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Motion of a point charge emitting radiation in an electromagnetic field obeys the Abraham–Lorentz–
Dirac equation, with the effects of radiation reaction or self-force incorporated. This class of equations
describing backreaction, including also the equations for gravitational self-force or Einstein’s equation for
cosmology driven by trace anomaly, contains third-order derivative terms. They are known to have
pathologies like the possession of runaway solutions, causality violation in preacceleration, and the need
for an extra second-order derivative initial condition. In our current program we reexamine this old problem
from a different perspective, that of non-Markovian dynamics in open systems. This conceptual and
technical framework has been applied earlier to the study of backreaction of quantum field effects on charge
and mass motions and in early universe cosmology. Here we consider a moving atom whose internal
degrees of freedom, modeled by a harmonic oscillator, are coupled to a scalar field in the same manner as in
scalar electrodynamics. Due to the way it is coupled to the charged particle, the field acts effectively like a
supra-Ohmic environment, although the field itself actually has an Ohmic spectral density. We thus have
cast the problem of radiation reaction to a study of the non-Markovian dynamics of a Brownian oscillator in
a supra-Ohmic environment. Our analysis shows that (a) there is no need for specifying a second derivative
for the initial condition, and (b) there is no preacceleration. These undesirable features in conventional
treatments arise from an inconsistent Markovian assumption: these equations were regarded as Markovian
ab initio, not as a limit of the backreaction-imbued non-Markovian equation of motion. If one starts with
the full non-Markovian dynamical equation and takes the proper Markovian limit judiciously, no harms are
done. Finally, c) there is no causal relation between the higher-derivative term in the equation of motion and
the existence of runaway solutions. The runaway behavior is a consequence that the memory time in the
environment is shorter than a critical value, which in the case of the charged particle is the classical charge
radius. If the charge has an effective size greater than this critical value, its dynamics is stable. When this
reasonable condition is met, radiation reaction understood and treated correctly in the non-Ohmic non-
Markovian dynamics still obeys a third-order derivative equation, but it does not require a second derivative
initial condition, and there is no preacceleration.
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I. INTRODUCTION

An accelerating electric charge emits electromagnetic
radiation, a changing mass quadrupole emits gravitational
radiation. Backreaction of this classical radiation on the
moving charge or mass is known as radiation reaction or

self-force. The equation of motion for the moving charge
including radiation reaction is the famous Abraham–
Lorentz–Dirac (ALD) equation [1–6], that for a mass
including self-force is known as the Mino–Sasaki–
Tanaka–Quinn–Wald (MST-QW) equation [7,8]. Here we
will focus on electromagnetic radiation reaction. Readers
interested in gravitational self-force may find useful refer-
ences in these representative papers and reviews [9–12].
As is well known the ALD equation contains third-order

derivatives with time, which requires the specification of
three instead of two quantities—position, velocity, and
acceleration—as initial conditions. This opens the door to
fictitious force, preacceleration, and ensuing causality
issues. Numerous ingenious order reduction and iteration
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schemes have been proposed to cope with finding physi-
cally meaningful and mathematically sound solutions.
Another well-known issue is the existence of runaway
solutions. Attempts to tame them at late times often lead to
preacceleration problems at the initial time. These are
referred to as the ‘pathologies’ of radiation reaction.
Over time, people have gotten used to living with them.
One reasonable conceptual framework to explain (away)

the origins of the pathologies and to find ways to lesson
their harm is by invoking effective field theory (EFT) [13–
17]. This is a vast field. For seminal papers and reviews on
using EFT concepts or techniques for gravitational radia-
tion and reaction problems, see, e.g., [18–21]. One of the
authors of this paper and collaborators have invoked EFT in
previous work for some of the key issues raised here
[22,23]. In this work we propose a different way to deal
with the problems with far-reaching implications, and to
show that a proper treatment of the backreaction problem
leads to a more satisfactory understanding of its underlying
physics. The conceptual framework is quantum open
systems (QOS) [24–33] and the focus is on treating fully
non-Markovian dynamics.1 We shall show that the path-
ologies arise from taking the Markovian limit improperly.

A. Connection with work of similar veins

Casting EFT in the QOS framework is a subject of
importance in theoretical physics worthy of serious explo-
ration. Closer to what has been done, namely, using QOS
concepts and nonequilibrium techniques (see, e.g., [28,29])
to explore radiation phenomena, we mention two veins, one
we are pursuing now, and the other, one of us has worked
on with collaborators.

1. From quantum fluctuations to radiation and reaction

In a series of recent papers starting with [34], we
explored how fluctuations in a quantum field bring about
quantum radiation from an atom, and how its backreaction
engenders quantum dissipation in the nonequilibrium
dynamics of the internal degrees of freedom of the atom.
We also treated the same issues [35] for a squeezed state of
the quantum field which enjoy applications to cosmological
issues such as particle creation and structure formation. We
then worked our way up to classical radiation and radiation
reaction [36] and showed the fallacy in the folklore of
relating quantum fluctuations in a field with classical

radiation reaction. In this endeavor we invoked two main
ingredients: one from quantum field theory to calculate the
energy flux in a field, the other from quantum dissipative
systems, namely, we demonstrated the existence of a
nonequilibrium fluctuation-dissipation relation between
quantum noise in the field and quantum radiation reaction.
In this paper we turn our attention to unphysical

behaviors in radiation reaction and show that properly
seeking solutions to the full non-Markovian dynamical
equations of motion for the internal degree of freedom
(IDF) of the harmonic atom and correctly taking the
Markovian limit can produce the equations of radiation
reaction with no pathologies associated with the higher-
derivative term. We can also identify the transition from
stable to unstable solutions with the memory times of the
bath. More details are given at the end of this section and in
the Summary section.

2. Derivation of radiation reaction equations via
stochastic field theory

Our present work shares the same root system with two
earlier programs one of us developed with Johnson [22],
Galley, and collaborators [37,38] based on the worldline
influence functional formalism, and stochastic field theory
in its use of QOS concepts and nonequilibrium quantum
field theory techniques for the treatment of quantum
fluctuations/noise, quantum radiation/dissipation, and
classical radiation and radiation reaction/self-force. These
earlier programs focused on the derivation of ALD–
Langevin and MST–QW–Langevin equations. Here we
analyze the solutions of the ALD–Langevin equation. The
simple take home message is the same as what we said
above, that one should start with solving the fully non-
Markovian dynamical equations then take the proper
Markovian limit with care rather than taking a shortcut
to a Markovian equation and find the solutions carrying
pathologies.

3. Non-Markovian dynamics

We model the atom’s IDF by a quantum harmonic
oscillator and use scalar electrodynamics as a model of
the system-field interaction. We first show that a scalar
electromagnetic field corresponds to a supra-Ohmic bath
and derive the Langevin equation for the IDF of the atom
under the influence of the scalar field. We then focus on
seeking the solutions to this equation taking into account
the fully non-Markovian dynamics of the reduced system.
Investigations of non-Markovian processes in QOS are

still in their developmental stage. Beginning three decades
ago, notable landmarks included the derivation of a non-
Markovian master equation for quantum Brownian motion
(QBM) [39,40] (and its associated Fokker–Planck–Wigner
equation [41] and Langevin equation [42,43]), experimen-
tal tests of the effects of non-Markovian environments
[44,45], the many interesting proposals for the criteria and

1There is no contradiction of QOS with effective field theory,
since in our conceptual systematics, EFT is a subclass of open
systems, where primary attention is paid to the systems’ energy
scale and effective closure in the hierarchy of theories, but ignores
the backreaction of the often discarded sectors, that which do not
affect the low energy theory’s effectiveness. A small step towards
placing EFT in the broader physical context and technical
framework of QOS was taken in [24] using the magnitude of
noise representing the higher energy sectors, the castaways, as a
measure of the effectiveness of a low energy EFT.
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measures of non-Markovianity (see these reviews [46–49]),
and studies of non-Markovian behavior in various
schemes of quantum information processing [50–53].
For open system approaches including non-Markovian
dynamics considerations to radiation reaction problems,
see Refs. [54–56]
Most of the papers addressing the non-Markovian

criteria and measures are focused on the open systems
short time dynamics. To see more than just distinguishing
the non-Markovian features from the Markovian, one needs
to go beyond the initial transient stage. One needs to follow
the time evolution of the reduced system at time ranges
long enough to be able to see its fully non-Markovian
dynamics [57]. Serious efforts have been made to find
solutions to the non-Markovian master or Langevin equa-
tions for quantum Brownian motion [42,58–61].

B. Pathologies in ALD equations for radiation reaction

Motion of a charged particle in a field is a standard
example of reduced dynamics in the open system frame-
work, where the charged particle is the system of our
interest and the electromagnetic field serves as its envi-
ronment. Backreactions of the field enter into the equation
of motion of the charged particle in the forms of radiation
reaction (damping) and the Lorentz force. In a quantum
field the Lorentz force is not only time dependent but also
fluctuating.
The electromagnetic field, due to the way it couples with

the charged particle, acts like a supra-Ohmic environment,
although the vector potential itself has an Ohmic spectral
density, shown in Sec. II. The frequency spectrum of the
field typically ranges from zero to infinity, but from
physical considerations, a cutoff frequency exists which
reflects the range of validity of the electromagnetic theory
or the structure of the system it interacts with. When the
charge is assumed to be pointlike, the cutoff frequency is
usually taken to infinity to simplify calculations, if quan-
tum phenomena like pair creation of charged particles are
excluded from one’s considerations. The equation of
motion for the point charge thus obtained is the ALD
equation, which is known to contain third-order time
derivative of the position variable. It accounts for damping
due to the backreaction of emitted radiation in the field
from the charge. The presence of this term leads to the
following pathologies:
(1) Third initial condition: since the equation of motion

is a third-order ordinary differential equation, it
needs three conditions to uniquely determine the
solution, in contrast to two conditions in typical
Newtonian dynamics.

(2) Runway behavior: the solution contains a compo-
nent that grows unbounded exponentially.

(3) Preacceleration: to avoid the runaways, the ALD
equation is often rephrased as an integro-differential

equation. Although the corresponding solution
does not exhibit the runaway behavior, the charge
described by this solution will accelerate before the
force is applied. It violates causality.

We show in this paper that the popular narrative about a
point charge moving in an electromagnetic field is a special
limiting case of the fully non-Markovian dynamics of the
reduced system in the open systems conceptualization and
formulation, namely, the formal Markovian limit. From the
broader perspectives of non-Markovianity in the open
systems dynamics, most of these commonly encountered
pathologies can be eliminated. Namely,
(1) The presence of the third-order time derivative term

is innocuous. There is no need for an additional third
initial condition beyond the usual two.

(2) Presence of third-order time derivative term does not
necessarily lead to runaways. The system’s dynami-
cal stability hinges more on the choice of the cutoff
scale, whose inverse can also be understood as the
memory time of the environment. The instability
(runaway) emerges only when the memory time is
shorter than a critical value.

(3) Preacceleration is not an issue in this context.
To identify how the conventional formulation leads to these
pathologies, we will in Sec. II briefly go over the derivation
of the equation of motion of a Brownian oscillator (Unruh-
DeWitt detector) in electrodynamics in the open systems
framework. In this way we can compare with the more
proper and correct treatment from the fully non-Markovian
dynamics, which is our central theme.
In Sec. III, we discuss the general characteristics and

dynamical stability of the supra-Ohmic Brownian oscil-
lator, coupled to a non-Markovian bath. We show the
shared features in common with a charged oscillator in
scalar electrodynamics. Then in Sec. IV we use a specific
example of bath spectral density to illustrate the ideas
discussed formally in Sec. III. In Appendix A we briefly
summarize the Ohmic dynamics for comparison, and in
Appendix B, we address the ambiguities that arise from
treating the delta function in taking the Markovian limit.
Then we provide more examples of bath spectral densities
in Appendix C for discussions in Sec. III. In particular, we
highlight some unusual properties of the hard-cutoff bath
spectrum. In Appendix D we comment on the higher-order
supra-Ohmic systems.

II. BROWNIAN OSCILLATOR IN SCALAR
ELECTRODYNAMICS

In this section we use the textbook example of radiation
from a charged oscillator in an electromagnetic field to
illustrate the open systems approach in the derivation of the
nonrelativistic ALD equation. We show that the reduced
dynamics of a charged oscillator in an electromagnetic
field, by virtue of the velocity or derivative type of
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coupling, take on a form equivalent to that resulting from its
interaction with a supra-Ohmic, Markovian bath.

A. Nonrelativistic scalar ALD equation

To avoid the complexity from the vectorial nature of the
electromagnetic field, it is sufficient for our purpose to
consider scalar electrodynamics. In the case we consider
here, the results of both descriptions differ by a numerical
factor, caused by the number of polarizations, angular
weight, and the choice of the unit system in electromag-
netism. The scalar field discussed here is analogous to the
vector potential in electromagnetism, and that the equation
of motion of the scalar charge oscillator is parallel to the
Lorentz equation, including the consideration of the reac-
tive force from (scalar field) radiation.
Suppose that the internal degree of freedom χðtÞ of an

Unruh-DeWitt detector is modeled by a one-dimensional,
nonrelativistic oscillator, which carries the scalar charge e.
The external or mechanical degree of freedom (EDF) zðtÞ of
the detector may follow a given trajectory in 3þ 1
Minkowski space, but for our purpose with focus on the
internal degrees of freedom we can assume that it will stay
at rest. The IDF of the detector is coupled to an ambient
massless scalar field ϕðx; tÞ. The oscillator’s velocity _χðtÞ is
coupled to the field ϕðx; tÞ in the same way as in
electrodynamics. For the moment assume that the detector
is pointlike, and the spectrum of the field extends to
infinity. We shall return to this assumption later.
The action of the oscillator-field system as described is

given by

S ¼
Z

ds

�
mB

2
_χ2ðsÞ −mBω

2
B

2
χ2ðsÞ

�

þ e
Z

d4yϕðy; sÞ_χðsÞδðy − zÞ

þ
Z

d4y

�
1

2
½∂sϕðy; sÞ�2 −

1

2
½∂yϕðy; sÞ�2

�
ð2:1Þ

where yμ ¼ ðs; yÞ is the external (spacetime) coordinate.
The overhead dot represents taking the derivatives with
respect to time. The mass and the oscillator’s natural
frequency take on bare values, denoted by the subscript
B, for the moment. Divergent contributions from the
oscillator-field interaction will be dealt with accordingly.
The action (2.1) is seen to describe essentially the scalar
version of electromagnetic interaction, with ϕ playing the
role of the electromagnetic vector potential and e_χ the role
of (internal) electric current.
This action produces a simultaneous set of equations of

motion

mBχ̈ðtÞ þmBω
2
BχðtÞ ¼ −e _ϕðz; tÞ; ð2:2Þ

ϕ̈ðx; tÞ − ∂
2
xϕðx; tÞ ¼ e_χðtÞδðx − zÞ; ð2:3Þ

in analogy with the Lorentz equation of the charge and the
wave equation of the vector potential, respectively. If the
oscillator-field interaction is switched on at t ¼ 0, then
the formal solution to (2.3) is given by

ϕðx; tÞ ¼ ϕhðx; tÞ þ e
Z

t

0

d4yGðϕÞ
R;0ðx; t; y; sÞ_χðsÞδðy − zÞ;

ð2:4Þ
where ϕhðx; tÞ denotes the homogeneous solution to the

wave equation, (2.3). The subscript 0 in GðϕÞ
R;0ðx; t; y; sÞ tells

us that it is the retarded Green’s function of the free scalar
field ϕh, not the full field ϕ. The second term on the
righthand side of (2.4) gives the radiation field emitted by
the charge oscillator. We then substituted (2.4) into (2.2) to
find an equation of motion for the charged oscillator under
the influence of the environment,

mBχ̈ðtÞ þmBω
2
BχðtÞ þ e2

∂

∂t

Z
t

0

dsGðϕÞ
R;0ðz; t; z; sÞ_χðsÞ

¼ −e
∂

∂t
ϕ̂hðz; tÞ: ð2:5Þ

The term on the righthand side plays the role of the Lorentz
force, while the nonlocal expression will account for
radiation damping by the scalar field radiation. In the

coincident spatial limit, we usually write GðϕÞ
R;0ðz; t; z; sÞ as

GðϕÞ
R;0ðt − sÞ to avoid cluttering of notations.
Although the scalar field itself has an Ohmic spectrum,

the velocity coupling can induce supra-Ohmic effects by
the presence of additional time derivatives in the nonlocal
term in (2.5). This can be made more explicit if we write the
nonlocal term as

∂

∂t

Z
t

0

dsGðϕÞ
R;0ðt− sÞ_χðsÞ

¼GðϕÞ
R;0ð0Þ_χðtÞþ

Z
t

0

ds∂tG
ðϕÞ
R;0ðt− sÞ_χðsÞ

¼−Γ̈ðEÞð0ÞχðtÞþ Γ̈ðEÞðtÞχð0Þþ
Z

t

0

ds∂3sΓðEÞðt− sÞχðsÞ:

ð2:6Þ
To place it in the context of supra-Ohmic dynamics we have
used the substitution GðϕÞ

R;0ðτÞ ¼ −∂τΓðEÞðτÞ where ΓðEÞðτÞ is
an Ohmic kernel function, discussed in fuller details in
Appendix A. The third-order time derivative in the last term
will give a factor of κ3 in the Fourier representation of
ΓðEÞðτÞ,

∂
3
τΓðEÞðτÞ ¼ ∂

3
τ

Z
∞

−∞

dκ
2π

IðκÞ
2πκ

e−iκτ ¼ i
Z

∞

−∞

dκ
2π

κ3IðκÞ
2πκ

e−iκτ;

ð2:7Þ
and thus ∂3τΓðEÞðτÞ accounts for the supra-Ohmic effect. The
function IðκÞ is the spectral density of the scalar field ϕ and
has the Ohmic form.
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In the Markovian limit where the cutoff frequency Λ is
taken to infinity, the kernel function ΓðEÞðτÞ is given by

ΓðEÞðτÞ ¼ 1

2π
δðτÞ; ð2:8Þ

and thus the retarded Green’s function of the free

field GðϕÞ
R;0ðτÞ in the spatial coincident limit has a very

simple form

GðϕÞ
R;0ðτÞ ¼ −θðτÞ 1

2π
_δðτÞ; ð2:9Þ

where θðτÞ is the Heaviside function. This is highly
singular. Hereafter we will discuss the confusions and
difficulty arisen in interpreting the supra-Ohmic dynamics,
if the Markovian limit of this kernel function is treated
prima facie as a Dirac-delta function.
Before formally finding the solution, let us first address

the renormalization of the parameters. Inserting (2.9) into
the nonlocal term yields

e2
∂

∂t

Z
t

0

dsGðϕÞ
R ðt− sÞ_χðsÞ

¼ e2

2π

∂

∂t

Z
t

0

ds

�
∂

∂s
δðt− sÞ

�
_χðsÞ

¼ e2

2π

∂

∂t

�
δð0Þ_χðtÞ−δðtÞ_χð0Þ−

Z
t

0

dsδðt− sÞχ̈ðsÞ
�

¼ e2

2π

�
δð0Þχ̈ðtÞ− _δðtÞ_χð0Þ−∂t

Z
t

0

dsδðt− sÞχ̈ðsÞ
�

¼ e2

2π

�
δð0Þχ̈ðtÞ− _δðtÞ_χð0Þ−δðtÞχ̈ð0Þ−1

2
⃛χðtÞ

�
: ð2:10Þ

Here we have given more details in derivations to show the
subtleties: (A) Probably better accepted, the integralR
t
0 ds δðt − sÞχ̈ðsÞ only gives half of the contribution
because heuristically half of the “peak” of the delta function
is used; however, (B) it is less known that when a delta
function is involved in an expression like ∂t

R
t
0 ds δðt −

sÞχ̈ðsÞ should give a result like

∂t

Z
t

0

ds δðt − sÞχ̈ðsÞ ¼ δðtÞχ̈ð0Þ þ 1

2
⃛χðtÞ: ð2:11Þ

The first term on the righthand side may be argued to be
irrelevant when t > 0, but its very existence is needed for a
consistent (formal) Markovian limit and in the consider-
ation of the number of the initial conditions. It is often
omitted inadvertently. A more detailed discussion on
consistent implementation and interpretation of the delta
function in the context of taking the Markovian limit is
discussed in Appendix B. A short conclusion is that we

should interpret the delta function by its asymptotic form,
commensurate with the specified physical setting.
The first term in (2.10) corresponds to mass renormal-

ization, so by the following identifications

mB ↦ mP ¼ mB þ
e2

2π
δð0Þ; mBω

2
B ↦ mPω

2
P ; ð2:12Þ

the equation of motion (2.5) then reduces to2

mPχ̈ðtÞþmPω
2
PχðtÞ−2mPγ ⃛χðtÞ−4mPγ½_δðtÞ_χð0ÞþδðtÞχ̈ð0Þ�

¼−e
∂

∂t
ϕ̂hðz; tÞ; ð2:13Þ

with γ ¼ e2=ð8πmÞ. Here we see the appearance of − ⃛χðtÞ.
It accounts for radiation damping taking the form of a self-
force. It implies that the solution may depend on χ̈ð0Þ, in
addition to χð0Þ and _χð0Þ. Furthermore, this equation of
motion itself contains a few terms that explicitly depend on
the initial conditions. Their presence naturally arises in the
framework of open systems when we rewrite (2.4) as (2.13)
in terms of physical parameters by means of the repeated
integrations by parts in (2.10). Emphatically they are
needed in correctly treating the initial-condition issues.
When t > 0, these terms disappear, and we arrive at the
nonrelativistic ALD equation. The appearance of the ⃛χðtÞ
term in the ALD equation which is not seen in the typical
Newtonian dynamics has drawn much attention to the
invention of schemes to revise the equation of motion by
order reduction, interpretation of the solutions, and dis-
cussions of their consequences.

B. Initial conditions: specification of χ̈ ð0Þ
unnecessary in ALD equation

The formal solution to (2.13) can be given by means of
the Laplace transformation. However, there is a catch. The
Laplace transformation of the delta function is typically
assigned to be 1 because the lower bound in (2.15) is
replaced by 0− in the standard reference. If we use this
convention, we find

2One may construct an equation of motion which has
the form mPχ̈ðtÞ þmPω

2
PχðtÞ − 2mPγ ⃛χðtÞ ¼ −e ∂

∂t ϕ̂hðz; tÞ even
when t ¼ 0, but it describes slightly different dynamics from
(2.13) and will not correspond to the formal Markovian limit of
(3.11) or (3.1). Instead, we will have the Laplace transform of the
solution given by

χ̃ðσÞ ¼ ð1 − 2γσÞσ
σ2 þ ω2

P − 2γσ3
χð0Þ þ 1 − 2γσ

σ2 þ ω2
P − 2γσ3

_χð0Þ

−
2γ

σ2 þ ω2
P − 2γσ3

χ̈ð0Þ þ the particular solution;

slightly different from (2.14).
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χ̃ðσÞ ¼ ð1 − 2γσÞσ
σ2 þ ω2

P − 2γσ3
χð0Þ þ 1þ 2γσ

σ2 þ ω2
P − 2γσ3

_χð0Þ

þ 2γ

σ2 þ ω2
P − 2γσ3

χ̈ð0Þ þ the particular solution;

ð2:14Þ

where the particular solution denotes contribution from the
force term, and the Laplace transform f̃ðσÞ of a function
fðtÞ is defined by

f̃ðσÞ ¼
Z

∞

0

dt e−tσfðtÞ; ð2:15Þ

with Reσ > 0, and the inverse transform is given by

fðtÞ ¼ 1

2πi

Z
C
dσ f̃ðσÞetσ; ð2:16Þ

where the closed contour C encompasses all poles of f̃ðσÞ.
Sometimes, we use the notation like £fðtÞ to denote
applying the Laplace transformation to the function fðtÞ.
We see that the solution in (2.14) needs the input from three
initial conditions χð0Þ, _χð0Þ, and χ̈ð0Þ.
However, from the discussion in Appendix B, the

following seems to us more consistent with the
Markovian limit, if we still set the lower bound in (2.15)
to 0, and heuristically imagine that only half of the delta
function “peak” is used to evaluate the Laplace trans-
formation. Then the third subtlety in this supra-Ohmic
Markovian dynamics is that (C) we will find the Laplace
transform of the delta function is 1=2, and likewise the
Laplace transform of _δðtÞ is −δð0Þ þ σ

2
, instead of σ. Using

this algorithm, we obtain instead that

χ̃ðσÞ ¼ ð1 − 2γσÞσ
σ2 þ ω2

P − 2γσ3
χð0Þ þ 1 − 4γσδð0Þ

σ2 þ ω2
P − 2γσ3

_χð0Þ

þ the particular solution: ð2:17Þ

This result depends on only two initial conditions and
conforms to Newtonian dynamics. The appearance of
δð0Þ may look alarming, but its presence is necessary
when we take the Markovian limit of non-Markovian
dynamics, as will be shown later. Moreover, this solution
is purely formal and is the runaway kind. From the fuller
perspective of the non-Markovian dynamics we shall
present below, the Markovian limit of this supra-Ohmic
non-Markovian equation of motion is inherently unstable
and it is not surprising that it possesses runaway sol-
utions. Finally, as we stressed earlier that it will be more
physically consistent to interpret the delta function by its
asymptotic form. Here we remind the reader again that the
runaway behavior of the solution has nothing to do with
the presence of δð0Þ or its asymptotic form; the runaway

results from the existence of the positive real root
in σ2 þ ω2

P − 2γσ3 ¼ 0.
Earlier in (2.10), we mentioned that a term − e2

2π δðtÞχ̈ð0Þ
is often omitted. The restoration of this term is
important because without its presence, the solution will
still depend on the initial condition χ̈ð0Þ no matter what
convention of the Laplace transformation of the delta
function we take.
The previous discussions on treating the delta function

expressions, in particular in terms of its asymptotic
form, will be better motivated and justified once we learn
more about supra-Ohmic, non-Markovian dynamics in
Sec. III.

C. Runaway behavior mitigated by memories in the
non-Markovian bath field

The salient features revealed in our analysis of the
dynamics of the charge particle in scalar electrodynamics
are: 1) the appearance of the ⃛χðtÞ in the equation motion
does not always imply dynamical instability and the
necessity of the additional initial condition χ̈ð0Þ to
uniquely determine the solution, 2) instability arises
corresponding to the length of the memory time of the
bath, and 3) the description of the Markovian limit in
the supra-Ohmic dynamics is more complicated than in
the Ohmic case. The meaning of the Markovian limit can
only be reached and better understood by adopting a
broader scope, starting from the full non-Markovian
dynamics of the reduced system, as we shall show in
the next section.
The non-Markovianity, or the finite cutoff scale, in the

spectrum of the field can naturally emerge from various
considerations. For example, it can be induced by the
finite-size effect of the charge particle, or by the scale
inherited in the modeling of the field configuration, such
as in the presence of a dielectric or under spatial confine-
ment. It may even reflect the energy scale associated with
the validity of the theory. We will see that in the current
discussion 2γ ¼ e2=ð4πmPÞ plays such a role. It gives the
“radius” of the charge and defines a critical scale so that
when the length scale corresponding to the memory time
is shorter than this radius, the dynamics of the charge
begins to show runaway behavior. This is yet another
reason why one should refrain from treating the charge as
a point particle.
This observation, that the charge should be treated as an

extended object, is not new [62–64]. We reached this
conclusion from the memory time or non-Markovianity
considerations. When the size of the charge is larger than
the classical radius there are no runaway solutions or
preacceleration issues. In fact, these difficulties can be
effectively mitigated by introducing a suitable scale into the
theory or the calculations such as, for example, the switch-
ing-on time scale of the charge-field interaction, the length
scale in the electron form factor due to the shape or the
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charge distribution, or the finite-difference numerical
algorithm3 [22,54,65–67].
In the next section, we shall focus on a class of non-

Markovian dynamics often encountered in Brownian
motion, and provide a systematic elaboration on its
dynamical characteristics. In addition, we will establish
its connection with the (nonrelativistic) non-Markovian
ALD equation and then discuss its Markovian limit. We
also provide a few examples to give concrete pictures of
these dynamical features.

III. NON-MARKOVIAN DYNAMICS IN
SUPRA-OHMIC BATHS

We start with a general discussion of the non-Markovian
dynamics in a supra-Ohmic bath, and identify important but
often neglected features in the nonequilibrium dynamics of
the supra-Ohmic non-Markovian system in the context of
decoherence and entanglement dynamics, such as dynami-
cal stability, and dependence on the initial conditions. Later
in Sec. III B we will discuss its connection with the issue of
radiation reaction of a moving charged particle in an
electromagnetic field invoked in the previous section. In
addition, for readers’ convenience, in Appendix A we
summarize the non-Markovian dynamics in an Ohmic bath
for comparison.

A. Supra-Ohmic non-Markovian Langevin equation

An intuitive, and likely the simplest, way to implement
non-Markovian dynamics in a supra-Ohmic bath is to
choose a standard class of equation of motion for
Brownian motion

mBχ̈ðtÞ þmBω
2
BχðtÞ − e2

Z
t

0

dsGðEÞ
R;0ðt − sÞχðsÞ ¼ eξðtÞ;

ð3:1Þ

but to implement the spectral density of the bath by a supra-
Ohmic form JðκÞ ¼ κλPΛðκÞ with λ > 1. Equation (3.1)
describes the motion of a Brownian oscillator, which is the

reduced system of interest to us, coupled to a supra-Ohmic
thermal Gaussian bath. The influences of the bath are
summarized into a noise force ξðtÞ and a nonlocal expres-
sion in (3.1) that depends on the retarded Green’s function
of the free bath. The latter contains the reaction to the
disturbance to the bath generated by the oscillator when it is
driven by the noise force, and also includes corrections to
or renormalization of the oscillator’s physical parameters.
The retarded Green’s function of the free bath is given by

GðEÞ
R;0ðτÞ ¼ iθðτÞ

Z
∞

0

dκ
2π

JðκÞ
2π

½e−iκτ − eþiκτ�; ð3:2Þ

where θðτÞ is the Heaviside theta function. To comply with
the fluctuation-dissipation relation of the free bath, the
noise ξðtÞ of the bath is required to satisfy the Gaussian
statistics:

hξðtÞi¼ 0; and

1

2
hfξðtÞ;ξðt0Þgi¼GðEÞ

H;0ðτÞ¼
Z

∞

−∞

dκ
2π

JðκÞ
4π

coth
βκ

2
e−iκτ;

ð3:3Þ

where τ ¼ t − t0, and β is the inverse initial bath temper-
ature. Here we will only deal with the λ ¼ 3 case. We will
give a brief description of the higher supra-Ohmic system
in Appendix D.
Since from time to time, we would like to compare the

supra-Ohmic dynamics with the Ohmic one, we will
express the supra-Ohmic kernel functions in terms of
ΓðEÞðτÞ, which is often seen in the context of Ohmic
Brownian motion. The kernel function ΓðEÞðτÞ takes the
form

ΓðEÞðτÞ ¼
Z

∞

−∞

dκ
2π

IðκÞ
2πκ

e−iκτ; ð3:4Þ

such that supra-Ohmic spectral density JðκÞ is related
to the Ohmic spectral density IðκÞ by JðκÞ ¼ κ2IðκÞ, and
the supra-Ohmic retarded Green’s function GðEÞ

R;0ðτÞ is
expressed as

GðEÞ
R;0ðτÞ ¼ θðτÞ ∂

3

∂τ3
ΓðEÞðτÞ: ð3:5Þ

For a bath consisting of a continuum of modes, the kernel
functions can be potentially ill defined. To circumvent this
ambiguity, the function PΛðκÞ is introduced to do the job.
In this paper, we assume that it contains only one scale, the
cutoff frequency Λ. The contributions from the modes of
the bath whose frequencies are higher than Λ will be
suppressed. We also assume that PΛðκÞ is an even function
of κ, and approaches unity when Λ goes to infinity. This is
necessary to ensure a unique Markovian limit, independent

3This is perhaps a good point to compare the work of Ref. [54]
with the present treatment: Both start with the non-Markovianity
consideration from an equation of motion like (2.5), but then the
two approaches differ. The authors of [54] convert the integro-
differential equation (2.5) into an ordinary, but higher-order
differential equation to make connection with the ALD equation.
This is possible for the specific form of spectral density chosen
there. However, for more general bath spectral functions, it is not
a simple task to make such a conversion. These authors identify
the role of the cutoff, the origin of non-Markovianity, in
dynamical stability based on causality requirement. In contrast,
we stay in the non-Markovian formalism, and this allows us to
address instability in a more general context in terms of the factor
1 − 8πγΓðEÞð0Þ, discussed in Sec. III, and to better identify
subtleties surrounding the Markovian limit in supra-Ohmic
dynamics.
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of the functional forms of the spectral densities. The
following three common forms of PΛðκÞ will be discussed
in this paper,

PΛðκÞ ¼ e−
jκj
Λ ; PΛðκÞ ¼

Λ2

Λ2 þ κ2
;

PΛðκÞ ¼ ΘðΛ − κÞΘðκ þ ΛÞ: ð3:6Þ

In the first case, the high frequency modes are exponen-
tially suppressed, while the second form, called Lorentzian,
only algebraically. Thus in certain cases, the latter may not
be enough to ease off the divergence due to the high-
frequency bath modes. The last case, called hard cutoff, is
probably the most naïve way to apply the cutoff. Any mode
with a frequency higher than Λ is outrightly discarded. We
mention this case because we want to warn the danger of it
having some peculiar, undesirable properties when Λ is not
extremely large. The Lorentz spectrum will be treated in
Sec. IV, and the other two examples are relegated to
Appendix C.
Due to the presence of finite Λ in the spectral density,

the nonlocal expression in (3.1) cannot be reduced to a
local form,4 and thus it will allow the past history to
affect the current state of motion. Then for any finite Λ,
the dynamics described by (3.1) will be history depen-
dent, and hence is non-Markovian.5 From the duality
properties of the Fourier transformation, we will expect
that Λ−1 plays the role of memory time. It determines
how far back past history of the motion can affect the
current motion. Taking the Markovian limit by letting
Λ → ∞ can then be understood as letting the memory
time approach zero, and the system dynamics becomes
memoryless; it forgets everything that happens before
the current moment.
We first take care of the renormalization issue in the

supra-Ohmic equation of motion (3.1). The supra-Ohmic
spectral density of the bath implies that the nonlocal term in
(3.1) will have a more serious divergence issue than the
Ohmic bath. Inserting (3.5) into (3.1), we can write the
nonlocal term as

e2
Z

t

0

dsGðEÞ
R ðt−sÞχðsÞ¼ e2

Z
t

0

ds
∂
3

∂s3
ΓðEÞðt−sÞχðsÞ

ð3:7Þ

¼ e2fΓ̈ðEÞð0ÞχðtÞ− Γ̈ðEÞðtÞχð0Þþ _ΓðEÞð0Þ_χðtÞ− _ΓðEÞðtÞ_χð0Þ

þΓðEÞð0Þχ̈ðtÞ−ΓðEÞðtÞχ̈ð0Þg−e2
Z

t

0

dsΓðEÞðt− sÞ ⃛χðsÞ:

ð3:8Þ

The term proportional to χ̈ðtÞ in (3.8) will be absorbed into
mass renormalization. This is not seen in the treatment of
typical Ohmic Brownian motion, where only the natural
frequency needs renormalizing. The term proportional to
χðtÞ is then associated with the frequency renormalization
in the supra-Ohmic case, such that the physical mass and
the physical frequency are respectively given by

mP ¼mBþe2ΓðEÞð0Þ; mPω
2
P ¼mBω

2
Bþe2Γ̈ðEÞð0Þ: ð3:9Þ

For a finiteΛ, the values of Γ̈ðEÞð0Þ, _ΓðEÞð0Þ, ΓðEÞð0Þmay not
be humongous at all, so we may justifiably view the
parameters in (3.9) as the effective ones, which have
absorbed the corrections induced by the interaction
between the system and the bath. Then the equation of
motion (3.1) becomes

mPχ̈ðtÞ þmPω
2
P − e2

Z
t

0

dsΓðEÞðt − sÞ ⃛χðsÞ

− e2½Γ̈ðEÞðtÞχð0Þ þ _ΓðEÞðtÞ_χð0Þ þ ΓðEÞðtÞχ̈ð0Þ� ¼ eξðtÞ;
ð3:10Þ

in terms of physical or effective parameters. Note that
_ΓðEÞð0Þ ¼ 0 when the power of the monomial before PΛðκÞ
in the bath spectral density is an odd integer. Here, the
appearance of χ and its time derivatives at t ¼ 0 in the
equation of motion is a consequence of sudden switch on
and casting the original equation of motion (3.1) in terms of
physical parameters like mass and natural frequency
[58,59]. On the other hand, if instead we introduce a
gradual switching by explicitly implementing a time-
dependent coupling constant eðtÞ which increases suffi-
ciently smoothly from the zero value at the initial time t ¼
0 to full strength over a finite time interval, then the terms
like χ and its time derivatives at t ¼ 0 in (3.10) may
disappear, depending on the time derivatives of the cou-
pling constant at t ¼ 0, as can be inspected by replacing
eχðsÞ with eðsÞχðsÞ in (3.8).

B. Connection with the non-Markovian ALD equation

Before delving deeply into the issues associated with
supra-Ohmic non-Markovian dynamics, let us take a quick

4For example, if the kernel function ΓðEÞðτÞ is proportional to
δðτÞ, then the integral expression like

R
t
0 ds δðt − sÞχðsÞ reduces

to 1
2
χðtÞ, local in term. We do not mean to rewrite the whole

nonlocal equation of motion into the so-called time-local form.
The latter can in principle be achieved for the linear non-
Markovian equation of motion.

5In this paper, non-Markovianity has a broader connotation,
referring to memories in the open system’s dynamics, not an
approximation used in expressing the two-point function. For
example, the Hadamard function GðEÞ

H;0ðτÞ in (3.3) in the high-
temperature limit is approximately given by (the derivative of) the
delta function, and is said to have a Markovian form. We refrain
from this narrower sense of usage.
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look at how the non-Markovian version of ALD equation is
related to (3.10) and what common features they may share.
We have stated in the previous section that from the

viewpoint of non-Markovian dynamics, the dynamics
described by the equation of motion (2.5) is destined to
be unstable. In addition, we have come across quite a few
subtleties and obscurities in interpreting this Markovian
equation. The origin of these difficulties arises from the
Markovian spectrum of the scalar field. This can be most
clearly understood if we replace in (2.5) the delta function
kernel by a more general Ohmic non-Markovian kernel
function ΓðEÞ, (3.4). It also allows us to see the connection
with the supra-Ohmic dynamics discussed earlier. Without
repeating the derivation, we find that, from (2.5), the non-
Markovian ALD equation of motion corresponding to
(2.13) takes the form

mPχ̈ðtÞ þmPω
2
PχðtÞ − e2

Z
t

0

dsΓðEÞðt − sÞ⃛χðsÞ

− e2½ΓðEÞðtÞχ̈ð0Þ þ _ΓðϕÞðtÞ_χð0Þ� ¼ −e _ϕhðx; tÞ; ð3:11Þ

with

mP ¼ mB þ e2ΓðEÞð0Þ; mPω
2
P ¼ mBω

2
B: ð3:12Þ

Comparing with (3.10), we readily see that (3.11) does not
have the Γ̈ðEÞðtÞχð0Þ term, and the force terms on their
righthand sides are not alike due to the different forms of
the oscillator-field coupling.
To see the relation of the non-Markovian ALD equa-

tion (2.5) with the supra-Ohmic equation of motion (3.1),
we write the nonlocal term in (2.5) as

e2
∂

∂t

Z
t

0

dsGðϕÞ
R;0ðt − sÞ_χðsÞ

¼ −e2Γ̈ðEÞð0ÞχðtÞ þ e2Γ̈ðEÞðtÞχð0Þ

þ e2
Z

t

0

ds ∂3sΓðEÞðt − sÞχðsÞ; ð3:13Þ

with the use of integration by parts and the substitution

GðϕÞ
R;0ðτÞ ¼ −∂τΓðEÞðτÞ. The third term on the righthand side

gives (3.7), the whole nonlocal term in (3.1), but there are
two additional terms in the non-Markovian ALD equation.
The first term will account for additional frequency
renormalization, not seen in (3.12), and the second term
gives the contribution missing in (3.11) but present in
(3.10). Thus we see both systems have slightly different
dependence on the initial conditions.
The Laplace transform of the formal solution to (3.11) is

given by

χ̃ðσÞ ¼ d̃1ðσÞχð0Þ þ d̃2ðσÞ_χð0Þ

−
e
mP

d̃2ðσÞ
1 − 8πγσΓðEÞð0Þ ½σϕ̃hðσÞ − ϕhð0Þ�; ð3:14Þ

with

d̃1ðσÞ ¼
½1 − 8πγσΓ̃ðEÞðσÞ�σ

σ2 þ ω2
P − 8πγσ3Γ̃ðϕÞðEÞ ;

d̃2ðσÞ ¼
1 − 8πγσΓðEÞð0Þ

σ2 þ ω2
P − 8πγσ3Γ̃ðEÞðσÞ : ð3:15Þ

We see that in a more general non-Markovian setting, even
though the equation of motion has terms that depend on
⃛χðtÞ and the initial condition χ̈ð0Þ, its solution actually
depends only on two initial conditions χð0Þ and _χð0Þ, thus
supporting our earlier interpretation of the delta function in
deriving (2.17). Taking a closer look at (3.11), we notice
that when we perform the Laplace transformation, the
nonlocal term in (3.11) will yield a contribution to cancel
the χ̈ð0Þ term. Since (3.15) has the same denominator in
d̃iðσÞ as (3.17) below, both sets of d̃iðσÞwill be subjected to
the same criterion of stability, and have the same relaxation
dynamics.
In summary, compared with the generic supra-Ohmic

non-Markovian dynamics described by (3.1), the non-
Markovian ALD equation is shown to have different
dependence on the initial conditions, but they have the
same relaxation dynamics and stability criterion. These
features of the generic supra-Ohmic non-Markovian
dynamics we shall discuss below will equally apply to
the non-Markovian ALD equation. At the end of this
section, we will revisit the Markovian limit of (3.11).

C. Higher derivative terms in the equation of motion

To better understand this supra-Ohmic Langevin equa-
tion we comment on some of its uncommon characteristics.
Superficially, Eq. (3.9) contains a third-order time deriva-
tive ⃛χðtÞ of χðtÞ and depends explicitly on the initial
condition χ̈ð0Þ. These two features are not seen in the
typical equations of motion, and are often considered as
signaling something unphysical. They also create difficul-
ties in implementing numerical solutions of this equation
because it seems that an additional initial condition χ̈ð0Þ is
needed as well. However, this does not really pose any
problem. When we carry out the Laplace transformation of
(3.10) to find the Laplace transform χ̃ðσÞ, we obtain

χ̃ðσÞ ¼ d̃1ðσÞχð0Þ þ d̃2ðσÞ_χð0Þ þ
e
mP

d̃2ðσÞ
1 − 8πγΓðEÞð0Þ ξ̃ðσÞ;

ð3:16Þ

with
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d̃1ðσÞ ¼
½1 − 8πγΓðEÞð0Þ�σ

σ2 þ ω2
P − 8πγΓ̃ðEÞðσÞσ3 ;

d̃2ðσÞ ¼
1 − 8πγΓðEÞð0Þ

σ2 þ ω2
P − 8πγΓ̃ðEÞðσÞσ3 : ð3:17Þ

The inverse Laplace transformations of d̃1ðσÞ and d̃2ðσÞ
give a special set of fundamental solutions that in the time
domain satisfy

d1ð0Þ¼ 1; _d1ð0Þ¼ 0; d2ð0Þ¼ 0; _d2ð0Þ¼ 1; ð3:18Þ

by construction. In particular 1
mP

d2ðτÞ
1−8πγΓðEÞð0Þ can be identified

as the retarded Green’s function GðχÞ
R ðτÞ of χ associated

with the equation of motion, (3.10).
Equation (3.16) does not depend on χ̈ð0Þ, so the

appearance of χ̈ð0Þ in (3.10) is nothing but superficial.
The Laplace transform of the nonlocal term will yield an
additional χ̈ð0Þ to cancel with the corresponding term in the
second line of (3.10). Thus, we only actually need two
initial conditions χð0Þ and _χð0Þ, instead of three. More
importantly, we emphasize that even when we deal with the
nonlocal equation of motion, we still need only two initial
conditions, instead of the initial history, commonly met for
the delayed differential equation. The latter is often seen in
the context of spatial non-Markovianity due to the case, for
example, when the oscillator is in the proximity of a
boundary [68] or when the constituents of the system are
spatially separated [69].

D. Runaway behavior of solutions

The presence of ⃛χðtÞ in the equation of motion (3.10)
does not always imply a runaway result. Here in particular
from (3.17), we note that its solution depends on the factor
1 − 8πγΓðEÞð0Þ. The extra term −8πγΓðEÞð0Þ arises from
−e2 _ΓðEÞðtÞ_χð0Þ in the second line of (3.10), and this type of
term is not seen in the Ohmic case because we only apply
integration by parts once on the corresponding nonlocal
term in the Ohmic case. The factor 1 − 8πγΓðEÞð0Þ, though
odd looking, is necessary to ensure the proper normaliza-
tion of d1ðtÞ and d2ðtÞ such that the conditions d1ð0Þ ¼ 1

and _d2ð0Þ ¼ 1 are satisfied. In turn, these ensure the correct
behavior of the nonequilibrium Robertson-Schrödinger
function at early times.
Furthermore, this factor has a special significance with

regard to the dynamical stability of this class of supra-
Ohmic, non-Markovian Langevin equation (3.1) under
consideration. When this factor is positive, the fundamental
solution d1ðtÞ and d2ðtÞ in general exhibit damping
behavior, at least for the classes of bath spectral densities
we are considering. On the other hand, if this factor is
negative, then the solution increases without bound.
To understand why the dynamics is unstable when

1−8πγΓðEÞð0Þ<0, let us examine the denominator of
d̃2ðσÞ, J̃ðσÞ ¼ σ2 þ ω2

P − 8πγΓ̃ðEÞðσÞσ3, along the real σ
axis. Suppose Γ̃ðEÞðσÞ is well defined in the limit σ → 0.
Thus we find limσ→0 J̃ðσÞ ¼ ω2

P > 0. On the other
hand limσ→∞ Γ̃ðEÞðσÞ in the σ domain corresponds to
limt→0 ΓðEÞð0ÞθðtÞ in the t domain. Thus we have

lim
σ→∞

Γ̃ðEÞðσÞ ∼ £ΓðEÞð0ÞθðtÞ ¼ ΓðEÞð0Þ
σ

; ð3:19Þ

so that in the limit σ → ∞, we have

lim
σ→∞

J̃ðσÞ ≃ ½1 − 8πγΓðEÞð0Þ�σ2 þOðσÞ; ð3:20Þ

going unbounded quadratically with σ. When 1 <
8πγΓðEÞð0Þ, we find J̃ðσÞ < 0 in the σ → ∞ limit. Now
we obtain limσ→0 J̃ðσÞ > 0 but limσ→∞ J̃ðσÞ < 0, we
conclude that J̃ðσÞmust have at least one real root between
σ ¼ 0 and σ → ∞. That is, d̃2ðσÞ will have a real positive
pole. This will cause the runaway behavior in the solution
to the equation of motion (3.10).
Following the previous analysis, we observe that the

presence of the factor 1 − 8πγΓðEÞð0Þ will make d̃2ðσÞ
assume the form þ1=σ2 as σ → ∞. This implies that as
t > 0, d2ðtÞ will grow like þt. The plus sign here is
physically necessary. Suppose we have the initial condition
χð0Þ ¼ 0 but _χð0Þ ≠ 0, then around the initial time, in the
absence of any external force, the solution χðtÞ is roughly
given by d2ðtÞ_χð0Þ. Physically, we expect that in the
absence of external forces, if the system is initially and
momentarily at rest, then it should be displaced in the
same direction as the initial velocity. It implies d2ðtÞ must
take on positive values around the initial time. It would be
odd if it moves in a direction opposite to the initial speed.
Thus the factor 1 − 8πγΓðEÞð0Þ ensures physical consis-
tency. Finally we mentioned that the nonequilibrium
fluctuation-dissipation relation of the system, valid when
1 > 8πγΓðEÞð0Þ, still takes on the standard expression

ḠðχÞ
H ðκÞ ¼ coth βκ

2
ImḠðχÞ

R ðκÞ after the system reaches its
final equilibrium state. Its form is not affected by the
presence of the factor.
Since the cutoff scale Λ is contained in ΓðEÞð0Þ, it implies

that there exists a critical value Λc such that when Λ > Λc,
the supra-Ohmic non-Markovian system we consider here
becomes unstable. When phrased in terms of the memory
time, if the memory time Λ−1 is shorter than the critical
time scale Λ−1

c , the system exhibits runaway behavior.
Therefore, the Markovian limit of this supra-Ohmic system
is purely formal, and in principle does not exist physically.
Later when we take a closer look at the effects of various
bath spectral density, we will give a more vivid demon-
stration of this important point.
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The previous discussion reveals that the existence of the
⃛χðtÞ in the equation of motion of a supra-Ohmic system
does not automatically imply the necessity of additional
initial condition, nor dynamical instability of the system.
The latter primarily hinges on the duration of the memory
time of the bath. This modus operandi should work equally
well in the Markovian limit. However this is not the case in
the conventional treatment of the nonrelativistic ALD
equation (see discussion in Sec. II). The aforementioned
consistency consideration thus motivates our interpretation
of the delta function arising from taking the Markovian
limit in terms of its asymptotic form which supports our
analysis expounded in Appendix B.
Finally, we write down the expression for the

dispersion hp2ðtÞi of the canonical momentum p ¼ m_χ
conjugated to χ,

hp2ðtÞi ¼ m2 _d21ðtÞhχ2ð0Þi þ _d22ðtÞhp2ð0Þi

þ e2

½1 − 8πγσΓð0Þ�2
Z

t

0

ds ds0 _d2ðt − sÞ

× _d2ðt − s0ÞGðEÞ
H;0ðs; s0Þ; ð3:21Þ

because we need its late times t → ∞ limit,

hp2ð∞Þi ¼ mP

1 − 8πγΓðEÞð0Þ Im
Z

∞

−∞

dκ
2π

κ2 coth
βκ

2
d̄2ðκÞ

¼ mPIm
Z

∞

−∞

dκ
2π

κ2 coth
βκ

2
ḠðχÞ

R ðκÞ; ð3:22Þ

with the Fourier transform d̄2ðκÞ of d2ðtÞ given by
d̄2ðκÞ ¼ d̃2ð−iκÞ, to explore the effect of the bath spectrum.
Here we have used the identity

Imd̄2ðκÞ ¼
d̄2ðκÞ − d̄�2ðκÞ

2i

¼ 8πγ½1 − 8πγΓðEÞð0Þ�−1jd̄2ðκÞj2ImḠðEÞ
R;0ðκÞ;

ð3:23Þ
to simplify the result. Thus hp2ð∞Þi takes the same form
as in the Ohmic case because the factor 1 − 8πγΓðEÞð0Þ is
canceled.

E. Markovian limit of the non-Markovian
ALD equation

If we formally take the Markovian limit of the non-
Markovian ALD equation (3.11), even though the
limit does not meaningfully exist, by substituting ΓðEÞðtÞ
with 1

2π δðtÞ, we see that Eq. (3.11) reduces to (2.13).
Furthermore, following our conventions, if we substitute

Γ̃ðEÞðσÞ¼ 1

2π
δ̃ðσÞ; with δ̃ðσÞ¼1

2
; _̃δðσÞ¼−δð0Þþσ

2

ð3:24Þ

into (3.14), we will consistently obtain (2.17). This shows
that our algorithm of treating the integrals containing the
delta function indeed gives a consistent formal Markovian
limit from the full non-Markovian dynamics of the charged
particle coupled to the electromagnetic fields.
Therefore we infer that the dynamics of a point charge,

when coupled to an electromagnetic field, is destined to be
unstable from the viewpoint of non-Markovian dynamics,
based on the connection with the supra-Ohmic system (3.1)
we established in Sec. III B, because even though their
equations of motion are slightly dissimilar and the solutions
have different dependence on the initial conditions, they
have the same denominator in the respective Laplace
transforms d̃2ðσÞ, and thus the same pole structure. The
locations of its poles determine the dynamical stability of
both systems. Stable dynamics is possible only when the
cutoff scale in the frequency spectrum of the electromag-
netic field is smaller than a critical value, which may be
identified with the inverse of the classical charge radius. On
the other hand, the dependence on two (and only two)
initial conditions relies on the consistent treatment of the
Markovian limit, in compliance with the relevant physical
conditions.
In this section we have discussed the generic features of a

supra-Ohmic, non-Markovian system described by (3.1),
and its connection with the dynamics of the charged
particle in the electromagnetic field. In the next section,
we choose the bath’s spectral density in the Lorentz-Drude
form as examples for illustration. In Appendix C we offer
two more examples of bath spectral densities commonly
met—the exponentially decaying form and the hard cutoff
form. We will highlight peculiar behavior of the funda-
mental solution associated with the latter bath spectral
density.

IV. MEMORY IN THE BATH SPECTRUM AND
THE ‘RUNAWAY’ ISSUE

In this section we investigate the ‘runaway’ issue in
radiation reaction dynamics with an example. As remarked
earlier, a finite cutoff frequency in the bath introduces a
time scale which renders the system’s dynamics non-
Markovian. The cutoff frequency of the bath determines
the relaxation rate of the system and when the system’s
dynamics becomes unstable. Here we discuss the
Lorentzian spectral function as a commonly used repre-
sentative of supra-Ohmic baths. Discussions of two more
examples will be given in Appendix C.
When the bath spectrum takes on the Lorentzian form

JðκÞ ¼ κ3
Λ2

κ2 þ Λ2
; ð4:1Þ

we find that the kernel function ΓðEÞðτÞ and its derivatives
are given by
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ΓðEÞðτÞ ¼
Z

∞

−∞

dκ
2π

IðκÞ
2πκ

e−iκτ ¼ Λ
4π

e−Λjτj;

⇒ ΓðEÞð0Þ ¼ Λ
4π

; ð4:2Þ

_ΓðEÞðτÞ ¼ −
Λ2

4π
e−ΛjτjsgnðτÞ;

⇒ _ΓðEÞð0Þ ¼ 0; ð4:3Þ

Γ̈ðEÞðτÞ ¼ Λ3

4π
e−Λjτjsgn2ðτÞ − Λ2

2π
δðτÞ;

⇒ _ΓðEÞð0Þ ¼ −
Λ2

2π
δð0Þ; ð4:4Þ

where we have used convention sgn2ð0Þ ¼ 0, not 1, and

Γ̃ðEÞðσÞ ¼ Λ
4π

1

σ þ Λ
; ð4:5Þ

such that the Laplace transforms of the fundamental
solutions are

d̃1ðσÞ ¼ ð1 − 2γΛÞ σ

σ2 þ ω2
P −

2γΛ
σþΛ σ

3
; ð4:6Þ

d̃2ðσÞ ¼ ð1 − 2γΛÞ 1

σ2 þ ω2
P −

2γΛ
σþΛ σ

3
: ð4:7Þ

It tells us that the critical value of Λ is given by Λc ¼ 1
2γ.

Since 2γ ¼ e2
4πm, the parameter 2γ plays the role similar to

the “classical charge radius” in electrodynamics. That is,
when the memory time Λ−1 is approximately this “classical
charge radius” 2γ, the behavior of the oscillator undergoes a
transition from a stable regime to an unstable regime with
runaway solutions. Before we proceed to explain its

physical meaning, we first examine the Λ dependence of
the poles of d̃2ðσÞ. As is shown in Fig. 1, the real parts of
the poles of d̃2ðσÞ are not always negative, as is the case in
the Ohmic bath, when we vary Λ. When Λ < Λc, the
fundamental solution d2ðtÞ, the inverse Laplace transform
of d̃2ðσÞ, exhibits oscillatory but decaying behavior with
time. On the other hand, when Λ > Λc, the presence of the
positive real parts of the poles of d̃2ðσÞ implies exponential
growth of d2ðtÞ. This is related to the ‘runaway solutions’
issue in the description of a classical point charge coupled
to a electromagnetic field. The memory time can be
understood as the time to cross the radius of effective
influence, and is related to the finite effective size of the
oscillator. Here we approach this issue from the perspective
of memories in non-Markovian dynamics. Similar obser-
vations can also be made from the perspective of spatial
nonlocality such as assuming a finite size for the charge or
mass greater than a threshold value. Finite size effect in this
context is discussed often in the literature [23,62,63,65,66].
In Fig. 1 we also note that the value of the positive real

pole decreases to a limiting point6 with increasing Λ. On
the other hand, for the regime of stable motion, the real part
of the pole has the trend that it becomes more negative with
the larger value of Λ, unless in the vicinity of Λc. Thus it
tells us that if the memory time is longer, then the relaxation
time scale is likewise longer. Both results seem to imply a
strange phenomenon. When Λ is slightly smaller than the
critical value Λc, the system experiences very strong

-4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5

FIG. 1. The Λ dependence of the poles of d̃2ðσÞ, based on the equation of motion (3.1) and the spectral model of the bath (4.1), on the
complex σ plane. The parameterΛ varies from 0 to 5, in the unit of ωP, visualized by different hues from red, orange, yellow, green, blue,
purple to magenta. We choose γ ¼ 0.5 × ω−1

P . The real parts of the poles can be positive when the value of Λ is greater than the threshold
value Λc ¼ ð2γÞ−1 ¼ 1. It then implies the existence of the runaway behavior.

6It is roughly 1.46557 for our choice of parameter. More
precisely it given by

σ⋆ ¼ 1

6γ
½1þ Ξ1

3 þ Ξ−1
3�; Ξ ¼ 1þ 54η2 − 6η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 81η2

q
;

η ¼ γωP: ð4:8Þ
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damping. In contrast, when Λ is marginally great than Λc,
the system has the most dramatic exponential-growth rate.
The culprit of such drastic behavior lies in the fact at
Λ ¼ Λc, the denominator of d̃2ðσÞ is degenerate and
reduces to the polynomial

σ2

1þ 2γσ
þ ω2

P ; ð4:9Þ

which has only two roots, instead of three

−γω2
P � iωP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2ω2

P

q
: ð4:10Þ

These two roots have the negative real parts, so the system
is still stable when Λ ¼ Λc. Trivially Λ ¼ 0 is another case
where the denominator of d̃2ðσÞ has only two pure
imaginary roots. That is, effectively the system does not
couple to the bath.
To make more explicitly the influence of the cutoff scale

on the relaxation time, we show in Fig. 2, the temporal
behavior of the fundamental solutions d1ðtÞ and d2ðtÞ for a
few choices of Λ. The effective relaxation time γ−1EFF, given
below in (4.11), is roughly related to Λ−2, the memory time
squared. It is quite different from the value ðγω2

PÞ−1 we
would expect in the Markovian limit, for example, as in the
dynamics of the charge oscillator, treated by order reduc-
tion. Thus the coherent superposition due to longer
memory inhibits the damping. The memory time Λ−1

determines how long the past history of the oscillator
can affect its present dynamics. The ratio ωP=Λ dictates the

importance of the memory effect. When the ratio is smaller
than unity, the memory time is short compared to the
typical time scale of motion, so the memory effect does not
add up to be significant. However, when the ratio is greater
than or equal to unity, the motion in the previous cycle can
be coherently added up to the present cycle. This feature is
particularly prominent when the ratio is much greater than
one, so that the motion at the current moment is superposed
by the corresponding copies in many previous cycles.
Quantitatively, when memory is present and sustains

longer than a critical period Λ−1
c , the supra-Ohmic system

will relax with a time scale γ−1EFF. For sufficiently smallΛ, as
shown in Fig. 3, the effective damping constant γEFF is
given by

γEFF ∼ γΛ2

�
1

1 − 2γΛ
−

Λ2

ω2
P þ Λ2

�
: ð4:11Þ

This is much smaller than γω2
P . Thus, the non-Markovian

effect very effectively slows down the relaxation of the
oscillator’s dynamics, such that it essentially behaves like a
system weakly coupled to the bath. However, this does not
necessarily imply the weak-coupling Markovian descrip-
tion is a good substitute of the strong-coupling non-
Markovian system because the former may not sufficiently
accurately get hold of the phase information inherent in the
latter [57].

V. SUMMARY AND CONCLUSION

The ALD equation, which describes the dynamics
of a point charge in the electromagnetic field, contains a
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FIG. 2. The time evolution of the fundamental solutions for three different values 2, 1, 0.5 of Λ, when the bath spectral function takes
the Lorentzian form, (4.1). The blue solid curve corresponds to dðχÞ1 ðtÞ, the orange dashed curve to dðχÞ2 ðtÞ. The time is expressed in the
units of ω−1

P . These curve are found by taking the inverse Laplace transformations of (4.6) and (4.7). Here we choose γ ¼ 0.1 and
ωP ¼ 1, so ðγω2

PÞ−1 ¼ 10.
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third-order time derivative of the charge’s position. Its
presence implies a few unwelcome features such as the
need for additional initial conditions, runaway solutions,
and preacceleration, with causality violation consequences.
In fact, in the open-system framework where the charge is
the system of interest and the electromagnetic field serve as
its environment, the ALD equation can be understood as
the equation of motion in the Markovian limit of the
reduced system from a fully non-Markovian dynamical
equation which contains a few more terms in the form of
products of delta function or its time derivative and the
initial conditions, when they are ignored at t > 0 after the
interaction is switched on at t ¼ 0.
We advocate taking this broader open systems perspec-

tive in treating backreaction problems where memories
associated with multiple timescales from the environment
impact directly on the non-Markovian dynamics of the
reduced system. From this perspective we conclude that
the ALD equation should not be viewed as a standalone
equation but the Markovian limit of a class of supra-
Ohmic, non-Markovian dynamics obeying a third-order
integro-differential equation. The salient features are
listed below:
(1) The supra-Ohmic, non-Markovian dynamics in gen-

eral is not always stable and may not have a well-
defined Markovian limit even if the corresponding
Ohmic, non-Markovian counterpart has these nice
properties.

(2) The dynamical stability of the supra-Ohmic, non-
Markovian equation depends on the cutoff scale, or
the length of the memory time. When the memory
time is shorter than a critical value, the system may
transit from the stable regime to the runaway regime.

(3) Although the equation of motion contains a third-
order time derivative, its solution still depends on
two initial conditions instead of three.

(4) The presence of the third-order time derivative in the
supra-Ohmic, non-Markovian equation of motion
thus is not to blame for the runaway dynamics and
the need of additional initial condition.

From these aspects, we found that in deriving the
equation of motion of a charged particle coupled to an
electromagnetic field, those initial-condition dependent
terms that have been dropped to obtain the ALD equation
have to be retained because (1) they are the essential
ingredients to address the initial condition problem, and
(2) they are needed to approach a consistent Markovian
limit. More importantly, when we take the (formal)
Markovian limit by pushing the cutoff scale to infinity,
we will encounter highly singular expressions. They appear
when the nonlocal kernel of the bath reduces to a delta
function in such a limit. Thus, (3) to maintain a consistent
Markovian limit, conforming to physical configurations,
we should interpret the emergent delta function and its
derivatives in terms of their asymptotic forms. In so doing,

the ambiguity of treating the delta functions at the initial
time can be resolved. These practices ensure that the
solution to the equation of motion of the charged particle
depends on only two initial conditions.
The runaway behavior, on the other hand, is inevitable in

this Markovian limit because the system is memoryless.
The supra-Ohmic system is doomed to be unstable when
the memory time is shorter than a critical value. We learn
that the instability of the ALD equation is a consequence of
taking the Markovian limit, not the presence of third-order
time derivatives in the equation.
In conclusion, in a fully non-Markovian formulation,

using the non-Markovian ALD equation (3.11), one can
achieve a pathology-free description of the supra-Ohmic
dynamics, with the distinct advantages that a) it requires
only two, not three, specified initial conditions, and b) it
ensures stable dynamics without runaway and preaccelera-
tion when the memory time is greater than the critical value.
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APPENDIX A: OHMIC DYNAMICS

Here we review the dynamics of a Brownian oscillator,
coupled to a free Ohmic bath. This will serve as a
comparison with the supra-Ohmic case.
The spectral density IðκÞ of the bath will assume the

form κPΛðκÞ, where PΛðκÞ falls off to zero for κ greater
than the cutoff scale Λ, which is the only scale in PΛðκÞ, to
suppress the contributions from the high frequency modes
of the bath, and PΛðκÞ ¼ 1 as Λ → ∞.
The retarded Green’s functionGðEÞ

R;0ðτÞ and the Hadamard

functions GðEÞ
H;0ðτÞ associated with this Ohmic bath are

given by

GðEÞ
R;0ðτÞ¼ θðτÞGðEÞ

P;0ðτÞ¼ iθðτÞ
Z

∞

0

dκ
2π

IðκÞ
2π

½e−iκτ−eþiκτ�;

ðA1Þ

GðEÞ
H;0ðτÞ ¼

Z
∞

−∞

dκ
2π

IðκÞ
4π

coth
βκ

2
e−iκτ; ðA2Þ

where GðEÞ
p;0ðτÞ is the Pauli-Jordan function and β is the

inverse initial bath temperature. It proves convenient to
introduce a new kernel function ΓðEÞðτÞ by

GðEÞ
P;0ðτÞ ¼ −

∂

∂τ
ΓðEÞðτÞ; ðA3Þ
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so that its Fourier representation is given by

ΓðEÞðτÞ ¼
Z

∞

−∞

dκ
2π

IðκÞ
2πκ

e−iκτ: ðA4Þ

The equation of motion for the displacement of the
Brownian oscillator takes the form

mBχ̈ðtÞ þmBω
2
BχðtÞ − e2

Z
t

0

dsGðEÞ
R;0ðt − sÞχðsÞ ¼ eϕhðtÞ;

ðA5Þ

when the oscillator’s displacement χðtÞ is bilinearly
coupled to the bath variable ϕðtÞwith the coupling strength
e. The driving force ϕhðtÞ denotes the free bath component,
excluding the backreaction from the oscillator, which is
accounted for by the nonlocal expression in (A5). The
parameters mB, ωB are undetermined for the moment, and
will be renormalized according to the oscillator-bath
interaction. This interaction is switched on instantaneously
at t ¼ 0, and the states of these two subsystems are
assumed to be initially uncorrelated. The overhead dot
on a quantity represents taking the derivative of it with
respect to time t.
Putting (A3) into (A5) allows us to identify the con-

tribution to the parameter’s renormalization,

mBχ̈ðtÞ þ ½mBω
2
B − e2ΓðEÞð0Þ�χðtÞ þ e2ΓðEÞðtÞχð0Þ

þ e2
Z

t

0

dsΓðEÞðt − sÞ_χðsÞ ¼ eϕhðtÞ: ðA6Þ

Only the natural frequency ωB needs renormalizing, so we
assign

mP ¼ mB; ω2
P ¼ ω2

B −
e2

mP

ΓðEÞð0Þ: ðA7Þ

At first it looks odd that the initial condition χð0Þ appears in
the equation of motion. This is the consequence when we
try to explicitly isolate the component that contributes to
the parameter renormalization/correction. The formal sol-
ution can be conveniently found with the help of the
Laplace transformation,

χ̃ðσÞ ¼ d̃1ðσÞχð0Þ þ d̃2ðσÞ_χð0Þ þ � � � ; ðA8Þ

where we have conveniently introduced e2 ¼ 8πγmP, and
� � � represents the particular solution that depends on ϕh.
The meaning of the damping constant γ will be made clear
later. Two transforms d̃1ðσÞ, d̃2ðσÞ in (A8) take the form

d̃1ðσÞ ¼
σ

σ2 þ ω2
P þ 8πγσΓ̃ðEÞðσÞ ;

d̃2ðσÞ ¼
1

σ2 þ ω2
P þ 8πγσΓ̃ðEÞðσÞ : ðA9Þ

In the current case their inverse transforms d1ðtÞ and d2ðtÞ
are related by d1ðtÞ ¼ _d2ðtÞ, but it may not always be the
case, so we will keep the notation d1ðtÞ. Here we note that
unlike the supra-Ohmic case in (3.17), they do not have the
prefactor that is related to ΓðEÞð0Þ. Thus following the
analysis that leads to (3.19), the Ohmic dynamics tends to
have a well-defined Markovian limit, at least for the bath
spectral densities we have considered. In other words, even
if the considered Ohmic, non-Markovian dynamics has a
well-defined Markovian limit, this does not guarantee that
the corresponding supra-Ohmic, non-Markovian dynamics
has a meaningful Markovian limit.
Suppose the cutoff frequency Λ is the only scale in

PΛðκÞ. Then its inverse Λ−1 gives the duration in which
ΓðEÞðtÞ does not drop off to zero. In other words, according
to the integral expression in (A6), the parameter Λ−1

roughly tells how long the dynamics of χðtÞ depends on
its previous history. Thus Λ−1 can be interpreted as a
memory time with the Markovian limit Λ → ∞ understood
as being memoryless. The dynamics of χðtÞ is purely local,
independent of the state of motion in earlier moments.
When d̃2ðσÞ does not have any pole for any value of Λ at
the Reσ > 0 half of the complex σ plane, the dynamics is
always stable and the Markovian limit exists. For example,
since Γ̃ðEÞðσÞ can be found to be

Γ̃ðEÞðσÞ ¼
Z

∞

0

dτ e−στ
Z

∞

−∞

dκ
2π

IðκÞ
2πκ

e−iκτ

¼ 1

2πi

Z
∞

−∞

dκ
2π

IðκÞ
κðκ − iσÞ ; ðA10Þ

if PΛðκÞ takes a Lorentzian shape

PΛðκÞ ¼
Λ2

Λ2 þ κ2
; ðA11Þ

then we find

Γ̃ðEÞðσÞ ¼ 1

4π

Λ
Λþ σ

; ðA12Þ

and its Markovian limit Λ → ∞ gives 1
4π. In the latter case,

the transforms d̃1ðσÞ, d̃2ðσÞ have the standard forms for the
damped oscillator, with γ serving as the damping constant.
Here in fact we will see a minor ambiguity arising from

the Markovian limit, where d̃1ðσÞ is given by

d̃1ðσÞ ¼
σ

σ2 þ ω2
P þ 2γσ

: ðA13Þ
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Carrying out the inverse Laplace transformation gives

d1ðtÞ ¼ e−γt cosΩt −
γ

Ω
e−γt sinΩt; ðA14Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

P − γ2
p

. We immediately note that
d1ð0Þ ¼ 1, but _d1ð0Þ ¼ −2γ ≠ 0, contradicting the require-
ments about the fundamental solution, d1ð0Þ ¼ 1 and
_d1ð0Þ ¼ 0. This can be resolved once we inspect the
equation of motion in this limit

χ̈ðtÞ þ 2γ _χðtÞ þ ω2
PχðtÞ þ 4γδðtÞχð0Þ ¼ 0; ðA15Þ

where we have ignored the force eϕhðtÞ because it is
irrelevant to the discussion. If we move 4γδðtÞχð0Þ to the
righthand side, and treat it as a driving force, then we see
that this term offers a kick at t ¼ 0 and instantaneously
pushes _d1ðtÞ from zero to −2γ at t ¼ 0þ, causing the “slip”
[70]. This treatment, though correct, is quite awkward. If
we start from (A6) and, for example, (A12) for a finite

cutoff Λ, we will see that _d1ðtÞ indeed starts from 0
smoothly. Nonetheless, when we increase Λ, the behavior
of _d1ðtÞ about t ¼ 0 shows a progressively rapid but
smooth drop toward −2γ within the time scale Λ−1, as
shown in Fig. 4. The inexplicable behavior of (A14) is then
nicely clarified.
This is the most elementary example in Brownian motion

showing the difficulties arising from treating the equations
as Markovian ab initio.

APPENDIX B: AMBIGUITIES ASSOCIATED
WITH THE DELTA FUNCTION IN THE

INTEGRAL TRANSFORMATION

As is well known, the Dirac delta function δðtÞ is a
distribution, not a function, possessing these ‘peculiar’
properties

ð1Þ δðtÞ ¼ 0; when t ≠ 0; ð2Þ
Z

∞

−∞
dt δðtÞ ¼ 1;

ðB1Þ

ð3Þ
Z

∞

−∞
dt _δðtÞfðtÞ ¼ − _fð0Þ: ðB2Þ

Thus we often resort to its asymptotic forms to explore its
properties in various contexts. Two common asymptotic
forms are

δϵðtÞ ¼
1

2ϵ
½θðtþ ϵÞ − θðt − ϵÞ�; δϵðtÞ ¼

1ffiffiffiffiffiffiffiffi
2πϵ

p e−
t2
2ϵ;

ðB3Þ

with ϵ being positive and infinitesimally small. The former
has finite support but is not continuous, while the latter is a
smooth Gaussian with width ϵ. When ϵ approaches zero,
both become very sharp and asymptotically satisfy the
properties in (B1). Here we attempt to set up a consistent
and unified modus operandi suitable for our purpose of
taking the Markovian limit of the non-Markovian dynamics
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FIG. 3. The temporal evolution of − ln d1ðtÞ for Λ ¼ 0.1 × ωP

and γ ¼ 0.5 × ωP, described by the equation of motion (3.1) and
the spectral model of the bath (4.1). The horizontal t axis takes the
unit of ω−1

P . The lower bound of − ln d1ðtÞ is approximately
tangent to γEFFt, where γEFF is given in (4.11).
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FIG. 4. Here we show the behavior of _d1ðtÞ with time for different choices of the cutoff scale Λ, and particularly in the inset, we blow
up the region 0 ≤ t ≤ 1 to reveal the effect of the cutoff. We express the parameters in the unit of ωP, and choose γ ¼ 0.3, ωP ¼ 1.
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of the Brownian oscillator. Namely, we only view the delta
function as a convenient substitute used in the sensible
Markovian limit. Otherwise, the asymptotic form of the
delta function is probably more compatible with the
physical settings.7

When the delta function is involved in an integral
representation, ambiguities may arise when the “peak”
of the delta function is located at the integration limits. This
happens frequently in the context of taking the Markovian
limit. There, we often come across an expression like

I0ðtÞ ¼
Z

t

0

ds δðt − sÞfðsÞ; ðB4Þ

for some well behaved ordinary function fðsÞ and t ≥ 0.
Our convention assigns the value 1

2
fðtÞ, instead of fðtÞ,

because heuristically only half of the delta function “peak”
is used in the integral. However, strictly speaking, when we
set t ¼ 0, the integral gives indefinite answers, 0 or fð0Þ=2,
depending on how lax we are with the interpretation of the
delta function. We will return to this point below.
Another integral expression we often encounter is

I1ðtÞ ¼
Z

t

0

ds ∂sδðt − sÞfðsÞ: ðB5Þ

If we treat for the moment the delta function as an ordinary
function, we will obtain

I1ðtÞ ¼ δð0ÞfðtÞ − δðtÞfð0Þ −
Z

t

0

ds δðt − sÞ _fðsÞ

¼ δð0ÞfðtÞ − δðtÞfð0Þ − 1

2
_fðtÞ; ðB6Þ

after integration by parts. Comparing with (B1), we cannot
help wondering whether the first two terms on the right-
hand side of (B6) should be present. We use the first
asymptotic form of the delta function in (B3) to examine
(B5). Suppose for simplicity, we assume fðtÞ ¼ 1þ 2t,
and obtain

Z
t

0

ds δϵðt − sÞ _fðsÞ ¼ θðtÞθðt − ϵÞ þ t
ϵ
½1 − θðtÞθðt − ϵÞ�;

ðB7Þ

Z
t

0

ds ∂sδϵðt − sÞfðsÞ ¼ 1þ 2t − 2ϵ

2ϵ
θðtÞθðt − ϵÞ; ðB8Þ

so that we have, for ϵ > 0,

Z
t

0

ds ∂sδϵðt − sÞfðsÞ þ
Z

t

0

ds δϵðt − sÞ _fðsÞ

¼ 1þ 2t
2ϵ

−
1

2ϵ
½1 − θðtÞθðt − ϵÞ�: ðB9Þ

Here we identify δϵð0Þ ¼ 1
2ϵ. Mathematically this can be

problematic because the ϵ → 0 limit is required to be taken
prior to letting t go to zero. Nonetheless we can be slightly
lax about this. We have in mind that when we talk about the
Markovian limit, we only require Λ to be sufficiently large,
not necessarily infinite. Thus we will interpret the delta
function by its asymptotic form.
In (B9), we can write 1 − θðtÞθðt − ϵÞ into

1 − θðtÞθðt − ϵÞ ¼ ½θðtÞ þ θð−tÞ�θðtþ ϵÞ − θðtÞθðt − ϵÞ
¼ θðtÞ½θðtþ ϵÞ − θðt − ϵÞ�; ðB10Þ

when t > 0. Thus, the righthand side of (B9) actually gives
δϵð0ÞfðtÞ − δϵðtÞfð0Þ, and hence we obtain (B6) in the
asymptotic sense.
Finally, we look at the example

I2ðtÞ ¼ ∂t

Z
t

0

ds δðt − sÞfðsÞ: ðB11Þ

By I0 we may conclude that I1ðtÞ is given by 1
2
_fðtÞ.

However, when we carry out the differentiation first and
treat for the moment the delta function as an ordinary
function, we obtain

I2ðtÞ ¼ δð0ÞfðtÞ −
Z

t

0

ds ∂sδðt − sÞfðsÞ: ðB12Þ

Using the result found in (B6), we arrive at

I2ðtÞ ¼ δðtÞfð0Þ þ 1

2
_fðtÞ; ðB13Þ

and end up with

1

2
_fðtÞ¼? δðtÞfð0Þ þ 1

2
_fðtÞ; ðB14Þ

a paradoxical contradiction with (B11) for t ≥ 0. It turns
out that we should be more careful with I0ðtÞ, where we
have implicitly assumed t > 0. To take its time derivative,
we need to consider the case t < 0 as well. When t < 0,
I0ðtÞ is given by

I0ðt < 0Þ ¼ −
1

2
fðtÞ; ðB15Þ

and thus together with the t ≥ 0 result, we have

I0ðtÞ ¼
1

2
fðtÞ½θðtÞ − θð−tÞ�; ðB16Þ7We thank Daniel Reiche for discussions on this point.
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which has a jump at t ¼ 0. We also observe that though
θð0Þ is ambiguous, (B16) still gives a definite result 0 at
t ¼ 0, thus extending the result in (B4) to the whole t axis.
Then it implies that for I2ðtÞ, we have

I2ðtÞ ¼ δðtÞfð0Þ þ 1

2
_fðtÞ½θðtÞ − θð−tÞ�; ðB17Þ

consistently.
Now we are ready to address the Laplace transformation

of the delta function

δ̃ðσÞ ¼
Z

∞

0

dt e−tσδðtÞ ðB18Þ

according to the definition of the Laplace transformation in
(2.15). In the standard reference, the lower limit of the
integral on the righthand side is chosen to be 0− for t > 0.
Then by this convention we will have δ̃ðσÞ ¼ 1. However,
following the discussion around I0, it seems more con-
sistent to choose δ̃ðσÞ ¼ 1=2. One one hand, this can be
verified by the asymptotic form of the delta function, and
on the other hand, if we would like to take the Markovian
limit by smoothly changing the cutoff Λ to infinity, it is the
asymptotic form of the delta function that is relevant to our
discussions, not the delta function itself per se. In this
context, we view the latter as a mathematical convenience
for the physical configuration.
Following the same spirit, by our convention, the

Laplace transformation of _δðtÞ is given by

Z
∞

0

dt _δðtÞe−tσ ¼ −δð0Þ þ σ

2
; ðB19Þ

instead of σ given by the standard reference.
Here we have discussed the algorithms of treating the

delta function which arises from taking the Markovian limit
of the non-Markovian dynamics. We interpret the delta
function by its asymptotic form. In doing so, we are able to
formulate the correct, unified, and consistent way of taking
the Markovian limit of non-Markovian dynamics.

APPENDIX C: MORE EXAMPLES OF THE
SPECTRAL DENSITIES

Here we offer two more examples to illustrate the
characteristics of supra-Ohmic non-Markovian dynamics
in Sec. III. The exponentially decaying bath spectral
function in essence is complementary to the Lorentzian
form (4.1), except that it has better suppression over the
high-frequency modes of the bath. The hard-cutoff spec-
trum offers the most intuitive implementation of the cutoff
scale, but it tends to introduce peculiar behavior in reduced
non-Markovian dynamics, when the cutoff scale is not
extremely large.

1. Exponentially decaying spectrum

When the bath spectrum has an exponentially
decaying form

JðκÞ ¼ κ3e−
jκj
Λ ¼ κ2IðκÞ; ðC1Þ

the ΓðEÞðτÞ kernel then has a Lorentzian form

ΓðEÞðτÞ ¼
Z

∞

−∞

dκ
2π

IðκÞ
2πκ

e−iκτ ¼ Λ
2π2

1

1þ Λ2τ2
;

⇒ ΓðEÞð0Þ ¼ Λ
2π2

; ðC2Þ

_ΓðEÞðτÞ ¼ −
Λ3

π2
τ

ð1þ Λ2τ2Þ2 ; ⇒ _ΓðEÞð0Þ ¼ 0; ðC3Þ

Γ̈ðEÞðτÞ¼−
Λ3

π2
1−3Λ2τ2

ð1þΛ2τ2Þ3 ; ⇒ Γ̈ðEÞð0Þ¼−
Λ3

π2
; ðC4Þ

and its Laplace transform is given by

Γ̃ðEÞðσÞ¼ 1

4π
cos

σ

Λ
þ 1

2π2

�
sin

σ

Λ
Ci

�
σ

Λ

�
− cos

σ

Λ
Si

�
σ

Λ

��
:

ðC5Þ

From (3.17), we then find the Laplace transforms of the
fundamental solutions d1ðtÞ and d2ðtÞ are

d̃1ðσÞ ¼
�
1 −

4γΛ
π

�
σ

σ2 þ ω2
P − σ3 4γ

π fπ2 cos σ
Λ þ ½sin σ

ΛCiðσΛÞ − cos σ
ΛSiðσΛÞ�g

; ðC6Þ

d̃2ðσÞ ¼
�
1 −

4γΛ
π

�
1

σ2 þ ω2
P − σ3 4γ

π fπ2 cos σ
Λ þ ½sin σ

ΛCiðσΛÞ − cos σ
ΛSiðσΛÞ�g

: ðC7Þ

In this case the critical value is determined by Λc ¼ π
4γ. However, since in this case the denominator of d̃2ðσÞ is a

transcendental function of σ and has a branchcut along Reσ < 0, it is much harder to identify the roots, and carry out the
analysis like the previous Lorentzian case. However, the temporal behavior of the fundamental solutions share features
similar to those in the Lorentzian case.
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The exponentially decaying bath spectrum case has an
advantage that the Lorentzian spectrum does not have. Let
us choose a Λ < Λc such that the system can be relaxed to
an equilibrium state at sufficiently late times, greater than
the effective relaxation time scale. Then we expect that the
covariance matrix elements will approach the time-inde-
pendent constants. Let us in particular look at the late-time
value of hp2ðtÞi, which is given by

hp2ð∞Þi ¼ mP

1 − 8πγΓðEÞð0Þ Im
Z

∞

−∞

dκ
2π

κ2 coth
βκ

2
d̄2ðκÞ:

ðC8Þ

We observe that even though the dynamics is stable when
Λ < Λc, the late-time value of hp2ð∞Þi is not guaranteed to
be finite. It depends on the power of κ when jκj → ∞. The
large κ limit of Imd̄2ðκÞ has to be κα with α < −3. When the
bath spectrum takes the Lorentzian form, we find

lim
jκj→∞

Imd̄2ðκÞ ¼
2ð1 − γΛÞγΛ2

ð1 − 2γΛÞ2
1

κ3
þOðκ−4Þ: ðC9Þ

In contrast, for the exponentially decaying bath spectrum,
we instead have

lim
jκj→∞

Imd̄2ðκÞ ¼ e−
κ
Λ

�
1 −

4γΛ
π

�
−1 4γ

κ
þOðκ−3Þ: ðC10Þ

Hence, we see that the Lorentzian bath spectrum does not
suppress high-frequency bath modes enough to ease off the
logarithmic divergence in the late-time value of hp2ðtÞi.
In passing, it is interesting to mention in this context the

double Lorentzian bath spectrum

JðκÞ ¼ κ3
�

Λ2

κ2 þ Λ2

�
2

: ðC11Þ

It is then straightforward to show

d̃1ðσÞ ¼ ð1 − γΛÞ σ

σ2 þ ω2
P − σ3γΛ σþ2Λ

ðσþΛÞ2
; ðC12Þ

d̃2ðσÞ ¼ ð1 − γΛÞ 1

σ2 þ ω2
P − σ3γΛ σþ2Λ

ðσþΛÞ2
; ðC13Þ

such that

lim
jκj→∞

Imd̄2ðκÞ ¼
2γΛ4

ð1 − γΛÞ
1

κ5
þOðκ−6Þ: ðC14Þ

Thus, although this bath spectrum algebraically falls off at
large frequency, it provides sufficient suppression to kill off
the logarithmic divergence in hp2ð∞Þi. The late-time
values of the other covariance matrix elements have lower

powers of κ in the corresponding integrands in (C8), so they
will have the sensible results without any divergence even
for the Lorentzian bath spectrum.

2. Hard-cutoff spectrum

Finally, we discuss the case when the bath spectrum
is the band-limited form. Here we are interested in the
specific form

JðκÞ ¼ κ3θðΛ − κÞθðκÞ; ðC15Þ

where Λ is the cutoff frequency, beyond which the
higher frequency modes are completely disregarded.
Since we usually rewrite the frequency integrals such that
the integration range extends from −∞ to þ∞, the spectral
density (C15) is conveniently put into an alternative form

JðκÞ ¼ κ3θðΛ − κÞθðκ þ ΛÞ: ðC16Þ

The corresponding kernel function ΓðEÞðτÞ takes the form

ΓðEÞðτÞ¼
Z

∞

−∞

dκ
2π

IðκÞ
2πκ

e−iκτ ¼
Z

Λ

−Λ

dκ
2π

1

2π
e−iκτ ¼ 1

2π2
sinΛτ
τ

;

ðC17Þ

_ΓðEÞðτÞ ¼ Λτ cosΛτ − sinΛτ
2π2τ2

; ðC18Þ

Γ̈ðEÞðτÞ ¼ −
Λ2τ2 sinΛτ þ 2Λτ cosΛτ − sinΛτ

2π2τ3
; ðC19Þ

and its Laplace transform

Γ̃ðEÞðσÞ ¼ 1

2π2
tan−1

Λ
σ
; ðC20Þ

so that

d̃1ðσÞ ¼
�
1 −

4γΛ
π

�
σ

σ2 þ ω2
P − σ3 4γ

π tan
−1 Λ

σ

; ðC21Þ

d̃2ðσÞ ¼
�
1 −

4γΛ
π

�
1

σ2 þ ω2
P − σ3 4γ

π tan
−1 Λ

σ

: ðC22Þ

The transition occurs at 4γΛ ¼ π, where the relative
dominance of σ2 and σ3 4γ

π tan
−1 Λ

σ swaps for large σ.
That is, the ultraviolet behavior of d̃2ðσÞ will depend on
whether 4γΛ≷π.
Compared with the previous two cases, the temporal

evolution of the fundamental solution in the hard cutoff
spectrumhas an unusual feature.As seen inFig. 5, bothd1ðtÞ
and d2ðtÞ essentially oscillate with a constant amplitude for
an extended period of time, and then rapidly decay to zero.
They do not decay to zero roughly exponentially like the
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previous two cases. The period of constant-amplitude
oscillations is correlated to the memory time Λ−1.
To decrypt the underlying mechanism that yields such a

distinctive nature, we will examine the response function
jd̄2ðκÞj2 with d̄2ðκÞ ¼ d̃2ð−iκÞ, as we often do in the case of
a driven, damped harmonic oscillator. In the latter case, the
height of the resonance peak goes like γ−2, so when γ → 0

for a sinusoidally driven free oscillator, the response curve
will become unbounded at the resonance frequency.
Figure 6 shows the typical behavior of the response
functions for the previous cases we have discussed. We
see that the double Lorentzian spectrum induces a much
weaker effective damping since the resonance peak is much
sharper than the other spectral densities. For bath spectra

considered there, we see the tendency that when the cutoff
frequency Λ gets smaller, the resonance peak is narrower
and higher. These demonstrate that the effective damping
strength decreases with a longer memory time, and the
system behaves more like a weak-coupling system.
In contrast, the frequency response function in the hard

cutoff case can have a positive, real pole. Thus it has an
unbounded resonance peak, as in the case of the driven,
undamped oscillator. The frequency response takes the form

jd̄2ðκÞj2¼
�
1−

4γΛ
π

�
2
�
4π2γ2κ6ΘðΛ− κÞ

þ
�
πκ2−πω2

P þ γκ3 ln

�
κ−Λ
κþΛ

�
2
�
2
�

−1
: ðC23Þ
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FIG. 5. The time evolution of the fundamental solutions when the bath spectral function takes the hard-cutoff form (C15). The blue
solid curve corresponds to dðχÞ1 ðtÞ, the orange dashed curve to dðχÞ2 ðtÞ. The time is expressed in the units of ω−1

P . From the left to the right,
we choose three different values of Λ, which are 2, 1, 0.5. However, the decaying behavior is rather unusual compared with the other
bath spectral densities we have chosen. The amplitude of oscillations is maintained over a timescale much greater than the typical
relaxation timescale, even the memory time is short. For sufficiently small Λ≲ 1, the effective relaxation time seems only mildly
dependent on it, so that the temporal behavior of the fundamental solutions for Λ ¼ 1 and 0.5 does not change much, in strong contrast
to the other two cases.
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FIG. 6. The frequency response of the oscillator to various supra-Ohmic, non-Markovian bath spectra. Here we include that
exponential decaying (exp) spectrum (C1), the Lorentzian (Lo) spectrum (4.1), and the double Lorentzian (dBLo) spectrum (C11). The
height of the response curve reflects the strength of effective damping, i.e., effective relaxation time scale.
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When κ < Λ, the denominator in (C23) is always positive,
so this pole is located at κ > Λ. It can be shown that the pole
is given by the root of

πκ2 − πω2
P þ γκ3 ln

�
κ − Λ
κ þ Λ

�
2

¼ 0: ðC24Þ

This root has an interesting trend that when Λ approaches
Λc ¼ π

4γ, the root will move to positive infinity. This can be
shown from the κ → ∞ limit of (C24)

ðπ − 4γΛÞκ2 þOðκ0Þ ¼ 0: ðC25Þ

It is identically satisfied only if Λ ¼ Λc.
There is bounded damped resonance peak at κ < Λ, and

it is located at the root

∂

∂κ

�
4π2γ2κ6þ

�
πκ2−πω2

P þ γκ3 ln

�
κ−Λ
κþΛ

�
2
�
2
�
¼ 0:

ðC26Þ

This is the only resonance peak we will have when Λ > Λc,
that is, the Markovian limit. When Λ > ωP, the resonance
peak is roughly located at κ ∼ ωPð1 − 3γ2ω2

c þ � � �Þ,
slightly smaller than ωP. Thus the location and the shape
of this bounded peak is expected to be nudged by the
unbounded peak when Λ moves across ωP. Figure 7(b)
shows that the feature of the bounded peak becomes
vanishingly small in the small Λ limit, say Λ ¼ 0.5, which
is very different from the other cases. It implies that when
the memory time is long, the damping becomes ineffective,
but by a different mechanism. This probably explains why
the fundamental solutions of the oscillator, when coupled to
the bath that has a hard cutoff spectrum, can have a nearly
constant oscillation amplitude over a prolonged length of

time and then decay. When Λ < Λc, the former is related to
the unbounded resonance, while the latter is caused by the
bounded resonance peak. When Λ > Λc, since only one
bounded resonance remains, the oscillator may behave like
a typical driven damped oscillator with one caveat. It still
has a runaway solution, not seen in the Ohmic case.

APPENDIX D: HIGHER-ORDER
SUPRA-OHMIC SYSTEMS

It is interesting to briefly discuss the higher-order
supra-Ohmic systems. Suppose the bath spectral density
has the form

JðκÞ ¼ κ4IðκÞ; ðD1Þ

i.e., λ ¼ 5, and then the equation corresponding to (3.10)
has the form

mPχ̈ðtÞþmPω
2
P þe2ΓðEÞð0Þχð4ÞðtÞ−e2

Z
t

0

dsΓðEÞðt−sÞχð5ÞðsÞ

−e2½ΓðEÞðtÞχð4Þð0Þþ _ΓðEÞðtÞ ⃛χð0Þþ Γ̈ðEÞðtÞχ̈ð0Þ
þ ⃛ΓðEÞðtÞ_χð0Þþ∂

4
tΓðEÞðtÞχð0Þ�¼eξðtÞ: ðD2Þ

In addition to the supra-Ohmic features we have described
hitherto, namely, (1) appearance of the higher-order time
derivatives of χðtÞ in the nonlocal expression, and (2) pres-
ence of additional initial conditions in the equation of
motion, this equation of motion has an extra term like
e2ΓðEÞð0Þχð4ÞðtÞ. Two other similar terms e2Γ̈ðEÞð0Þχ̈ðtÞ and
e2∂4tΓðEÞð0ÞχðtÞ have been absorbed into the mass and the
natural frequency renormalization respectively. Thus it
seems that there is no corresponding parameter to absorb
the e2ΓðEÞð0Þχð4ÞðtÞ term. It is not clear whether this may or
may not cause an issue. We probably do not need to worry
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FIG. 7. (a) The dependence of the real pole κ0 in (C23) on the cutoff Λ. The location of the pole moves to the infinity when Λ
approaches Λc. (b) The frequency response of the oscillator due to the hard cutoff bath spectrum. The green solid curve corresponds to
Λ ¼ 0.5, the orange dashed curve Λ ¼ 1, and the blue solid curve is the Λ ¼ 2 case. When Λ < Λc, there are two resonance peaks, and
one of them is unbounded. This unbounded peak disappears when Λ > Λc, for example, given by the dotted curve for Λ ¼ 7. Here we
choose ωP ¼ 1, γ ¼ 0.2 so that Λc ¼ 3.92699 in the unit of ωP.
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about the limit ΓðEÞð0Þ ∝ δð0Þ because it belongs to the
runaway regime.
Let us take a look at the Laplace transformation of (D2),

which is given by

χ̃ðσÞ ¼ d̃1ðσÞχð0Þ þ d̃2ðσÞ_χð0Þ þ
e
mP

d̃3ðσÞξ̃ðσÞ; ðD3Þ

where

d̃1ðσÞ ¼
½1 − 8πγΓ̈ðEÞð0Þ�σ

σ2 þ ω2
P − 8πγσ5Γ̃ðEÞðσÞ þ 8πγσ4ΓðEÞð0Þ ; ðD4Þ

d̃2ðσÞ ¼
1 − 8πγΓ̈ðEÞð0Þ

σ2 þ ω2
P − 8πγσ5Γ̃ðEÞðσÞ þ 8πγσ4ΓðEÞð0Þ ; ðD5Þ

d̃3ðσÞ ¼
d̃2ðσÞ

1 − 8πγΓ̈ðEÞð0Þ ; ðD6Þ

where we have used the fact that _ΓðEÞð0Þ ¼ 0 ¼ ⃛ΓðEÞð0Þ.
Surprisingly, the solution still depends on two initial
conditions, not four, but the denominator of d̃iðσÞ does
contain the contribution from the previously mentioned
e2ΓðEÞð0Þχð4ÞðtÞ term. Again, should it be there? It turns out
that its presence is nonetheless needed for stability.
Following our previous discussions, we examine the large
σ limit of the denominator of d̃iðσÞ. In the limit σ → ∞, the
Laplace transform Γ̃ðEÞðσÞ is dual to the small time limit
ΓðEÞðtÞ, which is approximately given by

lim
t→0

ΓðEÞðtÞ ¼ ΓðEÞð0Þ þ 1

2
Γ̈ðEÞð0Þt2 þ � � � : ðD7Þ

Then the Laplace transform is

lim
σ→∞

Γ̃ðEÞðσÞ ¼ 1

σ
ΓðEÞð0Þ þ 1

σ3
Γ̈ðEÞð0Þ þ � � � ; ðD8Þ

so that we have

σ2 þ ω2
P − 8πγσ5Γ̃ðEÞðσÞ þ 8πγσ4ΓðEÞð0Þ

¼ σ2 þ ω2
P − 8πγσ5

�
1

σ
ΓðEÞð0Þ þ 1

σ3
Γ̈ðEÞð0Þ þ � � �

�

þ 8πγσ4ΓðEÞð0Þ
¼ ½1 − 8πγΓ̈ðEÞð0Þ�σ2 þOðσ0Þ: ðD9Þ

Thus when 1 − 8πγΓ̈ðEÞð0Þ < 0, Eq. (D9) grows unbounded
to minus infinity, so there is at least one positive real root.
That is, d̃iðσÞ will have at least one real pole such that the
fundamental solutions d1ðtÞ and d2 are running away. If the
contribution of the term e2ΓðEÞð0Þχð4ÞðtÞ is not included in
the denominator of d̃iðσÞ, then the stability condition will
be inconsistent with the previous discussions. But it is not

clear how to interpret the e2ΓðEÞð0Þχð4ÞðtÞ term in the
equation of motion, (D2).
Finally, we remark that when λ is an even integer, we

cannot reduce the nonlocal term in the Langevin equation
into a local form, even in the formal Markovian limit
Λ → ∞. For example, we take a look at the Markovian case
JðκÞ ¼ κ2, and then

GðEÞ
R;0ðτÞ ¼ iθðτÞ

Z
∞

0

dκ
2π

κ2

2π
½e−iκτ − eþiκτ� ¼ −θðτÞ 1

π2τ3
:

ðD10Þ

It is a polynomial in τ, so it will not give a delta function by
way of integration by parts, rendering the procedure of
renormalization ambiguous. To understand better why it
has this form, let us put back the spatial dependence in the
retarded Green’s function in the formal Markovian limit

GðEÞ
R;0ðτ;RÞ ¼ iθðτÞ

Z
∞

0

dκ
κ2

2

Z
dΩ
ð2πÞ3 ½e

ik·R−iκτ − e−ik·Rþiκτ�

¼ −
θðτÞ
π2

τ

ðτ2 − R2Þ2 ; ðD11Þ

with R ¼ jRj. It has support in the whole spacetime, not
just limited to the lightcone, so it has contributions outside
the lightlike interval. This can be a bad sign because the
corresponding Hadamard function at the coincident spatial
limit may take the form of a delta function. The Hadamard

function GðEÞ
H;0ðτ;RÞ is given by

GðEÞ
H;0ðτ;RÞ¼−

i
2R

Z
∞

0

dκ
2π

κ

4π
coth

βκ

2
½e−iκðτ−RÞ−eþiκðτ−RÞ

−e−iκðτþRÞ þeþiκðτþRÞ�

¼ i
8π2β2R

�
−ψ ð1Þ

�
þi

τ−R
β

�
þψ ð1Þ

�
−i

τ−R
β

�

−ψ ð1Þ
�
−i

τþR
β

�
þψ ð1Þ

�
þi

τþR
β

��
; ðD12Þ

and in the limit R → 0, it reduces to

GðEÞ
H;0ðτ; 0Þ ¼ −

1

4π2β3

�
ψ ð2Þ

�
þi

τ

β

�
þ ψ ð2Þ

�
−i

τ

β

��
:

ðD13Þ

This may not look like a delta function at all. However, in
the zero temperature limit β → ∞, we have
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GðEÞ
H;0ðτ;RÞ ¼ −

i
2R

Z
∞

0

dκ
2π

κ

4π
½e−iκðτ−RÞ − eþiκðτ−RÞ

− e−iκðτþRÞ þ eþiκðτþRÞ�

¼ 1

8πR
∂

∂τ
½δðτ − RÞ − δðτ þ RÞ�; ðD14Þ

and now we see the delta function emerges. In particular, in
the coincident spatial limit, it becomes

GðEÞ
H;0ðτ; 0Þ ¼ −

1

4π
δ00ðτÞ; ðD15Þ

a highly singular entity. It is very nonintuitive. From these
results we notice that the functional forms of the dissipation
and the noise kernels swap, posing interpretation difficulty
when λ is an even integer.
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