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1 Introduction

The idea of a world with extra spatial dimensions compactified into a small volume has
been a topic of extensive research in elementary particle physics. In particular, higher-
dimensional gauge theories have been widely studied for seeking physics beyond the Standard
Model (SM). A remarkable feature of higher-dimensional gauge theories is that extra-
dimensional components of gauge fields are four-dimensional (4D) Lorentz scalars. Hence,
without contradicting the 4D Lorentz invariance, we can consider non-trivial background
configurations of these components, which open up new scenarios for physics beyond the SM.
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A simple possibility is a constant background configuration, namely a vacuum expecta-
tion value (VEV) of extra-dimensional gauge fields. The VEV of the Higgs scalar field in the
SM is a key ingredient and is forced to have a suitable potential to induce the electroweak
symmetry breaking (EWSB). In addition, in grand unified theories (GUTs) [1], large gauge
symmetries are often supposed to be broken into the SM gauge symmetry by VEVs of
Higgs scalars. Concerning these issues, the Gauge-Higgs Unification (GHU) models, where
Higgs scalars are identified to light 4D excitations appearing from the extra-dimensional
gauge field [2–5], have been widely studied in the contexts of both the EWSB and unified
gauge symmetry breaking [6–32]. In most of these GHU models, VEVs of extra-dimensional
gauge fields are related to physical degrees of freedom of Wilson line phases defined with
non-contractible cycles on compact spaces [4]. These phases are continuous moduli that
parametrize physical vacua along flat directions of tree-level potentials for gauge fields.
Thus, in many GHU models, Higgs scalars have flat tree-level potentials and obtain finite
effective potentials through quantum corrections, which is thought to be a result of the
inherent non-locality of the Wilson line phases, as examined in detail in [33, 34]. Therefore,
GHU models are considered to have the advantage of clarifying the origin of the breaking
of the electroweak symmetry or unified symmetries.

Another interesting possibility of the background configuration is a constant magnetic
flux provided by extra-dimensional gauge fields. For the case with two or more extra
dimensions, we can turn on the flux background consistent with classical equations of
motion (EOM). The flux backgrounds may play crucial roles in the compactifications in
string theory associated with moduli stabilization and breaking of supersymmetry and gauge
symmetry [35–38]. In addition, flux background with toroidal or orbifold compactifications
yields chiral fermions having a generation structure [37–46], which is one of the fundamental
properties of the fermions in the SM, in an effective low-energy theory. The flavor structure
of quarks and leptons, such as masses and mixing angles, has been widely examined in this
setup [47–54].

Recently, the mass spectrum of low-energy excitations around flux backgrounds has
gained much attention and has been examined in detail, including quantum corrections [55–
62]. In six-dimensional (6D) models with a T 2 compactification, massless scalar excitations
appear from the extra-dimensional gauge field that provides the magnetic flux background.
The massless scalars are identified as the Nambu-Goldstone (NG) bosons associated with
the translational symmetry broken by the flux background. Recent studies explicitly showed
that exact cancellation occurs in one-loop contributions to masses of these scalars [55–58].
Toward applications to phenomenologically viable GHU models, finite masses for the pseudo-
NG modes are investigated with the help of explicit breaking of the translational symmetry
through interaction terms on T 2 [61] or fixed points on T 2/Z2 [63].

A non-vanishing flux background taking a direction in the space of a simply-connected
gauge group makes some of the 4D parts of gauge fields massive and must induce a
spontaneous gauge symmetry breaking at low energy. In addition, such backgrounds have
been discussed to accompany tachyonic excitations at a low-energy regime [38, 47, 55],
related to the Nielsen-Olesen instabilities [64]. Condensation of these tachyonic modes seems
to have an impact on vacuum structure, as examined in superstring models [65, 66], and may
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give rich phenomena such as further symmetry breaking in a more general field theoretical
setup. Despite these phenomenologically interesting features, flux backgrounds associated
with an SU(n) gauge group have been less studied, and more comprehensive studies are
needed to explore phenomenologically viable models based on the flux background.

This work mainly focuses on clarifying complete tree-level mass spectra appearing in
low-energy effective theories with flux backgrounds in a general SU(n) case. We study
6D non-supersymmetric gauge theory compactified on T 2 in detail. We examine the
classical EOM to obtain consistent background configurations including both the magnetic
flux and Wilson line phases. With the consistent background configurations, boundary
conditions for fields associated with the discrete translations on T 2 are studied. The
background configurations and the boundary conditions simultaneously change under gauge
transformations. With the help of gauge transformations, the Wilson line phases are removed
from the background, and the mass spectrum of low-energy 4D excitations is discussed. We
explicitly perform a standard Rξ gauge fixing, keeping the calculations as general as possible,
and discuss physically relevant excitations at a low-energy regime. Under a mode expansion
of six-dimensional fields, non-trivial mixing among four-dimensional modes appears in their
mass terms depending on the gauge fixing terms. We clarify the expressions for the masses
depending on the gauge parameter. We confirm that tachyonic scalars inevitably appear in
this setup. In addition, some of the scalar excitations are identified as would-be Goldstone
modes that are absorbed by 4D vector fields, which become massive due to the gauge
symmetry breaking triggered by the flux background. We also discuss the phenomenological
implications associated with stabilization or condensation of the tachyonic states. Various
mass spectra and symmetry-breaking patterns are expected with the flux background for
a simply-connected gauge group and are interesting for constructing phenomenologically
viable models beyond the standard model, such as GHU and GUT.

The structure of this paper is as follows. In section 2, we present our definitions and
the basic concepts of SU(n) gauge theories. The boundary conditions and consistency
conditions for the gauge field are also defined. Taking these conditions into consideration,
we obtain a background configuration solution in section 3. In section 4, we discuss a
convenient parametrization of this background. In section 5, we examine the Yang-Mills
Lagrangian in this setup, fixing the gauge and obtaining the explicit expressions for the
quadratic terms. From these terms, we could compute the tree-level mass spectrum for all
of the fields, as done in section 6. Finally, phenomenological implications are discussed in
section 7, followed by our conclusions. Calculation details can be found in the appendices.

2 SU(n) gauge theories on M4 × T 2

We study gauge theories on M4 × T 2, where M4 and T 2 are the Minkowski spacetime
and a two-dimensional torus, respectively. We denote coordinates by xµ (µ = 0, 1, 2, 3) on
M4 and by x5 and x6 on T 2. We also use xM (M = 0, 1, 2, 3, 5, 6) and xm (m = 5, 6). A
two-dimensional torus T 2 is given by imposing the identification for x5 and x6 as

(x5, x6) ∼
(
x5 + L(n5 + n6τR), x6 + Ln6τI

)
, n5, n6 ∈ Z, τI > 0, (2.1)
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where τ = τR + iτI (τR, τI ∈ R) is a complex parameter describing the moduli space of the
two-dimensional torus. The size of T 2 is parametrized by L, where the volume of T 2 is
given by VT 2 = L2τI. In the following, we take L = 1 without loss of generality.

It is convenient to use complex coordinates defined as

z = x5 + ix6, z̄ = x5 − ix6, ∂z = 1
2(∂5 − i∂6), ∂̄z = 1

2(∂5 + i∂6), (2.2)

where ∂M = ∂/∂xM . Then, eq. (2.1) is expressed by z ∼ z + n5 + n6τ . Let us define the
translation operators Tp (p = 5, 6) as

T5z = z + 1, T6z = z + τ. (2.3)

Note that the direction of the translation generated by T6 is different from the one of x6 for
τR ̸= 0, whereas the directions of T5 and x5 coincide with each other. Using these operators,
eq. (2.1) is rewritten by

z ∼ T n6
6 T n5

5 z. (2.4)

We consider gauge theories on M4 ×T 2 with the gauge group SU(n), whose Lie algebra
is denoted by su(n). The action is given by the 6D volume integral of a Lagrangian
density L6 of an SU(n) gauge theory. We demand that L6 is invariant under 6D Lorentz
transformations and SU(n) gauge transformations.

Let AM ∈ su(n) be a gauge field, which is a function of xM . In order to expand the
gauge field as AM = Aa

M ta (Aa
M ∈ R, a = 1, . . . , n2−1), we introduce generators ta ∈ su(n),

which span the vector space su(n). Hereafter, we imply summations over the same upper
and lower indices. We refer to Aa

M as a component field. We also introduce the covariant
derivative DM as

DM = ∂M − igAM , (2.5)

where g is a gauge coupling constant.
We first discuss the pure Yang-Mills theory; matter fields are discussed in section 7.

The Lagrangian is given by

LYM = −1
2ηMM ′

ηNN ′Tr(FMN FM ′N ′), (2.6)

where FMN is the field strength, and ηMN is the metric of the 6D spacetime. The trace is
implied to be taken in a representation space of su(n). The field strength is given by

FMN = i

g
[DM , DN ] = ∂M AN − ∂N AM − ig[AM , AN ], (2.7)

where [A, B] = AB − BA, and the metric is defined to be (ηMN ) = diag(−1, 1, . . . , 1).
Namely, xM are orthogonal coordinates. We also use (ηµν) = diag(−1, 1, 1, 1) for the
Minkowski part. Note that FMN is written by F a

MN ta ∈ su(n).
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The Lagrangian in eq. (2.6) is invariant under a gauge transformation, which is defined by

AM → Agt
M = ΛAM Λ−1 + i

g
Λ∂M Λ−1, (2.8)

where Λ ∈ SU(n) is a function of xM and is called a gauge transformation function. From
eq. (2.8), one finds DM → Dgt

M = ΛDM Λ−1 and FMN → F gt
MN = ΛFMN Λ−1, under which

the gauge invariance of the Lagrangian in eq. (2.6) is manifested.
For later convenience, we define

Az = 1
2(A5 − iA6), Āz = 1

2(A5 + iA6), (2.9)

Dz = 1
2(D5 − iD6) = ∂z − igAz, D̄z = 1

2(D5 + iD6) = ∂̄z − igĀz. (2.10)

From the above and eq. (2.2), one naturally defines

Fzz̄ = ∂zĀz − ∂̄zAz − ig[Az, Āz] = i

2F56, Fz̄z = −Fzz̄, Fzz = Fz̄z̄ = 0. (2.11)

Similar notations are used for component fields, e.g., F a
zz̄ = iF a

56/2.
Since we consider compact extra dimensions, boundary conditions for fields have to

be specified to define gauge theories. In view of the identification in eq. (2.4), we require
that AM (xµ, T n6

6 T n5
5 z) is equal to AM (xµ, z) up to a gauge transformation as a sufficient

condition to make the pure Yang-Mills Lagrangian single-valued on T 2. Hence, the boundary
conditions are defined as

AM (Tpz) = Tp(z)AM (z)T †
p (z) + i

g
Tp(z)∂M T †

p (z), (2.12)

where we have introduced Tp(z) ∈ SU(n) (p = 5, 6). As a shorthand notation, xµ was sup-
pressed, and AM (xµ, z) and Tp(xµ, z) are written as AM (z) and Tp(z), respectively. A similar
notation is used for others that depend on xM . The boundary conditions are specified by Tp,
which we refer to as twist matrices hereafter. The twist matrices generally depend on xM .

Different twist matrices can be physically equivalent since the twist matrices Tp depend
on the choice of gauge [5, 67–69]. From eq. (2.8), one sees that

Agt
M (Tpz) = T gt

p (z)Agt
M (z)T gt†

p (z) + i

g
T gt

p (z)∂M T gt†
p (z), (2.13)

where

T gt
p (z) = Λ(Tp(z))Tp(z)Λ†(z). (2.14)

The gauge field at z + 1 + τ is written by

AM (z + 1 + τ) = AM (T6(z + 1)) = AM (T5(z + τ)). (2.15)

From the above, we obtain

[T□(z), AM (z)] = i

g
∂M T□(z), T□(z) = T †

6 (z)T †
5 (z + τ)T6(z + 1)T5(z), (2.16)

which is regarded as a consistency condition for the twist matrices.
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As seen below, there appear to be additional consistency conditions for the twist
matrices if non-trivial background configurations for the gauge field exist. In the next
section, we discuss explicit forms of the twist matrices taking background configurations for
the gauge field into account.

3 Consistency between background configurations and boundary
conditions

Let us introduce non-trivial background configurations for the gauge field AM . For consis-
tency, we demand that the backgrounds satisfy the classical EOM. From the Lagrangian in
eq. (2.6), we find that the EOM is given by

DM FMN =
(
∂M − igad(AM )

)
FMN = 0, (3.1)

where we have introduced the notation ad(X)Y = [X, Y ]. In the following, we replace

AM (z) → BM (z) + AM (z), (3.2)

in the Lagrangian in eq. (2.6). On the right-hand side, BM and AM are referred to as
the background and the fluctuation around the background configuration, respectively.
Imposing Bµ = 0 and ∂µBM = 0, we can explicitly keep the 4D Lorentz invariance. Then,
non-trivial background configurations can be given by Bm ̸= 0, which generally depend on
the torus coordinates.

It is convenient to introduce the background covariant derivative Dm and the field
strength Fmn as

Dm = ∂m − igad(Bm), Fmn = ∂mBn − ∂nBm − ig[Bm, Bn]. (3.3)

According to the above discussion, we require that

DmFmn = 0, (3.4)

to satisfy the consistency condition for the background field Bm.
A solution to eq. (3.4) is written as

B5(z) = v5 − (1 + γ) fx6/2, B6(z) = v6 + (1 − γ) fx5/2, (3.5)
[v5, v6] = [vm, f ] = 0, (3.6)

where vm, f ∈ su(n) and γ ∈ R are constants. With this background configuration, one sees
that F56 = f . We call f a constant magnetic flux, whereas vm are referred to as continuous
Wilson line phases. As discussed in the next section, allowed values of f are quantized. On
the other hand, continuous variables vm are related to the flat directions in the tree-level
potential for the gauge field obtained from eq. (2.6). The parameter γ is introduced for
clarity of our discussions and is independent of F56. In the literature, γ = ±1 and γ = 0
are often called the Landau and the symmetric gauge, respectively.
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The background Bm changes by gauge transformations. Using the gauge transformation
in eq. (2.8) with a constant Λ, we can diagonalize f in a representation space of su(n).
Then, the last equality in eq. (3.6) implies that we can also diagonalize vm keeping f

diagonal. Thus, without loss of generality, we can expand f and vm by Cartan generators.
We discuss the explicit forms of the su(n) generators in the next section.

Considering the background configuration in eq. (3.5), we examine the boundary
conditions for the gauge field in eq. (2.12). The background BM and the twist matrices Tp

must satisfy the relation

BM (Tpz) = Tp(z)BM (z)T †
p (z) + i

g
Tp(z)∂M T †

p (z), (3.7)

whereas the fluctuations satisfy

AM (Tpz) = Tp(z)AM (z)T †
p (z). (3.8)

From eq. (3.7) for M = µ, one sees that ∂µTp = 0. On the other hand, from eq. (3.7) for
M = n, we obtain

∂5T5 = ig[B5, T5], (3.9)
∂6T5 = ig[B6, T5] + ig (1 − γ) fT5/2, (3.10)
∂5T6 = ig[B5, T6] − ig (1 + γ) τIfT6/2, (3.11)
∂6T6 = ig[B6, T6] + ig (1 − γ) τRfT6/2, (3.12)

where Bm and Tp are defined at z. The twist matrices must satisfy these conditions in
addition to eq. (2.16).

A solution to eqs. (3.9)–(3.12) with the background configuration in eq. (3.5) is given by

T5(z) = eig(1−γ)fx6/2T̃5, T6(z) = eig{−(1+γ)τIfx5/2+(1−γ)τRfx6/2}T̃6, (3.13)

where we have introduced constant matrices T̃p that satisfy [f , T̃p] = [vn, T̃p] = 0. Then,
T□(z) defined in eq. (2.16) becomes

T□(z) = e−igVT 2 f T̃ †
6 T̃ †

5 T̃6T̃5. (3.14)

From the right-hand side of the above equation, one sees that T□(z) is a constant matrix.
Hence, eq. (2.16) is reduced to [T□, AM (z)] = 0. The general solution of this constraint is
T□ ∈ Zn, where Zn ⊂ SU(n) is the center subgroup of SU(n). Thus, we obtain

e−igVT 2 f T̃ †
6 T̃ †

5 T̃6T̃5 = e2πiñ/nI, ñ ∈ Z, (3.15)

where I ∈ SU(n) is the identity operator. The integer ñ modulo n is referred to as the
’t Hooft flux [70].

Although there are interesting possibilities of non-trivial choices for T̃p and ñ in
eq. (3.15), we restrict our attention to the simplest ñ = 0 and T̃p = I in the following
discussions. Then, from eq. (3.15), we obtain

eigVT 2 f = I, (3.16)
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which gives a quantization condition for the flux f . We will examine this condition in the
next section.

Both the background Bm and the twist matrices Tp have gauge dependence. A notable
fact is that the constant terms vm in eq. (3.5) can be eliminated by a gauge transformation
with Λ = e−ig(v5x5+v6x6). From eqs. (2.8) and (2.14), after the gauge transformation,
one finds

B5(z) = −(1 + γ)fx6/2, B6(z) = (1 − γ)fx5/2, (3.17)

T5(z) = e−igv5eig(1−γ)fx6/2, T6(z) = e−ig(τRv5+τIv6)eig{−(1+γ)τIfx5/2+(1−γ)τRfx6/2},

(3.18)

where we have renamed Bgt
m and T gt

p as Bm and Tp to simplify the notation. From the
above, it is clear that non-trivial values of the continuous Wilson line phases vm can be
treated as some part of the twist matrices [71]. We choose this gauge in the following
discussions.

4 Parametrization of background gauge fields

Considering the background configuration in eq. (3.17), let us discuss the parametrization
of Bm by su(n) generators. Let {ta} (a = 1, . . . , n2 − 1) be a set of the su(n) generators.
It is convenient to use the Cartan-Weyl basis, writing {ta} = {Hk} ∪ {Eα}, where {Hk}
(k = 1, . . . , n − 1) are Cartan generators, and Eα is a step operator associated to a root
vector α. The Cartan generators are Hermitian, H†

k = Hk, and step operators Eα satisfy
E†

α = E−α. They obey the commutation relations

[Hk, Hℓ] = 0, [Hk, Eα] = α[k]Eα, (4.1)

where α[k] ∈ R is the k-th component of the root vector α. As noted before, f and vm are
expanded by su(n) Cartan generators:

f = fkHk, vm = vk
mHk, fk, vk

m ∈ R. (4.2)

To be more concrete, we fix a basis of the generators in a representation space of su(n).
Let us denote the fundamental representation of Hk by Ĥk and take

Ĥ1 = diag(1,−1, 0, . . . , 0), Ĥ2 = diag(0, 1,−1, 0, . . . , 0), . . . , (4.3)
Ĥn−2 = diag(0, . . . , 0, 1,−1, 0), Ĥn−1 = diag(0, . . . , 0, 1,−1). (4.4)

In the following discussions, we identify any operators of su(n) as their fundamental
representation matrices for simplicity.

Let us examine the quantization condition of the constant magnetic flux in eq. (3.16).
It is convenient to introduce the unit strength of the magnetic flux f̂ = 2π/(gVT 2). Then,
using the explicit forms of Ĥk in eqs. (4.3) and (4.4), we obtain a general solution to
eq. (3.16) as

fk = 2π

gVT 2
Nk = f̂Nk, Nk ∈ Z. (4.5)
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The flux f in the fundamental representation is expressed by

f = fkĤk = f̂ diag(N1, N2 − N1, . . . , Nn−1 − Nn−2,−Nn−1). (4.6)

For later convenience, we discuss the step operators in the fundamental representation.
We define n2 − 1 − (n − 1) = n(n − 1) step operators. To express them, it is convenient to
introduce the basis matrices êij , whose (i′, j′) element (êij)i′j′ is given by (êij)i′j′ = δii′δjj′ ,
where δii′ is the Kronecker delta. We can denote the n(n − 1) step operators in the
fundamental representation by

E
(+)
ij = êij , E

(−)
ij = êji, 1 ≤ i < j ≤ n. (4.7)

The Cartan generators are written by Ĥk = êkk − êk+1 k+1 with these basis matrices. From
the definition of the fundamental representation of the generators, one sees that

Tr[ĤkĤℓ] = (M su(n))kℓ, Tr[E(+)
ij E

(−)
i′j′ ] = δii′δjj′ , (4.8)

Tr[ĤkE
(±)
ij ] = Tr[E(+)

ij E
(+)
i′j′ ] = Tr[E(−)

ij E
(−)
i′j′ ] = 0, (4.9)

where (M su(n))kℓ is the (k, ℓ) element of the su(n) Cartan matrix

M su(n) =



2 −1 0 · · · 0
−1 2 −1 0 · · · 0

. . .
0 · · · 0 −1 2 −1
0 · · · 0 −1 2


. (4.10)

In the following discussions, commutation relations between the generators often appear,
such as

[Ĥk, E
(±)
ij ] = ±(δki − δk+1 i − δkj + δk+1 j)E(±)

ij , (4.11)

where we note that, on the right-hand side, the indices are not summed. The eigenvalue
±(δki − δk+1 i − δkj + δk+1 j) is the k-th component of the root vector corresponding to E

(±)
ij .

From eqs. (4.6) and (4.11), we obtain

[f , E
(+)
ij ] = f̂(N i − N i−1 − N j + N j−1)E(+)

ij ≡ f̂ Ñ ijE
(+)
ij , (4.12)

[vm, E
(+)
ij ] = (vi

m − vi−1
m − vj

m + vj−1
m )E(+)

ij ≡ ṽij
mE

(+)
ij , (4.13)

where we have defined

Ñ ij = N i − N i−1 − N j + N j−1, ṽij
m = vi

m − vi−1
m − vj

m + vj−1
m . (4.14)

We note that we have implied N i−1, vi−1
m = 0 for i = 1 and N i, vi

m = 0 for i = n. We also
have [f , E

(−)
ij ] = −f̂ Ñ ijE

(−)
ij , [vm, E

(−)
ij ] = −ṽij

mE
(−)
ij , and [f , Ĥk] = [vm, Ĥk] = 0.
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5 Lagrangian around flux backgrounds

5.1 Lagrangian for the fluctuations

Let us examine the Lagrangian in eq. (2.6) with the background configurations and boundary
conditions in eqs. (3.17) and (3.18). We aim to study the tree-level mass spectrum in the
effective 4D theory, which describes physics at a sufficiently lower energy scale than the
compactification scale 1/L. Since the quadratic terms of the fields in the Lagrangian are
relevant to the mass spectrum, we mainly focus on them here.

As discussed, we take the replacement in eq. (3.2) in the Lagrangian in eq. (2.6). We
use the background covariant derivative and the field strength defined in eq. (3.3), which
are generalized to

DM =

Dµ = ∂µ,

Dm = ∂m − igad(Bm),
FMN =

FµM = 0,

Fmn = ϵmnf ,
(5.1)

where ϵ56 = −ϵ65 = 1. Then, the field strength in eq. (2.7) is rewritten as

FMN = FMN + DM AN −DN AM − ig[AM , AN ], (5.2)

where the first term on the right-hand side is a constant.
The Lagrangian in eq. (2.6) is decomposed into

LYM = −1
2

4∑
p=0

Tr[L(p)], (5.3)

where L(p) contains p-th polynomials of the fluctuations. We find

L(0) = FMNFMN , (5.4)

L(1) = 4FMNDM AN , (5.5)

L(2) = 2DM AN (DM AN −DN AM ) − 2igFMN [AM , AN ], (5.6)

L(3) = −4ig(DM AN )[AM , AN ], (5.7)

L(4) = −g2[AM , AN ][AM , AN ]. (5.8)

The constant terms L(0) contribute to the cosmological constant, which is irrelevant to our
present analysis. The linear terms L(1) vanish in the action.1 Such terms induce tadpoles
and must vanish with background configurations consistent with the EOM. The quadratic
terms L(2) describe the tree-level mass spectrum in the 4D effective theory. We study them
in detail just below. From the trilinear and quartic terms L(3) and L(4), one finds

−1
2Tr[L(3)] = 2igTr[(∂µAν)[Aµ, Aν ]] + 2igTr[(∂µAm)[Aµ, Am]]

+ 2igTr[(DmAµ)[Am, Aµ]] + 2igTr[(DmAn)[Am, An]], (5.9)

−1
2Tr[L(4)] = g2

2 Tr[([Aµ, Aν ])2] + g2Tr[([Aµ, Am])2] + g2

2 Tr[([Am, An])2], (5.10)

which give the interactions between the fluctuations.
1The linear terms L(1) yield two types of contributions in the Lagrangian. One of them is the term

proportional to ϵmn∂mTr[fAn]. Since Tr[fAn] is periodic under the shift generated by Tp, this surface term
vanishes in the action. Another type is the term proportional to Tr[f [Bm, An]]. Using the parametrization
of Bm and the relations in eqs. (4.1) and (4.9), we find that such terms vanish due to Tr[ĤkE

(±)
ij ] = 0.
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For the quadratic terms, a straightforward calculation shows

−1
2Tr[L(2)] =L(2)

1 +L(2)
2 +L(2)

3 , (5.11)

L(2)
1 = Tr[−(∂µAν)2−(DmAµ)2+(∂µAν)(∂νAµ)], (5.12)

L(2)
2 = Tr

[
−(∂µAm)2−(DmAn)2+(DmAn)(DnAm)−igϵmnAmad(f)An

]
, (5.13)

L(2)
3 = 2Tr[(DmAµ)(∂µAm)], (5.14)

where L(2)
1 and L(2)

2 are quadratic terms for Aµ and Am, respectively. There appears a
mixing term between Aµ and Am in L(2)

3 . As seen below, this mixing term can be canceled
by gauge fixing terms.

Using integration by parts, we can rewrite the quadratic terms in eqs. (5.12)–(5.14) as

L(2)
1 = Tr[Aµ(ηµν□ + ηµνDmDm − ∂µ∂ν)Aν ], (5.15)

L(2)
2 = Tr[Am(δmn□ + δmnDm′Dm′ −DnDm − igϵmnad(f))An], (5.16)

L(2)
3 = 2Tr[(∂µAµ)(DmAm)], (5.17)

where □ = ∂µ∂µ is the 4D d’Alembertian. In the above expressions, we discarded the
surface terms. Since we consider the compact extra dimensions, the surface terms have to
be carefully treated. In the present case, all of the surface terms actually vanish in the
action as discussed in appendix A.

5.2 Gauge fixing

We consider the standard procedure to fix the gauge in quantum theories. The gauge fixing
yields the additional contributions to the Lagrangian as

Lgf
YM = LYM + LGF + Lc. (5.18)

We refer to LGF and Lc as gauge fixing terms and ghost terms, respectively. We choose the
gauge fixing terms as

LGF = −1
ξ

Tr[(∂µAµ + ξDmAm)2] (5.19)

= 1
ξ

Tr[Aµ∂µ∂νAν ] + ξTr[AmDmDnAn] − 2Tr[(∂µAµ)(DmAm)], (5.20)

where ξ ∈ R is called the gauge fixing parameter. From the first line to the second line, we
have used integration by parts and dropped the surface terms, which vanish in the action
as shown in appendix A. One sees that the last term in eq. (5.20) cancels L(2)

3 in Lgf
YM.

From the gauge fixing terms given above, the ghost terms are obtained as

Lc = −2Tr[c̄ {∂µ(∂µ − igad(Aµ)) + ξDm(Dm − igad(Am))} c], (5.21)

where c and c̄ are ghost fields. They can be expanded by the su(n) generators. In addition
to the quadratic terms for the ghost fields, there also appear trilinear interactions including
the gauge field fluctuations.
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5.3 Quadratic terms

To discuss the tree-level mass spectrum, let us focus on the quadratic terms of the fluctuations
AM and ghost fields. From the discussions in section 5.1 and 5.2, these terms in the
Lagrangian in eq. (5.18) are given by

Lgf
YM ∋ L(2)

Aµ
+ L(2)

Am
+ L(2)

c , (5.22)

L(2)
Aµ

= Tr[Aµ(ηµν□ + ηµνDmDm − (1 − ξ−1)∂µ∂ν)Aν ], (5.23)

L(2)
Am

= Tr[Am(δmn□ + δmnDm′Dm′ − (1 − ξ)DmDn − 2igϵmnad(f))An], (5.24)

L(2)
c = −2Tr[c̄(□ + ξDmDm)c]. (5.25)

We note that, to obtain the expression for L(2)
Am

, we have used

DnDm = [Dn,Dm] + DmDn = igϵmnad(f) + DmDn. (5.26)

The last term in eq. (5.24) being proportional to ad(f) appears since the extra-dimensional
components of the gauge fields have non-trivial helicities in the two-dimensional torus [38].

We use the explicit forms of the generators in eqs. (4.3), (4.4), and (4.7) to expand
AM as

AM = Ak
M Ĥk + Aij

M E
(+)
ij + Āij

M E
(−)
ij =


A1

M A12
M . . . A1n

M

Ā12
M A2

M − A1
M

...
... . . .

Ā1n
M . . . −An−1

M

 , (5.27)

where we have introduced the component fields Ak
M (k = 1, . . . , n−1), Aij

M , and Āij
M = (Aij

M )†

(1 ≤ i < j ≤ n). We note that the summations over 1 ≤ k ≤ n − 1 or 1 ≤ i < j ≤ n are
implied in each term in the second expression in eq. (5.27). A similar expansion to eq. (5.27)
for the ghost fields is also used.

The expansion in eq. (5.27) simplifies the discussion since the component fields are
eigenfunctions of the background covariant derivative and the boundary conditions. We
first express the Lagrangian by the component fields. From eq. (4.12), one sees that

DmAM = ∂mAk
M Ĥk + D(ij)

m Aij
M E

(+)
ij + D̄(ij)

m Āij
M E

(−)
ij , (5.28)

where we have defined

D
(ij)
5 = ∂5 + igf̂Ñ ij(1 + γ)x6/2, D

(ij)
6 = ∂6 − igf̂Ñ ij(1 − γ)x5/2, (5.29)

D̄
(ij)
5 = ∂5 − igf̂Ñ ij(1 + γ)x6/2, D̄

(ij)
6 = ∂6 + igf̂Ñ ij(1 − γ)x5/2. (5.30)

Thus, each component is an eigenfunction of the covariant derivative. Using eqs. (4.8)
and (4.9), we obtain

L(2)
Aµ

= (M su(n))kℓA
k
µ

[
ηµν□− (1 − ξ−1)∂µ∂ν + ηµν∂m∂m

]
Aℓ

ν +
∑

1≤i<j≤n

L(ij)
Aµ

, (5.31)

L(2)
Am

= (M su(n))kℓA
k
m

[
ηmn□ + ηmn∂m′∂m′ − (1 − ξ)∂m∂n

]
Aℓ

n +
∑

1≤i<j≤n

L(ij)
Am

, (5.32)
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where we have introduced

L(ij)
Aµ

= 2Āij
µ [ηµν□− (1 − ξ−1)∂µ∂ν + ηµν(D(ij)

m′ )2]Aij
ν , (5.33)

L(ij)
Am

= 2Āij
m[δmn□ + δmn(D(ij)

m′ )2 − (1 − ξ)Dm(ij)Dn(ij) − 2igf̂Ñ ijϵmn]Aij
n . (5.34)

For the ghost fields, a similar discussion holds. To obtain eqs. (5.33) and (5.34), we have
used integration by parts and safely discarded surface terms; please refer to appendix A.

In the Lagrangian in eqs. (5.31) and (5.32), the components related to the Cartan genera-
tors Ĥk do not couple to flux. Although the Cartan matrix M su(n) is not diagonalized in this
basis, we can take linear combinations of Ak

M to diagonalize the Lagrangian. For the com-
ponents related to the step operators, the Lagrangian is completely separated for each (ij).

Let us discuss the boundary conditions for the component fields. As discussed in
section 3, the fluctuations AM satisfy the boundary conditions in eq. (3.8). Using the
expression of the twist matrices in eq. (3.18), we can rewrite the boundary conditions in
eq. (3.8) as

AM (T5z) = e−igad(v5)eig(1−γ)(x6/2)ad(f)AM (z), (5.35)

AM (T6z) = e−ig(τRad(v5)+τIad(v6))eig{−(1+γ)τIx
5/2+(1−γ)τRx6/2}ad(f)AM (z), (5.36)

where we have used the Campbell-Baker-Hausdorff formula eXY e−X = ead(X)Y . Combining
the above and eq. (5.27), one sees that the components obey the following boundary
conditions:

Ak
M (T5z) = Ak

M (T6z) = Ak
M (z), (5.37)

Aij
M (T5z) = e−igṽij

5 eig(1−γ)(x6/2)f̂ Ñ ij
Aij

M (z), (5.38)

Aij
M (T6z) = e−ig(τRṽij

5 +τIṽ
ij
6 )eig{−(1+γ)τIx

5/2+(1−γ)τRx6/2}f̂ Ñ ij
Aij

M (z), (5.39)

where the ones for Āij
M are given by Āij

M = (Aij
M )†.

From the Lagrangian and the boundary conditions for the component fields, we can
understand that the components Ak

M are decoupled from both the flux and the continuous
Wilson lines. On the other hand, the components Aij

M can couple with them if Ñ ij or ṽij
m

do not vanish. We keep general configurations of the Wilson line phases. Then, for a given
magnetic flux configuration, i.e., a value of Nk in eq. (4.5), the masses for Aij

M are basically
classified into Ñ ij = 0 or Ñ ij ̸= 0 cases. We will examine the mass spectrum for both cases
in the next section.

6 Mass spectrum around flux backgrounds

6.1 Masses for KK modes of Ak
µ

Let us discuss the tree-level mass spectrum obtained from Ak
µ. Their masses are derived

from the 6D kinetic terms in eq. (5.31) and the boundary conditions in eq. (5.37). As they
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are periodic under the translations generated by Tp, it is useful to introduce Kaluza-Klein
(KK) expansions as

Ak
µ(xµ, z) =

∑
n̂,m̂∈Z

C(n̂,m̂)e2πin̂x5
e2πiτ−1

I (m̂−n̂τR)x6
Ak

µ(n̂,m̂)(x
µ), (6.1)

where C(n̂,m̂) is a normalization constant, and Ak
µ(n̂,m̂)(x

µ) (n̂, m̂ ∈ Z) is identified as a
4D field.

We denote the KK mass for Ak
µ(n̂,m̂) as M2(Ak

µ(n̂,m̂)). The Lagrangian in eq. (5.31)
implies that M2(Ak

µ(n̂,m̂)) is given by the eigenvalue of the operator −∂m∂m acting on the
corresponding mode function. Thus, we obtain

M2(Ak
µ(n̂,m̂)) =

(2π

L

)2 [
n̂2 + τ−2

I (m̂ − n̂τR)2
]

, (6.2)

where we have temporarily written L for an illustration.
The mass spectrum contains the massless 4D gauge fields A

k(0,0)
µ , namely, the zero

modes. The massless gauge fields are related to a gauge symmetry manifested in a low-energy
effective theory.

There is a clear geometrical interpretation of the KK masses in eq. (6.2). The torus
lattice is spanned by the basis vectors e1 = (1, 0) and e2 = (τR, τI), where the right-hand
sides are components in an orthogonal basis. The basis vectors ei of a dual lattice are
defined by ei · ej = 2πδj

i , which gives e1 = 2π(1,−τR/τI) and e2 = 2π(0, 1/τI). Discretized
extra-dimensional momenta correspond to points on the dual lattice, and the squared norm
of a dual vector from the origin to a point,

|n̂e1 + m̂e2|2 = (2π)2
[
n̂2 + τ−2

I (m̂ − n̂τR)2
]

, (6.3)

gives the KK mass squared in eq. (6.2).

6.2 Masses for KK modes of Ak
m

Let us study the mass spectrum obtained from Ak
m. Since Ak

m obeys the same boundary
conditions as those for Ak

µ, the KK expansion of Ak
m is given by using the same mode

functions as in eq. (6.1). We write the KK mode of Ak
m as Ak

m(n̂,m̂).
The KK masses for Ak

m(n̂,m̂), denoted by M2(Ak
m(n̂,m̂)), are determined by the La-

grangian in eq. (5.32). The mass matrices for (Ak
5(n̂,m̂), Ak

6(n̂,m̂)) appear from the operator
−ηmn∂m′∂m′ + (1 − ξ)∂m∂n in eq. (5.32) and are given by

(Ak
5(n̂,m̂) Ak

6(n̂,m̂))
(2π

L

)2
[ [

n̂2 + τ−2
I (m̂ − n̂τR)2

](1 0
0 1

)

− (1 − ξ)
(

n̂2 n̂τ−1
I (m̂ − n̂τR)

n̂τ−1
I (m̂ − n̂τR) τ−2

I (m̂ − n̂τR)2

)](
Ak

5(n̂,m̂)
Ak

6(n̂,m̂)

)
. (6.4)
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Diagonalizing the above, we find mass eigenvalues M2
ph(Ak

m(n̂,m̂)) and M2
ξ (Ak

m(n̂,m̂)) for each
(n̂, m̂) mode as

M2
ph(Ak

m(n̂,m̂)) =
(2π

L

)2 [
n̂2 + τ−2

I (m̂ − n̂τR)2
]

, (6.5)

M2
ξ (Ak

m(n̂,m̂)) = ξ

(2π

L

)2 [
n̂2 + τ−2

I (m̂ − n̂τR)2
]

. (6.6)

The zero modes Ak
m(0,0) are massless scalars whose masses are independent of the

gauge parameter ξ. Some of these zero modes may acquire non-zero masses through
quantum corrections, except for NG bosons associated with the breaking of the translational
invariance on T 2 via non-vanishing flux [55, 57]. We will discuss the quantum corrections
in section 6.6. For (n̂, m̂) ̸= (0, 0), there appear massive scalar modes. The massive scalars
with masses M2

ph(Ak
m(n̂,m̂)) are degenerate with Ak

µ(n̂,m̂), although the massive modes with
masses M2

ξ (Ak
m(n̂,m̂)) are would-be Goldstone modes, which provide physical degrees of

freedom to longitudinal modes of massive vector fields Ak
µ(n̂,m̂).

6.3 Masses for KK modes of Aij
µ and Aij

m with Ñ ij = 0

We discuss the mass spectrum that arises from Aij
µ and Aij

m in the Ñ ij = 0 case. In this
case, the Lagrangians in eqs. (5.33) and (5.34) are simplified to

L(ij)
Aµ

→ 2Āij
µ [ηµν□− (1 − ξ−1)∂µ∂ν + ηµν∂m′∂m′ ]Aij

ν , (6.7)

L(ij)
Am

→ 2Āij
m[δmn□ + δmn∂m′∂m′ − (1 − ξ)∂m∂n]Aij

n . (6.8)

The differential operators appearing above are the same ones as in the Lagrangian for Ak
M .

On the other hand, the boundary conditions for Aij
M are different from those for Ak

M . From
eqs. (5.38) and (5.39), one sees that Aij

M are not periodic under the translations for ṽij
m ̸= 0,

while Ak
M are periodic.

Due to the phase factors including ṽij
m in eqs. (5.38) and (5.39), the mass spectrum

is modified compared to that of Ak
M . These phase factors induce the overall shifts of the

momentum lattice spanned by the dual basis vectors ei discussed in section 6.1. As a result,
KK masses for Aij

µ and Aij
m with Ñ ij = 0 have similar forms to the masses in eqs. (6.2), (6.5),

and (6.6), but n̂ and m̂ are replaced by n̂ − gṽij
5 /2π and m̂ − gṽij

6 /2π, respectively.2 Let us
introduce the parametrization ãij

m = gṽij
m/2π. Then, the KK masses for Aij

µ and Aij
m are

given by

M2(Aij
µ(n̂,m̂)) = M2

ph(Aij
m(n̂,m̂)) (6.9)

=
(2π

L

)2 [
(n̂ − ãij

5 )2 + τ−2
I ((m̂ − ãij

6 ) − (n̂ − ãij
5 )τR)2

]
, (6.10)

M2
ξ (Aij

m(n̂,m̂)) = ξ

(2π

L

)2 [
(n̂ − ãij

5 )2 + τ−2
I ((m̂ − ãij

6 ) − (n̂ − ãij
5 )τR)2

]
. (6.11)

2A similar argument in a T 2/Z3 orbifold model, for instance, is found in [32].
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Note that the KK mass spectrum is invariant under integer shifts of ãij
m. This property is

expected from the boundary conditions in eqs. (5.38) and (5.39), which are also invariant
under the integer shifts.

Except for the case with ãij
m = 0 mod 1, this spectrum has no massless modes. As in the

case of Ak
M , massive 4D vector fields from Aij

µ and scalar fields from Aij
m appear. Half of the

scalar KK modes have ξ-dependent masses M2
ξ (Aij

m(n̂,m̂)) and are would-be Goldstone modes
that provide physical degrees of freedom to the longitudinal modes of massive vector fields.

6.4 Masses for Landau level excitations of Aij
µ with Ñ ij ̸= 0

We discuss the mass spectrum of the gauge field Aij
µ in the Ñ ij ̸= 0 case. In this case, Aij

µ

couples to the background flux through the covariant derivative in eq. (5.33). The mass
spectrum is determined by the eigenvalues of the operator

−(D(ij)
m )2 = [−i∂5 + gf̂Ñ ij(1 + γ)x6/2]2 + [−i∂6 − gf̂Ñ ij(1 − γ)x5/2]2. (6.12)

The mode function is given as the eigenfunction of this operator and should be consistent
with the boundary conditions in eqs. (5.38) and (5.39).

This system is an analog to a two-dimensional quantum mechanical system with a
constant magnetic flux. The mass spectrum is the well-known Landau levels [72]. Let
us denote the quantum mechanical momentum operator pm = −i∂m, which satisfies
[xm, pn] = iδm

n . It is convenient to express

−iD
(ij)
5 = p5 + gf̂Ñ ij(1 + γ)x6/2, −iD

(ij)
6 = p6 − gf̂Ñ ij(1 − γ)x5/2, (6.13)

which satisfy [−iD
(ij)
5 ,−iD

(ij)
6 ] = igf̂Ñ ij independently to γ. Let us define

Π(ij)
z = −i

√
2

gf̂ |Ñ ij |
D

(ij)
5 − iD

(ij)
6

2 =
√

2
gf̂ |Ñ ij |

[
pz + i

gf̂Ñ ij

4 (z̄ − γz)
]

, (6.14)

Π̄(ij)
z = −i

√
2

gf̂ |Ñ ij |
D

(ij)
5 + iD

(ij)
6

2 =
√

2
gf̂ |Ñ ij |

[
p̄z − i

gf̂Ñ ij

4 (z − γz̄)
]

, (6.15)

where we have used pz = −i∂z and p̄z = −i∂̄z.
For the case with Ñ ij > 0 (Ñ ij < 0), [Π̄(ij)

z , Π(ij)
z ] = 1 ([Π(ij)

z , Π̄(ij)
z ] = 1) holds. Thus,

Π̄(ij)
z and Π(ij)

z (Π(ij)
z and Π̄(ij)

z ) are interpreted as an annihilation and a creation operator,
respectively. The operator in eq. (6.12) is expressed by them as

−(D(ij)
m )2 = 2gf̂ |Ñ ij |(â†â + 1/2), (6.16)

where (â, â†) = (Π̄(ij)
z , Π(ij)

z ) for Ñ ij > 0, and (â, â†) = (Π(ij)
z , Π̄(ij)

z ) for Ñ ij < 0.
Eigenvalues of the operator in eq. (6.16) are the same as those of a harmonic oscillator.

Also, as shown in appendix B, the eigenvalues are derived by introducing the mode functions
of the ground state ζij

0,d(z) and ℓ-th excited states ζij
ℓ,d(z) (ℓ̂ ∈ Z≥1) as

âζij
0,d(z) = 0, ζij

ℓ̂,d
(z) = 1√

ℓ̂!
(â†)ℓ̂ζij

0,d(z). (6.17)
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The subscript d takes d = 0, . . . , |Ñ ij | − 1 and labels |Ñ ij | degenerate states in this system.
We also have to impose that the mode functions obey the same boundary conditions for
Aij

M in eqs. (5.38) and (5.39) as

ζij

ℓ̂,d
(T5z) = e−2πiãij

5 eig(1−γ)(x6/2)f̂ Ñ ij
ζij

ℓ̂,d
(z), (6.18)

ζij

ℓ̂,d
(T6z) = e−2πi(τRãij

5 +τIã
ij
6 )eig{−(1+γ)τIx

5/2+(1−γ)τRx6/2}f̂ Ñ ij
ζij

ℓ̂,d
(z). (6.19)

The explicit form of the mode function is given by

ζij

ℓ̂,d
(z) =

(
2πÑ ij

τI

)1/4 1
2ℓ̂
√

ℓ̂!
e

πÑij

2τI
[z(z−z̄)− γ

2 (z+z̄)(z−z̄)] (6.20)

×
+∞∑

n=−∞
Hℓ̂(wn,d(z))eiπÑ ijτ(n−(ãij

5 −d)/Ñ ij)2
e2πi(n−(ãij

5 −d)/Ñ ij)(Ñ ijz+τRãij
5 +τIã

ij
6 −γÑ ijτR/2),

for Ñ ij > 0, where Hℓ̂(x) are the Hermite polynomials, and we have used

wn,d(z) =

√
2πN ij

τI

[
z − z̄

2i
+ τI

(
n − ãij

5 − d

Ñ ij

)]
. (6.21)

The normalization constant has been determined so that the orthogonal relation is satisfied as∫
VT 2

dx5dx6 ζ̄ij

ℓ̂,d
ζij

ℓ̂′,d′ = δℓ̂ℓ̂′δdd′ , (6.22)

where ζ̄ij

ℓ̂,d
= (ζij

ℓ̂,d
)†. One can obtain the explicit mode function for Ñ ij < 0 by taking the

complex conjugate of eq. (6.20). The derivation and details are summarized in appendix B.
Through the boundary conditions in eqs. (6.18) and (6.19), the mode function in eq. (6.20)
depends on the Wilson line phases ãij

m. As explained above, there are Ñ ij independent
mode functions for a fixed ℓ̂. From the right-hand side of eq. (6.20), one sees that the shift
of d → d + Ñ ij leaves the mode function unchanged.

Let us define the mode expansion as

Aij
µ (xµ, z) =

∞∑
ℓ̂=0

|Ñ ij |∑
d=1

Aij

µ(ℓ̂,d)(x
µ)ζij

ℓ̂,d
(z), (6.23)

where we refer to Aij

µ(ℓ̂,d)(x
µ) as the ℓ̂-th Landau level. From the operator in eq. (6.12) and

the mode expansion in eq. (6.23), we find that the masses for the ℓ̂-th Landau level, denoted
by M2(Aij

µ(ℓ̂,d)), are given by

M2(Aij

µ(ℓ̂,d)) = 2gf̂ |Ñ ij |(ℓ̂ + 1/2). (6.24)

There are no massless modes, and all Aij

µ(ℓ̂,d) have masses proportional to L−1. Thus, the
gauge symmetry is broken by the flux. We note that Wilson line phases do not appear in
the mass spectrum, although the mode function in eq. (6.20) depends on the phases.
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6.5 Masses for Landau level excitations of Aij
m with Ñ ij ̸= 0

In this section, we discuss the mass spectrum for Aij
m when Ñ ij ̸= 0, that is, the components

that couple to the flux. The mass spectrum is determined by the last three terms in the
Lagrangian in eq. (5.34), where Aij

5 and Aij
6 are mixed. After performing the diagonalization

of this term, it is convenient to define(
Aij

−
Aij

+

)
= 1√

2

(
Aij

5 − iAij
6

Aij
5 + iAij

6

)
, (6.25)

where Aij
− and Aij

+ correspond to components of Az and Āz in eq. (2.9) related to the
generator E

(+)
ij in eq. (4.7) and Āij

± = (Aij
±)†. With this definition, the Lagrangian in

eq. (5.34) is rewritten as

L(ij)
Am

= 2Āij
−

[
□ + 1 + ξ

2 (D(ij)
m )2 + 3 + ξ

2 gf̂Ñ ij
]

Aij
−

+ 2Āij
+

[
□ + 1 + ξ

2 (D(ij)
m )2 − 3 + ξ

2 gf̂Ñ ij
]

Aij
+

− 2Āij
+

[1 − ξ

2 (D(ij)
5 + iD

(ij)
6 )2

]
Aij

− − 2Āij
−

[1 − ξ

2 (D(ij)
5 − iD

(ij)
6 )2

]
Aij

+, (6.26)

where the covariant derivatives are defined in eq. (5.29). From the definitions of Π(ij)
z and

Π̄(ij)
z in eqs. (6.14) and (6.15), respectively, the Lagrangian can be written in terms of

creation and annihilation operators

L(ij)
Am

= 2
(
Āij

− Āij
+

)(□− gf̂Ñ ij((1 + ξ)â†â − 1) gf̂Ñ ij(1 − ξ)â†â†

gf̂Ñ ij(1 − ξ)ââ □− gf̂Ñ ij((1 + ξ)â†â + ξ + 2)

)(
Aij

−
Aij

+

)
,

(6.27)
where we have set Ñ ij > 0 for simplicity. In this case, (â, â†) = (Π̄(ij)

z , Π(ij)
z ). For the

Ñ ij < 0 case, we also have a similar expression.
Since Aij

m obeys the same boundary conditions as Aij
µ , they have the same mode

functions in the KK expansion in eq. (6.23). Therefore, the mode expansion is defined as

Aij
±(xµ, z) =

∞∑
ℓ̂=0

Ñ ij∑
d=1

Aij

±(ℓ̂,d)(x
µ)ζij

ℓ̂,d
(z), (6.28)

where Aij

±(ℓ̂,d) is the ℓ̂-th Landau level, and ζij

ℓ̂,d
(z) satisfy orthonormal relations as already

mentioned in eq. (6.22). After acting the creation and annihilation operators on the mode
expansion and integrating out the extra dimensions, the Lagrangian becomes

L(ij)
Am

= 2Āij
−(0,d)

[
□ + gf̂Ñ ij

]
Aij

−(0,d) + 2Āij
−(1,d)

[
□− ξgf̂Ñ ij

]
Aij

−(1,d) (6.29)

+ 2
∞∑

ℓ̂=0

(
Āij

+(ℓ̂,d) Āij

−(ℓ̂+2,d)

)

×

□− gf̂Ñ ij [(1 + ξ)ℓ̂ + 2 + ξ] gf̂Ñ ij(1 − ξ)
√

(ℓ̂ + 1)(ℓ̂ + 2)
gf̂Ñ ij(1 − ξ)

√
(ℓ̂ + 1)(ℓ̂ + 2) □− gf̂Ñ ij [(1 + ξ)(ℓ̂ + 2) − 1]

 Aij

+(ℓ̂,d)
Aij

−(ℓ̂+2,d)

 ,
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where the sum over d is implied. Taking suitable values of the gauge parameter ξ and Ñ ij

for the SU(2) case, the above expression is consistent with similar equations shown in [55].
Diagonalizing the Lagrangian in eq. (6.29) by using the following orthogonal matrix,

1√
2ℓ̂ + 3


√

ℓ̂ + 2
√

ℓ̂ + 1

−
√

ℓ̂ + 1
√

ℓ̂ + 2

 , (6.30)

we finally obtain the masses for Aij

±(ℓ̂,d):

M2
ph(Aij

−(0,d)) = 2gf̂Ñ ij(−1/2), (6.31)

M2
ξ (Aij

+(0,d)) = 2gf̂Ñ ijξ(1/2), (6.32)

M2
ph(Aij

±(ℓ̂,d)) = 2gf̂Ñ ij(ℓ̂ + 1/2), ℓ̂ ≥ 1, (6.33)

M2
ξ (Aij

±(ℓ̂,d)) = 2gf̂Ñ ijξ(ℓ̂ + 1/2), ℓ̂ ≥ 1, (6.34)

for Ñ ij > 0. We also have the same mass spectrum for the Ñ ij < 0 case. The scalars
Aij

−(0,d) are tachyonic, and all of the other physical scalars are massive. Half of the masses
depend on the gauge fixing parameter, corresponding to the masses for would-be Goldstone
modes. Their degrees of freedom will be absorbed by the infinite tower of vector fields,
leading them to become massive.

6.6 Vanishing one-loop potentials for NG bosons

As discussed in section 6.2, NG bosons appear related to the breaking of the translational
symmetry with non-vanishing flux. The translational invariance is realized non-linearly,
under which NG bosons shift [55, 57]. In our setup, the NG bosons are identified to some
combinations of the zero modes Ak

m(0,0). More precisely, for a given set of Nk in eq. (4.5), the
Wilson line phase degrees of freedom along the Cartan generator NkĤk are the NG bosons.

From the tree-level mass spectrum, we can understand that one-loop corrections do not
induce masses and potentials for the NG bosons, as follows. Remind that we have treated
the Wilson line phases vm in eq. (3.18) as some parts of the boundary condition. On the
other hand, as explained in section 3, they can also be treated as the VEVs as in eq. (3.5).
Both treatments are gauge equivalent and yield the same mass spectrum in the 4D effective
theory. In general, VEVs of the Wilson line phases are not determined at tree level but may
be fixed by effective potentials generated by quantum corrections. To obtain the effective
potential for the Wilson line phases, which are now considered to be dynamical variables,
we can formally evaluate the path integral using the loop expansion, although the tachyonic
states exist. The obtained effective potentials for the phases are mainly determined by
the dependence of the Wilson line phases on the mass spectrum in the 4D effective theory.
The crucial point is that the Wilson line phases corresponding to the NG bosons, along
the generator NkĤk, completely disappear from the mass spectrum. This follows from the
fact that any fields coupled to the Wilson line phases corresponding to the NG bosons are
also coupled to the flux and have masses independent of the Wilson line phases. Thus,
Wilson line phases along NkĤk have completely flat potential at one-loop level as expected.
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The other Wilson line phases have generally non-vanishing one-loop potentials and become
massive. However, the result may be disturbed by tachyonic states, which are discussed in
the next section.

7 Phenomenological implications

Non-vanishing flux backgrounds in SU(n) gauge theory on M4 × T 2 can give a variety of
mass spectra in low-energy effective theories, as shown above. In this section, we discuss
the phenomenological implications of the magnetized torus. A crucial feature of this setup,
as shown in section 6.5, is the existence of tachyonic states [38, 47, 55]. The tachyonic
states appear independently of the gauge parameter ξ and imply that the background
configuration is unstable; thus, they are expected to evolve non-zero VEVs. The tachyon
condensation may induce further breaking or restoration of gauge symmetries. Otherwise,
the tachyonic states have to be stabilized by some mechanism.

First, we focus on stabilizing the tachyons by considering additional contributions to
the masses of these tachyonic states with the help of Wilson line phases. From a theoretical
viewpoint, extending the compactified dimensions by more than two is an interesting
possibility. In flux compactifications of superstring theories, where the extra dimensions are
usually more than two, stabilization of tachyons by Wilson line phases is often adopted [65].
For example, let us assume a flat 4D torus as the extra dimension. As we have shown, flux
backgrounds generated by B5 and B6 break the gauge symmetry G to H. In addition, we
can consider non-trivial configurations of Wilson line phases included in the backgrounds of
the other extra-dimensional components, denoted by B7 and B8. If the flux background and
the Wilson line phases are in the same direction in the representation space of G, all of the
tachyonic states appearing in the Landau level excitations receive additional contributions
to their masses from the Wilson line phases. Then, the tachyonic states can be eliminated
from the tree-level mass spectrum.

Let us now briefly discuss a possible mass spectrum in an eight-dimensional setup. As
in the previous sections, the tree-level mass spectrum is determined by the eigenvalues of
the differential operator −(D(ij)

m′ )2, with m′ = 5, 6, 7, 8. The tree-level mass squared for
physical excitations of Aij

µ and (Aij
7 , Aij

8 ) are denoted by M2
+, and equivalently (Aij

5 , Aij
6 )

are denoted by M2
−. Under a simple setup, if these fields couple to the flux background in

B5 and B6, the masses can be given by

M2
± = 2gf̂ |Ñ |(ℓ̂ ± 1/2) + (2πρ)2

[
(n̂ − ã7)2 + (m̂ − ã8)2

]
, (7.1)

where f̂ is a flux unit, Ñ is an integer, and ρ parametrizes the relative size of the compact
extra dimensions. The Wilson line phases are parametrized by the real degrees of freedom ã7
and ã8. The non-negative integer ℓ̂ labels the Landau level excitations, whereas the integers
n̂ and m̂ label KK modes. In the case with vanishing Wilson line phases ã7 = ã8 = 0 (mod
1), negative mass squared appears in M2

− for ℓ̂ = n̂ = m̂ = 0. Therefore, non-vanishing ã7
and ã8 can make the mass squared positive, stabilizing the tachyons.

Note that the Wilson line phases are regarded as continuous moduli that parametrize
the flat directions of the tree-level potential for the gauge fields, and hence non-vanishing
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values for the Wilson line phases must be set by hand at tree level. This implies that
stabilizing the non-vanishing Wilson line phases arises as an additional issue of this setup.
In general, both the flat and non-flat directions of the potential for extra-dimensional
gauge fields are disturbed by quantum corrections,3 and finite potentials for Wilson line
phases appear at one-loop level as discussed in the introduction. In a low-energy limit of an
intersecting D-brane model and its T-dual, the one-loop effective potentials for Wilson line
phases and the vacuum configuration were examined to discuss the stability of tachyons
related to flux [65]. The system is shown to be driven to a supersymmetric vacuum, where
tachyonic states appear. As a future study, we expect to derive a vacuum configuration
that stabilizes the tachyons at one-loop level in a more general field-theoretical setup.

Next, we discuss the possibility of tachyon condensation. If the tachyons are not
stabilized, they are expected to evolve non-vanishing VEVs. Justifying the existence of
VEVs through tachyonic state condensation is a non-trivial matter. The effective 4D theory
contains infinite scalar modes, and the full scalar potential is quite complicated. Since the
other massive and massless scalar fields generally receive a backreaction of VEVs of the
tachyonic states, the scalar potential in the effective 4D theory is hard to be examined
analytically, even at tree level. Still, it could be studied numerically with approximations [75].
From another point of view, their VEVs must also be regarded as a background configuration
of a 6D field since the tachyonic states arise from the extra-dimensional gauge fields. Thus,
besides the potential analysis in an effective 4D theory, another approach for studying the
tachyon condensation is to examine background configurations of the gauge field as a 6D
field. This approach has revealed the restoration of supersymmetry, which was previously
broken by flux backgrounds in an intersecting D-brane model [66]. In this work, in which
we discussed a Yang-Mills theory without supersymmetry, the tree-level EOM seems to
prevent non-trivial background configurations that correspond to the tachyon condensation.
Some modifications of the EOM through quantum corrections or extensions of the model
are expected to provide this condensation. While a more comprehensive analysis of tachyon
condensation is necessary, it is still worthwhile to discuss the expected consequences when
assuming the condensation.

As an illustrative toy model, we discuss a 6D SU(3) theory with the flux configuration
(N1, N2) = (1, 2), which gives Ñ12 = 0 and Ñ13 = Ñ23 = 3. This flux breaks G = SU(3) to
its subgroup H = SU(2)×U(1). Although the non-vanishing continuous Wilson line phases
break SU(2) into U(1), let us consider the case with vanishing Wilson line phases, ṽij = 0,
for simplicity. The mass spectrum in this setup is shown in table 1. There appear massless
4D gauge fields that transform under H as the adjoint, 30 ⊕ 10, with the representation
denoted as SU(2)U(1). There are also massless adjoint scalars and tachyonic states that
belong to the generator of G/H, i.e., the SU(2) doublets 23 ⊕ 2−3. The remaining fields
are either massive or would-be Goldstone modes. If the tachyonic states develop constant
VEVs, keeping the other part of the backgrounds invariant, unitary transformations make
the VEVs parametrized by a real parameter ϕ as ⟨23⟩T = ⟨2−3⟩ = (0, ϕ), where T represents

3The quantum corrections on non-flat directions in 6D orbifold models are discussed, for instance, in [73].
Also, in supersymmetric five-dimensional models, extra-dimensional gauge fields and scalars belonging to
the vector multiplets have tree-level potentials, whose non-flat directions receive quantum corrections [74].
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k = 1, 2 and (i, j) = (1, 2); representation of SU(2)U(1): 30 ⊕ 10

4D fields masses

Ak
µ(0,0), Aij

µ(0,0) 0 massless vectors

Ak
m(0,0), Aij

m(0,0) 0 massless scalars

Ak
µ(n̂,m̂), Aij

µ(n̂,m̂) (2π)2
[
n̂2 + τ−2

I (m̂ − n̂τR)2
]

massive vectors

Ak
m(n̂,m̂), Aij

m(n̂,m̂) (2π)2
[
n̂2 + τ−2

I (m̂ − n̂τR)2
]

massive scalars

Ak
m(n̂,m̂), Aij

m(n̂,m̂) ξ(2π)2
[
n̂2 + τ−2

I (m̂ − n̂τR)2
]

would-be Goldstone modes

(i, j) = (1, 3), (2, 3); representation of SU(2)U(1): 23 ⊕ 2−3

4D fields masses

Aij
−,0,d −3gf̂ tachyonic states

Aij

µ,ℓ̂,d
6gf̂(ℓ̂ + 1/2) massive vectors

Aij

±,ℓ̂,d
6gf̂(ℓ̂ + 3/2) massive scalars

Aij
+,0,d, Aij

±,ℓ̂,d
6gf̂ξ(ℓ̂ + 1/2) would-be Goldstone modes

Table 1. Tree level mass spectrum in the SU(3) model with the flux (N1, N2) = (1, 2) and vanishing
Wilson line phases. In the table, n̂, m̂, ℓ̂ ∈ Z≥0 and (n̂, m̂) ̸= 0 are implied. The subscript d takes 0
to 2. We denote the representations of the 4D fields under H as SU(2)U(1).

the transpose. For a non-zero value of ϕ, some of the massless adjoint fields acquire masses,
resulting in the symmetry breaking SU(2) × U(1) → U(1)′. This presents the possibility of
the EWSB triggered by the Nielsen-Olsen type instability [64], where the SM Higgs scalar
originates from the lowest Landau level of the extra-dimensional gauge fields. However,
various aspects such as vacuum stability, the matter sector, and other details of the model
must be examined in detail.

With enlarged gauge symmetries, flux backgrounds combined with tachyon condensation
may provide several possibilities for symmetry-breaking patterns. For example, in the SU(5)
case with (N1, N2, N3, N4) = (2, 4, 6, 3), the flux breaks G = SU(5) to its subgroup
H = SU(3)× SU(2)×U(1). For vanishing Wilson line phases, there appear tachyonic states
belonging to the generator of G/H, namely (3, 2)5, where the representation is written as
(SU(3), SU(2))U(1). Their VEVs can induce the symmetry breaking SU(3)×SU(2)×U(1) →
SU(2)D ×U(1)′, where SU(2)D is the diagonal part of SU(2)′×SU(2) ⊂ SU(3)×SU(2), and
U(1)′ is the linear combination of a U(1) generator and a diagonal generator in SU(3)/SU(2)′.
The resultant symmetry may be identified as the electroweak symmetry. Flux backgrounds
and tachyon condensation can also be utilized to break unified gauge symmetries in GUT
models. If we consider GUT models with G = SU(7), SU(8), SO(10), or E6, flux backgrounds
can break G to H = SU(5)×G′, and the condensation of tachyons belonging to G/H seems
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to provide similar symmetry-breaking patterns in known five-dimensional models [26]. In
this case, the Wilson line phases belonging to G/H induce the symmetry breaking into the
SM gauge symmetry, in contrast to the tachyon condensation.

Finally, we briefly mention matter fields under flux backgrounds. It is well known that
when fermion fields are present, the lowest Landau level excitations of the fermions that
couple to flux backgrounds become massless states and give rise to chiral mass spectra. The
strength of the coupling is expressed by the integer Ñ ij in eq. (4.14) and determines the
generation number of the chiral fermions at a low-energy regime. While we have mainly
focused on SU(n) so far, examining the example of E6 GUT models can provide insight into
the generation structure. If there is a flux background along the U(1)X generator, which is
a part of the maximal subgroup SO(10) × U(1)X of E6, then the flux can break E6 into
SO(10) × U(1)X . Furthermore, this symmetry can be broken down to SU(5) × U(1)′ or the
SM gauge group with the help of tachyons or VEVs of Wilson line phases. In terms of matter
fields, we can incorporate a 27-plet of E6, which is decomposed into the representations of
SO(10)U(1)X

as 27 → 16−1 + 102 + 1−4. When the generation of light modes from 16−1
is three, which have fermion content suitable to the SM matter fields and right-handed
neutrinos, the generations from 102 and 1−4 are six and twelve, respectively. We note
that fermions in 102 and 1−4 are vector-like under both SU(5) × U(1)′ and the SM gauge
group, and thus are expected to acquire masses during the symmetry breaking to the SM.
Light chiral fermions could be mixed states from three generations of light fields from 16−1
and six generations of light fields from 102. Additionally, the matter contents may be
regarded as an extension of the twisted flavor structure discussed in E6 GUT models [76–78].
Comprehensive studies of GUT models, including the prediction of the flavor structure, are
interesting issues left for future exploration.

8 Conclusions

In this study, we have investigated an SU(n) gauge theory in a 6D spacetime with a constant
magnetic flux in the two-dimensional torus. By analyzing the classical equations of motion,
a general form of consistent background configurations incorporating both the magnetic
flux and Wilson line phases has been obtained. Then, we have derived the appropriate
boundary conditions for fields associated with the discrete translations on the torus. There
are many possible setups since the boundary conditions adjust to changes in the background
configuration induced by gauge transformations. We have chosen a gauge that incorporates
the Wilson line phases into the twist matrices. In addition, we have performed a standard
Rξ gauge fixing, demonstrating the dependence of the masses for the KK modes on the
gauge fixing parameter.

Keeping the gauge parameter and the background configurations arbitrary, the complete
expressions of the tree-level mass spectrum in the effective low-energy theory is newly
obtained for a general SU(n) case. Our analysis confirmed the existence of tachyonic modes,
which appear independently of the gauge fixing parameter ξ or the background configuration
of Wilson line phases with flux. Some of the remaining scalar fields coupled to the flux were
found to be massive, while others that showed dependence on ξ were identified as would-be
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Goldstone modes. Consequently, the degrees of freedom of the latter are absorbed by the
infinite tower of 4D vector fields, rendering them massive. As expected, only the masses of
flux-blind scalar fields in the non-Cartan directions receive contributions from the Wilson
line phases. We have also discussed vanishing one-loop potentials for NG bosons related to
the violation of the translational symmetry. The one-loop potential for the NG bosons is
not generated since the VEVs of Wilson line phases corresponding to the NG bosons do not
appear in the mass parameters for any 4D modes.

Based on our findings, we have discussed the phenomenological implications associated
with stabilization or condensation of the tachyonic states. The elimination of tachyonic
modes through Wilson line phases is still viable by increasing the number of extra dimensions,
where the stabilization of the vacuum at a quantum level provides an interesting topic for
future research. Also, we have discussed implications related to the tachyon condensation. In
this setup, it is expected to be possible to generate various mass spectra and explore different
patterns of symmetry breaking. Therefore, extending the gauge group of the magnetic
torus setup to simply-connected ones enables our results to be applied in the construction
of diverse models within GUT and GHU. The exploration of phenomenologically viable
models, considering the prediction of the flavor structure through the inclusion of matter
fields, is another intriguing topic left for future studies.
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A Surface terms

We discuss surface terms related to integration by parts in our setup. We examine the
background covariant derivative in eq. (3.3), which depends on the torus coordinates and is
denoted by Dm(z). With the background configurations and the twist matrices in eqs. (3.17)
and (3.18), one obtains the boundary conditions for Dm(z) as

Dm(Tpz) = Tp(z)Dm(z)T †
p (z). (A.1)

Let ϕ(z), ϕ′(z) ∈ su(n) be general fields in the adjoint representation that obey the
following relations:

Dmϕ = (∂m − igad(Bm))ϕ, ϕ(Tpz) = Tp(z)ϕ(z)T †
p (z). (A.2)

For ϕ′(z), the same relations are applied. In this case, one sees that

Tr[(Dmϕ)(Dmϕ′)] = −Tr[ϕ(DmDnϕ′)] + ∂mTr[ϕ(Dnϕ′)], (A.3)
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where the last term gives the vanishing contribution in the action as∫
M4

d4x

∫
T 2

d2x ∂mTr[ϕ(Dnϕ′)] ∝
[
Tr[ϕ(Dnϕ′)]

]Tpz

z
= 0. (A.4)

Here, we have used the boundary conditions in eqs. (A.1) and (A.2) and the cyclic property
of traces.

Using similar discussions as the above, we obtain eqs. (5.15)–(5.17), (5.20), (5.33),
and (5.34) without contributions from surface terms.

B Mode functions

In section 6.4, we showed the explicit form of the mode functions without derivation. In
this appendix, we show the derivation.

B.1 Zero mode functions

First, let us derive the zero-mode function ζ0,d appearing in eq. (6.17). For the case with
N ij > 0, we have to solve the differential equation(

∂̄z + gf̂Ñ

4 (z − γz̄)
)

ζ0,d(z) = 0, (B.1)

with the boundary conditions in eqs. (6.18) and (6.19). Here, we omit the upper script ij

for simplicity of notation. A solution of eq. (B.1) is given by

ζ0,d(z) = Ce−
gf̂Ñ

4 (zz̄− 1
2 γz̄2)ζ̃0,d(z), (B.2)

where C is a constant, and the function ζ̃0,d(z) depends only on z and does not depend on z̄.
To determine the function ζ̃0,d(z) completely, we have to impose the boundary conditions.
It is convenient to introduce a new function χ0,d by

ζ̃0,d(z) = e
gf̂Ñ

4 (1− γ
2 )z2

χ0,d(z), (B.3)

to express the solution as

ζ0,d(z) = Ce−
gf̂Ñ

4 (zz̄−z2+ γ
2 (z2−z̄2))χ0,d(z). (B.4)

From the conditions in eqs. (6.18) and (6.19), we obtain the boundary conditions for
χ0,d(z) as

χ0,d(z + 1) = e−2πiã5χ0,d(z), (B.5)

χ0,d(z + τ) = e−2πi(τRã5+τIã6)e−πiÑτ eγπiÑτRe−2πiÑzχ0,d(z), (B.6)

where we have used f̂ = 2π/(gVT 2) = 2π/(gτI) to obtain the second relation. The function
χ0,d satisfying these boundary conditions can be expressed by the Jacobi theta function [47].

The Jacobi theta function ϑ

[
a

b

]
(z′|τ ′) is defined by

ϑ

[
a

b

] (
z′|τ ′) =

∑
n∈Z

eiπτ ′(n+a)2
e2πi(n+a)(z′+b), a, b ∈ R, z′, τ ′ ∈ C, (B.7)
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which satisfies

ϑ

[
a

b

] (
z′ + k|τ ′) = e2πikaϑ

[
a

b

] (
z′|τ ′) , k ∈ Z, (B.8)

ϑ

[
a

b

] (
z′ + τ ′|τ ′) = e−iπτ ′

e−2πi(z′+b)ϑ

[
a

b

] (
z′|τ ′) . (B.9)

Using it, we can express χ0,d as

χ0,d(z) = ϑ

[
−(ã5 + d)/Ñ

τRã5 + τIã6 − γτRÑ/2

]
(Ñz|Ñτ). (B.10)

From eqs. (B.8) and (B.9), we can show that eq. (B.10) satisfies the boundary conditions
in eqs. (B.5) and (B.6).

Finally, the zero mode function is expressed as

ζ0,d(z) = Ce
−πÑ

2τI
(zz̄−zz+ γ

2 (zz−z̄z̄))
ϑ

[
−(ã5 + d)/Ñ

τRã5 + τIã6 − γτRÑ/2

]
(Ñz|Ñτ). (B.11)

The constant C is determined by a normalization condition. Here, we impose∫
VT 2

dx5dx6 ζ̄0,d(z)ζ0,d′(z) = δd,d′ , (B.12)

which yields

C =
(

2πÑ

τI

)1/4

. (B.13)

B.2 Excited mode functions

The excited mode functions are obtained by

ζℓ̂,d(z) = 1√
ℓ̂!

(â†)ℓ̂ζ0,d(z), (B.14)

where â† is given by

â† = Πz = −i

√
τI

2πÑ

[
∂z −

πÑ

2τI
(z̄ − γz)

]
, (B.15)

for Ñ ij > 0. Let us show that the excited mode functions are given by

ζℓ̂,d(z) = C

2ℓ̂
√

ℓ̂!

+∞∑
n=−∞

Zℓ̂(wn,d(z))e−
πÑ
2τI

(zz̄−zz+ γ
2 (zz−z̄z̄))

× eiπÑτ(n−(ã5+d)/Ñ)2
e2πiÑ(n−(ã5+d)/Ñ)(z+(τRã5+τIã6)/Ñ−γτR/2).

(B.16)

Here, the function wn,d(z) is defined by

wn,d(z) =

√
2πÑ

τI

[
z − z̄

2i
+ τI

(
n − ã5 + d

Ñ

)]
, (B.17)
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and Zℓ̂ is defined by

Z0(wn,d) = 1, Zℓ̂+1(wn,d) = 2wnZℓ̂(wn,d) −
dZℓ̂(wn,d)

dwn,d
. (B.18)

To derive the excited mode functions, let us express the zero-mode function in eq. (B.11)
as

ζ0,d(z) = C
+∞∑

n=−∞
Z0(wn,d)Fn,d(z), (B.19)

Fn,d(z) ≡ e
−πÑ

2τI
(zz̄−zz+ γ

2 (zz−z̄z̄))
eiπÑτ(n−(ã5+d)/Ñ)2

e2πi(n−(ã5+d)/Ñ)(Ñz+τRã5+τIã6−γτRÑ/2).

(B.20)

By using the expression above and

ζ1,d(z) = 1√
1!

â†ζ0,d(z) = −i

√
τI

2πÑ

[
∂z −

πÑ

2τI
(z̄ − γz)

]
ζ0,d(z), (B.21)

the first-excited mode is written as

ζ1,d(z) = −iC

√
τI

2πÑ

∑
n

[
(∂zZ0)Fn,d + Z0(∂zFn,d) − πÑ

2τI
(z̄ − γz)Z0Fn,d

]
. (B.22)

The last two terms are rearranged as

Z0(∂zFn,d) − πÑ

2τI
(z̄ − γz)Z0Fn,d

= 2πÑ

τI
i

(
z − z̄

2i
+ τI

(
n − gṽ5

2πÑ
− d

Ñ

))
Z0Fn,d = i

√
2πÑ

τI
wn,dZ0Fn,d, (B.23)

and the first term can be calculated as

(∂zZ0)Fn,d = ∂wn,d

∂z

dZ0
dwn,d

Fn,d = 1
2i

√
2πÑ

τI

dZ0
dwn,d

Fn,d. (B.24)

By using these results, eq. (B.22) becomes

ζ1,d(z) = C

2

+∞∑
n=−∞

(
2wn,d(z)Z0(wn,d) − dZ0(wn,d)

dwn,d

)
Fn,d(z). (B.25)

Identifying the square bracket with Z1, i.e.,

Z1 = 2wn,dZ0 −
dZ0

dwn,d
, (B.26)

the first excited mode can be written as

ζ1,d(z) = C

2

+∞∑
n=−∞

Z1(wn,d(z))Fn,d(z). (B.27)

Therefore, eq. (B.16) is correct for ℓ̂ = 1.
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Let us assume eq. (B.16) for ℓ̂ = k and show it for ℓ̂ = k + 1. Using

ζk+1,d(z) = 1√
k + 1

a†ζk,d(z), (B.28)

and repeating the same calculation we did for the ℓ̂ = 0 case, we get

ζk+1,d(z) = C

2k+1
√

(k + 1)!

+∞∑
n=−∞

(
2wn,dZk − dZk

dwn,d

)
Fn,d(z). (B.29)

Hence, eq. (B.16) is satisfied for ℓ̂ = k + 1. Therefore, the assumption holds for any ℓ̂.
The function Zℓ̂(wn), which satisfies the differential equation in eq. (B.18), can be

expressed by Hermite polynomials Hℓ̂(x). Therefore, we obtain the expression in eq. (B.16)
for Ñ ij > 0. In the same way, we can obtain the explicit form of the mode function for
Ñ ij < 0 as

ζℓ̂,d(z) = C

2ℓ̂
√

ℓ̂!

+∞∑
n=−∞

Hℓ̂(wn,d(z))e−
πÑ
2τI

(z̄z−z̄z̄+ γ
2 (z̄z̄−zz))

× e−iπÑ τ̄(n−(ã5+d)/Ñ)2
e−i2πÑ(n−(ã5+d)/Ñ)(z̄+(τRã5+τIã6)/Ñ−γτR/2).

(B.30)

These functions correctly satisfy the boundary conditions in eqs. (6.18) and (6.19) and the
orthogonal relation in eq. (6.22).

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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