q

2) (i = 0, 1, 2, 3), which are evaluated by employing 
the QCD three-point sum rule approach. Then, partial width of the processes T 0

bc → T +
cc lνl can 

be found by integrating the relevant differential rates over the momentum transfer q2. The sum 
rule method does not encompass all kinematically allowed values of q2, therefore we introduce 
fit functions that coincide with sum rule predictions, and can be extrapolated to cover a whole 
integration region.

But a decay b → W−c can be followed by transitions W− → du, su, dc and sc as well. 
Afterwards these quark pairs can form ordinary mesons through different mechanisms. Thus, 
in the hard-scattering picture a pair du, for example, can create conventional mesons with qq

quarks appeared due to a gluon from one of d or u quarks. These processes generate final states 
T 0

bc → T +
ccM1(dq)M2(qu) which are suppressed relative to the semileptonic decays by the fac-

tor α2
s |Vud |2. Alternatively, pairs of quarks du, su, dc and sc can form π−, K− , D− and D−

s

mesons triggering the two-body nonleptonic decays T 0
bc → T +

cc π−(K− , D−, D−
s ). Another class 

of the T 0
bc tetraquark’s weak decays is connected with possibility of direct combination of these 

quarks with ones from T +
cc;ud

and creation of three-meson final states. The two-body and three-
meson nonleptonic decays do not suppressed by additional factors relative to the semileptonic 
decays, and their contributions to full width of T 0

bc may be considerable.
In the second scenario m = 7260 MeV, and this mass is above the threshold for strong decays 

to mesons B∗−D+/B
∗0

D0, but is still below the threshold for other two possible decay modes 
to final states B−D∗+/B

0
D∗0. Therefore, we calculate the partial width of the kinematically 

allowed strong S-wave decays T 0
bc → B∗−D+ and T 0

bc → B
∗0

D0. To this end, we use again the 
QCD three-point sum rule method and evaluate the strong form factors g1(q

2) and g2(q
2). By 
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extrapolating these form factors to the corresponding mass shells we determine couplings of the 
vertices T 0

bcB
∗−D+ and T 0

bcB
∗0

D0, and calculate partial width of these decays. The full width 
of the tetraquark T 0

bc is evaluated using these two dominant strong decay channels.
This article is organized in the following manner: In Section 2, from analysis of the two-point 

correlation function with an appropriate interpolating current, we derive sum rules to evaluate 
the spectroscopic parameters of the tetraquark T 0

bc. In the next Section 3, using the parameters 
of T 0

bc and ones of the final-state tetraquark, we calculate the partial width of its semileptonic 
decays T 0

bc → T +
cc;ūd̄

lνl (l = e, μ, τ ). To this end, we derive the sum rules for the weak form 
factors and by means of fit functions extrapolate them to the whole region, where an integration 
over q2 should be carried out. In Section 4, we analyze the nonleptonic weak decays T 0

bc →
T +

cc π−(K− , D−, D−
s ) of the tetraquark T 0

bc and find their partial widths. Here, we also calculate 
the full width of T 0

bc in the first scenario, i.e., for m = 7105 MeV. The Sec. 5 is devoted to 

calculation of the partial widths of the strong processes T 0
bc → B∗−D+ and T 0

bc → B
∗0

D0, where 
we also evaluate the full width of the tetraquark T 0

bc if m = 7260 MeV. Section 6 is reserved for 
analysis of obtained results, and contains also our concluding notes.

2. Mass and coupling of the axial-vector tetraquark T 0
bc

In this section we extract the spectroscopic parameters of the axial-vector tetraquark T 0
bc from 

the QCD sum rules. To this end, we start from analysis of the correlation function

	μν(p) = i

∫
d4xeipx〈0|T {Jμ(x)J †

ν (0)}|0〉, (1)

where Jμ(x) is the interpolating current to the axial-vector tetraquark T 0
bc. We suggest that T 0

bc is 
built of the scalar diquark and axial-vector antidiquark, and hence its current has the form

Jμ(x) = bT
a (x)Cγ5cb(x)

[
ua(x)γμCd

T

b (x) − ub(x)γμCd
T

a (x)
]
. (2)

Here a and b are the color indices and C is the charge conjugation operator. The current (2)
has the antisymmetric color structure [3c]bc ⊗ [3c]ud and describes a four-quark state with the 

quantum numbers 1+, where bT Cγ5c and uγμCd
T

are the scalar diquark and axial-vector an-
tidiquark, respectively.

To derive required sum rules, in accordance with prescriptions of the method we express the 
correlation function 	μν(p) in terms of the tetraquark’s mass m and coupling f . We consider 
T 0

bc as a ground-state particle, and isolate the first term in 	Phys
μν (p)

	
Phys
μν (p) = 〈0|Jμ|T 0

bc(p)〉〈T 0
bc(p)|J †

ν |0〉
m2 − p2 + . . . . (3)

Equation (3) is obtained by saturating the correlation function with a complete set of JP = 1+
states and carrying out the integration over x. Contributions of higher resonances and continuum 
states to 	Phys

μν (p) are denoted by the dots.

To simplify further the correlator 	Phys
μν (p) it is useful to define the matrix element

〈0|Jμ|T 0 (p, ε)〉 = f mεμ, (4)
bc
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with εμ being the polarization vector of the T 0
bc state. Then in terms of m and f the correlation 

function 	Phys
μν (p) takes the form

	
Phys
μν (p) = m2f 2

m2 − p2

(
−gμν + pμpν

m2

)
+ . . . . (5)

The QCD side of the sum rule is determined by the correlation function 	μν(p), but calcu-
lated now by employing the quark propagators

	OPE
μν (p) = i

∫
d4xeipxTr

[
γ5S̃

aa′
b (x)γ5S

bb′
c (x)

]
×

{
Tr

[
γμS̃a′b

d (−x)γνS
b′a
u (−x)

]
− Tr

[
γμS̃b′b

d (−x)γνS
a′a
u (−x)

]
−Tr

[
γμS̃a′a

d (−x)γνS
b′b
u (−x)

]
+ Tr

[
γμS̃b′a

d (−x)γνS
a′b
u (−x)

]}
, (6)

where Sab
q (x) is the heavy (b, c)- or light (u, d)-quark propagators. Their explicit expressions 

can be found in Ref. [21]. In Eq. (6) we use the shorthand notation

S̃q(x) = CST
q (x)C. (7)

The correlation function 	μν(p) contains the different Lorentz structures one of which should 
be chosen to get the sum rules. The invariant amplitudes 	Phys(p2) and 	OPE(p2) corresponding 
to the terms ∼ gμν are convenient for our aim, because they do not receive contributions from 
the scalar particles.

After picking up and equating corresponding invariant amplitudes, we apply the Borel trans-
formation to both sides of the obtained expression. This is necessary to suppress contributions 
of the higher resonances and continuum states. Afterwards, one has to subtract continuum con-
tributions, which is achieved by invoking suggestion on the quark-hadron duality. The obtained 
equality acquires a dependence on auxiliary parameters of the sum rules M2 and s0: first of them 
is the Borel parameter appeared due to corresponding transformation, the second one s0 is the 
continuum threshold parameter that separates the ground-state and higher resonances from each 
another.

The final sum rule for the mass of the state T 0
bc reads:

m2 =
∫ s0
M2 dssρOPE(s)e−s/M2∫ s0
M2 dsρOPE(s)e−s/M2 , (8)

where M = mb + mc. For the coupling f one obtains the expression

f 2 = 1

m2

s0∫
M2

dsρOPE(s)e(m2−s)/M2
. (9)

Here ρOPE(s) is the two-point spectral density, which is determined as an imaginary part of the 
term in 	OPE

μν (p) proportional to gμν , and calculated by taking into account the quark, gluon 
and mixed vacuum condensates up to dimension ten. Explicit expression of ρOPE(s) is rather 
cumbersome, hence we refrain from providing it here.

In addition to M2 and s0, numerical values of which depend on the considering problem, 
the sum rules (8) and (9) contain also the vacuum condensates, as well as the masses of b and 
c-quarks
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Fig. 1. The pole contribution as a function of the Borel and continuum threshold parameters M2 and s0.

〈q̄q〉 = −(0.24 ± 0.01)3 GeV3, 〈qgsσGq〉 = m2
0〈qq〉, m2

0 = (0.8 ± 0.1) GeV2,

〈αsG
2

π
〉 = (0.012 ± 0.004) GeV4, 〈g3

s G
3〉 = (0.57 ± 0.29) GeV6,

mb = 4.18+0.04
−0.03 GeV, mc = 1.275+0.025

−0.035 GeV. (10)

The parameters M2 and s0 should satisfy constraints that are standard for the sum rule com-
putations. Thus, at maximum of the Borel parameter the pole contribution (PC) should be larger 
than some fixed value, whereas the main criterium to fix the minimum of a Borel window is 
convergence of the operator product expansion (OPE). Additionally, at minimum M2 the per-
turbative contribution has to exceed the nonperturbative terms considerably. Because quantities 
extracted from the sum rules demonstrate dependence on the auxiliary parameters, the regions 
for M2 and s0 should minimize these side effects, as well.

Our analysis proves that the working regions

M2 ∈ [5.5, 7] GeV2, s0 ∈ [61, 63] GeV2, (11)

satisfy all aforementioned restrictions. Thus, within the region M2 ∈ [5.5, 7] GeV2 the pole 
contribution decreases approximately from 0.58 till 0.34. A detailed picture for PC is presented 
in Fig. 1, where we plot the pole contribution as a function of M2 and s0. The minimum M2

min is 
found from analysis of the ratio

R(M2) = 	DimN(M2, s0)

	(M2, s0)
, (12)

where 	(M2, s0) is the Borel transformed and subtracted function 	OPE(p2). In the present 
work as a measure of the convergence we use the sum of last three terms in OPE DimN =
Dim(8 + 9 + 10) and impose the constraint R(M2

min) ≤ 0.01 which is fulfilled at 5.5 GeV2. The 
perturbative contribution at M2 = 5.5 GeV2 amounts to 0.68 part of the full result and overshoots 
contribution of the nonperturbative terms. In Fig. 2 we demonstrate the dependence of the mass 
m on M2 and s0, where weak residual effects of these parameters are seen.

Our results for m and f read:

m = (7105 ± 155) MeV, f = (1.0 ± 0.2) × 10−2 GeV4. (13)

Theoretical errors of the mass is milder than ones of the coupling, nevertheless all these ambi-
guities do not exceed standard limits of sum rule computations reaching ±2.2% and ±20% of 
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Fig. 2. The same as in Fig. 1, but for the mass of the tetraquark T 0
bc

.

the corresponding central values, respectively. The spectroscopic parameters of the axial-vector 
tetraquark T 0

bc evaluated in this section from a basis for our further investigations.

3. Semileptonic decays T 0
bc → T +

cc lνl

As it has been emphasized above for m = 7105 MeV the tetraquark T 0
bc is stable against 

the strong and electromagnetic interactions, because then m resides 85/190 MeV and 45 MeV
below the strong and electromagnetic thresholds, respectively. In other words, T 0

bc can dissociate 
to conventional mesons only due to weak transformations. One of such transitions is weak decay 
b → W−c → clν of the heavy b-quark, that triggers the semileptonic decays T 0

bc → T +
cc lνl of the 

tetraquark T 0
bc. It is not difficult to see, that due to large mass difference between the tetraquarks 

T 0
bc and T +

cc , all of the decays T 0
bc → T +

cc lνl with l = e, μ and τ are kinematically allowed 
processes. We restrict ourselves by considering only the dominant process b → W−c, because 
due to smallness of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vbu|2/|Vbc|2 �
0.01 the decay b → W−u is suppressed relative to the first one.

At the tree-level, the transition b → W−c is described by means of the effective Hamiltonian

Heff = GF√
2

Vbccγμ(1 − γ5)blγ μ(1 − γ5)νl. (14)

Here GF is the Fermi coupling constant, and Vbc is the element of the CKM matrix. After 
substituting Heff between the initial and final tetraquark fields and factoring out the leptonic 
piece we get the matrix element of the current

J tr
μ = cγμ(1 − γ5)b, (15)

which has to be calculated in terms of the weak form factors Gi(q
2): they parameterize the 

long-distance dynamics of the transition

〈T +
cc (p′)|J tr

μ |T 0
bc(p, ε)〉 = mG0(q

2)εμ + G1(q
2)

m
(εp′)Pμ + G2(q

2)

m
(εp′)qμ

+i
G3(q

2)

m
εμναβενpαp′β. (16)

In Eq. (16) p and ε are the momentum and polarization vector of the T 0
bc, p′ is the momentum of 

the scalar tetraquark T +
cc . Here, we also use the shorthand notations m = m +mT and Pμ = p′

μ +
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pμ with mT being the mass of the final-state tetraquark. The qμ = pμ − p′
μ is the momentum 

transferred to the leptons changing within the limits m2
l ≤ q2 ≤ (m −mT )2, where ml is the mass 

of the lepton l.
The form factors Gi(q

2) are key quantities to be extracted from the sum rules. To this end, we 
consider the following three-point correlation function:

	μν(p,p′) = i2
∫

d4xd4yei(p′y−px)〈0|T {J T (y)J tr
μ(0)J

†

ν (x)}|0〉, (17)

where Jν(x) and J T (y) are the interpolating currents corresponding to the states T 0
bc and T +

cc , 
respectively. The current Jν(x) has been introduced by Eq. (2). The interpolating current for the 
stateT +

cc is given by the expression:

J T (y) = εε̃[cT
b (y)Cγαcc(y)][ud(y)γ αCd

T

e (y)], (18)

where εε̃ = εabcεade. Here, εabc[cT
b Cγαcc] and εade[udγ αCd

T

e ] are the axial-vector diquark and 
antidiquark, respectively. Then the scalar designation of the final tetraquark T +

cc stems naturally 
from the internal structure of the initial four-quark state T 0

bc, which is the axial-vector particle 

composed of the scalar diquark bT Cγ5c and axial-vector antidiquark uγμCd
T

. The semileptonic 
decay T 0

bc → T +
cc + W− runs through b → W−c, which transforms the scalar diquark bc to the 

final axial-vector cc, leaving, at the same time, unchanged the initial light antidiquark; the light 
axial-vector antidiquark ud appears both in the initial and final states. The designation of T +

cc

as an axial-vector requires ud to be a scalar, which implies additional spin-rearrangement in the 
initial axial-vector ud diquark, which evidently suppresses the corresponding process.

Our strategy to derive sum rules for the form factors Gi(q
2) is the same as in all of this 

kind studies. In fact, to determine the phenomenological side of the sum rule 	Phys
μν (p, p′) we 

express the correlation function 	μν(p, p′) in terms of the spectroscopic parameters of particles 
involving into the decay process. Afterwards we find the QCD side (or OPE) side of the sum 
rules 	OPE

μν (p, p′) by computing the same correlation function in terms of quark propagators. 
By matching the obtained results and utilizing the quark-hadron duality assumption we extract 
sum rules and evaluate the physical quantities of interest. Because the quark propagators contain 
quark, gluon and mixed vacuum condensates, the sum rules express the physical quantities as 
functions of nonperturbative parameters.

In the context of this approach the function 	Phys
μν (p, p′) can be recast into the form

	
Phys
μν (p,p′) = 〈0|J T |T +

cc (p′)〉〈T +
cc (p′)|J tr

μ |T 0
bc(p, ε)〉〈T 0

bc(p, ε)|J †
ν |0〉

(p2 − m2)(p′2 − m2
T )

+ . . . , (19)

where mT is the mass of T +
cc . In the expression above we take into account contribution appear-

ing due to only the ground-state particles, denoting contributions of the higher resonances and 
continuum states by the dots.

Transformation of the ground-state term in 	Phys
μν (p, p′) can be completed by detailing the 

matrix elements in its expression. The matrix element of T 0
bc and 〈T +

cc (p
′)|J tr

μ |T 0
bc(p, ε)〉 are 

given by Eqs. (4) and (16), respectively. The remaining matrix element 〈0|J T |T +
cc (p′)〉 has a 

simple form

〈0|J T |T +(p′)〉 = mT fT , (20)
cc
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and depends only on the mass and coupling fT of the tetraquark T +
cc . Benefiting from these 

explicit formulas, for 	Phys
μν (p, p′, q2) we obtain

	
Phys
μν (p,p′, q2) = f mfT mT

(p2 − m2)(p′2 − m2
T )

{
mG0(q

2)
(
−gμν + pμpν

m2

)
+

[
G1(q

2)

m
Pμ

+G2(q
2)

m
qμ

](
−p′

ν + m2 + m2
T − q2

2m2 pν

)
− i

G3(q
2)

m
εμναβpαp′β

}
+ . . . . (21)

The function 	OPE
μν (p, p′) forms the second side of the sum rules:

	OPE
μν (p,p′) = i2

∫
d4xd4yei(p′y−px)εε̃

(
Tr

[
γ αS̃b′e

d (x − y)γνS
a′d
u (x − y)

]
−Tr

[
γ αS̃a′e

d (x − y)γνS
b′d
u (x − y)

])(
Tr

[
γμ(1 − γ5)S

ia′
b (−x)γ5S̃

bb′
c (y − x)γαSci

c (y)
]

−Tr
[
γμ(1 − γ5)S

ia′
b (−x)γ5S̃

cb′
c (y − x)γαSbi

c (y)
])

. (22)

The sum rules for the form factors Gi(q
2) can be obtained by equating invariant amplitudes 

corresponding to the same Lorentz structures in 	Phys
μν (p, p′, q2) and 	OPE

μν (p, p′). Because 
in the three-point sum rules the invariant amplitudes are functions of p′2 and p2, to suppress 
contributions of higher resonances and continuum states we have to apply the double Borel 
transformation over these variables. As a result, the final expressions depend on a set of Borel 
parameters M2 = (M2

1 , M2
2 ). The continuum subtraction is performed in two channels using two 

continuum threshold parameters s0 = (s0, s′
0). The form factor G0(q

2) is obtained by using the 
structure gμν and reads:

G0(M2, s0, q2) = 1

mf mfT mT

s0∫
M2

ds

s′
0∫

4m2
c

ds′ρ0(s, s
′, q2)e(m2−s)/M2

1 e(m2
T −s′)/M2

2 . (23)

The form factors Gi(q
2) (i = 1, 2, 3) are derived employing other Lorentz structures in the cor-

relation functions:

Gi(M2, s0, q2) = m

f mfT mT

s0∫
M2

ds

s′
0∫

4m2
c

ds′ρi(s, s
′, q2)e(m2−s)/M2

1 e(m2
T −s′)/M2

2 . (24)

The sum rules (23) and (24) are written down in terms of the spectral densities ρi(s, s′, q2)

which are proportional to the imaginary parts of the corresponding terms in 	OPE
μν (p, p′). They 

contain the perturbative and nonperturbative contributions, and are calculated with dimension-5 
accuracy.

To compute the weak form factors Gi(M2, s0, q2) we need numerical values of parameters 
which enter to the sum rules. The vacuum condensates are given in Eq. (10), whereas the spectro-
scopic parameters of the tetraquark T +

cc is borrowed from our work [22]. The mass and coupling 
of the initial particle T 0

bc have been calculated in the previous section; these and other parameters 
are collected in Table 1. In computations, we impose on the auxiliary parameters M2 and s0 the 
same constraints as in the mass calculations: the set (M2

1 , s0) for the initial particle channel is 
determined by Eq. (11), whereas the set (M2, s′ ) for T +

cc is chosen in the form [22]
2 0
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Table 1
The mass and coupling of the final-state 
tetraquark T +

cc and other parameters used in 
numerical computations.

Quantity Value

mT (3845 ± 175) MeV
fT (1.16 ± 0.26) × 10−2 GeV4

me 0.511 MeV
mμ 105.658 MeV
mτ (1776.82 ± 0.16) MeV
GF 1.16637 × 10−5 GeV−2

|Vbc| (42.2 ± 0.08) × 10−3

Fig. 3. The form factor |G0| = |G0(5 GeV2)| as a function of the Borel parameters M2
1 and M2

2 at s0 = 62 GeV2 and 
s′
0 = 20 GeV2.

M2
2 ∈ [3, 4] GeV2, s′

0 ∈ [19, 21] GeV2. (25)

Results of sum rule calculations in the case of G0(q
2), as an example, are shown in Fig. 3. The 

similar predictions have been obtained for the remaining form factors as well. The sum rule 
results for the functions Gi(q

2) are necessary, but not enough to calculate the partial width of 
the process T 0

bc → T +
cc lνl . The reason is that these form factors determine its differential decay 

rate d�/dq2 (see, Appendix in Ref. [16]). The partial width � should be found by integrating 
d�/dq2 over q2 within limits allowed by the kinematical constraints m2

l ≤ q2 ≤ (m −mT )2. But 
sum rules do not cover all this region m2

l ≤ q2 ≤ 10.63 GeV2, and give reliable results within the 
limits m2

l ≤ q2 ≤ 8 GeV2. Therefore, one has to introduce the model functions Gi(q
2), which at 

q2 accessible for the sum rule computations coincide with Gi(q
2), but can be extrapolated to the 

whole integration region.
The fit functions

Gi(q
2) = Gi

0 exp

⎡⎣ci
1

q2

m2
fit

+ ci
2

(
q2

m2
fit

)2
⎤⎦ , (26)

are convenient for these purposes. Here Gi
0, ci

1, ci
2 and m2

fit are the fitted parameters; m2
fit is equal 

to 50.48 GeV2, numerical values of others are collected in Table 2. Our predictions for the partial 
width of the semileptonic decay channels are:
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Table 2
The parameters of the functions Gi(q

2).

Functions Gi
0 ci

1 ci
2

G0(q2) −0.92 0.43 −9.36
G1(q2) 10.87 2.83 3.69
G2(q2) −2.61 0.32 4.44
G3(q2) −13.79 2.06 3.31

�(T 0
bc → T +

cc e
−νe) = (1.44 ± 0.35) × 10−10 MeV,

�(T 0
bc → T +

ccμ
−νμ) = (1.43 ± 0.34) × 10−10 MeV,

�(T 0
bc → T +

cc τ
−ντ ) = (4.3 ± 1.1) × 10−11 MeV. (27)

Results (27) obtained in this section constitute an important part of the full width of T 0
bc, and will 

be used below for its evaluation.

4. Two-body weak decays T 0
bc → T +

ccπ
−(K−, D−, D−

s )

The two-body weak decays T 0
bc → T +

cc π−(K−, D−, D−
s ) of the tetraquark T 0

bc can be con-
sidered in the context of the QCD factorization approach, which allows one to write amplitudes 
and calculate widths of these processes. This method was successfully applied to study two-body 
weak decays of the conventional mesons [23,24], and is used here to investigate two-body decays 
of the tetraquark T 0

bc, when one of the final particles is an exotic meson.
We consider in a detailed form only the decay T 0

bc → T +
cc π−, and write down final predictions 

for remaining channels. At the quark level, the effective Hamiltonian for this decay is given by 
the expression

H̃eff = GF√
2

VbcV
∗
ud [c1(μ)Q1 + c2(μ)Q2] , (28)

where

Q1 = (
diui

)
V−A

(
cj bj

)
V−A , Q2 = (

diuj

)
V−A

(
cj bi

)
V−A , (29)

and i, j are the color indices. Here c1(μ) and c2(μ) are the short-distance Wilson coefficients 
evaluated at the scale μ at which the factorization is assumed to be correct. The shorthand nota-
tion 

(
q1q2

)
V−A in Eq. (29) means(

q1q2
)

V−A = q1γμ(1 − γ5)q2. (30)

The amplitude of this decay can be written down in the following factorized form

A = GF√
2

VbcV
∗
uda1(μ)〈π−(q)| (diui

)
V−A |0〉〈T +

cc (p′)| (cjbj

)
V−A |T 0

bc(p, ε)〉 (31)

where

a1(μ) = c1(μ) + 1

Nc

c2(μ), (32)

and Nc is the number of quark colors. The amplitude A describes the process in which the 
pion π− is generated directly from the color-singlet current 

(
diui

)
. The matrix element 
V−A
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〈T +
cc (p′)| (cj bj

)
V−A |T 0

bc(p, ε)〉 has been introduced by Eq. (16), whereas the matrix element of 
the pion is given by the expression

〈π−(q)| (diui

)
V−A |0〉 = ifπqμ, (33)

and is determined by its decay constant fπ .
Then, it is not difficult to see that A takes the form

A= i
GF√

2
fπVbcV

∗
uda1(μ)(εp′)

[
−mG0(q

2) + G1(q
2)

m
Pq + G2(q

2)

m
m2

π

]
(34)

The width of the decay T 0
bc → T +

cc π
− is

�
(
T 0

bc → T +
cc π

−)
= G2

F f 2
π

48πm2 |Vbc|2|Vud |2a2
1(μ)λ3(m2,m2

T ,m2
π )

×
[
m2|G0|2 + |G1|2

m2 (m2 − m2
T )2 + |G2|2

m2 m4
π − 2 Re

[
G0G

∗
1

]
(m2 − m2

T )

−2 Re
[
G0G

∗
2

]
m2

π + 2 Re
[
G1G

∗
2

] (m2 − m2
T )m2

π

m2

]
, (35)

where the weak form factors Gi(q
2) (i = 0, 1, 2) are taken at q2 = m2

π . In Eq. (35) the function 
λ(m2, m2

T , m2
π ) is given by the formula

λ
(
m2,m2

T ,m2
π

)
= 1

2m

[
m4 + m4

T + m4
π − 2

(
m2m2

T + m2m2
π + m2

T m2
π

)]1/2
. (36)

The similar analysis can be performed for other decays T 0
bc → T +

ccK
−(D−, D−

s ) as well: rele-
vant expressions can by obtained from (35) using the spectroscopic parameters of the mesons 
K−, D−, and D−

s , and by replacements Vud → Vus , Vcd , and Vcs , respectively.
Numerical computations can be carried out after fixing the spectroscopic parameters of the 

final-state pseudoscalar mesons, weak form factors, and CKM matrix elements. The masses 
and decay constants of the final-state pseudoscalar mesons are presented in Table 3. The 
weak form factors Gi(q

2) (i = 0, 1, 2), which are crucial parts of calculations, have been ob-
tained in the previous section. For CKM matrix elements we use |Vud | = 0.97420 ± 0.00021, 
|Vus | = 0.2243 ± 0.0005, |Vcd | = 0.218 ± 0.004 and |Vcs | = 0.997 ± 0.017. The values of the 
Wilson coefficients c1(mb), and c2(mb) with next-to-leading order QCD corrections were pre-
sented in Refs. [25–27]

c1(mb) = 1.117, c2(mb) = −0.257. (37)

For the decay T 0
bc → T +

cc π−, calculations lead to the following result

�
(
T 0

bc → T +
cc π−)

= (1.73 ± 0.38) × 10−11 MeV. (38)

Width of this decay is smaller than widths of the semileptonic decays, but is comparable with 
them. For the remaining weak nonleptonic decays of the tetraquark T 0

bc we get

�
(
T 0

bc → T +
ccK

−)
= (1.27 ± 0.26) × 10−12 MeV,

�
(
T 0

bc → T +
ccD

−)
= (1.65 ± 0.35) × 10−12 MeV,

�
(
T 0

bc → T +
ccD

−
s

)
= (4.74 ± 0.99) × 10−11 MeV. (39)
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Table 3
Masses and decay constants of the pseu-
doscalar mesons.

Quantity Value

mπ 139.570 MeV
mK (493.677 ± 0.016) MeV
mD (1869.61 ± 0.10) MeV
mDs (1968.30 ± 0.11) MeV
fπ 131 MeV
fK (155.72 ± 0.51) MeV
fD (203.7 ± 4.7) MeV
fDs (257.8 ± 4.1) MeV

It is seen that partial widths only of the nonleptonic weak decays T 0
bc → T +

ccD−
s and T 0

bc →
T +

cc π− are comparable with widths of the semileptonic modes (27); contribution to the full width 
of T 0

bc coming from other two weak decays is neglidible.
Using Eqs. (27), (38) and (39), it is not difficult to find the full width and mean lifetime of T 0

bc

�full = (3.98 ± 0.51) × 10−10 MeV, τ = 1.65+0.25
−0.18 × 10−12 s. (40)

Predictions for �full and τ are among main results of the present work.

5. Strong decays T 0
bc → B∗−D+ and T 0

bc → B
∗0

D0

Calculations of the mass of the tetraquark T 0
bc, performed in Section 2, due to uncertainties 

of the sum rule method do not exclude also prediction m = 7260 MeV. In this scenario T 0
bc is 

strong-interaction unstable particle and decays to conventional mesons B∗−D+ and B
∗0

D0. It 
is worth noting that m = 7260 MeV is below the thresholds for strong decays T 0

bc → B−D∗+

and T 0
bc → B

0
D∗0, which forbids kinematically these processes. Below we present in a detailed 

form our analysis of the decay T 0
bc → B∗−D+ and provide final predictions for T 0

bc → B
∗0

D0.
In the context of the QCD three-point sum rule method the strong decay T 0

bc → B∗−D+ can 
be studied using the correlation function

	̃μν(p,p′) = i2
∫

d4xd4yei(p′y−px)〈0|T {JB∗
μ (y)JD(0)J †

ν (x)}|0〉. (41)

Here Jν(x), JD(x) and JB∗
μ (x) are the interpolating currents for the tetraquark T 0

bc and mesons 
D+ and B∗−, respectively. The Jν(x) is given by Eq. (2), whereas for the remaining two currents 
we use

JB∗
μ (x) = ui(x)γμbi(x), JD(x) = d

j
(x)iγ5c

j (x). (42)

The 4-momenta of the tetraquark T 0
bc and meson B∗− are p and p′, therefore, the momentum of 

the meson D+ is q = p − p′.
We follow the standard recipes and calculate the correlation function 	̃μν(p, p′) using both 

the physical parameters of the particles involved into the process, and quark propagators. Sep-
arating the ground-state contribution from ones due to higher resonances and continuum states, 
for the physical side of the sum rule, we get
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	̃
Phys
μν (p,p′) = 〈0|JB∗

μ |B∗−(p′, ε′)〉〈0|JD|D+(q)〉
(p′2 − m2

B∗)(q2 − m2
D)

×〈D+(q)B∗−(p′, ε∗′)|T 0
bc(p, ε)〉〈T 0

bc(p, ε∗)|J †
ν |0〉

(p2 − m2)
+ . . . (43)

The function 	̃Phys
μν (p, p′) can be simplified by expressing the matrix elements in terms of the 

tetraquark and mesons’ physical parameters. The matrix element 〈T 0
bc(p, ε∗)|J †

ν |0〉 can be found 
using Eq. (4). We introduce also the matrix elements of the final-state mesons

〈0|JD|D+〉 = m2
DfD

mc

, 〈0|JB∗
μ |B∗−(p′, ε′)〉 = mB∗fB∗ε′

μ. (44)

Here mD , mB∗ and fD , fB∗ are the masses and decay constants of the mesons D+ and 
B∗−, respectively. In Eq. (44) ε′

μ is the polarization vector of the meson B∗−. We model 
〈D+(q)B∗−(p′, ε∗′)|T 0

bc(p, ε)〉 in the form

〈D+(q)B∗−(p′, ε∗′)|T 0
bc(p, ε)〉 = g1(q

2)
[
(p · p′)(ε · ε∗′) − (p · ε∗′)(p′ · ε)] (45)

and denote by g1(q
2) the strong form factor corresponding to the vertex T 0

bcB
∗−D+. Then, it is 

not difficult to see that

	̃
Phys
μν (p,p′) = g1

m2
DmB∗mffDfB∗

mc(p2 − m2)(p′2 − m2
B∗)

1

(q2 − m2
D)

×
[

1

2
(m2 + m2

B∗ − q2)gμν − pμp′
ν

]
+ . . . (46)

The correlation function 	̃Phys
μν (p, p′) has Lorentz structures proportional to gμν and pμp′

ν . We 
work with the invariant amplitude 	̃Phys(p2, p′2, q2) that corresponds to the structure gμν . The 
double Borel transformation of this amplitude over variables p2 and p′2 forms the phenomeno-
logical side of the sum rule.

To find the QCD side of the three-point sum rule, we calculate 	̃μν(p, p′) in terms of the 
quark propagators and get

	̃OPE
μν (p,p′) =

∫
d4xd4yei(p′y−px)

{
Tr

[
γ5S

jb
c (−x)γ5S̃

ia
b (y − x)γμS̃ai

u (x − y)γνS
bj
d (x)

]
−Tr

[
γ5S

jb
c (−x)γ5S̃

ia
b (y − x)γμS̃bi

u (x − y)γνS
aj
d (x)

]}
. (47)

As in the case of the correlation function 	̃Phys
μν (p, p′) here, we also isolate the structure ∼ gμν

and find the amplitude 	̃OPE(p2, p′2, q2). The standard manipulations with invariant amplitudes 
yield the following sum rule

g1(q
2) = 2mc

mB∗mffDfB∗
q2 − m2

D

m2 + m2
B∗ − q2

em2/M2
1 em2

B∗/M2
2 	̃OPE(M2, s0, q

2), (48)

where M2 = (M2
1 , M2

2 ), and s0 = (s0, s′
0) are the Borel and continuum threshold parameters. 

Apart from q2, the form factor g1(q
2) is also a function of the Borel and continuum threshold 

parameters which, for simplicity, are not shown explicitly in Eq. (48). The set (M2
1 , s0) corre-

sponds to initial tetraquark channel, whereas (M2, s′ ) describes the channel of the heavy final 
2 0
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meson B∗−. Here, 	̃OPE(M2, s0, q2) is the invariant amplitude 	̃OPE(p2, p′2, q2) after the dou-
ble Borel transformation and continuum subtraction procedures:

	̃OPE(M2, s0, q
2) =

s0∫
(mb+mc)2

e−s/M2
1 ds

s′
0∫

m2
b

ds′e−s′/M2
2 ρ

(
s, s′, q2

)
. (49)

The spectral density ρ(s, s′, q2) is calculated as an imaginary part of the relevant amplitude and 
contains the vacuum condensates up to dimension 5.

The parameters, i.e., the vacuum condensates and masses of the b and c quarks, which 
are necessary for numerical computations are given by Eq. (10). The mass and coupling of 
the tetraquark T 0

bc have been calculated in the present work. In computations we also use 
mD0 = (1864.84 ± 0.07) MeV and fD0 = (203.7 ± 4.7) MeV, mB∗ = (5325.2 ± 0.4) MeV and 
fB∗ = (210 ± 6) MeV, respectively. Parameters of the D meson can be read out from Table 3. 
The auxiliary parameters for the T 0

bc channel are chosen in accordance with Eq. (11). For the set 
(M2

2 , s′
0) we use the regions

M2
2 ∈ [4.5, 5.5] GeV2, s′

0 ∈ [32, 34] GeV2. (50)

The sum rule method for g1(q
2) gives reliable predictions only for q2 < 0. Therefore, we 

introduce a variable Q2 = −q2 and denote the new function as g1(Q
2). The width of the decay 

T 0
bc → B∗−D+ has to be computed using the strong form factor at the mass shell of the D+

meson q2 = m2
D . This point is not accessible to sum rule computations, but the problem can 

be solved by employing a fit function G1(Q
2), which at the momenta Q2 > 0 coincides with 

QCD sum rule predictions, but can be extrapolated to the region of Q2 < 0. Then, using the 
interpolating function G1(Q

2), one can find g1(−m2
D). The function G1(Q

2) does not differ 
from ones that we have used in Eq. (26), a difference being only in replacement of the fitting 
mass with the mass of the tetraquark m2

fit → m2

G1(Q
2) = G1

0 exp

[
c̃1

1
Q2

m2 + c̃1
2

(
Q2

m2

)2]
. (51)

The parameters G1
0 , ̃c1

1 and ̃c1
2 have been fixed from numerical analyses G1

0 = 1.11, ̃c1
1 = 14.33, 

and ̃c1
2 = −120.69. This function at the mass shell Q2 = −m2

D gives

g1 ≡ G1(−m2
D) = (0.25 ± 0.03) GeV−1. (52)

The width of decay T 0
bc → B∗−D+ is determined by the formula

�[T 0
bc → B∗−D+] = g2

1m2
B∗

24π
λ

(
3 + 2

λ2

m2
B∗

)
, (53)

where λ = λ 
(
m2,m2

B∗ ,m2
D

)
.

Using Eqs. (52) and (53), one can easily calculate the width of the decay T 0
bc → B∗−D+

�
[
T 0

bc → B∗−D+]
= (31.1 ± 6.2) MeV. (54)

The second process T 0
bc → B

∗0
D0 can be explored by the same manner. Here, we take into 

account that interpolating currents have the following forms
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JB
∗0

μ (x) = d
i
(x)γμbi(x), JD0

(x) = uj (x)iγ5c
j (x). (55)

The remaining operations are standard manipulations in the context of the sum rule method. 
Therefore, we do not see a necessity to provide a detailed information on them. Let us note only 
that the fit function G2(Q

2) has the parameters G1
0 = 1.11, ̃c2

1 = 14.40, and ̃c2
2 = −121.11. At the 

mass shell of the meson D0 for the strong coupling we get

g2

(
−m2

D0

)
= (0.26 ± 0.03) GeV−1, (56)

and

�[T 0
bc → B

∗0
D0] = (32.4 ± 6.3) MeV. (57)

Then, in the second scenario the full width of the axial-vector tetraquark T 0
bc is

�full = (63.5 ± 8.9) MeV. (58)

This prediction for �full is the main result obtained utilizing the second option for m.

6. Analysis and concluding notes

In the present work we have studied, in a rather detailed form, the axial-vector tetraquark T 0
bc. 

As we have emphasized in Section 1, there are different predictions for its mass and stability 
properties in the literature. We have calculated the mass m and coupling f of this tetraquark 
by means of the QCD sum rule method. Our result for m does not allow us to solve unam-
biguously a problem with stability of the tetraquark T 0

bc. Thus, the central value of the mass 
7105 MeV obtained in the present work is below both the strong and electromagnetic thresholds, 
and therefore in this scenario T 0

bc can transform to conventional mesons only through the weak 
transitions. But taking into account theoretical errors of computations and using the maximal 
value of m = 7260 MeV, we see that T 0

bc becomes unstable against the strong and electromag-
netic decays. We have explored both of these scenarios and calculated the width and lifetime of 
T 0

bc .
In the framework of the first scenario, we have calculated the partial widths of the semileptonic 

T 0
bc → T +

cc lνl (l = e, μ and τ ) and two-body weak decays T 0
bc → T +

cc π−(K−, D−, D−
s ) of T 0

bc . 
Using obtained information on these processes we have evaluated its full width �full = (3.98 ±
0.51) × 10−10 MeV and mean lifetime τ ≈ 1.7 ps. In our previous work [20] we computed the 
same parameters of the scalar tetraquark Z0

bc. It is instructive to compare parameters of the scalar 
and axial-vector bcud states with each other. The scalar compound Z0

bc with the mass 6660 MeV
has a more stable nature and lives τ ≈ 21 ps which is considerably longer than τ ≈ 1.7 ps of the 
T 0

bc .
It is known that, the scalar tetraquark T +

cc decays strongly to a pair of conventional D+D0

mesons [22]. Then, we can estimate branching ratios of different weak decay channels of T 0
bc; 

corresponding predictions are collected in Table 4.
If mass of the tetraquark T 0

bc is at around of 7260 MeV, it decays strongly to conventional 
mesons. In present article we have explored this scenario as well, and calculated partial widths 
of S-wave decay channels T 0

bc → B∗−D+ and T 0
bc → B

∗0
D0. The full width �full = (63.5 ±

8.9) MeV of T 0
bc estimated employing these dominant strong decays characterizes T 0

bc as a typical 
unstable tetraquark. Branching ratios of the strong decay modes are equal to

BR(T 0 → B∗−D+) � 0.49, BR(T 0 → B
∗0

D0) � 0.51. (59)
bc bc
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Table 4
The nonleptonic decay chan-
nels of the tetraquark T 0

bc
and 

corresponding branching ratios.

Channels BR
D+D0e−νe 0.36
D+D0μ−νμ 0.36
D+D0τ−ντ 0.11
D+D0π− 0.043
D+D0K− 0.003
D+D0D− 0.004
D+D0D−

s 0.12

Theoretical errors of the sum rule computations and, as a result, different predictions for 
the mass of the tetraquark T 0

bc do not allow us to interpret it unambiguously as strong- and 
electromagnetic-interaction stable or unstable particle. The results obtained in the present article 
can be refined by including into analysis other decay channels of the tetraquark T 0

bc. Thus, the 
weak transition c → W+s can give rise to the semileptonic decays T 0

bc → T −
bs lνl , where T −

bs is 
the scalar tetraquark with content [bs]

[
ud

]
. There are also nonleptoic decays of T 0

bc generated by 
this transition, where final states apart from T −

bs contain the conventional mesons π+ or K+. All 
these questions deserve further detailed investigations, which will provide useful information on 
features of the axial-vector tetraquark T 0

bc and may be useful for its experimental and theoretical 
investigations.
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