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1 Introduction

Scalar QED or the point-like approximation is a consistent framework which works numeri-
cally well in many cases, but precision in CKMmatrix elements and testing of lepton flavour
universality [1, 2] are calling for stucture-dependent computations.1 Approaches include
chiral perturbation theory (ChPT) [5–7], soft collinear effective theory (SCET) [8, 9] and
lattice Monte Carlo simulations (with a range of methods to contain the massless photon
in finite volume [10–13] and applications thereof in [14–18]). ChPT applies to low energy
physics and might be viewed as a successful expansion around the point-like approxima-
tion where the challenge relies in determining the finite counterterms. In SCET, mesons
are described by light-cone distribution amplitudes which necessitate the introduction of

1Scalar QED is sufficient in reducing the RK uncertainty to O(1%) as there are no enhanced O(α) ln m`
mB

logarithms (logs) beyond scalar QED [3] and charmonium resonances are under control for q2 < 6GeV2 [4].
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process dependent Wilson lines [19, 20]. In lattice Monte Carlo simulations, hadrons are
described by either gauge variant or gauge invariant interpolating operators (on which we
comment at the end of section 4.1.1). No method exists for perturbative approaches with
interpolating operators for charged mesons.2 It is the aim of this paper to fill this gap.

This work is organised as follows. In section 2, some preliminary materials such as
the problem of gauge variance and the universal infrared (IR) logs are discussed. In sec-
tion 3, we introduce the idea of the long distance B-meson as part of the modified gauge
invariant interpolating operator. In section 3.2, it is shown and argued that its LSZ-factor
is IR-finite. In section 4, we establish the connection with the Dirac dressing at O(α),
and a generalisation using iterated integrals establishes the connection to all orders. The
paper ends with conclusions and discussions in section 5. In appendix A, we comment
on the necessity of gauge invariant interpolating operators, in connection with the hard
photon approach to B− → `−ν̄γ. In appendix B, we briefly review the QCD sum rules
approximation to the LSZ approach.

2 Preliminaries

2.1 Gauge variance of the QCD interpolating operator

Let us first discuss the problem in a pedestrian way through the example of a leptonic
decay of the type B− → `−ν̄. In QCD, mesons such as the B− are interpolated by3

JB = b̄iγ5u , ZB = 〈B−|JB(0)|0〉 = m2
BfB

(mb +mu) , (2.1)

where ZB plays the rôle of the LSZ-factor, This means that the matrix element

〈0|O(x)|B−〉 = 1
ZB

lim
p2→m2

B

(m2
B − p2)ΠOB(p2) , (2.2)

can be extracted from the correlation function

ΠOB(p2) = i

∫
x
eixp〈0|TO(x)JB(0)|0〉 =

∫ ∞
0

ds

2πi
discsΠOB(s)
s− p2 − i0 = 〈0|O(x)|B−〉ZB

m2
B − p2 + . . . ,

(2.3)
since the latter satisfies a dispersion relation as indicated. In (2.3), discsΠ(s) = Π(s+ i0)−
Π(s − i0) is the discontinuity across the real line, the dots stand for higher states in the
spectrum and Z∗B = ZB has been assumed. The shorthands

∫
x =

∫
d4x and xp = x · p,

used above, are occasionally assumed hereafter.
When one considers QED, the picture is fundamentally disturbed in perturbation

theory since the operator JB (or ZB) ceases to be gauge invariant4

JB → e−iλQBJB , (2.4)
2The approach we have in mind is QCD sum rules (cf. appendix B) where the Lehmann Symanzik

Zimmerman (LSZ) approach (e.g. [21]) is implemented via semi-global quark-hadron duality [22, 23].
3In QCD, it is advantageous to include (mb +mu) as a prefactor in JB as it becomes a renormalisation

group invariant quantity then. However, in QED, this will be of no use since this property is spoiled by the
fact that the mq renormalises as e2Q2

q and thus we omit the masses in JB .
4Cf. appendix A.2 for comments on the non-perturbative case.
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under
A→ A− ∂λ , q → qeiQqλ . (2.5)

Hence, if there is charge (QB ≡ QB− = Qb−Qu = −1 here and below), as is well-known, fB
ceases to be an observable once QED corrections are considered (e.g. [24] for a discussion
for fπ). Note that (2.5) implies the D = ∂+iA convention with the electric charge absorbed
into the photon field A such that n photon fields correspond to O(en).

2.2 Universal infrared sensitive logs in QED

One of the main features of QED is the appearance of IR sensitive logs which can overcome
the small coupling constant α = e2/4π ≈ 1/137 and a fair amount is known about them.
In particular, their physics is dictated and controlled by gauge invariance and thus compli-
cations are to be expected when gauge invariance is not manifest. One may distinguish two
classes of logs: first, the so-called (hard) collinear logs, which arise from (charged) particles
`− with small mass, allowing for collinearity with the photon up to O(m̂2

` ) and resulting in
sizeable O(α) ln m̂`-terms (hatted quantities are divided by mB hereafter). Second, there
are soft and soft-collinear logs of the form O(α) ln m̂γ and O(α) ln m̂γ ln m̂` which are true
IR divergences but turn into O(α) ln δ̂ and O(α) ln δ̂ ln m̂` when the photon emission, of
Eγ < δ, is added. Aspects of resummation of these logs are known [25, 26] but it is rather
their degree of independence of the structure (or universality) that is of interest to us. Soft
and soft-collinear logs are universal since the soft photons cannot resolve the structure of
the mesons. For hard-collinear logs, the situation is not as transparent as photon energies
can be as large as the kinematics allow for. It turns out that gauge invariance and the
KLN-theorem (cancellation of all real and virtual IR-logs in the m` → 0 limit, in the photon
inclusive case) are sufficient premises to show that there are no further hard-collinear logs
of the form O(α) ln m̂` [3]. In other words, structure-dependent ln m̂` terms are subleading,
either in O(α)m̂2

` ln m̂` or O(α2) ln m̂`, both of which are negligible.5

However, when the leading order (LO) process is O(m2
` )-suppressed, the theorem does

not apply as then real and virtual contributions are not linked by the KLN-theorem [27].
This is precisely the case for B− → `−ν̄ enabled by V-A interactions, as in the Standard
Model (SM). These non-universal structure-dependent logs complicate the investigation of
the validity of the approach. However, we can easily bypass this issue by resorting to an
S-P interaction

L(S−P )
B−→`−ν̄ = gS−P ū(1−γ5)b ¯̀(1−γ5)ν , (2.6)

which is not O(m2
` )-suppressed. Hence, the hard-collinear logs are universal and, in par-

ticular, reproducible from the splitting function since the KLN-theorem applies [27]. We
stress that the reasoning for choosing an S-P interaction that it allows us to test whether
or not our method is capable of reproducing universal collinear logs. In summary, quoting

5This does not forbid other relevant and interesting structure-dependent effects such as the mb/ΛQCD-
enhancement found in Bs → µµ [8]. In B− → `−ν̄ such effects might be absent because the equation of
motion of the lepton, that is the helicity suppression, work out in different ways.
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almost verbatim from section 3.2.1 of that reference, one has

Γ(B → `ν̄(γ)) = Γ(B → `ν̄)(0)
(

1 + α

4π
(
Fsoft(m̂`, 2δ̂) + Fcoll(δ̂) ln m̂` + non-log

))
, (2.7)

where the soft factor is

Fsoft(x, y) = −
(

41 + x2

1− x2 ln x2 + 8
)

ln y , (2.8)

and the (hard) collinear part, reproducible from the splitting function, reads

Fcoll(δ̂) = −4
(3

2 − 2δ̂(2− δ̂)
)
. (2.9)

This has been backed up by an explicit computation [28]. We note that in the photon
inclusive limit, 2δ̂ → 1 − m̂2

` , which implies that Fcoll(δ̂) → O(m2
` ) as required by the

KLN-theorem since these logs are not suppressed by a factor of m2
` in the rate (2.7).

The essential starting point of this paper is the observation that for the gauge variant
interpolating current JB (2.1), these universal logs are not reproduced in a perturbative
computation. We shall see how to remedy it and how to interpret it in due course.

3 The long distance B-meson as a scalar field ΦB

It is well-known that off-shell correlation functions are not gauge invariant, be it in QED
or QCD, and this is at the heart of the issue raised in the introduction; namely, that
the universal IR-logs are not reproduced when computing with the interpolating operator
JB (2.1). On the other hand, in scalar QED (point-like approximation), no such problems
occur since the external particles can all be put on-shell. It is thus tempting to cure both,
gauge invariance and the universality problem, by introducing a long distance (on-shell)
B-meson in terms of a scalar field ΦB of mass mB as follows

J (0)
B ≡ JBΦB , Z(0)

B ≡ 〈B−|J (0)
B |ΦB−〉 . (3.1)

The matrix element Z(0)
B takes on the rôle of the LSZ-factor and its IR-finiteness is discussed

in section 3.2. The explicit gauge invariance of J (0)
B (or Z(0)

B ), as opposed to JB (2.4), is
guaranteed

J (0)
B → eiλ(QΦB−QB)J (0)

B |QB=QΦB
= J (0)

B , (3.2)

by choosing |ΦB−〉 to have the same charge as |B−〉; rendering J (0)
B charge neutral. Our

master formula for computing the decay rate is then

Γδ(B− → `−ν̄(γ)) = 1
|Z(0)
B |2

×
∫
δ
dΦγ |Z(0)

B A(B− → `−ν̄(γ))|2 , (3.3)

where both terms, the LSZ-factor |Z(0)
B |2 and the integrand, are computed separately, and∫

δ dΦγ is the integral over the photon phase space with Eγ < δ (cf. [3] for more detail).
The amplitude squared is given by

|A(B− → `−ν̄(γ))|2 = |A(B− → `−ν̄)|2δ(Φγ) + |A(B− → `−ν̄γ)|2 , (3.4)
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where δ(Φγ) is a delta function in the photon variables as appropriate for the virtual
contribution. This is the famous Bloch-Nordsieck mechanism at work which bypasses the
QED IR-problem of charged particles. As previously mentioned, the ΦB−-particle can be
considered as the long distance version of the B-meson which splits into its partons at the
J (0)
B -vertex. While being appealing, this idea should be met with scepticism at first. Its

validation proceeds in several steps. The reproduction of the IR-sensitive logs from the
diagrams in section 3.1 (numerator in (3.3)), the IR-finiteness of the LSZ-factor Z(0)

B in
section 3.2 (denominator in (3.3)) and the reinterpretation in terms non-local operators in
section 4.

3.1 The main process

In this section, we describe how the main process, by which we mean everything in (3.3)
but the LSZ-factor, is computed. We depart from the following correlation function (with
LW , a shorthand for the weak Lagrangian, see (2.6))6

Π(γ)(p2
B, p

2
ΦB ) = i

∫
x
eixr〈`ν̄(γ)|TJ (0)

B (x)(−LW (0))|ΦB(pΦB )〉

=
∫

ds

2πi
discs[Π(γ)(s, p2

ΦB )]
s− p2

B − i0
= Z

(0)
B A(B− → `−ν̄(γ))

m2
B − p2

B

+ . . . , (3.5)

where r ≡ pΦB − pB is introduced in order to distinguish the pΦB - and the pB-momenta,
even though both are to be set on-shell (tom2

B) in the end.7 For pΦB , this is straightforward

Π(γ)(p2
B,m

2
B) = lim

p2
ΦB
→m2

B

(m2
B − p2

ΦB ) i2
∫
x,z
ei(xr−zpΦB )〈`ν̄(γ)|TΦ†B(z)J (0)

B (x)LW(0)|0〉 ,

(3.6)
since it plays the rôle of an elementary particle. The formal definition of the matrix element
(times the LSZ-factor) is then obtained from (3.5) as

Z(0)
B A(B− → `−ν̄(γ)) = lim

p2
B→m

2
B

(m2
B − p2

B)Π(γ)(p2
B,m

2
B) . (3.7)

We stress that (3.7) serves only as a formal definition of the matrix element since in practice,
as is well-known, it is impossible to extract a bound state pole with perturbative methods,
since bound states are non-perturbative.

The real emission diagrams are depicted in figure 1 and the computation of their
discontinuities is straightforward. In practice, the main challenge is to compute the discon-
tinuity of the virtual diagrams of the type shown in figure 2. We have performed this task
by using Cutkosky rules as the virtual diagrams involve two loops and have a considerable
number of scales. The results, with more details to be reported in [28], are the following:

1. All universal collinear logs (2.7) are reproduced separately for the virtual and the real
rates. They originate from the sum of all bū-cuts as the sum of all būγ-cuts is free
from collinear logs (in the S-P case).

6Since we invoke the Bloch-Nordsieck mechanism, we may ignore that the virtual and the real emission
part of the B-meson is not a well-isolated state.

7The r-momentum is auxiliary and momenta are to be chosen such that its effect disappears from the
final result. This is rather straightforward to implement [28].
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Figure 1. Diagrams contributing to Π(γ)(p2
B , p

2
ΦB

) in (3.5) (i.e. the radiative or real emission
part). The last diagram is specific to the ΦB-particle.

1

ΦB

b̄

u

`−

ν

Figure 2. Diagrams contributing to Π(p2
B , p

2
ΦB

) in (3.5) (ie. the non-radiative part, hence no (γ)
superscript). Top line is the LO diagram and the third line and the last diagram are specific to the
ΦB-particle.

2. The universal soft (and soft-collinear) logs, given in (2.8), are equally reproduced and
emerge as ln δ̂ and ln δ̂ ln m̂` terms respectively.8 In order to reproduce the soft logs
the auxiliary ΦB is crucial. Its on-shellness gives rise to the correct soft-structure in
the integrand.

3. Unphysical IR divergences in lnmu and lnmγ , of the collinear and soft type, cancel
for the sum of all cuts. We note that this must be the case since the corresponding
momentum pB is off-shell and IR-finiteness follows from the Kinoshita-Poggio-Quinn
theorem [29].

Let us remark to this end that taking all the cuts is what is usually done in the case of
virtual QCD computations. However, in the case of hard photon emission, B− → `−ν̄γ,
where the photon is energetic (or non-soft), the procedure has been a different one in the
literature for many decades. Why this is a valid procedure is explained in appendix A.1.

8Of course, the real and virtual rates contain soft-divergences, which have to be regularised (e.g. dimen-
sional or photon mass regularisation). The split of real and virtual soft divergences is equally universal in
the sense that ln δ → lnmγ |virtual − lnmγ |real restores lnmγ-terms.
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ΦB

b

u

ΦB

Figure 3. Diagrams contributing to C(p2
B , p

2
ΦB

) (3.8), that is |Z(0)
B |2 (3.9), where three diagrams

with the photon coupling to the u-quarks are omitted as they are completely analogous to the
b-quark ones.

3.2 The LSZ-factor is infrared finite

The LSZ-factor (3.1) can be extracted from the following diagonal correlation function

C(p2
B, p

2
ΦB ) = i

∫
x
eixr〈ΦB(pΦB )|TJ (0)

B (x)J (0) †
B (0)|ΦB(pΦB )〉

=
∫

ds

2πi
discsC(s,m2

ΦB )
s− p2

B − i0
= |Z(0)

B |2

m2
B − p2

B

+ . . . , (3.8)

where, as before, the dots stand for higher states and this time we do not show the LSZ
procedure for the ΦB-particle explicitly, as it is straightforward. The quantity of interest
is then determined from (3.8)

|Z(0)
B |

2 = lim
p2
B→m

2
B

(m2
B − p2

B)C(p2
B,m

2
B) . (3.9)

The computation proceeds in the same way as for the main process and the diagrams
are shown in figure 3. One may be concerned as to whether the correlation function (or
its discontinuity) are IR-finite as the ΦB-particle is on-shell. Fortunately, |Z(0)

B |2 turns
out to be IR-finite and this follows from a physical argument. We may interpret |Z(0)

B |2,
via the optical theorem, as an inclusive decay rate of ΦB(pB) → b̄qX0(r) induced by
the hypothetical effective Lagrangian “Leff = J (0)

B X0“ where X0 is a neutral particle (of
momenta r, which decouples when r → 0). Hence, by virtue of the KLN-theorem, which
is based on unitarity, we know that its discontinuity must be IR-finite (also in the mu → 0
limit). We have checked that this is true by an explicit computation. Once more, it is
important that one takes the sum of all cuts as individual cuts are IR divergent.

3.3 Summary of the basic interpolating operator approach

In summary, since the numerator reproduces all universal IR-sensitive logs and the de-
nominator is IR-finite, this strongly suggests that the proposed procedure is correct. In
particular, the IR-finiteness of Z(0)

B means that the expression (3.3) has “forgotten” about
its interpolating operator, as required, since it is an auxiliary in the LSZ formalism. The
incorporation for several particles is straightforward from the viewpoint of the interpolat-
ing operators; one can add as many as one desires to. The same applies to non-scalar
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particles; for a proton one adds a scalar ΦP and not a spin 1
2 -particle. The O(E0

γ) term
in Low’s theorem (A.1), related to spin, is reproduced from the spinor in the form factor
decomposition and is entirely kinematical.

4 Relation to non-local operators

There are gauge invariant formulations of QED, which are functionals of the photon field.
These date back to the work of Dirac in 1955 [30]9 and Mandelstam in 1962 [32] where the
photon field is integrated over spacetime and a spacelike path respectively. We first review
the Dirac dressing in section 4.1, including the concept of dual gauges in section 4.1.1. In
section 4.1.2 we show how to embed our approach at O(α) into it. In section 4.2, the all
order equivalence is established, going beyond the Dirac dressing, using iterated integrals.

4.1 Dirac dressing

One may introduce a gauge (compensating) factor U (P )
I (x)

U
(P )
I (x) ≡ eiQP

∫
d4yAµ(y)Iµ(x−y) , ∂ · I = δ(4)(x) , (4.1)

which is a functional of the photon field A and a current I. The latter has no direct relation
to the electromagnetic current but it is required to satisfy the differential equation above
and vanishing boundary condition at infinity. There are many solutions to this equation
and that will be the point of discussion soon. First, let us observe that

ψI(x) ≡ U (ψ)
I (x)ψ(x) , (4.2)

is gauge invariant since the gauge transformation (2.5)

U
(ψ)
I (x)→ e−iQψλ(x)UI(x) , ψ(x)→ eiQψλ(x)ψ(x) , (4.3)

of the gauge factor and the fermion (or any other field) act to compensate each other. In
effect, the gauge flux is transported by U (ψ)

I to infinity where it is assumed not to matter
(implicit by the imposed boundary condition).

4.1.1 Dual gauges

It is now immediate to define a gauge invariant version of JB (2.1)

J (D)
B (I, x) ≡ ūIiγ5bI(x) = JB(x)U (B)

I , (4.4)

by replacing the gauge variant quarks by gauge invariant ones. (Note that U
(B)
I →

eiλQBU
(B)
I ). Hereafter, we suppress the subscript (B) on the gauge factor for brevity.

The operator J (D)
B (I, x) is now a functional of I. This raises the question of whether

specific choices are more convenient than others and or even more legitimate. Let us first
9This formulation has been taken up by lattice groups [12] with C∗-boundary conditions, originally

introduced for studying monopole condensation [31], since the usual periodic boundary conditions are not
compatible with it.
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set aside the latter point. It turns out that for a given I, one can often choose a gauge for
which the gauge factor becomes trivial i.e. UI = 1. We may think of this in terms of the
following equivalence or duality

J (D)
B (Igauge)→ JB|gauge , (4.5)

where “gauge” is now an index for a specific current I and the subscript after the vertical
bar on the right hand side indicates that the computation is to be performed in the specific
gauge. This calls for examples, for which we will choose the Coulomb and Lorenz gauges
(for the further example of the axial gauge, we refer the reader to [12] where these aspects
are nicely discussed).

• The Coulomb gauge: here, the current I, satisfying the differential equation (4.1), is

I0
Coulomb(x) = 0 , IkCoulomb(x) = −δ(x0)∂kϕ(~x) , ~∂ 2ϕ(~x) = δ(3)(x) , (4.6)

(k = 1, 2, 3) where ϕ(x) is the solution of the differential equation compatible with
the boundary condition for I. Indices are interpreted as Minkowski ones and ~x · ~y =∑3
i=1 x

iyi. The gauge factor may be integrated by parts to

UICoulomb(x) = eiQB
∫
d3y ~∂· ~A(y)ϕ(~x−~y)|~∂· ~A=0 → 1 , (4.7)

and trivialises in the Coulomb gauge ~∂ · ~A = 0.

• The Lorenz gauge: in this case, the current I, satisfying the differential equation, is

IµLorenz(x) = ∂µϕ(x) , ∂2ϕ(x) = δ(4)(x) . (4.8)

Integrating by parts, the gauge factor reads

UILorenz(x) = eiQB
∫
d4y ∂·A(y)ϕ(x−y)|∂·A=0 → 1 , (4.9)

and trivialises in the Lorenz/Landau gauge, ∂ ·A = 0.10

We wish to stress that the choice of gauge here is nothing but a computational trick or
a matter of convenience. The element of complexity in the gauge factor UIgauge is moved
into computing with the gauge variant operator JB in a specific gauge. These two effects
of gauge dependence act to compensate each other.

Let us now return to the question, alluded to before, of whether all choices of I
are equally valid. We would think that the answer to this question ought to be yes in
approaches with an exact LSZ formula. However, if the LSZ formula is approached in the
sense of duality as in QCD sum rules (cf. appendix B), this is not the case as it turns out
that neither the Coulomb nor the Lorenz gauge current reproduce the universal IR-logs
in (2.7). This was explicitly verified using the gauge factor UI .

10Since the gauge fixing term reads Lgauge = 1
2ξ (∂ · A)2, the Landau gauge ξ = 0 and the Lorenz gauge

condition are equivalent (at least in perturbation theory).
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4.1.2 The ΦB-particle in Dirac dressing

Hence, the natural question is whether our approach which is gauge invariant can be
captured in this formalism with a specific current I. The following expression achieves
this task

IµΦB (x) = (∂ − 2ip)µeixpϕ(x) , (∂2 +m2
B)ϕ(x) = δ(4)(x) , (4.10)

where p ≡ pΦB for brevity and on-shell momentum (p2 = m2
B). As a solution to the differ-

ential equation (4.1) with the appropriate boundary condition, the Feynman propagator
ϕ(x) = i∆F (x,m2

B) is chosen. The gauge factor integrates by part to

UIΦB (x, p) = eiQB
∫
d4y ei(x−y)p∆F (x−y,m2

B)(i∂+2p)·A(y) , (4.11)

a most familiar form. Namely, the exponent becomes the Feynman rule for scalar QED
with the scalar being our ΦB-particle! In fact, a hint of this possibility was given by the
Lorenz gauge case (4.8) which, however, corresponds to the massless propagator with zero
momentum insertion (pµ = 0). Here, we have in effect extended this mechanism to the
massive propagator with a non-zero momentum. For clarity, let us quote the corresponding
interpolating operator

J (D)
B (x, p) ≡ JB(x)UIΦB (x, p) , (4.12)

where the superscript (D) stands for Dirac. A natural question, in view the discussion in
section 4.1.1, is whether there exists a dual gauge (that trivialises the gauge factor (4.11))?
The answer is yes,

UIΦB (x, p)|(i∂+2p)·A=0 → 1 , (4.13)

which is a peculiar axial gauge for which the photon propagator in momentum space
assumes the form

∆µν(k)
∣∣∣
ΦB−gauge

= 1
k2

(
−gµν − n2 kµkν

(n · k)2 +
k{µnν}
n · k

)
, n = k + 2p , (4.14)

with k{µnν} = kµnν + kνnµ, and nµ∆µν = 0 as required.

4.2 Iterated integral approach

It is clear that the form in (4.11) is not suitable for higher order computations, or already
the ΦB self-energy correction. Matters can be improved by writing an expression with
iterated integrals. For that purpose, let us define the following kernel

K(z, y) ≡ iQB eizp∆F (z,m2
B)(i∂ + 2p) ·A(y) , (4.15)

suppressing the p and A dependence in K. Then, the improved and final version reads

JB(x, p) ≡ JB(x)VIΦB (x, p) , (4.16)

where

VIΦB (x, p) = 1 +
∑
n≥1

∫
d4y1 . . . d

4ynK(x− y1, y1) . . .K(yn−1 − yn, yn) , (4.17)
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consists of the iterated kernels K. In essence, this formula is the Dyson series for the ΦB-
particle where the propagators have been contracted already and this is the reason why the
1/n!-factor from the exponential has disappeared! To establish the gauge transformation,
VIΦB (x) → eiQBλ(x)VIΦB (x), by direct computation is not a simple matter. However, it
is clear that it must hold since the ΦB-formalism is gauge invariant. In addition, we
have verified the transformation law explicitly up to fourth order, witnessing intricate
cancellations.

The JB interpolating operator is the most transparent and most generally valid version
obtained in this paper as it clarifies a number of questions. For example, does the ΦB-
particle need to be included into the running of the fine structure constant α? The answer
is negative since it just “lives” inside the factor VI and does not figure in the Lagrangian of
the theory. This means that there is no coupling to charged fermions other than through
the interpolating operator itself. As such it serves as a justification for the rules applied
previously. In summary we thus have the following relation

ZB = Z(0)
B = Z(D)

B +O(α2) , (4.18)

formulated in terms of the respective LSZ-factors.11

5 Conclusions and discussions

In this work, a method was proposed for incorporating charged hadrons via gauge invariant
interpolating operators for perturbative methods such as QCD sum rules. Technically, this
consists of adding the long distance field ΦB to the gauge variant operator JB (2.1), that is
J (0)
B ≡ JBΦB (3.1). Intuitively, ΦB takes on the rôle of the long distance B-meson splitting

into its two valence partons ū and b, thereby resolving the dilemma that bound states
(e.g. hadrons) are beyond perturbation theory, but essential for infrared-sensitive physics.
Formally, ΦB solves two linked problems at once: JB → J (0)

B becomes gauge invariant
since it is charge neutral, and the universal logs (cf. (2.7) and the end of section 3.1) are
reproduced. The main formula for computing processes is given in eq. (3.3), where both
parts, the numerator and denominator, are computed separately. The modified LSZ-factor
Z(0)
B is gauge invariant and IR-finite which can be argued to hold on grounds of the KLN-

theorem. Together with the reproduction of the universal IR-logs, this consists of the
cornerstone in validating the approach.

In section 4, we established the link of the method to the Dirac dressing of charged
fields to O(e2), J (D)

B , which can be found in eqs. (4.12) and (4.11). An improved version
JB, valid to all orders, generalising the Dirac dressing by using iterated integrals has been
given in eqs. (4.16) and (4.17). Reassuringly, this generalisation makes it clear that the
ΦB-particle does not contribute to the running of the fine structure constant α since it

11The JB-formulation is related to the coherent state framework in the sense that the soft logs (not the
hard-collinear log) are reproduced. This is achieved by taking the coherent state function to be the eikonal
factor ωµ ∝ pµ/(p · k) which defines the coherent state |ω〉 ∝ exp(

∫
dΦγωµa†µ)|0〉 with a†µ being the photon

creation operator [33] (and [27] for a more complete set of references). Again, this has to be the case since
soft resummation is equivalent to the coherent state approach at the leading log level.
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does not appear in the Lagrangian of the theory. The dual gauge, trivialising the gauge
factor, has been identified as a peculiar axial gauge, cf. eqs. (4.13) and (4.14).

Note that the method generalises to any number of particles and any types of spins
with remarks at the end of section 3.3. One can add for each charged particle an operator
of the form (4.16). However, one can use the trick of the trivialising gauge only once.
Explicit results of the computation for leptonic decays, which necessitate one interpolating
operator only, including numerics, are to follow in a forthcoming publication [28].
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A On the necessity of gauge invariant interpolating operators

In this appendix, we comment under which circumstances interpolating operators for
charged mesons are necessary or not. This seems mandatory since processes with charged
hadrons have been considered in the literature using gauge variant interpolating operators.
This includes i) B− → `−ν̄γ where γ is a hard photon, to be discussed in appendix A.1,
and ii) leptonic decays in lattice Monte Carlo simulations, to be discussed in appendix A.2.

A.1 Relation to computations of B− → `−ν̄γ with a hard photon

There is some good tradition in using QED gauge dependent interpolating operators
JB (2.1) for B− → `−ν̄γ in QCD sum rule approaches; e.g at O(α0

s) [34, 35] and O(αs) [36]
or for the gB−B∗−γ coupling at O(α0

s) [35] and O(αs) [37]. This raises the obvious question
of how the issues raised, at the beginning of the paper, were avoided.

First and foremost, at O(e), that is, for a single photon emission, these observables
are formally analogous to B− → `−ν̄ρ0(k) and gB−B∗−ρ0 respectively. The main point is
that the ρ0 or the hard photon (say Eγ ≥ ΛQCD) are considered as separate particles and
formally, this implies that {q2, p2

B, k
2} are the independent kinematic variables, referred

to as the hard photon approach.12 The situation is illustrated in figure 4 with further
comments in the caption.

Computing O(αs) corrections to B− → `−ν̄γ and gB−B∗−γ is demanding, but straight-
forward, because JB is QCD gauge invariant. However, complications arise if we were to

12In the soft photon approach, pursued in this work, {pB · k, p2
B , k

2} are the independent variables. More
comments are to follow further below.
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ℒW

ΦB

γ(k2)

p2B − 2pB⋅ k
JB

ΦB

γ(k2)

p2B − 2pB⋅ kp2B

q2p2B

γ(k2)

q2p2B

γ(k2)

soft photon

hard photon

Figure 4. Comparison of soft and hard photon approaches. In the soft photon approach (top
diagrams), q2 → p2

B − 2pB · k (since k2 = 0) and pB · k becomes an independent variable. Top
left (right) diagram correspond to the ΦB (quarks)-term in (A.5). Note that the top left diagram
reproduces the Low term and the top right diagram is finite as pB · k → 0. In the hard photon
approach (bottom diagrams), q2 is an independent variable. The Low term is produced by the
bottom left diagram (cutting in p2

B), while the bottom right diagram probes the structure. In
particular, the blob is the photon distribution amplitude (DA) and is generated by a sum over
intermediate mesons ρ0, ω, φ with quantum numbers of the photon JPC = 1−−. For an elaborate
discussion of this viewpoint, see appendix A of [38]. The mappings of the diagrams between the
two approaches are as follows: top left ⊂ bottom left, bottom right ⊂ top right. The first relation
follows from the fact that the point-like interaction on the top-left does not “know” anything about
the non-perturbative ρ − γ conversion that the photon DA represents and this also implies the
second relation.

compute O(α) radiative corrections as JB is QED gauge variant. In that case, the intro-
duction of the gauge invariant interpolating operator becomes, in our opinion, a necessity
in perturbation theory. One should regard B− → `−ν̄γ with the hard photon as a LO
process, and it is only its radiative corrections that necessitate the introduction of the soft
photon (to complement the virtual corrections). This is in line with the picture of coherent
states (e.g. [27] and relevant references therein).

It is still an interesting question as to how B− → `−ν̄γ at O(e) with gauge invariant
interpolating operator JB reduces to the case of the gauge variant operator JB; in particu-
lar, of how the Low terms emerge, giving rise to the universal IR-logs for which we had to
introduce the ΦB-particle. Low’s theorem [39], quoted with the same convention as in [27],
states that adding a real photon to a transition α→ β

〈βγ(k, λ)|S|α〉 = c−1
Eγ

+ c0 + c1Eγ +O(E2
γ) , (A.1)
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the two first terms in an Eγ-expansion are universal and given by

c−1
Eγ

=
∑
j

Q̂j
ε∗(k, λ) · p̂j
k · p̂j − i0

〈β|S|α〉 , c0 = −i
∑
j

Q̂j
ε∗µ(k, λ)kνJµνj
k · p̂j − i0

〈β|S|α〉 . (A.2)

Above, Jµνj = ip̂
[µ
j ∂

ν]
p̂j

is the orbital angular momentum operator (and square brack-
ets denote anti-symmetrisation). Hatted quantities are plus(minus) its value for outgo-
ing(incoming) particles.

To further simplify matters, we consider the S-P interaction (2.6), in which case there
are no B → γ form factors by helicity conservation and it all reduces to the Low-term
corresponding to the emission from the B-meson (and the charged lepton of course). More
concretely, at LO, the amplitude factorises

AS−PB−→`−ν̄γ = 〈γ`−ν̄| − L(S−P )
B−→`−ν̄ |B

−〉

= − gS−P 〈γ|ū(1−γ5)b|B−〉〈`−ν̄|`(1−γ5)ν|0〉+ . . . , (A.3)

where gS−P is an irrelevant constant for our purposes and the dots stand for photon
emission from the lepton. We focus on the first term which, by Low’s theorem, gives

AS−PB→γ ≡ −imb〈γ|ū(1−γ5)b|B−(pB)〉 = −eQB
pB · ε∗

pB · k
ALO = −2eQBm2

BfB
m2
B − q2 (pB ·ε∗) , (A.4)

where ALO = m2
BfB (having setmu = 0), pB ·k = 1

2(m2
B−q2), ε is the photon’s polarisation

vector, and by parity, only the γ5-part contributes. Two remarks are in order: i) as this
is an on-shell matrix element, hence p2

B = m2
B ii) the expression (A.4) is exact, as stated

before.
Now, we would like to see how this works out in our approach (with gauge invariant

interpolating operator). The correlation function (3.5) evaluates to

Π(γ)(p2
B, p

2
ΦB , q

2) ∝ eQB

[ ΠP (q2)
m2
B − q2

]
ΦB

+
[

ΠP (p2
B)−ΠP (q2)
p2
B − q2

]
quarks

 (pB ·ε∗) + . . . ,

(A.5)
where the dots once more stand for the photon emission from the lepton (and (pB−pΦB )·ε∗-
terms which have to be dropped as they are unphysical). The first term in the pB · ε∗-
structure corresponds to emission from the ΦB-particle, the second term to emission from
the quarks and ΠP (s) is the following 2-point function

ΠP (p2) = im2
b

∫
x
eipx〈0|TJB(x)J†B(0)|0〉 . (A.6)

which is further scrutinised in section B. Note that the extra factor of JB arises from the
quark part of the weak Lagrangian. The quark emission term in (A.5) can be established
without computation as being the unique solution to the QED Ward identity. This goes
hand in hand with the statement that (A.4) is exact. Now, we have all the information in
order to investigate the differences between the two approaches.
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• Hard photon approach {q2, p2
B, k

2}: in this case q2 is considered an independent vari-
able and the discontinuity in p2

B is given by

discp2
B

Π(γ)(p2
B, p

2
ΦB , q

2) ∝
discp2

B
ΠP (p2

B)
p2
B − q2 , (A.7)

which reproduces the Low-term (A.4) to the extent that p2
B → m2

B, which holds in
QCD and approximately for QCD sum rules at the level of quark hadron duality as
noticed in [36] (and cf. appendix B). The latter is a sufficiently good approximation
as long as q2 is not too close to m2

B which is the premise of the hard photon QCD
sum rule approach.

• Soft photon approach {pB ·k, p2
B, k

2}: it is characterised by Eγ � ΛQCD and it makes
more sense to expand around Eγ (or better its covariant form pB · k). Eq. (A.5),
omitting its arguments, then becomes

Π(γ) ∝ eQB

([
ΠP (q2)
2pΦB ·k

]
+
[

ΠP (p2
B)−ΠP (q2)
2pB · k

]) ∣∣∣∣∣
q2→p2

B−2pB ·k

(pB · ε∗) + . . . , (A.8)

and formally we traded q2 for pB · k. Note that, at the end, pB · k is set equal to
pΦB · k = EγmB The first thing to notice is that in the k → 0 limit, the second
term becomes Π′P (p2

B), the derivative of the 2-point function, and contributes to c0,
but does not reproduce the c−1-term in (A.1).13 This rôle is reserved the ΦB-term!
This highlights the necessity of introducing the ΦB-particle in this approach. Most
importantly, the two terms in ΠP (q2) exactly cancel each other

discp2
B

Π(γ)|q2→p2
B−2pB ·k ∝

discp2
B

ΠP (p2
B)

2pB ·k
, (A.9)

and the Low term appears in its exact form (A.4) (after the LSZ formula in p2
B is

applied).

The example of the S-P interaction almost appears a bit too simple to illustrate the point
but in fact it is not. In the V-A case, there would simply be many other terms contributing
to the structures in (A.1) other than the Low-term (e.g. [36]).

An interesting question that one could raise is the following: how can taking cuts in
p2
B in the hard photon approach be equivalent to taking cuts in p2

B itself and an extra
cut in q2 = p2

B − 2pB · k in the soft photon approach? The answer is that for s0 −m2
b <

m2
B − q2, where s0 is the (effective) continuum threshold, this extra cut does not actually

contribute to the sum rule (cf. (B.6)). This translates to q2 < 14GeV2 for typical values
of s0 = 35GeV2 and mb = 4.6GeV (pole or kinetic scheme mb-mass). This is what is
usually assumed in the light-cone expansion indeed (e.g. [36]). Hence for q2 > 14GeV2, or
well-above, the hard photon approach gradually breaks down and the soft photon variables
become appropriate.

13This is in accordance with the Kinoshita-Poggio-Quinn-theorem (cf. [27] for references) which states that
in renormalisable theories, off-shell correlation functions are free from IR singularities for non-exceptional
momenta.
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A.2 Exact LSZ formula and gauge variant interpolating operators

Let us comment on the necessity of gauge invariant interpolating operators. If one aims
only at O(α) in a decay process and one has an exact LSZ formula, then it would seem
possible to work with gauge variant interpolating operators for hadrons. This is because the
hadrons are the QCD hadrons (not corrected by QED) and those states are well-isolated
in the spectrum. The Euclidean correlation function then assumes the form

ZB(gauge)× amplitude× e−EBtE + . . . , (A.10)

where the dots stand for exponentially suppressed terms (cf. (B.9)) and ZB corresponds to
the gauge variant LSZ-factor of the B-interpolating operator in use. The exact LSZ formula
emerges in the limit of infinite Euclidean time separation of the meson source. In this case,
the exponentially suppressed terms disappear as tE → ∞ and the sole gauge dependence
is in ZB and can be cancelled by computing it from an appropriate correlation function.
This is the idea underlying the QEDL [10] and the QEDmγ [11] lattice approaches.

When aiming for corrections beyond O(α), matters are more delicate since charged
states are not isolated anymore (QED IR-problem, see [27] for references) and an explicit
gauge invariant formulation seems more appropriate. This is the idea behind the C∗-
boundary method [12]. So far, this method has only been applied to hadronic masses and
the specifics for (leptonic) decay rates have not been proposed to date.

B Brief review of the LSZ formalism and QCD sum rule approach

In this appendix, we briefly review the LSZ formalism (e.g. [21]) itself and how it is handled
in QCD sum rules [22]. We do so by considering the 2-point function in eq. (A.6) relevant
to B− → `−ν̄γ for S-P interactions. In QCD and perturbative QCD (pQCD), the most
important terms for our considerations are

ΠP (s)
∣∣∣
QCD

= m4
Bf

2
B

s−m2
B

+ . . . , (B.1)

ΠP (s)
∣∣∣
pQCD

= Nc

8π2m
2
b

(
1− m2

b

s

)2

s ln(m2
b − s) + . . . , (B.2)

where Nc are the number of colours. The dots stand for higher states in the spectrum
in (B.1) and non-logarithmic terms, condensate terms and O(αs)-contributions in (B.2)
(for pQCD, cf. [37] for explicit results). In the LSZ approach, repeating the steps in (2.2),
one would extract the amplitude ALO, referred to below (A.4), by

ALO = 1
Z ′B

lim
p2
B→m

2
B

(m2
B−p2

B)ΠP (p2
B)
∣∣∣
QCD

= m2
BfB . (B.3)

Here, Z ′B = mbZB = m2
BfB (cf. also (2.1)) and the dots in (B.1) vanish as they do not

have a pole in (p2
B−m2

B). Let us consider this aspect by a dispersive representation (“s.t.”
stands for subtraction terms)

ΠP (p2) =
∫ ∞

0
ds

ρP (s)
s− p2 − i0 + s.t. , (B.4)
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with 2πiρP (s) = discsΠP (s). From (B.1), one gets

ρP (s)
∣∣∣
QCD

= m4
Bf

2
Bδ(s−m2

B) + . . . ,

ρP (s)
∣∣∣
pQCD

= Nc

8π2m
2
b

(
1− m2

b

s

)2

s θ(s−m2
B) + . . . . (B.5)

Subtraction terms are eliminated by a Borel transform which maps any polynomial in s

to zero and 1/(s − p2) → exp(−s/M2)/M2 (with M2 the Borel mass). We may then
rewrite (B.3)

A′LO[ρP ] = 1
ZB

∫ s0

cut
ds e(m2

B−s)/M
2
ρP (s) , (B.6)

where “cut” marks the start of the discontinuity and s0 is just below the onset of the first
excited states which are of the order of (mB+2mπ)2 to (mB+mρ)2. The difference between
QCD and QCD sum rules is now most clear

A′LO

[
ρP
∣∣∣
QCD

]
= ALO , exact ,

A′LO

[
ρP
∣∣∣
pQCD

]
≈ ALO , QCD sum rule , (B.7)

as it reduces to which density is in use. The approximation made can be quantified by14∫ ∞
s0

ds e(m2
B−s)/M

2
ρP (s)

∣∣∣
pQCD

≈
∫ ∞
s0

ds e(m2
B−s)/M

2
ρP (s)

∣∣∣
QCD

, (B.8)

and is sometimes referred to as semi-global quark-hadron duality [23]. In practice, it may
be expected to hold to within 30% and if the pole term dominates by 60%, this leads to
an uncertainty of roughly 10% [22]. In practice, most sum rules are ratios of sum rules
in fact, such as (3.3), and this effect cancels to a considerable extent. Eq. (B.8) can be
expected to work well when the higher spectrum is broad, that is, if there are no further
narrow resonances, which is most often the case.

At last, it is worthwhile to sketch the analogue of the LSZ formula in Euclidean field
theory in which the positive frequency correlation function in the time-momentum repre-
sentation is considered

Π+
P (tE , ~p 2) = m2

b

∫
d3x ei~x·~p〈0|JB(x)J†B(0)|0〉 ∝ (Z ′B)2 e−EBtE + . . . . (B.9)

Above the dots stand for exponentially suppressed terms and Z ′B has been defined be-
low (B.3). The physical matrix element emerges in the tE →∞ such that the suppressed
terms disappear.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

14It is tempting to take the limitM2 → 0 as then the higher states would decouple. However, the problem
with this is that then the operator products expansion does not converge in that case. M2 → 0 is in some
sense the analogue of infinite Euclidean time separation in lattice QCD.
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