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Abstract The conformal version of the antisymmetric
second-order tensor field in four spacetime dimensions does
not have gauge invariance extensively discussed in the lit-
erature for more than half a century. Our first observation
is that, when coupled to fermions, only the conformal ver-
sion provides renormalizability of the theory at the one-loop
level. General considerations are supported by the derivation
of one-loop divergences in the fermionic sector, indicating
good chances for asymptotic freedom. The arguments con-
cerning one-loop renormalizability remain valid in the pres-
ence of self-interactions and the masses for both fermion
and antisymmetric tensor fields. In the flat spacetime limit,
even regardless the conformal symmetry has gone, there is
an expectation to meet renormalizability in all loop orders.

1 Introduction

What we know about fundamental physics converges to the
Minimal Standard Model (MSM) with certain modifications
related to the neutrino masses. On the other hand, this knowl-
edge comes from the particle physics and the tests on acceler-
ators and in the high-precision experiments, both ways pro-
vide the information restricted by available energy scales and
possible large masses of the particles (or bound states, or con-
densates) beyond MSM. The possible particles beyond MSM
may belong to the conventional irreducible representations
of the Lorentz group, i.e., scalars, spinors and vectors. But
there is also a possibility to have other types of fields, such
as an antisymmetric second order tensor, which is the subject
of the present work.

Starting from the 1966 paper [1] (see also [2]), the study of
antisymmetric tensor fields attracted a lot of interest, being an
important part of the gauge field theory. Let us start by men-
tioning a few relevant references. Geometric formulation and
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relation to gravity have been discussed in [3]. Interaction of
antisymmetric field to matter and the formulation of the cor-
responding renormalizable theory was given in [4]. It is worth
noting that the interaction of a Dirac fermion with the electro-
magnetic field tensor Fμν appears naturally in the effective
context of QED (see, e.g., [5–7] and references therein).

The antisymmetric tensor field represents an interesting
theoretical model in many respects (see, e.g., [8–11]), includ-
ing the description of Lorentz violation [12,13]. In the gravi-
tational physics, antisymmetric fields may be a viable (albeit
not extensively explored yet) alternative to scalars and vec-
tors in the models of inflation [14] (see also most recent work
[15] and further references therein). The last aspect looks
especially important owing to the existing expectations to go
far beyond the framework of MSM using cosmological and
astrophysical data instead of laboratory experiments. In both
(cosmology and laboratory) cases, it is important to formu-
late the new field in a consistent way, that should include
interaction with matter (i.e., with fermions, in the first place)
and the possibility to incorporate quantum effects, at least in
the lowest nontrivial orders of the loop expansion.

In the quantum field theory framework, the effective action
of massive antisymmetric fields in curved spacetime was dis-
cussed, e.g., in [16–19]. One can say that many different
issues related to antisymmetric fields have been discussed
and explored in the literature. In the present work, we aim to
explore a local conformal symmetry of the second-order anti-
symmetric tensor field. Previously this issue was addressed in
relation to conformal supergravity [20,21] where the confor-
mal actions similar (albeit not equivalent) to those calculated
below were obtained. Let us also mention the mathematical
works (see, e.g., [22–24] and further references therein) and
the preprint [25], where the conformal operators acting on
k-forms were constructed and explored. In what follows, we
shall obtain the conformal action of this theory with certain
generalizations and also show how the requirement of con-
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formal invariance helps to establish the unique general form
of the action which is compatible with the quantum consis-
tency. Anticipating the result, let us say that this form does
not possess the gauge symmetry [1] and, therefore, requires
that the antisymmetric tensor field propagates more than the
minimal amount of degrees of freedom required by the irre-
ducible representation of the Lorentz group.

In the following, we show how the conformal symmetry is
operational in formulating the consistent action of antisym-
metric field coupled to fermions, and confirm our arguments
by deriving the one-loop divergences coming from the quan-
tum Dirac field loop. The rest of the article is organized as fol-
lows. In Sect. 2 we construct the expressions invariant under
the local conformal symmetry and discuss how this symme-
try helps to fix the general form of renormalizable action,
including in the case when this symmetry is broken by mas-
sive terms. Section 3 reports on the derivation of one-loop
divergences. This calculation includes a number of reduction
relations which are collected in the Appendixes A and B. In
Sect. 4 we write down the action of renormalizable (at least
at the one-loop level) theory which follows from the consid-
erations of the previous sections and explore renormalization
group equations in the new renormalizable model. A short
Sect. 5 presents the flat-spacetime limit of the theory and
arguments of why this theory may be all-loop renormaliz-
able, even despite the guiding conformal symmetry does not
exist in the flat limit. Finally, in Sect. 6 we draw our con-
clusions and describe the possible extensions of the present
work.

The analysis is restricted to the four-dimensional space-
time (4D). The conventions include the signature (+,−,−,

−), regardless the Wick rotation to the Euclidean space is
assumed in the part of the heat-kernel calculations. The
definition of the Riemann tensor is Rα

. βμν = �α
βν,μ −

�α
βμ, ν + ..., of the Ricci tensor Rαβ = Rμ

. αμβ , and the
scalar curvature R = Rα

α . Our notations for derivatives are
∇A = A∇ + (∇A), except those places where there cannot
be misunderstanding.

2 Conformal theory of antisymmetric tensor field

Our first purpose is to construct the theory of antisymmetric
tensor field Bμν = −Bνμ, possessing local conformal sym-
metry in curved spacetime. The first step is to postulate the
transformation rule for this tensor. We define the conformal
transformations as

gμν = ḡμν e
2σ , Bμν = B̄μν e

σ , σ = σ(x). (1)

The indices of the tensors without bars are raised and lowered
using the metric, therefore Bμν = B̄μν e−3σ . We shall see,
in what follows, that (1) is a fortunate choice, providing the

global conformal symmetry for the bilinear action of the field
Bμν with two derivatives. Let us, from the very beginning,
agree that the global transformation is when σ is a constant,
while local transformation assumes σ = σ(x). Indeed, local
conformal symmetry implies a global one, but not vice versa.
However, one can separate the terms in the action which
have a global symmetry and then look for their combinations
possessing local symmetry.

In case the metric gμν and the antisymmetric tensor field
Bμν are coupled to the set of matter fields �i with the confor-
mal weights ki , the condition of conformal symmetry means
that the conformal Noether identity should be satisfied,

2gμν

δSc
δgμν

+ Bμν

δSc
δBμν

+
∑

i

ki�i
δSc
δ�i

= 0, (2)

where the transformation rules for the fields �i are

�i = �̄i e
kiσ . (3)

Our purpose is to formulate the conformal action of the
metric and the field Bμν , and subsequently explore its rele-
vance for the one-loop and higher-loop renormalization. The
first step is to write down the list of obvious local conformal
invariants, including

W1 = √−g BμνBαβCαβμν,

W2 = √−g (BμνB
μν)2,

W3 = √−g BμνB
ναBαβB

βμ, (4)

and

W11 = √−g BμαBνβCαβμν = 1

2
W1. (5)

where Cαβμν is Weyl tensor. The reduction formula (5) can
be easily obtained using the cyclic identify for this tensor,
Cαβμν + Cανβμ + Cαμνβ = 0.

The list of global conformal invariants includes

K1 = √−g BμνBαβ Rμαgνβ,

K2 = √−g BμνB
μνR,

K3 = √−g (∇αBμν)(∇αBμν) = √−g (∇αBμν)
2,

K4 = √−g (∇μB
μν)(∇αBαν) = √−g (∇μB

μν)2. (6)

There are also three reducible expressions

K11 = √−g BμνBαβ Rμναβ = 2K1 − 1

3
K2 + W1.

K12 = √−g BμαBνβ Rμναβ = 1

2
K11.

K31 = √−g (∇αBμν)(∇μBαν) = K4 − 1

6
K2 + 1

2
W1

+∇α

[
Bμν(∇μBαν) − Bαν(∇μBμν)

]
. (7)

Consider the infinitesimal conformal variations of the irre-
ducible terms. The basic variations are (see, e.g., [26])
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δc�
λ
αβ = δλ

ασβ + δλ
βσα − ḡαβσλ,

δc R = −2R̄σ − 6�̄σ,

δc Rαβ = −ḡαβ�̄σ − 2σαβ, (8)

where σα = ∇̄ασ and σαβ = ∇̄α∇̄βσ . The covariant deriva-
tives with bars are constructed with the corresponding metric
ḡαβ .

After certain algebra, we obtain the variations of the terms
(6)

δcK1 = √−ḡ B̄μν
[
2σλ(∇̄λ B̄μν) + 2σν(∇̄λ B̄μλ)

+2σλ(∇̄ν B̄μλ)
]
,

δcK2 = √−ḡ B̄μν
[
12σλ(∇̄λ B̄μν)

]
,

δcK3 = √−ḡ B̄μν
[
4σν(∇̄λ B̄μλ) − 4σλ(∇̄ν B̄μλ)

−2σλ(∇̄λ B̄μν)
]
,

δcK4 = √−ḡ B̄μν
[
2σν(∇̄λ B̄μλ)

]
. (9)

It is easy to see that there are only three different variations,
which can be called Z1, Z2 and Z3. Then

δcK1 = 2Z1 + 2Z2 + 2Z3,

δcK2 = 12Z1,

δcK3 = −2Z1 + 4Z2 − 4Z3,

δcK4 = 2Z2, (10)

from what follows the combination K3 −4K4 +2K1 − 1
6 K2

is invariant. Thus, we arrive at the fourth (and the last) con-
formal invariant

W4 = √−g
{
(∇αBμν)(∇αBμν) − 4(∇μB

μν)(∇αBαν)

+ 2BμνR α
ν Bμα − 1

6
RBμνB

μν
}
. (11)

The last expression is interesting in various respects, so we
can make a list.

(i) A linear combination of the terms (4) and (11) with arbi-
trary coefficients represents a new conformal theory in
4D. The expression very similar to (11) was obtained in
[20] (see also [21]). Other previously known examples
include two- and four-derivative scalars formulated in
[20,27–29], one-derivative and three-derivative spinors
and gauge vector field. It is also worth mentioning the
recent work [30] on the conformal theory of mixed-
symmetry tensors.
One of the unusual features of the conformal model
(11) is the presence of nonminimal interaction of the
CBB-type with an arbitrary coefficient. In all previ-
ously known examples in 4D, the requirement of local
conformal symmetry did not leave space for arbitrary
nonminimal parameters. Such freedom emerges only in
6D for the six-derivative conformal operator acting on
a scalar [31,32].

(ii) Out of the known examples of conformal theories men-
tioned in the first point, only the vector model possesses
also gauge symmetry. One could expect the same for
the antisymmetric field Bμν , but this is not the case. It
is known starting from the seminal paper by Ogievet-
sky and Polubarinov [1], that the “usual” antisymmetric
field theory, in flat spacetime, has a gauge symmetry
under the transformation

δbμν = ∂μξν − ∂νξμ, (12)

where the vector field ξμ satisfies the condition ∂μξμ =
0.
The calculations of the divergences of the vacuum
effective action [17–19] had to deal with the degener-
acy related to this symmetry, making quantization and
the calculations themselves being highly nontrivial and
interesting. Our third observation is that the conformal
term (11) differs from the gauge invariant theory and,
in particular, it is not degenerate.
Let us elaborate on this feature in some detail. One can
see that

Fμνλ = ∇μbνλ + ∇λbμν + ∇νbλμ

= ∂μbνλ + ∂λbμν + ∂νbλμ. (13)

The same replacement of partial derivative by the
covariant one can be performed in (12) and the invari-
ance of Fμνλ obviously holds. A small algebra shows
that the gauge invariant combination has the form

Linv = 1

3

√−g FμνλF
μνλ = √−g

(
K3 − 2K31

)

= √−g
(
K3 − 2K4 + 1

3
K2 − W1

)

= √−g
{
(∇αbμν)

2 − 2(∇μb
μν)2

+1

3
b2
μνR − bμνbαβC

αβμν
}
, (14)

where we used the reduction formula (7). Using the
approach utilized in the search for conformal symmetry,
one can show that the last Lagrangian is a unique gauge
invariant combination with at most two derivatives of
the field.
It is easy to note that the linear combinations in (14) and
(11) are different. One can also verify that the bilinear
form of the gauge invariant Lagrangian (14) is degener-
ate, while the bilinear form of the conformal invariant
Lagrangian (11) is not degenerate. On the other hand,
the conformal transformation in the Lagrangian (14)
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gives

δc
(√−gFμνλF

μνλ
) = 6

√−gBμνσ
λ
(∇μBνλ

+∇λBμν + ∇νBλμ

) �= 0, (15)

that shows its conformal non-invariance, opposite to
(11). Let us note that this difference can be seen already
in the conformal equations of motion derived in [25].

(iii) It is known that the gauge invariant theory of the anti-
symmetric field is equivalent to the theory of a real
scalar field and the classical [1] and quantum [33,34]
levels (the last issue was extensively discussed in differ-
ent frameworks, e.g., in [17,35,36]. On the other hand,
since the conformal model (11) is different from (14),
we should not expect the equivalence with the scalar the-
ory. Thus, the conformal model (11) may be an interest-
ing object of study at both classical and quantum levels.

In cosmology, the new conformal theory may be interest-
ing for describing dark radiation or a basis for new models of
inflation or of the dark sectors of the matter contents of the
late Universe. One of the potentially useful features is that the
interaction terms in (4) open the possibility to have broken
symmetry at low (IR) or high (UV) energies, such that the
same model may have very different conformal properties in
the UV and in the IR. Another potentially interesting aspect
is that the second order in derivatives nonminimal term W1

includes the Weyl tensor and therefore is supposed to affect
only the cosmic perturbations while it decouples from the
conformal factor of the metric.

In quantum theory one can use the new conformal model
given by an arbitrary linear combination of the terms (4)
and (11) to test the important universal features of the trace
anomaly, especially the uniformity of signs of the Weyl-
squared and Gauss-Bonnet terms (see, e.g., [37–39]). We
hope to explore this part in the future works.

iv) Since there are two alternative theories for the antisym-
metric tensor field Bμν , one can ask which of these theories,
i.e. (14) or (11), is “better”. Of course, there is no unique
answer to this question, as it depends on the criteria of the
choice. However, as we shall see, there are important aspects
in which the model (11), based on the conformal symmetry
has an advantage.

If considering a conformal theory of another field (e.g., a
massless fermion) on the background of an arbitrary metric
and antisymmetric field Bμν , we should expect the confor-
mal invariance of the one-loop divergences (more precise,
the 4D limit of the coefficient of the pole in dimensional reg-
ularization), as it was proved in [40]. In the present case, this
means that the logarithmic one-loop divergences represent
a linear combination of the conformal terms. These terms
include the square of the Weyl tensor, Gauss-Bonnet topo-

logical term, total derivative term �R, the conformal terms
(4) and (11) constructed from Bμν and the metric, plus the
total derivatives constructed from the same fields.

One can couple Bμν to the Dirac fermion as follows:

S1/2 = i
∫

d4x
√−g ψ̄

{
γ μ∇μ − �μνBμν − im

}
ψ, (16)

where gamma-matrices are defined in a usual way as γ μ =
eμ
aγ

a , �μν = i
2 (γ μγ ν − γ νγ μ) and m is the mass of the

spinor field. The massless version of this theory possesses
conformal symmetry under (1) plus the standard transforma-
tions for the fermions in 4D,

ψ = ψ∗ e− 3
2 σ , ψ̄ = ψ̄∗ e− 3

2 σ . (17)

Making the comparison with (3), the last formula implies
that the conformal weight of the fermions ψ and ψ̄ is k f =
−3/2.

According to [40], the conformal symmetry should hold in
the one-loop counterterms. Therefore, in the massless case,
the one-loop divergences should be of the form (4) and (11),
plus surface terms, and not of the form (14). On top of that,
the presence of mass means that the violation of the confor-
mal symmetry is soft. As a result, even in the massive case,
when m �= 0, the mass-independent one-loop divergences
are expected to be exactly as in the massless theory, i.e., a
linear combination of (4) and (11).

An additional detail is that fermionic action (16) does
not possess symmetry with respect to the gauge transforma-
tion (12). Instead, the mass-independent part of this action is
invariant under the local conformal transformations (1) and
(17). This means the conformal symmetry plays a critical
(guiding) role in the construction of renormalizable theory
of the antisymmetric field coupled to fermions. Therefore,
applications of these fields that do not rule out the interac-
tion of Bμν with leptons and quarks, should be based on the
Lagrangian given by a linear combination of (4), (11) and the
mass-dependent terms, instead of the gauge invariant expres-
sion (14). In the next section, we shall verify this statement
by deriving the one-loop divergences in the theory (16).

3 One-loop divergences for fermion fields

In order to check the relation between conformal symmetry
and the one-loop renormalizability, let us derive the one-loop
divergences for the Dirac fermion coupled to external metric
and antisymmetric field Bμν . The starting point will be the
action (16). Thus, our purpose is to evaluate the divergent
part of of the expression

�̄(g, B) = − i Tr log Ĥ , (18)
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where

Ĥ = γ μ∇μ − �μνBμν + im. (19)

To reduce (18) to the standard form, we can introduce the
conjugate operator. The simplest choice is to change only
the sign of the mass term,

Ĥ∗ = γ μ∇μ − �μνBμν − im (20)

and take into account that Tr log Ĥ = Tr log Ĥ∗ (see, e.g.,
[39]). After certain algebra (see Appendix A for necessary
details concerning gamma-matrices), we get

�̄(g, B) = − i

2
Tr log F̂, (21)

where

F̂ = Ĥ Ĥ∗ = 1̂� + 2ĥα∇α + �̂. (22)

Starting from this point, we sometimes omit the symbol of
the unit matrix 1̂ and hats over the operators. The remaining
elements of the operator can be reduced to the forms

ĥα = 2γ 5γβ B̃
αβ,

�̂ = m2 − 1

4
R + 2BαβB

αβ − 2i(∇αB
αβ)γβ

− 2iγ 5Bαβ B̃
αβ + 2γ 5(∇α B̃

αβ)γβ

−4i BαβBμν�
μαgνβ, (23)

where the last term vanishes and we use the standard notation
for the dual tensor,

B̃μν = 1

2
εμναβB

αβ. (24)

The one-loop divergences are given by the standard heat-
kernel expression [41] (see also [39] for introduction and
further references), with the sign corresponding to the odd
Grassmann parity of the quantum field,

�̄
(1)
div = μn−4

ε

∫
dnx

√−g tr
{ 1̂

180
(R2

μναβ − R2
αβ + �R)

+ 1

2
P̂2 + 1

12
Ŝ2
μν + 1

6
(�P̂)

}
, (25)

where ε = (4π)2(n − 4) is the parameter of dimensional
regularization and the operators P̂ and Ŝμν are defined as

P̂ = �̂ + 1̂

6
R − ∇μĥ

μ − ĥμĥ
μ,

Ŝμν = R̂μν + ∇ν ĥμ − ∇μĥν + ĥν ĥμ − ĥμĥν. (26)

Here R̂μν = [∇ν,∇μ] in the corresponding space. In the
present case, it is the space of Dirac spinors and therefore we
get the expressions

P̂ = m2 − 1

12
R − 2B2

μν − 2i(∇μB
μν)γν

−2i Bμν B̃
μνγ 5

Ŝμν = − 1

4
Rμνρσ γ ργ σ + 2γ 5γ λ

(∇ν B̃μλ − ∇μ B̃νλ

)

+4
(
γ λγ τ − γ τ γ λ

)
B̃μλ B̃ντ . (27)

Using these building blocks in (25) is simple after deriving
the set of reduction formulas presented in Appendix B. The
result is the expression for the one-loop divergences

�̄
(1)
div = − μn−4

ε

∫
dnx

√−g
{

− 4

3

(
W1 + W4

) + 40

3
W2

−32

3
W3 + 8m2B2

μν − 2m4 + 1

3
m2R

+ 1

20
C2

μναβ − 11

360
E4 + 1

30
�R + 4

3
�B2

μν

}
, (28)

where we use the condensed notations (4), (11) and denote
the Gauss-Bonnet integrand (Euler density in 4D) as E4 =
R2

μναβ − 4R2
μν + R2.

Without the Bμν-dependent terms, the expression for the
divergences has the standard well-known form (see, e.g.,
[42]). When the field Bμν is present, we note that there are
all the terms expected from the dimension and covariance
arguments. Remarkably, four of these terms are in the con-
formal combination (11). It is certainly instructive that the
mass-free Bμν-dependent terms form conformal invariants
W1,2,3,4. This property is owing to several cancelations, that
can be explained only by the effect of conformal symmetry.
The result confirms aforementioned theorem [40] concern-
ing the conformal invariance of the one-loop divergences
in the classically conformal invariant theory. Only the mass-
dependent terms in the 4D limit of the integral in (28) violate
Noether identity (2).

4 Renormalization group equations

Taking into account the considerations presented above, we
can formulate the curved-space action of the antisymmetric
field Bμν which produced a renormalizable theory at the one-
loop level. Such an action has the form

SB =
∫

d4x
√−g

{1

2

(
W4 + λW1

) − 1

2
M2Bμν

− 1

4!
(
f2W2 + f3W3 + ζ�Bμν

)

+total derivatives
}

+ Sg. (29)

Here λ is an arbitrary nonminimal parameter of interaction
with the Weyl tensor and f2,3 are arbitrary parameters of the
quartic self-coupling of the antisymmetric field. We included
one of the possible total derivatives for the sake of generality,
but renormalizability in higher loops may require more such
terms, especially the ones quoted in Eq. (7). The coefficient
in front of W4 is chosen positive to avoid the ghost states
with negative kinetic energy. In this paper, we do not discuss
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in full details the surface terms related to total derivatives in
the action (29). These terms will be considered in the sub-
sequent work devoted to the conformal (trace) anomaly and
to the corresponding ambiguities. Finally, the term Sg is the
usual metric-dependent vacuum action, which was discussed
in many ways (see, e.g., [39,42]), so we avoid repeating well-
known things here.

Consider the renormalization and renormalization group
running at the one-loop level. For this, let is rewrite the action
of fermions (16), introducing new coupling constant g,

S1/2 = i
∫

d4x
√−g ψ̄

{
γ μ∇μ − g�μνBμν − im

}
ψ. (30)

Then, omitting purely metric-dependent terms, the expres-
sion for the Bμν-dependent part of the divergences (28)
becomes

�̄
(1)
div(B, g) = − μn−4

ε

∫
dnx

√−g
{1

2

(
k1W1 + k4W4

)

− 1

4!
(
k2W2 + k3W3

)

−1

2
kM B2

μν + kζ �Bμν

}
, (31)

where

k1 = k4 = −8g2

3
, k2 = − 320g4, k3 = 256g4,

kM = − 16g2m2, kζ = 4g2

3
. (32)

To elucidate the construction presented above, let us con-
sider the renormalization group equations that correspond to
the coefficients (32). As usual, we require the equality of the
bare and renormalized actions S0 = S + �S = SR , where
the local counterterms are �S = −�̄

(1)
div(B, g). All subse-

quent formulas are restricted to the one-loop approximation,
which means, in particular, O(1/ε), while the higher orders
are neglected.

From the term W4, we get the renormalization relation
between bare B(0)

μν and renormalized Bμν fields,

B(0)
μν = μ

n−4
2

(
1 + k4

2ε

)
Bμν. (33)

At this point, we meet an important difference with other
theories, such as QED. For the coupling constant g we require

g0B
0
μν = gBμν. (34)

The mentioned difference is that, in the present case, there
is no gauge symmetry that protects the product gBμν and
hence this relation is based only on the possibility of hiding
g inside the field and attribute the running to the logarithmic
form factor for the W4 term. Let us note that the correspond-
ing symmetry may be eventually formulated, as it will be

discussed in the Conclusions. As a result of (34), in the one-
loop approximation we get

g0 = μ
n−4

2

(
1 − k4

2ε

)
g. (35)

Starting from this point, the considerations are quite standard.
After small algebra, we arrive at the renormalization relations
for the parameters λ, f2 and f3 in the form

λ0 = λ + k1 − k4λ

ε
,

f 0
2,3 = μ4−n

(
f2,3 + k2,3 − 2k4 f2,3

ε

)
, (36)

and for the massive and surface terms

M2
0 = M2 + kM − k4M2

ε
,

ζ0 = ζ + kζ − k4ζ

ε
. (37)

The beta functions are defined as usual, e.g.,

βg = lim
n→4

μ
dg

dμ
. (38)

Direct calculations give

μ
dg

dμ
= n − 4

2
g + g

dk4

dg
= n − 4

2
g − 4

3(4π)2 g3. (39)

Let us give the list of similar expressions for the parameter
λ and coupling constants,

μ
dλ

dμ
= 1

2(4π)2

(
g
dk1

dg
− λg

dk4

dg

)

= 8

3(4π)2 g2(λ − 1),

μ
d f2,3

dμ
= (n − 4) f2,3 + 1

(4π)2

(
k2,3 + f2,3 g

dk4

dg

)
. (40)

The derivation of the relations (39) and (40) does not depend
on the specific form of the coefficients k1,2,3,4 and can be
useful in the theory with quantum Bμν .

Consider the solutions of the renormalization group equa-
tions. For compactness, we denote t = log(μ/μ0) and
attribute index zero to the values of running quantities at
the fiducial scale μ0. For the square of the running coupling
g(t) we meet

dg2

dt
= − 8

3(4π)2 g4 = − a2 g4, a2 = 1

6π2 . (41)

This is the typical equation for the asymptotic freedom in the
UV, with the solution

g2(t) = g2
0

1 + a2g2
0 t

. (42)

The following observation is in order. The self-interaction
terms of the field Bμν have fourth powers of this field. This
means the following consequence. According to the power
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counting, even if we add the contributions of the quantum
antisymmetric tensor field, at the one loop level the equation
(41) and the solution (42) do not modify. Of course, this
concerns only the effective charge g(μ). The renormalization
group equations for other couplings, namely λ, f1 and f2 will
get modified.

For the running kinetic nonminimal parameter λ(t) we get

λ(t) = 1 + (λ0 − 1)
(
1 + a2g2

0 t
)
, (43)

that means λ = 1 is UV-unstable fixed point. For an arbitrary
initial value λ0 �= 1, this parameter logarithmically runs to
infinity with the sign defined by the one of λ0 − 1.

For the running couplings f2,3(t) we need to solve the
equations

d f2,3

dt
= C2,3g

4 − 2a2g2 f2,3,

C2,3 = 1

(4π)2 (−320, 256). (44)

This equation can be explored using the standard trick [43].
For the ratios between f2,3(t) and g2(t) we get the solutions

f̄2,3(t) = f2,3(t)

g2(t)
=

(
f̄ 0
2,3 − C2,3

a2

)[
1 + a2g2

0 t
]−1

, (45)

indicating UV stable fixed points at the values f̄2,3 = C2,3

a2 .

Let us note that the fixed point for f̄2 has a negative sign,
which means possible problems with the stability of effec-
tive potential in the UV. Indeed, this feature may change
after taking the quantum effects of the self-interactions into
account, as this is also possible for the scalar potential [43].
In any case, within the given approximation, both running
couplings f2,3(t) manifest asymptotic freedom behavior in
the UV, independent of the sign of the coefficients C2,3.

The beta functions for M2 and ζ have the form

μ
dM2

dμ
= 1

2(4π)2

(
M2g

dk4

dg
− g

dkM
dg

)

= − g2a2(M2 − 6m2),

μ
dζ

dμ
= 1

2(4π)2

(
ζg

dk4

dg
− g

dkζ

dg

)

= −g2a2
(
ζ + 1

2

)
. (46)

The solutions of the corresponding equations can be easily
found and are similar to (45), but we skip these formulas
here, as they are not very informative.

5 Flat limit and renormalizability

In the flat limit, the sum of N copies of the fermionic action
(30) and (29), gives

S f lat =
∫

d4x

{
N∑

k=1

iψ̄k
(
γ μ∇μ − g�μνBμν − im

)
ψk

+1

2
(∂αBμν)

2 − 2(∂μB
μν)2 − 1

2
M2B2

μν

− f2
4! (B

2
μν)

2 − f3
4! BμνB

ναBαβB
βμ

}
, (47)

where all indices are raised and lowered with the Minkowski
metric. The flat-spacetime version of our model gives the
possibility to consider several sides of the renormalizability
problem, so it is useful to elaborate a list of arguments.

(i) Renormalizability of the theory depends on the types of
the counterterms required to cancel divergences in the
given order of the loop expansion. The UV divergences
in quantum field theory are always removed by adding
local counterterms and the model (47) is not supposed
to be an exception.

(ii) The possible violation of renormalizability in confor-
mal quantum theory on a curved spacetime is related
to the violation of the conformal symmetry because of
the trace anomaly. The general structure of anomaly,
including of the effective action induced by anomaly
are pretty well-known (see, e.g., [39] for a review). The
anomaly-induced action [44,45] includes nonlocal and
local terms, usually the last are considered irrelevant.
On the other hand, it is unlikely that the nonlocal terms
produced in the subdiagrams produce local divergent
terms in the superficial integration. Thus, the locality
of the UV divergences may provide the nonlocal terms
in the effective action being non-important for renor-
malizability. On top of this, we know the structure of
the nonlocal terms (see, e.g., [32,38,39,46]) and these
terms certainly vanish in the flat background. Therefore,
the relevant ones for renormalizability (certainly, in the
flat limit) are only the local terms.

(iii) The local terms in the anomaly-induced action usually
depend on the scheme of renormalization, as it was
recently discussed in [47,48] for scalar fields and in [49]
for the axial vector related to torsion.1 Assuming that
the same is true for the theory of antisymmetric field,
there may be a renormalization scheme that provides the
absence of, at least curvature-independent, nonconfor-
mal local terms at higher loops. In this case, the theory
(47) may be all-loop renormalizable.

(iv) The amusing feature of the action (47) is that there is
no local conformal symmetry in the flat limit. But, on
the other hand, the “conformal” restriction on the coeffi-
cients of the two kinetic terms in (47) i.e., (∂αBμν)

2 and

1 This seems to be the closest analog to the case of Bμν , especially in
the part concerning local terms.
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(∂μBμν)2, still holds in the one-loop divergences and,
according to the previous point, may actually hold even
beyond the one-loop approximation, at least in an appro-
priate renormalization scheme.2 This situation resem-
bles the smile of Cheshire Cat, which remains seen even
when the Cat itself has gone.

(v) According to the general theory of interacting fields in
curved spacetime (see, e.g., [38–40]), the renormaliza-
tion of the curvature-independent “minimal” terms is the
same in flat and curved spaces. Therefore, if the relation
between (∂αBμν)

2 and (∂μBμν)2 really holds beyond
one-loop order in flat spacetime, it will be the same
for the curved-space analogs (∇αBμν)

2 and (∇μBμν)2.
Then the loss of renormalizability may occur only owing
to the curvature-dependent terms, violating the form of
the conformal term (11).

6 Conclusions and discussions

We constructed the one-loop renormalizable theory of self-
interacting and interacting with fermions, antisymmetric ten-
sor field. Different from the Abelian or non-Abelian vector
fields, there is no usual gauge invariance in our model, such
that the main symmetry is local conformal invariance. The
invariant action includes the terms (11) with fixed coeffi-
cients, a qualitatively new nonminimal term W1 and the two
self-interaction terms W2,3, which may be used for sponta-
neous or dynamical symmetry breaking.

The conformal invariance requires the presence of the
local metric of spacetime but, even in a flat limit, the effect
of the conformal symmetry is sufficient to provide that the
relation between two kinetic terms in the action (47) holds at
the quantum level. On top of this, there are serious arguments
in favor of all-loop renormalizability of the theory, at least
in the flat limit and using a specially tuned scheme of renor-
malization. Our general considerations are confirmed by the
one-loop calculation of the fermionic contributions to the
divergent part of the effective action of antisymmetric field
and metric. These calculations indicate the possibility of the
asymptotic freedom in the theory, but this feature should be
verified by deriving the divergences in a full theory, including
quantum field Bμν . We expect to clarify this issue elsewhere.

In this first paper, we leave unexplored several aspects of
the new theory, that is supposed to be done in future works.
First of all, it would be interesting to write down the trace
anomaly and the corresponding effective action. It is espe-
cially interesting to consider the ambiguity in the local terms
in the anomaly-induced action since this may be relevant for
better understanding renormalizability beyond the one-loop

2 The elementary evaluation of power counting shows that the renor-
malizability holds at the two-loop level.

order. Another obvious problem to solve is the derivation of
full divergences, including the contributions of the proper
field Bμν , as mentioned above. After this calculation, one
can draw a more definite conclusion about the UV limit in
this theory, including the asymptotic freedom. At the present
stage, we can only claim the asymptotic freedom for a suffi-
ciently large amount of the fermion fields when the fermionic
contributions (41) should dominate.

One more interesting aspect is a possible link to the the-
ory of irreducible tensor field bμν and its action (14). It is
well-known that the free version of the gauge invariant anti-
symmetric field is equivalent to the scalar theory [1]), but
such an equivalence does not hold for the conformal version,
which is considered in the present work. It might happen
that there is a Stückelberg-like procedure linking two kinds
of fields. Elaborating on this issue may be helpful, in partic-
ular, for a better understanding of the relation (34). Another
potentially interesting aspect of the problem is that, differ-
ent from the theory (14), the model (29) may have problems
with the negative-energy states, i.e., ghosts, as discussed in
[50]. In this case, we shall meet a new example of the the-
ory which is renormalizable and not unitary, at least at the
tree level. Since this theory looks simpler than, e.g., higher
derivative quantum gravity, it may serve as a useful model to
explore the issues such as instabilities in the classical solu-
tions and resolution of the problem of ghosts at the quantum
level. This feature makes the theory of renormalizable anti-
symmetric field worth investigating. Another possible appli-
cation is to consider this model in the effective approach,
where it has various interesting phenomenological applica-
tions to particle physics and astrophysics (see, e.g., [51] and
further references therein).

Last, but not least, it would be interesting to explore some
applications of the new model (29) to cosmology and maybe
even to particle physics. Let us note that the model of an anti-
symmetric field without gauge invariance has been already
applied to inflation in [14,15]. Our analysis may be useful in
fixing the coefficients of the terms (∇αBμν)

2 and (∇μBμν)2

and showing the reason to consider other terms in the action,
as they are required to provide consistency at the quantum
level.
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Appendix A: Extended algebra of γ -matrices

Our notations include γ μ = eμ
aγ

a , εμναβ = εabcdeμ
aeν

be
α
ce

β
d

and

γ 5 = −iγ 0γ 1γ 2γ 3 = i

24
εμναβγ μγ νγ αγ β. (48)

All Greek indices are raised and lowered with the metric gμν

and its inverse gμν . Furthermore, we denote the antisymmet-
ric combination as

�μν = i γ [μγ ν] = i

2

(
γ μγ ν − γ νγ μ

)
. (49)

The Clifford algebra for the curved-space gamma-matrices
has the form

γ μγ ν + γ νγ μ = 2gμν. (50)

The full basis in the space of spinor matrices is formed by I ,
γ μ, γ 5, γ 5γ μ, and �μν . Using covariance and parity argu-
ments, we can write the general relation

γ αγ μγ ν = x1γ
αgμν + x2γ

μgαν + x3γ
νgαμ

+i x4γ
5εμναβ γβ, (51)

where x1,2,3,4 are unknown coefficients, which can be easily
found by contracting (51) with gμα and with εμναλ. As a
result, we arrive at the well-known relation

γ αγ μγ ν = γ αgμν − γ μgαν + γ νgαμ + iγ 5εμναβ γβ,

(52)

The consequent formulas are

γ α(γ μγ ν − γ νγ μ) = 2(gμαγ ν − gναγ μ)

+2iγ 5εμναβ γβ,

(γ μγ ν − γ νγ μ)γ α = 2(gναγ μ − gμαγ ν)

+2iγ 5εμναβ γβ,

γ α(γ μγ ν − γ νγ μ) + (γ μγ ν − γ νγ μ)γ α

= 4iγ 5εμναβ γβ. (53)

Using the same approach we used in (51), one can derive
the simplified form of the product of four (and more, if nec-
essary) gamma-matrices. For our purposes it is sufficient to
restrict the consideration by the antisymmetric version of the
product,

γ [μγ ν] γ [αγ β] = iγ 5εμναβ − (
gμαgνβ − gναgμβ

)

+i
(
�μαgνβ − �ναgμβ

+�νβgμα − �μβgνα
)
. (54)

Appendix B: Some algebraic formulas for B̃μν

To elaborate necessary formulas involving B̃μν , we shall use
the contractions of antisymmetric tensors, e.g., εμναβεμνρσ

= −2
(
δα

ρδ
β
σ − δα

σ δ
β
ρ

)
and same method as in Eq. (51), i.e.,

using symmetries, introducing free coefficients and deriving
them using contractions. Skipping the details, let us present
just the results, starting from

B̃μν B̃αβ = 1

3
BμνBαβ + 2

3

(
BμαBνβ − BμβBνα

)

−1

6
B2

ρσ

(
gμαgνβ − gμβgνα

)
. (55)

A partial contraction gives

B̃μν B̃αβgνβ = BμνBαβgνβ − 1

2
Bρσ Bρσ g

μα. (56)

The consequences include the formulas

B̃μν B̃μν = −BμνBμν,

Cαβμν B̃
αβ B̃μν = CαβμνB

αβBμν (57)

and, using also the basic reduction relations (7),

Rαβμν B̃
αβ B̃μν = 2Rαβμν B̃

αμ B̃βν

= CαβμνB
μνBαβ + 2BμνBαβ Rμαgνβ

−2

3
RB2

μν . (58)

For the terms with covariant derivatives, after some alge-
bra, we get

(∇α B̃μν)(∇α B̃μν) = −(∇αBμν)
2,

(∇μ B̃
μν)(∇α B̃αν) = (∇μB

μν)2 − 1

2
(∇αBμν)

2

−1

6
RB2

μν + 1

2
CαβμνB

μνBαβ,

(∇α B̃μν)(∇μ B̃αν) = − 1

2
(∇αBμν)

2 + (∇μB
μν)2. (59)

Finally, for the quartic terms, the reduction formulas are
(B̃μν B̃μν)2 = (BμνBμν)2 and

B̃μνB
μν B̃αβB

αβ = 4

3
BμνB

ναBαβB
βμ,
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B̃μν B̃
να B̃αβ B̃

βμ = BμνB
ναBαβB

βμ. (60)

The last relation can be derived either using (55) or directly,
by using the inverse to (24),

1

2
εμναβ B̃αβ = Bμν. (61)
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