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We uncover a fundamental effect of the QED vacuum in an external electromagnetic (EM) field. We
show that the quantized vacuum of electrons is spin polarized by the EM field and manifests as a vacuum
spin current. An experiment is proposed to measure the spin torque exerted by the spin current by
measuring the twisted angle of the director axis of a nematic liquid crystal.
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Introduction.—The quantum nature of vacuum is a
fascinating place to look for novel physical phenomena.
For example, the large scale fluctuation of the Universe is
supposed to emerge from the quantum ripples of the near de
Sitter vacuum in the inflationary universe [1]. In high
energy physics, the metastability of the Higgs vacuum [2]
has nontrivial cosmological consequences and could pro-
vide a new observational window to particle physics well
beyond what collider experiments can achieve.
Recently, it was found that the vacuum fluctuations of

boundary QED system in the presence of an external
magnetic field result in a magnetization current near its
boundary [3,4]. This nontrivial electromagnetic response of
the vacuum is due to the electric charges carried by the
virtual electrons and positrons of the theory. As these
quantum fluctuations also carry spin, it is natural to ask if
and how the quantum fluctuation of the spin degrees of
freedom of the vacuum would manifest in observation.
In this Letter, we show that due to the renormalization

effect of the spin-orbit coupling of the electrons, the
quantized vacuum can become spin polarized in the
presence of an applied EM field and results in a spin
current; see Eq. (25). The vector spin current is orthogonal
to the applied electric field and the observed spin polari-
zation. We also discuss briefly how it may be observed
experimentally using a setup of nematic liquid crystal.
Definition of spin current.—The transportation of the

spin of electrons is described by a spin current. Classically,
the spin current is given by the 3-tensor Jij ¼ nvisj, where
vi is the velocity of the electron, sj is the spin, n is the
particle number density, and i, j ¼ 1, 2, 3 denotes the
spatial directions. Quantum mechanically, the spin

polarization of electrons is represented by the Pauli
matrices σi in the rest frame of the electron and a definition
of the spin current:

Jμi ¼ 1

2
ðvμσi þ σivμÞ; J0i ¼ σi; ð1Þ

in terms of a symmetrization of the velocity and the spin has
been proposed by Rashba [5]. Although this works well for
a nonrelativistic system, the generalization to the relativistic
case requires the use of a relativistic spin operator. Such an
operator was constructed long ago by Bargmann and
Wigner [6] for the free Dirac theory, and it reads

Ti
BW ¼ βΣi þ γ5pi=m; T0

BW ¼ Σ · p=m; ð2Þ

where β ¼ γ0, αi ¼ βγi, γ5 ¼ iγ0γ1γ2γ3 is the chirality
matrix and Σi ¼ ði=2Þεijkγjγk. We will adopt the particle
physics convention of metric signature ðþ;−;−;−Þ in this
Letter. The Bergmann-Wigner spin operator Tμ is a Lorentz
4-vector [7], it acts as the generator of the little group of the
Poincare group. That this is so is because it is indeed
equivalent to the Pauli-Lubanski operator

Wμ ¼ −
1

2m
εμαβνJαβpν: ð3Þ

This can be seen by noticing that the spin angular
momentum generator is given by Jαβ ¼ ði=2Þ½γα; γβ� in
the spinor representation. It is then easy to see that Eq. (3) is
equal to the spin operator Eq. (2) on shell.
In this Letter, we are interested in the renormalization

phenomena of the QED vacuum in the presence of an
external electromagnetic field Aμ. As the velocity is
represented by vμ ¼ βγμ in the Dirac theory, we propose
the following definition of spin current in quantum field
theory:

JμαS ðxÞ ≔ ψ̄ðxÞSμαψðxÞ; ð4Þ
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where

Sμα ≔
1

2
½γμTαðxÞ þ TαðxÞγμ� ð5Þ

and Tα is the covariant Bergmann-Wigner spin operator in a
background electromagnetic field:

Ti ¼ βΣi þ γ5
πi

m
; T0 ¼ 1

m
Σ · π: ð6Þ

Here πi ¼ pi − eAi is the covariant momentum and e > 0
is the magnitude of the electric charge. Similar definitions
[8,9] have been considered before. Our definition is better
justified since we have adopted a symmetrization prescrip-
tion such that Eq. (4) reduces to the one [Eq. (1)] of Rashba
in the nonrelativistic limit. A further justification of our
definition (4) can be obtained by noticing that the current
Eq. (4) satisfies the conservation law

∂μJμα ¼
e
m
SνFνα; ð7Þ

with a source term. Here Sν is the density defined by

Si ≔ ψ†Σiψ ; S0 ≔ ψ†γ5ψ : ð8Þ

We note in passing that Jμα is not a Noether current, but
Eq. (7) is obtained from the fermion equation of motion.
For the spatial directions α ¼ i, Eq. (7) gives explicitly

∂ρi
∂t þ∇ · Ji ¼ e

m
ððS × BÞi þ S0EiÞ: ð9Þ

Here ρi ≔ J0i and Ji ≔ ekJki. It is clear that ρi gives the
spin polarization density. As a result, Ji does admit the
correct interpretation as a current density for spin polari-
zation in the ith direction. We also note that −∇ · Ji and the
EM terms on the right-hand side of Eq. (9) can be
interpreted as the spin torque from the matters and the
external EM fields. Classically in a vacuum, Sμ vanishes
and the spin current respects the continuity equation

∂ρi
∂t þ∇ · Ji ¼ 0: ð10Þ

We will show in this Letter that, in the presence of a
background electromagnetic field, the spin current Ji and
the spin density ρi becomes nonzero due to the polarization
effect of the electromagnetic field on the quantum fluctua-
tions of the vacuum. Nevertheless the conservation law (10)
is still satisfied at the quantum mechanical level.
We end this section with a couple of remarks.

(i) Properly speaking, the current Eq. (4) measures the
flow of spin polarization and should be called a spin
polarization current. Wewill follow the common practice of

the literature, e.g., Ref. [5], and refer to it as the spin
current. To get the spin momentum current, one needs to
multiply Eq. (4) with ℏ=2 of the spin angular momentum of
each fermion. (ii) We note that in the nonrelativistic limit,
the magnetic dipole coupling and the spin-orbit coupling
term in the Dirac Hamiltonian

HE;B ¼ −
e
2m

Σ · B −
e

4m2
Σ · E × p ð11Þ

can be written in the form

HE;B ¼ −
e
8m

εμνλσJμνFλσ; ð12Þ

where Jμν here is the spin current (1) in the nonrelativistic
limit. The form (12) shows clearly that the spin current, at
least in the nonrelativistic limit, couples to the EM field
strengths instead of the EM potentials like the electric
current Jμ ¼ −eψ̄γμψ . (iii) Equation (12) also shows that a
certain amount of energy is needed to generate the stated
vacuum spin current and this is supplied by the external
power source that maintains the background EM field
configuration. (iv) Finally, we remark that for a quantum
field theory in curved space, there is a current Jabμ that
couples to the spin connection ωab

μ . Here a, b ¼ 0, 1, 2, 3
refer to the frame indices. This current couples to gravity
and is also sometimes referred to as a spin current in the
respective community. However we emphasize that
this is different from the spin current we introduced in
this Letter.
Vacuum expectation of spin current.—In quantum field

theory, the spin current (4) is a composite operator which
needs to be renormalized. We are interested in the vacuum
expectation value (vev) of the spin current in a background
electromagnetic field Aμ. This can be computed in pertur-
bation theory as

hJμαðxÞiA¼−ie
Z

d4yhJμαðxÞJβðyÞiAβðyÞþOðA2Þ; ð13Þ

or, it can be written in the momentum space as

hJμαðqÞiA ¼ eTμαβðqÞAβðqÞ þOðA2Þ; ð14Þ

where TμαβðqÞ is the Green’s function

TμαβðqÞ ≔ −i
Z

d4xeiqxhJμαðxÞJβð0Þi: ð15Þ

At 1-loop, TμαβðqÞ is given by

TμαβðqÞ ¼ −i
Z

d4p
ð2πÞ4 ð−1Þtr

�
Sμα

i
=p −m

γβ
i

=pþ =q −m

�
;

ð16Þ
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where Sμα is given by Eq. (5). The trace of the gamma
matrices can be simplified and we obtain

Tμ0β¼0; Tμiβ¼−4mεiμδβqδIðqÞ; i¼1;2;3; ð17Þ

where IðqÞ is the momentum function defined by

IðqÞ ≔
Z

d4p
ð2πÞ4

1

p2 −m2

1

ðpþ qÞ2 −m2
: ð18Þ

Note that IðqÞ and hence the Green’s function is loga-
rithmic divergent. This is due to the singular product of
local quantum fields in the expression (4) for the spin
current operator. In order to give a proper definition of this
composite operator, one need to isolate the divergent terms
with a regularization scheme and subtract it away with
counterterms in the Lagrangian [10]. Regularizing Eq. (18),
we obtain

IðqÞ ¼ i
16π2

�
log

Λ2

μ2
− 1þ log

μ2

m2
− h

�
q2

m2

�
þ � � �

�
ð19Þ

for a momentum cutoff regularization, and

IðqÞ ¼ i
16π2

�
2

ϵ
− γE þ log

4πμ2

m2
− h

�
q2

m2

�
þ � � �

�
ð20Þ

for dimensional regularization to d ¼ 4 − ϵ dimension.
Here � � � denotes terms of order Oð1=Λ2Þ or OðϵÞ, and
hðxÞ is the function

hðxÞ ≔
Z

1

0

dξ ln½1þ ξð1 − ξÞx� ð21Þ

with hð0Þ ¼ 0. We can now subtract away the divergence
with a counterterm and obtain

hJμiR ðxÞiA ¼ −
emc
8π2ℏ

εiμδβ
�
log

m2

μ2
þ aJ þ h

�
□

m2

��
FδβðxÞ

ð22Þ

and hJμ0R ðxÞiA ¼ 0. Here μ is the standard RG scale of the
QFT and aJ is an independent arbitrary constant that is due
to the arbitrariness in the choice of the finite part of the
counterterm for the composite operator Jμi.
To uniquely fix the finite part (i.e., fixing aJ) and hence

the definition of the renormalized spin current, a normali-
zation condition is required. Physically, if the electron mass
is sent to infinity, then the quantum loop effects are
completely suppressed and the renormalized spin current
mush vanish. In a theory with a cutoff Λ, the fermion loop
effects are now suppressed asm approaches this scale. As a
result, we have the decoupling condition

lim
m→Λ

hJμiR iA ¼ O

�
1

Λ

�
: ð23Þ

This serves as a natural normalization condition for the
renormalized spin current. However extra care is needed for
QED where there is a Landau pole and the UV cutoff
cannot be taken to exceed that. In fact, the positiveness of
the beta function βðαÞ ¼ 2α2=3π (α ¼ e2=4πℏc is the fine
structure constant) give rises to the RG flow for the
coupling

1

αðμÞ −
1

αðμ0Þ
¼ −

2

3π
log

μ

μ0
: ð24Þ

This implies the presence of a cutoff scale ΛL ¼ me3π=2α,
the Landau scale, where the bare coupling αðΛLÞ becomes
infinite. The Landau scale represents the highest possible
UV cutoff one may utilize in the renormalization program
of QED. Taking Λ ¼ ΛL in Eq. (23), the renormalization
constant aJ ¼ − logΛ2

L=μ
2 is fixed up to Oð1=ΛLÞ terms,

which we will ignore. Restoring the units of c=ℏ2 [11], we
finally obtain

hJμiR ðxÞiA ¼ emc
8π2ℏ2

�
3π

α
− h

�
□

m2

��
εiμδβFδβ: ð25Þ

Note that the current Eq. (25) is conserved due to the
Bianchi identity of the EM field. For a classical electro-
magnetic background in vacuum, it is □Fαβ ¼ 0 and we
have

hJμiR ðxÞiA ¼ 3emc
8πℏ2α

εiμδβFδβ; ð26Þ

or, in terms of components explicitly

hJjiRiA ¼ −
3emc
4πℏ2α

εjikEk; ð27aÞ

hJ0iR iA ¼ 3emc
4πℏ2α

Bi: ð27bÞ

The results (25), (26), (27) are the main results of this
Letter. For the rest of the Letter, we will be focusing on the
case (26) of a classical background. However, for generality
we present the result (25) to cover the situation where the
background EM fields go beyond the Maxwell description;
for example, if quantum nonlinear corrections of QED is
included, or if the classical EM fields are coupled to other
background fields (e.g., an axion background).
A couple of remarks are in order. (i) Note that our result

is independent of the adopted regularization scheme. Apart
from the cutoff regularization and the dimensional regu-
larization, one can also do the heat-kernel regularization
and obtain the same intermediate result (22), and the final
result (25) after imposing the normalization condition.
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(ii) It is interesting that the normalization condition (23)
fixes aJ in terms of the renormalization scale μ. In the end,
μ remains free in the QFT and it is remarkable that the
renormalized spin current is independent of it. (iii) We
remark that the renormalization condition (23) is essentially
nonperturbative in nature as the resulting prediction (25)
scales inversely with α and is not smoothly connected with
the free theory result.
It is instructive to compare our effect with the famous

Schwinger effect [12,13], which refers to the production of
electron-positron pairs under the influence of an applied
electric field. The Schwinger effect is nonperturbative and
requires a strong electric field stronger than the critical field
strength E≳ Ecritical ¼ m2c3=ðeℏÞ in order to produce an
observable amount of particle pairs. Unlike the Schwinger
effect, the spin current predicted in this Letter is a non-
perturbative consequence of the nontrivial spin polarization
of the vacuum. There is no real production of particles
involved. Our result is also different from the analysis of
Ref. [9] where the Schwinger-effect-produced electric
current is acted on by a second electric field to produce
a spin current. In this case, the spin current is generated in a
similar manner as in an ordinary material sample except
that the source electric current has a nonperturbative origin
and so very small in magnitude.
In the above we have considered pure QED. In a more

realistic setting where QED is embedded as the low energy
part of a consistent high energy theory, e.g., a grand unified
theory or string theory when gravity is included, the
Landau pole would be replaced by the corresponding
GUT or Planck scale. In this case, the 1-loop results
(25) will have the factor 3π=α replaced by
3πð1=α − 1=αGÞ, where αG is the fine structure coupling
at the unification scale. It is interesting that the vacuum
expectation value of the spin current actually provides a
probe to the UV physics. The value of 1=αG is model
dependent. For example, for the MSSM GUT, one
has [14] 1=αG ≃ 24.3 and MG ≃ 2 × 1016 GeV. In any
case, 1=αG is expected to be small compared to the
observed 1=α at the electron mass scale. In the following,
we will continue to analyze the result (25) for pure
QED, but keeping in mind the overall magnitude of the
spin current may be different from Eq. (25) by a small
fraction.
Physical picture.—It may appear strange that the switch-

ing on of an electric field in vacuum can produce an
observable spin current (27). However the physical origin
of the spin current can be easily understood in turns of the
spin-orbit coupling of the quantum fluctuation of the
vacuum. To see this, let us consider the nonrelativistic
expansion of Dirac’s Hamiltonian up to Oðp4Þ where a
spin-orbit coupling term arises,HSO ¼ −½ðeℏÞ=ð4m2c2Þ�Σ·
E × p. It is well known that the spin-orbit coupling term
allows impurity in a material to scatter the electrons in a
spin-dependent way (skew scattering) and generates a spin

current [15,16]. The spin-orbit coupling also give rises to a
side jump [17,18] described by the additional velocity

vSO ¼ ∂HSO

∂p ¼ −λΣ ×E; λ ≔
eℏ

4m2c2
; ð28Þ

which produces a spin-dependent shift to the trajectory of
the electrons and contributes to the spin current.
In vacuum, there are no charge carriers to start with, but

virtual pairs of electrons and positrons can be created and
live for a short time before they annihilate back. In standard
QFT without background field, such vacuum polarization
processes give rise to the running of couplings and scaling of
dimensions in the theory. However, new observable effects
may result in the presence of a background field.Without an
electric field, the created electron-positron pair will move
away from each other with opposite velocities �uj0 due to
momentum conservation. When an E field is turned on, the
particles acquire an additional velocity (28) in accordance
with their spin states. The velocities of the virtual e�

particles are given by uj ¼ �uj0 þ vj�, where vj� ¼
−λεjklσk�El and σi� are the spin operators for the eþ and
e− respectively. Take a measurement of the spin in the ith
direction, the expectation value of the jth component of the
spin current hJjii ¼ hnσiþðuj0 þ vjþÞi þ hnσi−ð−uj0 þ vj−Þi
gives

hJjii ¼ −2nλεjikEk; ð29Þ

wheren is the number density of the virtual pairs. In deriving
Eq. (29), we have used hσi�i ¼ 0 and the correlations
hσi�σj�i ¼ δij1 for the vacuum. As a result, the free field
velocity parts in Eq. (29) make no contribution, while the
anomalous velocity part of the virtual e� contribute equally
to the spin current. With the estimate that there is one virtual
pair within each volume of Compton wavelength,
n ∼ ðmc=ℏÞ3, we recover the result (27a) up to a numerical
coefficient (including the sign) of order 10. It is clear from
this quantum mechanical argument that the induced spin
current is a result of the nontrivial spin-spin correlation
imprinted on the vacuum due to the applied electric field.
This is similar to the induced current [3,4] and the induced
Fermi condensate [19,20] which are due to nontrivial
magnetization and condensation of the quantized vacuum
as a result of external fields.
Proposed experiment.—The induced spin current may be

observed by measuring the torque exerted by the spin
current on a probe placed in the vacuum. Consider an
infinitesimal volume element δV ¼ δxδyδz in the interior
of a probe placed under the influence of an external EM
field. The spin momentum torque acting on δV is
τi ¼ −ℏ=2

R
δV d

3x∇ · hJii. Using the result (27) for a
classical EM field in vacuum, we have
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τi ¼ 3emc
8πℏα

_BiδV; ð30Þ

where _Bi ≔ δV−1 R
δV ∂Bi=∂t is the average rate of change

of the magnetic field over the volume δV. We will be using
the SI units from now on and hence a factor of c appears in
Eq. (30). For a B field pointing in the z direction described
by a wave of the form

Bz ¼ B0g

�
t −

x
c

�
; ð31Þ

where g is as in Fig. 1, we obtain

τz ¼ 3emc
8πℏα

B0fδV; ð32Þ

where f ≔ 1=T1 − 1=T2. For an external field with
B0 ¼ 100 G, f ¼ 1000 Hz, the quantum spin torque per
unit volume is

τz=δV ¼ 6.5 × 10−5 Nm−2: ð33Þ

Not all of the vacuum torque is transferred to the probe.
Physically the angular momentum density J i

0 ¼ ðℏ=2Þρi
acquired by the vacuum generates a vacuum magnetization
M0 ¼ ðe=mÞJ 0 and this corresponds to quantum addition
to the B field, ΔB ¼ μ0M0. For a material probe with
magnetic susceptibility χ, the B field generates a probe
magnetization M ¼ χM0=ð1þ χÞ. These are just the
Barnett effect and the Einstein–de Haas effect for the
interplay between angular momentum and magnetization
[21]. This implies the probe receives a torque τip:

τip ¼ ητi; ð34Þ

where η ¼ 4πχ=ð1þ χÞ ≈ χ as jχj ≪ 1. The spin torque on
the probe is thus tiny. Nevertheless, the twisting effect may
be observable by using a liquid crystal which is known to
be exceptional in sensitivity for torque measurement. In
fact, recently the Casimir torque exerted on the surface of a
liquid crystal [22] has been observed successfully [23]. We
propose here a similar setup to observe the spin torque
arising from the spin current.

Consider a layer of nematic liquid crystal, e.g., 4-cyano-
40-pentylbiphenyl (5CB), placed in a vacuum with one side
(z ¼ 0) anchored at a glass interface and the rest of the
liquid crystal (0 < z ≤ Lz) sits in the vacuum cavity,
influenced by the external EM field; see Fig. 2. We place
the liquid crystal such that its director axis is always in the
xy plane, i.e., nðzÞ ¼ ½cos θðzÞ; sin θðzÞ; 0�, where θðzÞ
describes the orientation of the liquid crystal molecules
with respect to the x axis. Because of the action of the spin
torque (32), the molecules try to orient themselves corre-
spondingly. An equilibrium configuration is attained when
this torque is balanced by the restoring elastic torque of the
liquid crystal.
Suppose there is no bend or splay of the liquid crystal,

then only the twist contributes to distorting energy density
ud ¼ ðk=2Þ½ð∂θ=∂zÞ�2, where k is the twist elastic constant.
For example, k ¼ 3.6 pN for the crystal 5CB. The elastic
energy stored in δV is thus

Ed½θðzÞ� ¼ A
Z

zþδz

z
dz

k
2

�∂θ
∂z

�
2

; ð35Þ

where A ¼ δxδy is the area of the element. This give rises
to a restoring torque

τdðzÞ ¼
δEd

δθðzÞ ¼ −k
∂2θ

∂z2 δV: ð36Þ

This is in analogy with Newton’s second law F ¼ mẍ for
the inertia. The equilibrium is attained when Eq. (34) is
balanced out by the restoring torque [24]. Note that the
volume factor cancels out. This gives

t
TT

1 2

g

1

FIG. 1. Waveform of the B field.

L z

y

x

z

E

B

Liquid Crystal

Glass

FIG. 2. The director axis of a liquid crystal probe is twisted by
the induced spin torque exerted by the vacuum.
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θðzÞ ¼ β

2
z2; β ≔

3πχ

2α

mfBf
kλC

; ð37Þ

where fB ≔ eB0=ð2πmÞ is the cyclotron frequency and λC
is the Compton wavelength. In deriving Eq. (37), we have
taken the boundary conditions θ ¼ ∂zθ ¼ 0 at the glass
contact z ¼ 0.
To enhance the detection of the twisted angle, a thicker

liquid crystal layer and a stronger magnetic field is
preferred. However, both of these are limited by the
properties of the liquid crystal. In order for the liquid
crystal to be able to register the torque, the response time of
the liquid crystal should be smaller than T1 and T2. This
means f is upper bounded by the response frequency fr:
f < fr. However, the response frequency is limited by the
thickness as generally the response time of the liquid
crystal increases with the thickness, linearly or quadrati-
cally depending on the voltage [25]. As for the EM field,
the field strengths cannot be too strong as otherwise the
crystal may be driven into a Freederick transition [25].
Nematic liquid crystals are typically diamagnetic with χ of
the order of 10−5 [25]. Commercial nematic liquid crystal
has a fr in the range of 100 Hz and thickness of the order of
10 μm. As an estimate, consider a setup with a 100 G B
field and a nematic liquid crystal with an elastic constant
k ¼ 3.6 pN, thickness Lz ¼ 1 mm, a response frequency
of 1 kHz. The total twist angle accumulated over the
thickness of the probe is

Δθ ¼ 0.005° ·
χ

10−5
·
3.6 pN

k
·

B0

100 G
·

f
1 kHz

·

�
Lz

1 mm

�
2

:

ð38Þ

This looks feasible. It will be interesting to perform an
experiment to make observation of the spin current pre-
dicted in this Letter. The quantum spin current could have a
wide range of applications, from novel theoretical proper-
ties of physical system, e.g., dark energy, to practical effects
on the workings of micro-machined device.
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