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In gauge-Higgs unification (GHU), gauge symmetry is dynamically broken by an
Aharonov–Bohm (AB) phase, θH, in the fifth dimension. We analyze SU(2) GHU with
an SU(2) doublet fermion in the flat M4 × (S1/Z2) spacetime and in the Randall–Sundrum
(RS) warped space. With orbifold boundary conditions the U(1) part of gauge symmetry
remains unbroken at θH = 0 and π . The fermion multiplet has chiral zero modes at θH =
0, which become massive at θH = π . In other words, chiral fermions are transformed to
vector-like fermions by the AB phase θH. The chiral anomaly at θH = 0 continuously varies
as θH, and vanishes at θH = π . We demonstrate this intriguing phenomenon in the RS space
in which no level crossing occurs in the mass spectrum and everything varies smoothly. The
flat spacetime limit is singular as the anti-de Sitter curvature of the RS space diminishes,
and reproduces the result in the flat spacetime. Anomalies appear for various combinations
of Kaluza–Klein excitation modes of gauge fields as well. Although the magnitude of the
anomalies depends on θH and the warp factor of the RS space, it does not depend on the
bulk mass parameter of the fermion field controlling its mass and wave function at general
θH.
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1. Introduction
In gauge-Higgs unification (GHU), gauge symmetry is dynamically broken by an Aharonov–
Bohm (AB) phase, θH, in the fifth dimension [1–7]. In the analysis of the finite-temperature
behavior of the grand unified theory inspired SO(5) × U(1)X × SU(3)C GHU models in the
Randall–Sundrum (RS) warped space, it has been observed that chiral quarks and leptons at θH

= 0 are transformed to vector-like fermions at θH = π [8]. As θH varies from 0 to π , SU(2)L ×
U(1)Y × SU(3)C gauge symmetry is smoothly converted to SU (2)R × U (1)Y ′ × SU (3)C gauge
symmetry. Chiral fermions appearing as zero modes of fermion multiplets in the spinor repre-
sentation of SO(5) at θH = 0 become massive fermions having vector-like gauge couplings at
θH = π .

In general, chiral fermions in four dimensions give rise to chiral anomalies [9–12]. What would
be the fate of those anomalies if fermions are converted to massive vector-like fermions at θH

= π? Do anomalies disappear as θH changes from 0 to π? How can it happen? These are the
questions and issues addressed in this paper.
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To keep the arguments clear, we analyze SU(2) GHU with an SU(2) doublet fermion both in
the flat M4 × (S1/Z2) spacetime and in the RS warped space with orbifold boundary conditions
breaking SU(2) to U(1). We shall see that U(1) gauge symmetry survives at θH = 0 and π , and
that the fermion multiplet has chiral zero modes at θH = 0 which become massive at θH = π . We
determine four-dimensional (4D) couplings of all Kaluza–Klein (KK) modes of gauge fields
and fermion fields at general θH, and evaluate triangle chiral anomalies.

In the flat M4 × (S1/Z2) spacetime all gauge couplings are determined analytically, but the
mass spectrum of gauge and fermion fields exhibits level crossing as θH varies. In the RS space-
time no level crossing occurs in the spectrum, and gauge couplings are evaluated numerically.
It will be seen that 4D gauge couplings of fermions in the RS space smoothly change with θH,
and that the chiral anomaly associated with the zero mode of gauge fields at θH = 0 smoothly
varies and vanishes at θH = π . The flat-space limit gives singular behavior of the anomaly as
a function of θH, reproducing the analytical result in the flat spacetime. We will also see that
anomalies appear in various combinations of KK modes of gauge fields.

In Sect. 2 SU(2) GHU models are introduced in both the flat M4 × (S1/Z2) spacetime and in
the RS space. As functions of the AB phase θH the mass spectra of the KK modes of gauge
and fermion fields are obtained. It will be seen that no level crossing occurs in the spectrum in
the RS space. In Sect. 3 gauge couplings and anomalies are evaluated in the flat M4 × (S1/Z2)
spacetime. In Sect. 4 gauge couplings and anomalies are evaluated in the RS space. It is shown
that the magnitudes of anomalies smoothly change with θH. The dependence of those anoma-
lies on the warp factor zL of the RS space and the bulk mass parameter c of fermion fields is
also investigated. It is seen that the flat space limit zL → 1 of anomalies is singular. It is also
seen by numerical evaluation that the magnitude of anomalies does not depend on the bulk
mass parameter c. Section 5 is devoted to a summary and discussion.

2. SU(2) GHU models
The action in SU(2) GHU in the flat M4 × (S1/Z2) spacetime with coordinate xM (M = 0, 1, 2,
3, 5, x5 = y) is given by

Iflat =
∫

d4x
∫ L

0
dyLflat,

Lflat = −1
2

Tr FMNF MN + �γ MDM� + � ′γ MDM� ′, (1)

where Lflat(xμ, y) = Lflat(xμ, −y) = Lflat(xμ, y + 2L). Here,

FMN = ∂MAN − ∂NAN − igA[AM, AN ],

with AM = 1
2

∑3
a=1 Aa

Mτ a, where the τ a are Pauli matrices. We have introduced two types of
SU(2) doublet fermions �, � ′ with DM = ∂M − igAAM. The metric is ηMN = diag (−1, 1, 1, 1, 1)
and � = i�†γ 0. Orbifold boundary conditions are given, with (y0, y1) = (0, L), by(

Aμ

Ay

)
(x, y j − y) = Pj

(
Aμ

−Ay

)
(x, y j + y)P−1

j ,

�(x, y j − y) = Pjγ
5�(x, y j + y),

� ′(x, y j − y) = (−1) jPjγ
5� ′(x, y j + y),

P0 = P1 = τ 3. (2)
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The SU(2) symmetry is broken to U(1) by the boundary conditions in Eq. (2). A3
μ and A1,2

y are
parity even at both y0 and y1, and have constant zero modes. Let us denote doublet fields as �

= (u, d)t and � ′ = (u′, d ′)t. uR and dL are parity even at both y0 and y1, and have zero modes,
leading to chiral structure.

The KK expansions of gauge fields around the configuration AM = 0 are given, with L =
πR, by

A1,2
μ (x, y) =

√
2

πR

∞∑
n=1

A1,2 (n)
μ (x) sin

ny
R

,

A3
μ(x, y) = 1√

πR
A3 (0)

μ (x) +
√

2
πR

∞∑
n=1

A3 (n)
μ (x) cos

ny
R

,

A1,2
y (x, y) = 1√

πR
A1,2 (0)

y (x) +
√

2
πR

∞∑
n=1

A1,2 (n)
y (x) cos

ny
R

,

A3
y(x, y) =

√
2

πR

∞∑
n=1

A3 (n)
y (x) sin

ny
R

. (3)

The gauge coupling of the 4D U(1) gauge fields A3 (0)
μ (x) is given by

g4 = gA√
L

. (4)

The zero modes A1,2 (0)
y may develop a nonvanishing expectation value, which leads to an AB

phase θH along the fifth dimension. Without loss of generality one may assume that 〈A1 (0)
y 〉 = 0.

Then

P exp
{

igA

∫ 2L

0
dy 〈Ay〉

}
= eiθH τ 2 =

(
cos θH sin θH

− sin θH cos θH

)
, θH = g4L 〈A2 (0)

y 〉. (5)

The AB phase θH is a physical quantity. It couples to fields, affecting their mass spectrum. It will
be shown shortly that the mode expansions in Eq. (3) do not correspond to mass eigenstates
for θH 	= 0 and need to be improved.

One can change the value of θH by a gauge transformation, which also alters boundary con-
ditions. Consider a large gauge transformation given by

ÃM = 
AM
−1 + i
gA


∂M
−1, �̃ = 
�, �̃ ′ = 
� ′,


 = exp
( i

2
θ (y)τ 2

)
, θ (y) = θH

(
1 − y

L

)
, (6)

under which θ̃H = 0 and the boundary condition matrices become

P̃j = 
(y j − y)Pj

−1(y j + y), P̃0 =

(
cos θH − sin θH

− sin θH − cos θH

)
, P̃1 = τ 3. (7)

Although the AB phase θ̃H vanishes, the boundary conditions become nontrivial; the physics
remains the same. This gauge is called the twisted gauge [13,14].

In the twisted gauge θ̃H = 0, so that fields satisfy free equations. The boundary condition at
y = L remains the same as in the original gauge so that mode functions take the form

P̃1 = + : Cλ(y) = cos λ(y − L),

P̃1 = − : Sλ(y) = sin λ(y − L). (8)
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At y = 0, Ã1
μ and Ã3

μ intertwine with each other. Their general eigenmodes can be written in
the form (

Ã1
μ

Ã3
μ

)
=

(
αSλ(y)
βCλ(y)

)
B(λ)

μ (x). (9)

Note that (
A1

μ

A3
μ

)
=

(
cos θ (y) sin θ (y)

− sin θ (y) cos θ (y)

)(
Ã1

μ

Ã3
μ

)
. (10)

Hence, the boundary conditions at y = 0, which may be expressed as A1
μ(x, 0) = 0 and

(∂A3
μ/∂y)(x, 0) = 0, lead to the condition(

cH Sλ(0) sHCλ(0)
−sH S′

λ(0) cHC′
λ(0)

)(
α

β

)
= 0, (11)

where cH = cos θH and sH = sin θH. The eigenvalues λ must satisfy c2
H SλC′

λ + s2
HCλS′

λ

∣∣
y=0 = 0,

or

sin2
λπR − sin2

θH = 0, (12)

which leads to the spectrum for λ: {R−1(n ± θH/π ) ≥ 0; n : integers)}. Zero (λ = 0) modes ap-
pear for sin θH = 0. The coefficients α and β for each mode are determined by Eq. (11) as well.
KK expansions for Ã1

μ, and Ã3
μ are expressed in the form

(
Ã1

μ(x, y)
Ã3

μ(x, y)

)
=

∞∑
n=−∞

B〈n〉
μ (x)

1√
πR

⎛
⎜⎜⎜⎝

sin
[ny

R
− θ (y)

]

cos
[ny

R
− θ (y)

]
⎞
⎟⎟⎟⎠. (13)

The mass of the B〈n〉
μ (x) mode is mn(θH ) = R−1

∣∣n + θH
π

∣∣. In flat space the KK expansion takes
a simpler form in the original gauge:

(
A1

μ(x, y)
A3

μ(x, y)

)
=

∞∑
n=−∞

B〈n〉
μ (x)

1√
πR

⎛
⎜⎜⎜⎝

sin
ny

R

cos
ny

R

⎞
⎟⎟⎟⎠. (14)

The field A2
μ(x, y) is not affected by θH, whose KK expansion is given by that in Eq. (3).

The fermion field � in the twisted gauge,

�̃ =
(

ũ
d̃

)
=

(
cos 1

2θ (y) sin 1
2θ (y)

− sin 1
2θ (y) cos 1

2θ (y)

)(
u
d

)
, (15)

satisfies free equations in the bulk region 0 < y < L and the original boundary condition at y
= L, so that its eigenmode takes the form(

ũR

d̃R

)
(x, y) =

(
αRCλ(y)
βRSλ(y)

)
fλ,R(x),

(
ũL

d̃L

)
(x, y) =

(
αLSλ(y)

−βLCλ(y)

)
fλ,L(x),

σ̄ μ∂μ fλ,R(x) = λ fλ,L(x), σμ∂μ fλ,L(x) = λ fλ,R(x), (16)
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where σμ = (I2, �σ ) and σ̄ μ = (−I2, �σ ). It follows from the equations of motion in the bulk that
(αR, βR) = (αL, βL). The boundary conditions (∂uR/∂y)(x, 0) = 0 and dR(x, 0) = 0 lead to(

s̄HCλ(0) c̄H Sλ(0)
c̄HC′

λ(0) −s̄H S′
λ(0)

)(
αR

βR

)
= 0, (17)

where c̄H = cos 1
2θH and s̄H = sin 1

2θH . The eigenvalues λ must satisfy

sin2
λπR − sin2 1

2θH = 0, (18)

which leads to the spectrum for λ: {R−1(n ± θH/2π ) ≥ 0; n : integers)}. Zero (λ = 0) modes
appear for sin 1

2θH = 0. The coefficients αR and βR for each mode are determined by Eq. (17).
The KK expansion for �̃ is given by

(
ũR(x, y)
d̃R(x, y)

)
=

∞∑
n=−∞

ψ
〈n〉
R (x)

1√
πR

⎛
⎜⎜⎜⎝

cos
[ny

R
− 1

2θ (y)
]

sin
[ny

R
− 1

2θ (y)
]
⎞
⎟⎟⎟⎠,

(
ũL(x, y)
d̃L(x, y)

)
=

∞∑
n=−∞

ψ
〈n〉
L (x)

1√
πR

⎛
⎜⎜⎜⎝

sin
[ny

R
− 1

2θ (y)
]

− cos
[ny

R
− 1

2θ (y)
]
⎞
⎟⎟⎟⎠. (19)

ψ
〈n〉
R and ψ

〈n〉
L combine to form the ψ 〈n〉(x) mode, whose mass is given by mn(θH ) = R−1

∣∣n + θH
2π

∣∣.
In the original gauge the KK expansion takes the form

(
uR(x, y)
dR(x, y)

)
=

∞∑
n=−∞

ψ
〈n〉
R (x)

1√
πR

⎛
⎜⎜⎜⎝

cos
ny

R

sin
ny

R

⎞
⎟⎟⎟⎠,

(
uL(x, y)
dL(x, y)

)
=

∞∑
n=−∞

ψ
〈n〉
L (x)

1√
πR

⎛
⎜⎜⎜⎝

sin
ny

R

− cos
ny

R

⎞
⎟⎟⎟⎠. (20)

The KK expansion for the fermion field �
′

is found in a similar manner. The spectrum is
determined, instead of Eq. (18), by

sin2
λπR − cos2 1

2θH = 0, (21)

leading to the spectrum for λ: {R−1(n + 1
2 ± θH/2π ) ≥ 0; n : integers)}. The KK expansion be-

comes

(
u′

R(x, y)
d ′

R(x, y)

)
=

∞∑
n=−∞

ψ
′ 〈n+ 1

2 〉
R (x)

1√
πR

⎛
⎜⎜⎜⎝

cos

(
n + 1

2

)
y

R

sin

(
n + 1

2

)
y

R

⎞
⎟⎟⎟⎠,

(
u′

L(x, y)
d ′

L(x, y)

)
=

∞∑
n=−∞

ψ
′ 〈n+ 1

2 〉
L (x)

1√
πR

⎛
⎜⎜⎜⎝

sin

(
n + 1

2

)
y

R

− cos

(
n + 1

2

)
y

R

⎞
⎟⎟⎟⎠. (22)
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Fig. 1. The mass spectrum of gauge fields B〈n〉
μ and fermion fields ψ 〈n〉 in flat M4 × (S1/Z2) spacetime.

Level crossings in the spectrum are seen.

ψ
′ 〈n+ 1

2 〉
R and ψ

′ 〈n+ 1
2 〉

L combine to form the ψ ′ 〈n+ 1
2 〉(x) mode with mass mn+ 1

2
(θH ) = R−1

∣∣n + 1
2 +

θH
2π

∣∣.
The spectrum of B〈n〉

μ and ψ 〈n〉 modes is depicted in Fig. 1 in the range 0 ≤ θH ≤ 2π . The

spectrum of ψ ′ 〈n+ 1
2 〉 modes is obtained from that of ψ 〈n〉 modes by shifting θH by π . The KK

mass scale is mKK = 1/R in flat space. The spectrum of Bμ modes has periodicity with period
π , whereas the spectrum of ψ and ψ

′
modes has periodicity with period 2π . In flat space the

level crossing occurs at θH = 0, 1
2π, π, 3

2π for Bμ, and at θH = 0, π for ψ and ψ
′
.

Next, we examine SU(2) GHU in the RS space whose metric is given by [15]

ds2 = e−2σ (y)ημνdxμdxν + dy2, (23)

where ημν = diag( − 1, +1, +1, +1), σ (y) = σ (y + 2L) = σ ( − y), and σ (y) = ky for 0 ≤ y ≤ L.
It has the same topology as M4 × (S1/Z2). In the fundamental region 0 ≤ y ≤ L the metric can
be written, in terms of the conformal coordinate z = eky, as

ds2 = 1
z2

(
ημνdxμdxν + dz2

k2

)
(1 ≤ z ≤ zL = ekL). (24)

zL is called the warp factor of the RS space. The action in RS is

IRS =
∫

d5x
√

− det G LRS,

LRS = −1
2

Tr FMNF MN + �D(c)� + � ′D(c′)� ′,

D(c) = γ AeA
M
(

DM + 1
8
ωMBC[γ B, γC]

)
− c k for 1 ≤ z ≤ zL. (25)

Note that LRS(xμ, y) = LRS(xμ, −y) = LRS(xμ, y + 2L). The fields AM, �, and �
′

satisfy the
same boundary conditions, Eq. (2), as in the flat space. The dimensionless bulk mass parameter
c in D(c) controls the mass and wave function of the fermion fields. The KK mass scale is given
by

mKK = πk
zL − 1

, (26)

which becomes 1/R in the flat spacetime limit k → 0.
In the KK expansion Aa

z (x, z) = k−1/2 ∑Aa(n)
z (x)hn(z), and the zero mode A2(0)

z has a wave

function h0(z) =
√

2/(z2
L − 1) z. In the y-coordinate A2(0)

y has a wave function v0(y) = kekyh0(z)
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Fig. 2. The mass spectrum of gauge fields Z(n)
μ and fermion fields χ (n) in the RS warped space. The warp

factor is zL = 10, and the bulk mass parameter of � is c = 0.25. There is no level crossing in the spectrum.

for 0 ≤ y ≤ L, and v0( − y) = v0(y) = v0(y + 2L). The AB phase θH in Eq. (5) becomes

θH =
〈
A2(0)

z
〉

fH
, fH = 1

g4

√
2k

L(z2
L − 1)

. (27)

The twisted gauge [13,14], in which θ̃H = 0, is related to the original gauge by a large gauge
transformation:


(z) = eiθ (z)τ 2/2, θ (z) = θH
z2

L − z2

z2
L − 1

. (28)

In the y-coordinate it is written as


(y) = exp
{

iθH

√
2

z2
L − 1

∫ L

y
dy v0(y) · τ 2

2

}
. (29)

The boundary conditions in the twisted gauge are given by Eq. (7).
With the boundary conditions at z = zL, eigenmodes of Ã1

μ and Ã3
μ are given in the form(

Ã1
μ

Ã3
μ

)
=

(
αS(z; λ)
βC(z; λ)

)
Z(λ)

μ (x), (30)

where S(z; λ) and C(z; λ) are expressed in terms of Bessel functions and are given by Eq. (A1).
The boundary conditions at z = 1 lead to a condition obtained from Eq. (11) by substituting
Sλ(0), Cλ(0), etc. by S(1; λ), C(1; λ), etc. As (CS

′ − SC
′
)(z; λ) = λz, the spectrum is determined

by

SC′(1; λn) + λn sin2
θH = 0. (31)

The corresponding mass is mn = kλn. We label {λn} from the bottom such that λ0(θH) < λ1(θH)
< λ2(θH) < ···. There is no level crossing. The spectrum is periodic with period π , and is dis-
played in Fig. 2.

For a fermion field �(x, z) it is most convenient to express its KK expansion for �̌(x, z) =
z−2�(x, z). Note that the Neumann boundary conditions at z = (z0, z1) = (1, zL), corresponding
to even parity, for left- and right-handed components are given by

D+(c)�̌L
∣∣
z j

= 0, D−(c)�̌R
∣∣
z j

= 0, D±(c) = ± d
dz

+ c
z
. (32)
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In the twisted gauge ˜̌� satisfies free equations in the bulk. With the boundary conditions at z
= zL, the eigenmodes of �̌ are written in the form(

˜̌uR
˜̌dR

)
(x, z) =

(
αRCR(z; λ, c)
βRSR(z; λ, c)

)
fλ,R(x),

(
˜̌uL
˜̌dL

)
(x, z) =

(
αLSL(z; λ, c)
βLCL(z; λ, c)

)
fλ,L(x), (33)

where the functions CR/L and SR/L are given in Eq. (A4). It follows from the equations of motion
that (αR, βR) = (αL, βL). The boundary conditions at z = 1, D−ǔR = 0 and ďR = 0, lead to(

s̄HCR(1) c̄H SR(1)
c̄H SL(1) −s̄HCL(1)

)(
αR

βR

)
= 0, (34)

where CR(1) = CR(1; λ, c), etc., and the relation D−(c)(CR, SR) = λ(SL, CL) has been used. As
CLCR − SLSR = 1, the spectrum is determined by

SLSR(1; λn, c) + sin2 1
2θH = 0. (35)

The corresponding mass is mn = kλn. As in the case of the gauge field, we label {λn} from the
bottom such that λ0(θH) < λ1(θH) < λ2(θH) < ···. There is no level crossing. The spectrum is
periodic with period 2π , and is displayed in Fig. 2.

Formulas for a fermion field �
′

are obtained in a similar manner. With the boundary con-
ditions at z = zL, the eigenmodes of �̌ ′ are written in the form of Eq. (33). The boundary
conditions at z = 1 imply that ǔ′

R = 0 and D−ď ′
R = 0, so that the spectrum-determining equa-

tion becomes

SLSR(1; λn, c′) + cos2 1
2θH = 0. (36)

Massless modes appear at θH = π .
In Fig. 2 the mass spectrum of gauge fields Z(n)

μ and fermion fields χ (n) in RS is depicted. A
distinct feature is that no level crossing occurs in the RS warped space. As the AB phase varies,
the massless gauge fields Z(0)

μ at θH = 0 smoothly change to become massless gauge fields at θH

= π . The massless mode χ (0) at θH = 0, on the other hand, becomes massive at θH = π . Chiral
fermions are transformed to vector-like fermions by an AB phase. We confirm this in Sect. 4
by showing how gauge couplings change with θH. We also stress that the spectrum in the RS
space in Fig. 2 converges to the spectrum in M4 × (S1/Z2) in Fig. 1 in the limit k → 0 (zL → 1).

3. Anomaly flow in M4 × (S1/Z2)
Four-dimensional gauge couplings of fermion fields in flat M4 × (S1/Z2) spacetime are obtained
by inserting the KK expansions for Aa

μ and � into −igA
∫

d4xdy �̄γ MAM� and integrating
over y. It is most convenient to evaluate the couplings in the original gauge as the wave functions
of KK modes do not depend on θH in the flat spacetime.

The spectrum and KK expansion of A2
μ(x, y) are not affected by θH, and therefore

− igA

2

∫ L

0
dy A2

μ

{
u†

Rσ̄ μdR − u†
LσμdL − d†

Rσ̄ μuR + d†
LσμuL

}

= − ig4

2
√

2

∞∑
n=1

A2(n)
μ

∞∑
�=−∞

{
ψ

〈�〉 †
R σ̄ μψ

〈�+n〉
R − ψ

〈�+n〉 †
R σ̄ μψ

〈�〉
R

− ψ
〈�〉 †
L σμψ

〈�+n〉
L + ψ

〈�+n〉 †
L σμψ

〈�〉
L

}
. (37)

Here, σμ = (I2, �σ ) and σ̄ μ = (−I2, �σ ). All of the A2(n)
μ couplings do not depend on θH in the

above basis. Note that the zero modes ψ
〈0〉
R and ψ

〈0〉
L have chiral structure in Eq. (20).
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The couplings of the B〈n〉
μ modes are evaluated similarly. By inserting the KK expansions in

Eqs. (14) and (20), one finds

− igA

2

∫ L

0
dy

{
A1

μ(ūγ μd + d̄γ μu) + A3
μ(ūγ μu − d̄γ μd )

}

= g4

2

∞∑
n=−∞

B〈n〉
μ

∞∑
�=−∞

{
ψ

〈n−�〉 †
R σ̄ μψ

〈�〉
R + ψ

〈n−�〉 †
L σμψ

〈�〉
L

}

= g4

2

∞∑
n=−∞

B〈n〉
μ

∞∑
�=−∞

ψ̄ 〈n−�〉 iγ 5γ μψ 〈�〉. (38)

In the B〈n〉
μ basis the couplings B〈n〉

μ ψ
〈m〉 †
R ψ

〈�〉
R and B〈n〉

μ ψ
〈m〉 †
L ψ

〈�〉
L take a simple form: 1

2 g4 δn,m+�.
At θH = 0 the n = 0 mode of B〈n〉

μ is the massless gauge field of the unbroken U(1). It has
axial-vector couplings

∑∞
�=−∞ ψ̄ 〈−�〉 iγ 5γ μψ 〈�〉. The coupling to the � = 0 modes leads to a

triangle chiral anomaly of three B〈0〉
μ legs with an anomaly coefficient (g4/2)3(1 + 1), reflecting

the chiral structure of u(0)
R and d (0)

L . Note that off-diagonal couplings do not contribute to this
anomaly. At θH = π the B〈−1〉

μ mode becomes the massless gauge field of the unbroken U(1). It
has axial-vector couplings

∑∞
�=−∞ ψ̄ 〈−�−1〉 iγ 5γ μψ 〈�〉. No chiral anomaly arises associated with

the three B〈−1〉
μ legs.

To investigate the structure of the anomalies let us write the Bμ couplings as

g4

2

∞∑
n=−∞

∞∑
m=−∞

∞∑
�=−∞

B〈n〉
μ

{
sR

nm� ψ
〈m〉 †
R σ̄ μψ

〈�〉
R + sL

nm� ψ
〈m〉 †
L σμψ

〈�〉
L

}
, (39)

where, in the current case, sR
nm� = sL

nm� = δn,m+�. The anomaly coefficients associated with the
three legs of B〈n1〉

μ1
B〈n2〉

μ2
B〈n3〉

μ3
are given by

bn1n2n3 = bR
n1n2n3

+ bL
n1n2n3

,

bR
n1n2n3

= Tr SR
n1

SR
n2

SR
n3

,
(
SR

n

)
m�

= sR
nm�,

bL
n1n2n3

= Tr SL
n1

SL
n2

SL
n3

,
(
SL

n

)
m�

= sL
nm�. (40)

It follows that

bn1n2n3 =
{

2 for n1 + n2 + n3 = even,

0 for n1 + n2 + n3 = odd.
(41)

Note that b011, b200, b211, . . . = 2 	= 0. Anomalies arise even for massive KK excited gauge
bosons in external legs. Triangle diagrams, for instance, in which fermions ψ 〈0〉, ψ 〈0〉, and
ψ 〈1〉 (ψ 〈1〉, ψ 〈1〉, and ψ 〈 −1〉) are running contribute to b011 (b200) in perturbation theory. The
divergence of the current J〈n〉

μ associated with B〈n〉
μ has anomalous terms proportional to∑

m� bnm� εμνρσ F 〈m〉
μν F 〈�〉

ρσ , where F 〈m〉
μν = ∂μB〈m〉

ν − ∂νB〈m〉
μ .

In the Bμ basis bn1n2n3 is θH-independent. The anomaly does not seem to flow with θH in the
flat space. However, the level crossing in the spectrum occurs in the flat space. The B〈0〉

μ mode
corresponds to the lowest mode for 0 ≤ θH < 1

2π , but becomes the first excited KK mode for
1
2π < θH < π . In the RS space there is no level crossing. The lowest gauge field mode remains
as the lowest mode for any value of θH. When the anti-de Sitter curvature of the RS space
is very small, namely for k � mKK, the anomaly associated with the three legs of the lowest
gauge field must approach bnnn with n = −1 (namely zero) for 1

2π < θH < π . In other words
the anomaly must flow from 2 to 0 as θH varies from 0 to π . We see in the next section how this
happens.

9/21



PTEP 2022, 043B04 S. Funatsu et al.

The contributions of the �
′

field to anomalies are evaluated in a similar manner. With the
KK expansion in Eq. (22), the Bμ couplings are given by

g4

2

∞∑
n=−∞

∞∑
m=−∞

∞∑
�=−∞

B〈n〉
μ

{
s′R

nm� ψ
′
〈
m+ 1

2

〉
†

R σ̄ μψ
′
〈
�+ 1

2

〉
R + s′L

nm� ψ
′
〈
m+ 1

2

〉
†

L σμψ
′
〈
�+ 1

2

〉
L

}
, (42)

where s′R
nm� = s′L

nm� = δn,m+�+1. The anomaly coefficient associated with B〈n1〉
μ1

B〈n2〉
μ2

B〈n3〉
μ3

is given by
formulas similar to Eq. (40) where all the quantities are replaced by primed ones: bnm� → b′

nm�,
sR

nm� → s′R
nm�, etc. One sees that

b′
n1n2n3

=
{

0 for n1 + n2 + n3 = even,

2 for n1 + n2 + n3 = odd.
(43)

4. Anomaly flow in RS
The KK expansion of the gauge fields A1,3

μ becomes(
Ã1

μ(x, z)
Ã3

μ(x, z)

)
=

√
k

∞∑
n=0

Z(n)
μ (x) hn(z), (44)

where the mode functions are given by

h0(z) = h̄a
0(z);

h2�−1(z) = (−1)�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h̄a
2�−1(z) for − 1

2π < θH < 1
2π,

h̄b
2�−1(z) for 0 < θH < π,

−h̄a
2�−1(z) for 1

2π < θH < 3
2π,

−h̄b
2�−1(z) for π < θH < 2π,

h̄a
2�−1(z) for 3

2π < θH < 5
2π

(� = 1, 2, 3, . . .);

h2�(z) = (−1)�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h̄b
2�

(z) for − 1
2π < θH < 1

2π,

−h̄a
2�

(z) for 0 < θH < π,

−h̄b
2�

(z) for 1
2π < θH < 3

2π,

h̄a
2�

(z) for π < θH < 2π,

h̄b
2�

(z) for 3
2π < θH < 5

2π

(� = 1, 2, 3, . . .). (45)

Here,

h̄a
n(z) = 1√

ra
n

(
−sH Ŝ(z; λn)
cHC(z; λn)

)
,

h̄b
n(z) = 1√

rb
n

(
cH S(z; λn)
sHČ(z; λn)

)
,

rn =
∫ zL

1

dz
z

{|hn(z)|2 + |kn(z)|2} for

(
hn(z)
kn(z)

)
. (46)

Ŝ and Č are given in Eq. (A3). The spectrum-determining equation, Eq. (31), can be written
as CS

′
(1; λn) − λncos 2θH = 0. At θH = 0 and π , S(1; λn) = 0 for even n and C

′
(1; λn) = 0 for

odd n. At θH = 1
2π and 3

2π , S
′
(1; λn) = 0 for even n and C(1; λn) = 0 for odd n. This is why

the connection formulas are necessary in Eq. (45). The expression h̄a
2�−1(z), for instance, fails

to make sense at θH = 1
2π as both Ŝ(z; λ2�−1) and cH vanish there. In deriving the connection
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formulas, we have made use of the identity

(
sH Ŝ(z; λn)

−cHC(z; λn)

)
= K

(
cH S(z; λn)
sHČ(z; λn)

)
, K = sHC(1; λn)

cH S(1; λn)
= −cHC′(1; λn)

sH S′(1; λn)
, (47)

valid at |θH | 	= 0, 1
2π, π, . . . As a consequence, h̄a

2�−1(z) = h̄b
2�−1(z) for 0 < θH < 1

2π and
h̄a

2�−1(z) = −h̄b
2�−1(z) for 1

2π < θH < π in Eq. (45). In the numerical evaluation of anomalies
we have used, for instance, h2�−1(z) = (−1)�h̄a

2�−1(z) for − 1
4π < θH ≤ 1

4π , (−1)�h̄b
2�−1(z) for

1
4π < θH ≤ 3

4π , and so on. h0(z) is periodic in θH with period 2π , whereas all other modes
hn(z) (n ≥ 1) have period π .

The mode functions of the fermion field � are found in a similar manner. In the KK expan-
sions (

˜̌uR(x, z)
˜̌dR(x, z)

)
=

√
k

∞∑
n=0

χ
(n)
R (x) fRn(z),

(
˜̌uL(x, z)
˜̌dL(x, z)

)
=

√
k

∞∑
n=0

χ
(n)
L (x) fLn(z) (48)

the mode functions are given, for c > 0, by

fR,2�(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄a
R,2�

(z) for − π < θH < π,

f̄b
R,2�

(z) for 0 < θH < 2π,

−f̄a
R,2�

(z) for π < θH < 3π,

−f̄b
R,2�

(z) for 2π < θH < 4π,

f̄a
R,2�

(z) for 3π < θH < 5π

(� = 0, 1, 2, . . .);

fR,2�−1(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄c
R,2�−1(z) for − π < θH < π,

f̄d
R,2�−1(z) for 0 < θH < 2π,

−f̄c
R,2�−1(z) for π < θH < 3π,

−f̄d
R,2�−1(z) for 2π < θH < 4π,

f̄c
R,2�−1(z) for 3π < θH < 5π

(� = 1, 2, 3, . . .) (49)

and

fL0(z) = f̄a
L0(z);

fL,2�−1(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄a
L,2�−1(z) for − π < θH < π,

f̄b
L,2�−1(z) for 0 < θH < 2π,

−f̄a
L,2�−1(z) for π < θH < 3π,

−f̄b
L,2�−1(z) for 2π < θH < 4π,

f̄a
L,2�−1(z) for 3π < θH < 5π

(� = 1, 2, 3, . . .);

fL,2�(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄c
L,2�

(z) for − π < θH < π,

f̄d
L,2�

(z) for 0 < θH < 2π,

−f̄c
L,2�

(z) for π < θH < 3π,

−f̄d
L,2�

(z) for 2π < θH < 4π,

f̄c
L,2�

(z) for 3π < θH < 5π

(� = 1, 2, 3, . . .). (50)

Here,
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f̄a
Rn(z) = 1√

ra
n

(
c̄HCR(z; λn, c)

−s̄H ŜR(z; λn, c)

)
, f̄b

Rn(z) = 1√
rb

n

(
s̄HCR(z; λn, c)
c̄H ŠR(z; λn, c)

)
,

f̄c
Rn(z) = 1√

rc
n

(
s̄HĈR(z; λn, c)
c̄H SR(z; λn, c)

)
, f̄d

Rn(z) = 1√
rd

n

(
−c̄HČR(z; λn, c)
s̄H SR(z; λn, c)

)
,

f̄a
Ln(z) = 1√

ra
n

(
s̄H ŜL(z; λn, c)
c̄HCL(z; λn, c)

)
, f̄b

Ln(z) = 1√
rb

n

(
−c̄H ŠL(z; λn, c)
s̄HCL(z; λn, c)

)
,

f̄c
Ln(z) = 1√

rc
n

(
c̄H SL(z; λn, c)

−s̄HĈL(z; λn, c)

)
, f̄d

Ln(z) = 1√
rd

n

(
s̄H SL(z; λn, c)
c̄HČL(z; λn, c)

)
, (51)

where rn =
∫ zL

1
dz

{| fn(z)|2 + |gn(z)|2} for

(
fn(z)
gn(z)

)
. (52)

The functions ŜR/L, ŠR/L, etc. are defined in Eq. (A6). At θH = 0 the n = 0 mode is massless: λ0

= 0. Its wave function has chiral structure. χ
(0)
R is u-type, whereas χ

(0)
L is d-type. We show below

that the n = 0 mode becomes vector-like as θH varies to π . At θH = 0, SL(1; λn, c) = 0 for even n
whereas SR(1; λn, c) = 0 for odd n. At θH = π , CR(1; λn, c) = 0 for even n whereas CL(1; λn, c) =
0 for odd n. This is why the connection formulas are necessary in Eqs. (49) and (50). The wave
function of the χ

(0)
L mode, fL0(z), is periodic in θH with period 4π . The wave functions of all

the other modes are periodic in θH with period 2π . The wave functions for c < 0 are tabulated
in Appendix B.

The four-dimensional part of the gauge interactions for the � field is given by

gA

∫
d4x

∫ zL

1

dz
k

{
˜̌�†

Rσ̄ μÃμ
˜̌�R − ˜̌�†

LσμÃμ
˜̌�L

}
. (53)

To find the Z(n)
μ couplings of the fermion modes, we write

hn(z) =
(

hn(z)
kn(z)

)
, fRn(z) =

(
fRn(z)
gRn(z)

)
, fLn(z) =

(
fLn(z)
gLn(z)

)
. (54)

By inserting the KK expansions in Eqs. (44) and (48) into Eq. (53), the Z(n)
μ couplings of the

χn fields are found to be

g4

2

∞∑
n=0

∞∑
�=0

∞∑
m=0

Z(n)
μ (x)

{
tR
n�m χ

(�)
R (x)†σ̄ μχ

(m)
R (x) + tL

n�m χ
(�)
L (x)†σμχ

(m)
L (x)

}
,

tR
n�m =

√
kL

∫ zL

1
dz

{
hn(z)

(
f ∗

R�(z)gRm(z) + g∗
R�(z) fRm(z)

)
+ kn(z)

(
f ∗

R�(z) fRm(z) − g∗
R�(z)gRm(z)

)}
,

tL
n�m = −

√
kL

∫ zL

1
dz

{
hn(z)

(
f ∗

L�(z)gLm(z) + g∗
L�(z) fLm(z)

)
+ kn(z)

(
f ∗

L�(z) fLm(z) − g∗
L�(z)gLm(z)

)}
. (55)
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Fig. 3. The coupling constants tR
000(θH ) (red) and tL

000(θH ) (green) in Eq. (55) for the warp factor zL = 10
and the bulk mass parameter c = 0.25.

The anomaly coefficient associated with the three legs of Z(n1 )
μ1 Z(n2 )

μ2 Z(n3 )
μ3 is given by

an1n2n3 = aR
n1n2n3

+ aL
n1n2n3

,

aR
n1n2n3

= Tr T R
n1

T R
n2

T R
n3

,
(
T R

n

)
m�

= tR
nm�,

aL
n1n2n3

= Tr T L
n1

T L
n2

T L
n3

,
(
T L

n

)
m�

= tL
nm�. (56)

Unlike sR/L
nm� in the flat space, tR/L

nm� is θH-dependent. The anomaly coefficient an1n2n3 also becomes
θH-dependent, exhibiting the anomaly flow.

Let us first examine a000(θH) at θH = 0 and π , where the gauge field Z(0)
μ becomes massless.

At θH = 0, h0(z) = 0 and k0(z) = 1/
√

kL. The fermion zero mode is chiral, gL0, fR0 	= 0 and
gR0 = fL0 = 0. All the other modes are vector-like: fR 2�−1 = fL 2�−1 = gR 2� = gL 2� = 0 for � =
1, 2, 3, … It follows from the orthonormality conditions that tR

0m�, tL
0m� = 0 for m 	= �. It is seen

that tR
000 = tL

000 = 1 and tR
0nn = −tL

0nn = (−1)n for n ≥ 1. Hence, a000(0) = 2, which is the same
value as b000(0) = 2 in the flat space.

At θH = π , h0(z) = 0 and k0(z) = −1/
√

kL. All of the fermion modes are vector-like: gR 2� =
gL 2� = fR 2�+1 = fL 2�+1 = 0 for � = 0, 1, 2, … Further, tR

0m�, tL
0m� = 0 for m 	= �, and −tR

0nn =
tL
0nn = (−1)n for n ≥ 0. It follows that a000(π ) = 0, which agrees with b−1, −1, −1(π ) = 0 in the flat

space.
The θH-dependence of the coupling constants tR

000, tL
000 and anomaly coefficients a000, aR

000,
aL

000 is displayed in Figs. 3 and 4 for zL = 10 and c = 0.25. All of them change smoothly as θH.
The coupling constants of the fermion zero modes are maximally chiral at θH = 0, but become
purely vector-like at θH = π . The anomaly is exactly cancelled among the right-handed and left-
handed components at θH = π . We note that, for the anomaly coefficient an1n2n3 , off-diagonal
gauge couplings tR/L

nm� also contribute in Eq. (56). In the previous section we saw that, in the flat
space, off-diagonal gauge couplings sR/L

nm� = δn,m+� are important to bn1n2n3 . In the RS space the
couplings tR/L

nm� (θH ) are more involved, giving rise to the nontrivial θH-dependence of anm�.
Anomalies appear for various combinations of external gauge fields. In Fig. 5 the anomalies

a111, a222, a001, and a002 are displayed. In the RS space the gauge couplings of the first excited
gauge boson Z(1)

μ to fermions become larger. The anomaly coefficients associated with Z(1)
μ

become larger as the warp factor zL increases. Each coefficient has nontrivial θH-dependence.
The anomaly coefficient an1n2n3 (θH ) depends on both the warp factor zL and the bulk mass

parameter c. The couplings tR
000 and tL

000 and the anomaly coefficients a000, aR
000, and aL

000 for
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Fig. 4. The anomaly coefficients a000(θH) (blue), aR
000(θH ) (red), and aL

000(θH ) (green) in Eq. (56) for the
warp factor zL = 10 and the bulk mass parameter c = 0.25.

Fig. 5. The anomaly coefficients a111(θH), a001(θH), a222(θH), and a002(θH) in Eq. (56) are displayed for
the warp factor zL = 10 and the bulk mass parameter c = 0.25. The blue, red, and green lines correspond
to an�m, aR

n�m, and aL
n�m, respectively.

c = 0.8 and zL = 10 are displayed in Fig. 6. The couplings of right- and left-handed fermions
exhibit large c-dependence. It is seen, however, that the total anomaly coefficient a000(θH) is
independent of c, being universal. In the numerical evaluation of anomalies we have incorpo-
rated the contributions of fermions χ (n) (n = 0, …, nmax). In Fig. 7, �a000(θH) = a000(θH)c = 0.25

− a000(θH)c = 0.8 is plotted with nmax = 6, 10, and 14 for zL = 10. As nmax is increased, the differ-
ence �a000(θH) diminishes, approaching zero. The maximum of |�a000(θH)| is about 0.000 153
at θH = 7

20π and 33
20π for nmax = 14. It is expected that a000(θH) becomes c-independent in the

nmax → ∞ limit. We stress that the c-independence of an�m(θH) is highly nontrivial as the gauge
couplings tR/L

n�m depend on c.
For negative c the roles of left- and right-handed fermions are interchanged. In other words,

tR
n�m

∣∣
−c = tL

n�m

∣∣
c and aR

n�m

∣∣
−c = aL

n�m

∣∣
c, and therefore an�m(θH)−c = an�m(θH)c.
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Fig. 6. Left: The couplings tL
000 (green) and tR

000 (red). Right: The anomaly coefficients a000 (blue), aL
000

(green), and aR
000 (red). Both plots are for zL = 10 and c = 0.8. a000(θH) shows little dependence on c.

Fig. 7. The dependence of the anomaly coefficient a000(θH) on the bulk mass parameter c. a000(θH)c = 0.25

− a000(θH)c = 0.8 for zL = 10 evaluated by taking account of fermion modes χ (n) (n = 0, …, nmax) for nmax

= 6 (green), 10 (magenta), and 14 (blue). The result indicates that a000(θH) becomes c-independent as
nmax → ∞.

Fig. 8. Left: The couplings tL
000 (green) and tR

000 (red). Right: The anomaly coefficients a000 (blue), aL
000

(green) and aR
000 (red). Both plots are for zL = 105 and c = 0.25.

The zL-dependence is investigated similarly. For large zL = ekL � 1 the qualitative behavior
does not change very much. In Fig. 8 the couplings tR

000 and tL
000 and the anomaly coefficients

a000, aR
000 and aL

000 for zL = 105 and c = 0.25 are displayed. Compared to the case of zL = 10
and c = 0.25, the behavior of the anomaly coefficients becomes milder.

The flat space limit, k/mKK = (zL − 1)/π → 0, exhibits singular behavior. In the flat space,
M4 × (S1/Z2), anomaly coefficients bn�m(θH) are constant. It implies that except at the points
of level crossings, θH = 0, ± 1

2π, ±π , an�m must approach to a constant value in the flat space
limit, and therefore must show step-function type behavior. In Fig. 9 the anomaly coefficients
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Fig. 9. The anomaly coefficients a000(θH), a222(θH), and a012(θH) with c = 0.25 for zL = 1.01, 2, 10, and
105. The flat space limit corresponds to k → 0 and zL → 1.

Table 1. The correspondence between B〈n〉
μ and Z(n)

μ in the flat space limit.

θH Z(0) Z(1) Z(2) Z(3)

0 B〈0〉 1√
2

(B〈1〉 + B〈−1〉) 1√
2

(B〈1〉 − B〈−1〉) 1√
2

(B〈2〉 + B〈−2〉)(
0, 1

2π
)

B〈0〉 B〈 −1〉 B〈1〉 B〈 −2〉
1
2π 1√

2
(B〈−1〉 + B〈0〉) 1√

2
(B〈−1〉 − B〈0〉) 1√

2
(B〈−2〉 + B〈1〉) 1√

2
(B〈−2〉 − B〈1〉)( 1

2π, π
)

B〈 −1〉 −B〈0〉 B〈 −2〉 −B〈1〉

π B〈 −1〉 −1√
2

(B〈−2〉 + B〈0〉) 1√
2

(B〈−2〉 − B〈0〉) −1√
2

(B〈−3〉 + B〈1〉)(
π, 3

2π
)

B〈 −1〉 −B〈−2〉 −B〈0〉 −B〈−3〉
3
2π 1√

2
(B〈−1〉 + B〈−2〉) 1√

2
(B〈−1〉 − B〈−2〉) −1√

2
(B〈0〉 + B〈−3〉) 1√

2
(B〈0〉 − B〈−3〉)( 3

2π, 2π
)

B〈 −2〉 B〈 −1〉 −B〈−3〉 B〈0〉

2π B〈 −2〉 1√
2

(B〈−1〉 + B〈−3〉) 1√
2

(B〈−1〉 − B〈−3〉) 1√
2

(B〈0〉 + B〈−4〉)(
2π, 5

2π
)

B〈 −2〉 B〈 −3〉 B〈 −1〉 B〈 −4〉

a000(θH), a222(θH) and a012(θH) with c = 0.25 are plotted for various values of zL. It is seen that
all of them approach to step functions with singularities at θH = 0, 1

2π, π or 3
2π as zL → 1.

At this juncture it is appropriate to look at the correspondence between B〈n〉
μ and Z(n)

μ in the
flat space limit, which can be found from the mass spectra displayed in Figs. 1 and 2, the mode
functions of B〈n〉

μ in Eq. (13), and the mode functions of Z(n)
μ in Eq. (45). The results for Z(n)

μ (n
= 0, 1, 2, 3) are tabulated in Table 1. Using the relationships in Table 1, the anomaly coefficients
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Table 2. The anomaly coefficients an�m(θH) due to the � field in the flat space limit. Singular behavior is
observed at θH = 0, 1

2π , π , and 3
2π .

θH a000 a111 a222 a001 a011 a002 a022 a012

0 2 0 0 0 4 0 0 0(
0, 1

2π
)

2 0 0 0 2 0 2 2
1
2π 2

√
2 −2

√
2 2

√
2 0 0 2

√
2 2

√
2 0( 1

2π, π
)

0 −2 2 −2 0 2 0 0
π 0 −4

√
2 0 −2

√
2 0 0 0 0(

π, 3
2π

)
0 −2 −2 −2 0 −2 0 0

3
2π 2

√
2 −2

√
2 −2

√
2 0 0 −2

√
2 2

√
2 0( 3

2π, 2π
)

2 0 0 0 2 0 2 −2
2π 2 0 0 0 4 0 0 0

in the flat space limit are easily found. For instance,

lim
k→0

a000(θH ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b000
1

2
√

2
(b000 + b−1−1−1 + 3b0−1−1 + 3b00−1)

b−1−1−1
1

2
√

2
(b−1−1−1 + b−2−2−2 + 3b−1−2−2 + 3b−1−1−2)

b−2−2−2

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 for 0 ≤ θH < 1
2π,

2
√

2 for θH = 1
2π,

0 for 1
2π < θH < 3

2π,

2
√

2 for θH = 3
2π,

2 for 3
2π < θH ≤ 2π.

(57)

Some of the anomaly coefficients in the flat space limit are tabulated in Table 2.
The behavior of the anomaly coefficients for zL = 1.01 depicted in Fig. 9 is understood from

the limiting values tabulated in Table 2. In the RS space the anomaly coefficients an�m(θH) vary
smoothly in θH. In the flat space limit, however, they exhibit singular behavior at θH = 0, 1

2π ,
π , and 3

2π . This phenomenon is tightly connected with the emergence of the level crossings in
the mass spectrum of the gauge and fermion fields at those points.

The contributions of the �
′

field to anomalies are evaluated in a similar manner. The spec-
trum of the �

′
field is given by Eq. (36). The mode functions f ′

Rn(z) and f ′
Ln(z) are obtained from

fRn(z) and fLn(z) in Eqs. (49) and (50) by making a shift θH → θH + π . For instance, f ′
R,2�(z) is

given by f̄ ′a
R,2�

(z) = f̄b
R,2�

(z)|θH →θH +π for −π < θH < π and f̄ ′b
R,2�

(z) = −f̄a
R,2�

(z)|θH →θH +π for π <

θH < 2π . As in the case of the anomaly coefficients anm� coming from the � field, the anomaly
coefficients a′

nm� coming from the �
′
field exhibit singular behavior in the flat space limit. Some

of the anomaly coefficients a′
nm� in the flat space limit are tabulated in Table 3.

5. Summary and discussion
In this paper we have shown that chiral triangle anomalies flow smoothly in the scheme of SU(2)
GHU models in the RS space as the AB phase θH in the fifth dimension varies. Zero modes
of SU(2) doublet fermions � have chiral gauge couplings at θH = 0. Those gauge couplings
change smoothly with θH, and they become vector-like at θH = π . Although everything changes
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Table 3. The anomaly coefficients a′
n�m(θH ) due to the �

′
field in the flat space limit. Singular behavior is

observed at θH = 0, 1
2π , π , and 3

2π . a′
n�m(θH ) is related to an�m(θH) in Table 2 by a′

n�m(θH ) = an�m(θH + π )
or −an�m(θH + π ).

θH a′
000 a′

111 a′
222 a′

001 a′
011 a′

002 a′
022 a′

012

0 0 4
√

2 0 2
√

2 0 0 0 0(
0, 1

2π
)

0 2 2 2 0 2 0 0
1
2π 2

√
2 2

√
2 2

√
2 0 0 2

√
2 2

√
2 0( 1

2π, π
)

2 0 0 0 2 0 2 −2
π 2 0 0 0 4 0 0 0(
π, 3

2π
)

2 0 0 0 2 0 2 2
3
2π 2

√
2 2

√
2 −2

√
2 0 0 −2

√
2 2

√
2 0( 3

2π, 2π
)

0 2 −2 2 0 −2 0 0
2π 0 4

√
2 0 2

√
2 0 0 0 0

smoothly in the RS space, the flat space limit becomes singular at θH = 0, 1
2π , π , and 3

2π where
the level crossings in the mass spectrum occur in the flat M4 × (S1/Z2) spacetime.

The anomaly coefficients aR
n�m(θH ) and aL

n�m(θH ) in the RS space depend on the warp factor
zL and the bulk mass parameter c of the fermion field. We have confirmed by numerical eval-
uation that the total anomaly coefficients an�m(θH ) = aR

n�m(θH ) + aL
n�m(θH ) are independent of

the value of c. This may have profound implications for realistic GHU models in the RS space.
In the SO(5) × U(1) × SU(3) GHU [16–18], for instance, quark–lepton multiplets are intro-
duced such that all gauge anomalies are cancelled at θH = 0. Each quark or lepton multiplet
has its own bulk mass parameter c. In the vacuum θH 	= 0 and the electroweak symmetry is
dynamically broken. Typically, θH ∼ 0.1 and zL = 105 ∼ 1010. The gauge couplings of right-
and left-handed quarks or leptons change slightly at θH 	= 0, depending on c. The universality
of an�m(θH) implies that all gauge anomalies remain cancelled even at θH 	= 0 [19,20].

Anomalies flow by an AB phase. It is known that anomalies in four dimensions are related
to the global topology of the space through the index theorem [21,22]. It is challenging to
understand the anomaly flow by an AB phase from the viewpoint of the index theorem [23,24].
Gauge theory in the RS space or in the flat M4 × (S1/Z2) spacetime can be formulated as
gauge theory on an interval (0 ≤ y ≤ L) in the fifth dimension with a special class of orbifold
boundary conditions at y = 0 and L. In the twisted gauge in GHU the AB phase θH appears as
a phase parameter specifying orbifold boundary conditions. Anomalies and the index theorem
in orbifold gauge theory with nonvanishing θH have not been well understood so far. The RS
space will provide a powerful tool to elucidate the anomaly flow with θH, as no level crossing
occurs in the mass spectrum and anomalies smoothly change with θH, quite in contrast to the
behavior in the flat space.
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Appendix A. Basis functions
Wave functions of gauge fields and fermions are expressed in terms of the following basis func-
tions. For gauge fields we introduce

C(z; λ) = π

2
λzzLF1,0(λz, λzL),

S(z; λ) = −π

2
λzF1,1(λz, λzL),

C′(z; λ) = π

2
λ2zzLF0,0(λz, λzL),

S′(z; λ) = −π

2
λ2zF0,1(λz, λzL),

Fα,β (u, v) ≡ Jα(u)Yβ (v) − Yα(u)Jβ (v), (A1)

where Jα(u) and Yα(u) are Bessel functions of the first and second kind. They satisfy

−z
d
dz

1
z

d
dz

(
C
S

)
= λ2

(
C
S

)
,

C(zL; λ) = zL, C′(zL; λ) = 0,

S(zL; λ) = 0, S′(zL; λ) = λ,

CS′ − SC′ = λz. (A2)

To express wave functions of KK modes of gauge fields, we make use of

Ŝ(z; λ) = N0(λ)S(z; λ), Ĉ(z; λ) = N0(λ)−1C(z; λ),
Š(z; λ) = N1(λ)S(z; λ), Č(z; λ) = N1(λ)−1C(z; λ),
N0(λ) = C(1;λ)

S(1;λ) , N1(λ) = C′(1;λ)
S′(1;λ) .

(A3)

For fermion fields with a bulk mass parameter c, we define

(
CL

SL

)
(z; λ, c) = ±π

2
λ
√

zzLFc+ 1
2 ,c∓ 1

2
(λz, λzL),

(
CR

SR

)
(z; λ, c) = ∓π

2
λ
√

zzLFc− 1
2 ,c± 1

2
(λz, λzL). (A4)

These functions satisfy

D+(c)

(
CL

SL

)
= λ

(
SR

CR

)
, D−(c)

(
CR

SR

)
= λ

(
SL

CL

)
, D±(c) = ± d

dz
+ c

z
,

CR = CL = 1, SR = SL = 0 at z = zL,

CLCR − SLSR = 1. (A5)
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Also, CL(z; λ, −c) = CR(z; λ, c) and SL(z; λ, −c) = −SR(z; λ, c) hold. To express wave functions
of KK modes of fermion fields, we make use of

ŜL(z; λ, c) = NL(λ, c)SL(z; λ, c), ĈL(z; λ, c) = NR(λ, c)CL(z; λ, c),
ŜR(z; λ, c) = NR(λ, c)SR(z; λ, c), ĈR(z; λ, c) = NL(λ, c)CR(z; λ, c),
ŠL(z; λ, c) = NR(λ, c)−1SL(z; λ, c), ČL(z; λ, c) = NL(λ, c)−1CL(z; λ, c),
ŠR(z; λ, c) = NL(λ, c)−1SR(z; λ, c), ČR(z; λ, c) = NR(λ, c)−1CR(z; λ, c),

NL(λ, c) = CL(1;λ,c)
SL(1;λ,c) , NR(λ, c) = CR(1;λ,c)

SR(1;λ,c) .

(A6)

Appendix B. Mode functions of fermion fields with c < 0
When the bulk mass parameter c of a fermion field �(x, z) is negative, the roles of right-handed
and left-handed components are interchanged compared with those of a field with positive c.
In the KK expansions in Eq. (48) the mode functions fRn(z) and fLn(z) are given, for c < 0, by

fR0(z) = f̄a
R0(z);

fR,2�−1(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄a
R,2�−1(z) for − π < θH < π,

f̄b
R,2�−1(z) for 0 < θH < 2π,

−f̄a
R,2�−1(z) for π < θH < 3π,

−f̄b
R,2�−1(z) for 2π < θH < 4π,

f̄a
R,2�−1(z) for 3π < θH < 5π

(� = 1, 2, 3, . . .);

fR,2�(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄c
R,2�

(z) for − π < θH < π,

f̄d
R,2�

(z) for 0 < θH < 2π,

−f̄c
R,2�

(z) for π < θH < 3π,

−f̄d
R,2�

(z) for 2π < θH < 4π,

f̄c
R,2�

(z) for 3π < θH < 5π

(� = 1, 2, 3, . . .) (B1)

and

fL,2�(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄a
L,2�

(z) for − π < θH < π,

f̄b
L,2�

(z) for 0 < θH < 2π,

−f̄a
L,2�

(z) for π < θH < 3π,

−f̄b
L,2�

(z) for 2π < θH < 4π,

f̄a
L,2�

(z) for 3π < θH < 5π

(� = 0, 1, 2, . . .);

fL,2�−1(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f̄c
L,2�−1(z) for − π < θH < π,

f̄d
L,2�−1(z) for 0 < θH < 2π,

−f̄c
L,2�−1(z) for π < θH < 3π,

−f̄d
L,2�−1(z) for 2π < θH < 4π,

f̄c
L,2�−1(z) for 3π < θH < 5π

(� = 1, 2, 3, . . .). (B2)

Here, f̄a
Rn(z), f̄b

Rn(z), etc. are given in Eq. (52).
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