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Abstract In this paper, we construct the rotating Janis–
Newman–Winicour (JNW) naked singularity spacetime
using Newman–Janis Algorithm (NJA). We analyse NJA
with and without complexification methods and find that the
energy conditions do satisfied when we skip the complex-
ification step. We study the shadows cast by rotating JNW
naked singularity and compare them with the shadows cast
by the Kerr black hole. We find that the shadow of the rotat-
ing naked singularity can be distinguished from the shadow
of the Kerr black hole. While we analyse the precession of
timelike bound orbits in rotating JNW spacetime, we find that
it can have a negative (or opposite) precession, which is not
present in the Kerr black hole case. These novel signatures
of the shadow and orbital precession in rotating JNW naked
singularity spacetime could be important in the context of the
recent observation of the shadow of the M87 galactic cen-
ter and the stellar dynamics of ‘S-stars’ around Milkyway
galactic center.

1 Introduction

In 1965, Newman and Janis showed that the Kerr metric could
be obtained from the Schwarzschild metric using a com-
plex coordinate transformation [1]. For the static Reissner–
Nordström metric, using the same method, one can derive the
Kerr–Newman metric, which represents a spacetime geom-
etry of the electrically charged and rotating black hole [2].
The application of the NJA for generating interior solutions
which match smoothly to the external Kerr metric is studied

a e-mail: divyeshsolanki98@gmail.com
b e-mail: grcollapse@gmail.com (corresponding author)
c e-mail: dipanjandey.icc@charusat.ac.in
d e-mail: psjprovost@charusat.ac.in
e e-mail: knp@phy.svnit.ac.in

in [3]. In this algorithm, authors use two different types of
complexification with no apparent reason. There are many
ways to complexify the coordinates, however, in the above
mentioned literature, the only reason given for choosing those
particular complexifications is that it is successful in generat-
ing the Kerr and Kerr–Newman metric. However, the success
of the NJA is limited to the spacetimes which atleast satisfy
the reciprocal condition, gtt grr = −1. Later, it was proved
by Drake, and Szekeres [4] that the only perfect fluid solu-
tion generated by the NJA is the Kerr metric, and the only
Petrov typed D solution to the Einstein–Maxwell equation is
the Kerr–Newman metric.

The general theory of relativity predicts that when large
enough masses collapse under the influence of their own
gravity, the spacetime singularity forms necessarily. There
is a singularity theorem which shows the inevitability of the
formation of the spacetime singularity under some circum-
stances. However, there exists no such theory on the existence
of an event horizon around the singularity. In 1969, Rodger
Penrose gave a cosmic censorship conjecture (CCC) which
does not allow horizon-less strong spacetime singularity [5].
However, there are series of literature on the continual gravi-
tational collapse of the inhomogeneous matter cloud where it
is shown that spacetime singularities formed during gravita-
tional collapse can be visible by the outside observer [6–11].
Therefore, the spacetime singularity may or may not be vis-
ible by asymptotic observer, since it depends upon the ini-
tial conditions of the collapsing matter [12]. In the regime
of general relativity, such a scenario can arise where the
continual gravitational collapse may lead to an equilibrium
static spacetime which has a central visible or naked singular-
ity e.g., Joshi–Malafarina–Narayan (JMN), Janis–Newman–
Winicour (JNW), and Bertrand (BST) spacetimes [12–14].

From the above discussion, it is clear now that the naked
singularity can be formed as the end state of continuous grav-
itational collapse of an inhomogeneous matter cloud. There-
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fore, if naked singularity really exits in nature, it would have
distinguishable physical signatures. Since every compact
object in our universe has its intrinsic angular momentum,
for more realistic scenario, one needs to construct rotating
counterpart of the naked singularity spacetime. In this paper,
we first construct the rotating version of Janis–Newman–
Winicour (JNW) naked singularity spacetime to investigate
its possible physical signatures in the context of shadow
shape and the dynamics of timelike bound orbits. One can
obtain the rotating naked singularity spacetime by applying
the NJA to the static naked singularity metric.

However, when we apply the NJA to other spacetime met-
rics, such as naked singularities and other black hole solu-
tions, the final result which is obtained in the Eddington–
Finkelstein coordinates (EFC) may not be transformed into
the BLC due to the complexification procedure as shown in
[15]. It is shown by Mustapha Azreg-Aïnou that the rotat-
ing spacetime generated by the NJA and written in the EFC
could be transformed into the BLC by dropping the com-
plexification step [16–18]. Recently, the rotating form of the
polytropic black hole spacetime is constructed using the NJA
without complexification [19]. The use of NJA is described in
other theories of gravity as well, i.e., f(R) gravity, Einstein–
Maxwell–Dilaton gravity, Born–Infeld monopole gravity
[20]. To illustrate this method, in this paper, we apply the
NJA without complexification to the static Janis–Newman–
Winicour (JNW) naked singularity spacetime. Using the pro-
cedure given in [16–18], we obtain the rotating JNW naked
singularity spacetime and it does satisfy all the energy con-
ditions.

As it is stated above, the black hole and naked singular-
ity should have some different physical signatures, since the
geometrical properties of them are different from each other.
Therefore, observational investigations on different physical
properties of ultra compact objects may reveal the nature of
the same. The Event Horizon Telescope (EHT) collaboration
recently released the first-ever image of the shadow of the
black hole located at the center of Messier 87 (M87) galaxy
[21]. Similar shadows can also be cast by other compact
objects. There are several literature where the shadows cast
by compact objects such as black holes, naked singularities,
gravastar and wormholes are extensively studied [22–37]. In
[38], authors discuss the shadow cast by Joshi–Malafarina–
Narayan (JMN) naked singularity spacetime and they com-
pare the results with a shadow cast by the Schwarzschild
black hole. In the first type of JMN (JMN1) naked singu-
larity spacetime, one can define a range of characteristic
parameter (0 < M0 < 2/3) for which there exists no photon
sphere and hence no shadow and therefore, an interesting full-
moon image of the central singularity is formed. However,
for M0 > 2/3, JMN1 naked singularity can cast a similar
shadow what an equally massive Schwarzschild black hole
can cast. It is generally believed that the shadows arise due to

the presence of a photon sphere. Recently, in [39], the authors
have introduced a new spherically symmetric naked singu-
larity solution of the Einstein field equation which does not
have a photon sphere, but the singularity still casts a shadow.
After that, in [40], for null-like and timelike naked singular-
ities, the general conditions for the shadow formation in the
absence of a photon sphere are investigated.

The shape of the shadows and their properties would be
different for the rotating spacetimes. The involvement of a
spin parameter can make a spacetime more realistic, and the
shadow cast by that spacetime can give us a more realistic
shadow shape of a compact object. In [41], a general for-
mula has been derived to obtain the shape of a shadow cast
by a compact object whose gravitational field is described
by a rotating spacetime geometry. Also, this general for-
mula is applied to some known black hole solutions, and
the corresponding results for shadows are reproduced. In our
recent work [42], we analyse the shape of the shadows in
the deformed Kerr spacetime. We show that due to the defor-
mation, shadow with oblate and prolate shape can exist for
the negative and positive sign of the deformation parameter
respectively. In last few years, the shadows cast by rotating
black holes are extensively studied in many literature [43–
54]. The shadow in the rotating naked singularity may have a
different distinguishable signature. Therefore, in this paper,
we study the shadow shape in rotating JNW spacetime and
we show that the shape of the shadows in rotating JNW space-
time can be distinguished from the shadows cast by the Kerr
black hole.

On the other hand, the GRAVITY, SINFONI, and UCLA
galactic center groups are continuously observing astromet-
ric and spectroscopic data of the S-stars which are orbiting
around our Milky-way galactic center [55–57]. These obser-
vational data could help to reveal the nature of the galac-
tic center (Sgr-A*). The relativistic orbital precession in the
Schwarzschild spacetime is discussed in [58]. There are large
number of literature where the nature of the orbit precession
is extensively studied in various spacetime geometry [59–
71]. In [64,65], the periastron precession of particles orbit
in static JMN1, JMN2, JNW, and Bertrand (BST) naked sin-
gularity spacetimes are studied, and the results obtained are
compared with that of the Schwarzschild spacetime. It is con-
cluded that the nature of orbital precession in BST is similar
to that in Schwarzschild spacetime which is in the same direc-
tion as the motion of a particle. On the contrary, an orbit can
precess in the opposite direction of the motion of a particle
in JMN1, JMN2, and JNW spacetimes.

Similarly, as we discussed above, the rotating spacetimes
are more physically realistic to investigate the orbital preces-
sion. In our previous work [42,67], we have shown that the
orbits in deformed Kerr spacetime can precess in the opposite
direction of the motion of a particle when the deformed Kerr
black hole becomes a naked singularity, which is not possi-
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ble in Kerr spacetime. We have also shown that the shadow
and negative precession of timelike bound orbits can simulta-
neously exist in deformed Kerr naked singularity spacetime.
There are some literature where the timelike orbits in rotating
black holes are extensively studied [72–76]. Here, we analyse
the precession of the timelike bound orbits in rotating JNW
spacetime and compare them with the Kerr black hole case.
We find that the rotating JNW spacetime can admit negative
precession for the particular range of scalar field charge q and
spin parameter a. These novel features of the shadow shape
and the precession of the timelike bound orbits in rotating
JNW spacetime can be observationally significant to distin-
guish from the Kerr and other rotating compact objects.

This paper is constructed in the following way. In Sect.
2, we derive the rotating JNW naked singularity spacetime
using the NJA with and without complexification. We discuss
the energy conditions in both cases. In Sect. 3, we study the
shadow properties and find the shape of the shadows in rotat-
ing JNW spacetime. In addition, we show the comparison
of the shape of the shadow cast by the Kerr black hole and
rotating JNW naked singularity. In Sect. 4, we obtain the gen-
eral differential orbit equation for the timelike bound orbit
and compare the orbital precession in the Kerr and rotating
JNW spacetime. Finally, we discuss and conclude our result
in Sect. 5. We consider gravitational constant G and speed
of light c equal to unity throughout this paper.

2 Construction of the rotating JNW spacetime metric

In this section, we determine the rotating JNW naked sin-
gularity spacetime by using the Newman–Janis algorithm
(NJA). The final result of the NJA is obtained in the null coor-
dinates, which must be transformed into the Boyer–Lindquist
coordinates (BLC). The BLCs are more convenient to work
with the rotating spacetime metric. We analyse that it is not
possible to perform the BLC transformation when consider-
ing JNW spacetime metric (1) as a seed metric. To resolve this
problem, we drop the complexification step in NJA [16–18].

2.1 JNW metric and the Newman Janis Algorithm

The JNW spacetime metric is given by

ds2 = −
(

1 − 2M

rν

)ν

dt2 +
(

1 − 2M

rν

)−ν

dr2

+ r2
(

1 − 2M

rν

)1−ν

d�2 (1)

where, d�2 = dθ2 + sin2 θdφ2. It is straight forward to
show that the following expression is the final form of the

NJA with considering JNW metric (1) as a seed metric.

ds2 = −
(

1 − 2Mr

νρ2

)ν

du2 − 2dudr

− 2a sin2 θ

[
1 −

(
1 − 2Mr

νρ2

)ν]
dud�

+ ρ2
(

1 − 2Mr

νρ2

)1−ν

d�2 + 2a sin2 θdrd�

+ a2 sin4 θ

[
2 −

(
1 − 2Mr

νρ2

)ν]
d�2 (2)

The above form of the spacetime metric seems rather com-
plicated. It can be made more simple and symmetrical by
transforming it into the Boyer–Lindquist coordinates (BLC).
The BLC (t, r, θ, φ) represents the rotating black hole space-
time metrics because all the off-diagonal terms of the metric,
except dtd�, vanish; and its axial symmetry becomes appar-
ent. The transformation into the BLC requires

du = dt − ξ(r)dr (3)

d� = dφ − χ(r)dr (4)

Here, we note that the transformation functions, i.e., ξ(r) and
χ(r), strictly depends on coordinate r only; otherwise Eqs.
(3) and (4) will not be integrable. To write Eq. (2) into the
BLC like form, the transformation functions must take the
following form.

ξ(r, θ) = 1




[
ρ2

(
1 − 2Mr

νρ2

)1−ν

+ a2 sin2 θ

]
(5)

χ(r) = a



(6)


 = r2 − 2Mr

ν
+ a2 (7)

It can be seen that the transformation function ξ also depends
on coordinate θ , and therefore the Eq. (3) is not integrable.
In these coordinates, Eq. (2) is written as

ds2 = −
(

1 − 2Mr

νρ2

)ν

dt2

+ρ2
(

1 − 2Mr

νρ2

)1−ν (
dr2



+ d�2

)

−2a sin2 θ

[
1 −

(
1 − 2Mr

νρ2

)ν]
dtdφ

+a2 sin4 θ

[
2 −

(
1 − 2Mr

νρ2

)ν]
dφ2 (8)

It can be seen that the above metric reduces to the JNW
spacetime metric (1) when a = 0. Although the transforma-
tion into the BLC was improper in obtaining Eq. (8), we can
check the energy conditions because the NJA is just an algo-
rithm that successfully works for Kerr and Kerr–Newman
metric. Thus, we cannot say whether the final result Eq. (8)
is a valid solution of the Einstein field equation. It can only be
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answered once we know whether the energy conditions for
the metric (8) are satisfied or not. The energy conditions for
the above spacetime metric are discussed in the Appendix,
and we conclude that the rotating JNW spacetime metric (8)
obtained using NJA with complexification violates the energy
conditions.

Now, we drop the θ dependency of the transformation
function ξ by considering a slow rotation approximation in
which the second and higher-order terms of rotation param-
eter (a) are ignored. Thus, Eq. (8) reduces to the following
form.

ds2 = −
(

1 − 2M

νr

)ν

dt2 +
(

1 − 2M

νr

)−ν

dr2

− 2a sin2 θ

[
1 −

(
1 − 2M

νr

)ν]
dtdφ

+ r2
(

1 − 2M

νr

)1−ν

d�2 (9)

And, the transformation functions χ and ξ become

ξ(r) =
(

1 − 2M

νr

)−ν

χ(r) = a

r2

(
1 − 2M

νr

)−1

.

Equation (9) is the slow rotation form of the JNW spacetime
metric. We note that the rotating JNW spacetime metric (8)
obtained using the NJA with complexification is not properly
transformed into the BLC because of the complexification of
the coordinates. This issue can be solved by skipping the
complexification step [18,19], which is discussed in the next
section.

2.2 Newman–Janis algorithm without complexification

Consider a general form of the static, and spherically sym-
metric spacetime metric.

ds2 = −G(r)dt2 + dr2

F(r)
+ H(r)d�2. (10)

To apply the algorithm, transform it into the null coordinates
{u, r, θ, φ} using the coordinate transformation

du = dt − dr√
F(r)G(r)

. (11)

In null coordinates, the spacetime metric (10) takes the form

ds2 = −G(r)du2 − 2

√
G(r)

F(r)
dudr + H(r)d�2. (12)

The null tetrad of the above spacetime metric are

lμ = δ
μ
1 , (13)

nμ =
√

F(r)

G(r)
δ
μ
0 − 1

2
F(r)δμ

1 , (14)

mμ = 1√
2H(r)

(
δ
μ
2 + i

sin θ
δ
μ
3

)
. (15)

The next step of the NJA is the complexification, which gen-
eralize the function (i.e. G(r), F(r), H(r)) as the real func-
tion of radial coordinate r and it’s complex conjugate r̄ . The
trick is to skip this step and proceed directly to the next step
which is the complex coordinate transformation.

r ′ = r + ia cos θ (16)

u′ = u − ia cos θ. (17)

Under the coordinate transformation, let us consider that the
components of the metric tensor (10) are transformed as

{G(r), F(r), H(r)} → {A(r, θ, a), B(r, θ, a), ψ(r, θ, a)},
where the following conditions are satisfied.

lim
a→0

A(r, θ, a) = G(r), (18)

lim
a→0

B(r, θ, a) = F(r), (19)

lim
a→0

ψ(r, θ, a) = H(r). (20)

Now, perform the complex coordinate transformation (16),
(17) on the null tetrad (13)–(15).

lμ = δ
μ
1 , (21)

nμ =
√

B

A
δ
μ
0 − 1

2
Bδ

μ
1 , (22)

mμ = 1√
2ψ

(
δ
μ
2 + ia sin θ(δ

μ
0 − δ

μ
1 ) + i

sin θ
δ
μ
3

)
(23)

The forth null vector m̄μ is just a complex conjugate of mμ.
These are the components of the null tetrad of the final metric
tensor in null coordinates (u, r, θ,�).

ds2 = Adu2 + 2

√
A

B
dudr + 2a sin2 θ

(√
A

B
− A

)
dud�

−2a sin2 θ

√
A

B
drd� − ψdθ2

− sin2 θ

[
ψ + a2 sin2 θ

(
2

√
A

B
− A

)]
d�2 (24)

The spacetime metric is determined in the null coordi-
nates {u, r, θ,�}, which can be transformed into the BLC
{t, r, θ, φ} as

du = dt − λ(r)dr (25)

d� = dφ − χ(r)dr (26)

The transformation functions χ and λ should strictly depend
on the radial coordinate (r ) only, for Eqs. (25), (26) to be inte-
grable; which is not possible in NJA with complexification.
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As we know, in Boyer–Lindquist form, the spacetime metric
contains only one off-diagonal term which is dtdφ. There-
fore, using the above coordinate transformation (25, 26), and
dropping all off-diagonal terms except dtdφ, we have the
following two expressions.

Aλ(r) −
√

A

B
+ a sin2 θ

(√
A

B
− A

)
χ(r) = 0 (27)

a

(√
A

B
− A

)
λ(r) + a

√
A

B

+
[
ψ − a2 sin2 θ

(
2

√
A

B
− A

)
χ(r)

]
= 0 (28)

Solving these expressions for λ and χ , we obtain

χ(r, θ) = a

ψB + a2 sin2 θ
, (29)

λ(r, θ) =
ψ

√
B
A + a2 sin2 θ

ψB + a2 sin2 θ
. (30)

Here, again, the BLC transformation functions χ and λ

depends on θ ; but this time we have three unknown functions
A(r, θ, a), B(r, θ, a) and ψ(r, θ, a) which play an important
role in dropping the θ dependency of χ and λ. We choose
the following form of the transformation functions, because
it successfully works in Kerr and Kerr-Newman case.

χ(r) = a

FH + a2 (31)

λ(r) = K + a2

FH + a2 (32)

where, K = H
√

F
G .

Now, substitute the above expression of χ and λ into the
Eqs. (27, 28), and solve them for the unknown functions
A(r, θ, a) and B(r, θ, a). We obtain

A(r, θ, a) = (FH + a2 cos2 θ)ψ

(K + a2 cos2 θ)2 (33)

B(r, θ, a) = FH + a2 cos2 θ

ψ
(34)

We can verify that the function A(r, θ, a) and B(r, θ, a)

respectively reduce to the function G(r) and F(r) when
a → 0.

lim
a→0

A(r, θ, a) = G(r) (35)

lim
a→0

B(r, θ, a) = F(r) (36)

Therefore, under the BLC coordinate transformation, the
metric (24) becomes

ds2 = − (FH + a2 cos2 θ)ψ

(K + a2 cos2 θ)2 dt2 + ψ

FH + a2 dr
2

−2a sin2 θ

(
K − FH

(K + a2 cos2 θ)2

)
ψdtdφ + ψdθ2

+ψsin2θ

[
1 + a2 sin2 θ

×
(

2K − FH + a2 cos2 θ

(K + a2 cos2 θ)2

) ]
dφ2 (37)

where, ψ(r, θ, a) is still unknown. It must satisfy the follow-
ing constraint which corresponds to the vanishing component
of the Einstein tensor, Grθ = 0.

3a2 sin 2θψ2K,r + (K + a2 cos2 θ)2

×(3ψ,θψ,r − 2ψψ,rθ ) = 0. (38)

This non-linear partial differential equation can be solved
for ψ . One can verify that a solution of the above partial
differential equation is

ψ(r, θ, a) = K (r) + a2 cos2 θ. (39)

For the Kerr and Kerr-Newman metric, K (r) = r2, and the
above expression reduces to ψ = r2+a2 cos2 θ . After substi-
tuting ψ (39) into the general form of the rotating spacetime
metric (37), if the static spacetime metric (10) can be obtained
in the limit a → 0, the rotating solution is known as normal
fluid; otherwise it is known as conformal fluid. Normal fluid
solution requires

lim
a→0

ψ(r, θ, a) = H(r) (40)

which implies F(r) = G(r).
The metric (37) can be written in Kerr-like form as

ds2 = −
(

1 − 2 f

ρ2

)
dt2 + ρ2



dr2 + ρ2dθ2

+� sin2 θ

ρ2 dφ2 − 4a f sin2 θ

ρ2 dtdφ (41)

where,

ρ2 = K (r) + a2 cos2 θ, (42)

f = K (r) − F(r)H(r)

2
, (43)


 = F(r)H(r) + a2, (44)

� = (
K (r) + a2)2 − a2
 sin2 θ. (45)

When a → 0, the rotating solution (41) reduces to the static,
and spherically symmetric spacetime metric if F(r) = G(r).

2.3 Rotating JNW spacetime metric

We construct a new rotating spacetime metric which reduces
to the static JNW naked singularity spacetime metric (1) in
the limit a → 0. Substitute the components of the JNW
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spacetime metric into Eq. (41).

ds2 = −
(

1 − 2 f

ρ2

)
dt2 + ρ2



dr2 + ρ2dθ2 + � sin2 θ

ρ2 dφ2

−4a f sin2 θ

ρ2 dtdφ (46)

Where,

2 f = r2
(

1 − 2M

rν

) [
−1 +

(
1 − 2M

rν

)−ν
]

, (47)

ρ2 = r2
(

1 − 2M

rν

)1−ν

+ a2 cos2 θ, (48)


 = r2 − 2Mr

ν
+ a2, (49)

� = (ρ2 + a2 sin2 θ)2 − a2
 sin2 θ. (50)

One can verify that it reduces to the Kerr metric when ν = 1.
Also it reduces to Eq. (9) under the slow rotation approxi-
mation. To check whether the spacetime metric is physically
valid, we must proceed to check the energy conditions. Con-
sider the inverse form of the rotating spacetime metric (46).

(∂s)
2 = − (K + a2)2 − a2
 sin2 θ

ρ2

(∂t )

2 + 


ρ2 (∂r )
2

+ 1

ρ2 (∂θ )
2 + 
 − a2 sin2 θ

ρ2
 sin2 θ
(∂φ)2 − 4aMK

rρ2

∂t∂φ

(51)

It can also be written as

(∂s)
2 = −

(
K + a2

ρ
√



∂t + a

ρ
√



∂φ

)2

+ 


ρ2 (∂r )
2

+ 1

ρ2 (∂θ )
2 +

(
a sin θ

ρ
∂t + 1

ρ sin θ
∂φ

)2

(52)

Now, we choose a set of orthonormal basis {uμ, eμ
r , eμ

θ , eμ
φ },

where uμ can be considered as a four velocity of the fluid.

uμ =
(
K + a2

ρ
√



, 0, 0,

a

ρ
√




)
, (53)

eμ
r =

(
0,

√



ρ
, 0, 0

)
, (54)

eμ
θ =

(
0, 0,

1

ρ
, 0

)
, (55)

eμ
φ =

(
a sin θ

ρ
, 0, 0,

1

ρ sin θ

)
. (56)

One can verify that uμuμ = −1, eμ
i (ei )μ = 1, uμ(ei )μ = 0;

where, (i → r, θ, φ). In terms of these orthonormal basis,
Eq. (52) is written as

(∂s)
2 = (−uμuν + eμ

r e
ν
r + eμ

θ e
ν
θ + eμ

φ e
ν
φ)∂μ∂ν (57)

where the metric tensor is

gμν = −uμuν + eμ
r e

ν
r + eμ

θ e
ν
θ + eμ

φ e
ν
φ. (58)

Similarly, the energy-momentum tensor can be decomposed
as

Tμν = ρeu
μuν + Pre

μ
r e

ν
r + Pθe

μ
θ e

ν
θ + Pφe

μ
φ e

ν
φ (59)

where, ρe is the energy density, and Pi (i → r, θ, φ) are the
principal pressure components. The Einstein field equation
in the form Gμν = Tμν requires

ρe = uμuνGμν, (60)

Pr = eμ
r e

ν
r Gμν = grrGrr , (61)

Pθ = eμ
θ e

ν
θGμν = gθθGθθ , (62)

Pφ = eμ
φ e

ν
φGμν. (63)

The components of the energy–momentum tensor of the
rotating JNW spacetime are as follows. We consider θ = π/2
for the mathematical simplicity.

ρe = M2(1 − ν2)(
 + a2)

r6ν2

(
1 − 2M

rν

)−3+ν

(64)

Pr = −Pθ = M2(1 − ν2)

r4ν2

(
1 − 2M

rν

)−2+ν

(65)

Pφ = Pθ + 2a2

r4

(
1 − 2M

rν

)−3+ν [(
1 − 2M

rν

)1+ν

−
(

1 − M(1 + ν)

rν

)2 ]
(66)

It can be verified that the rotating JNW spacetime metric (46)
satisfies the weak energy condition (ρe ≥ 0, ρe + Pi ≥ 0);
null energy condition (ρe + Pi ≥ 0); strong energy condition
(ρe + ∑

Pi ≥ 0, ρe + Pi ≥ 0); and the dominant energy
condition (ρe > |Pi |). We also note that when ν = 1, all the
components Eqs. (64)–(66) vanish, which is obvious as we
have already seen that the rotating JNW metric reduces to the
Kerr metric when ν = 1. Also, Pr �= Pθ �= Pφ , therefore, it
is an an-isotropic fluid solution.

3 Shadows in rotating JNW spacetime

In this section, we review the general formalism of the null
geodesic using the Hamilton-Jacobi separation method and
obtained the general expressions for finding the shape and
nature of a shadow. In general relativity, the Hamilton-Jacobi
equation is given by,

∂S

∂λ
+ H = 0, H = 1

2
gμν pμ pν, (67)
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where λ is an affine parameter, S is the Jacobi action, H is
the Hamiltonian, and pμ is the momentum defined by,

pμ = ∂S

∂xμ
= gμν

dxν

dλ
. (68)

In the above Eq. (67), the Hamiltonian does not depend
explicitly on t and φ coordinates. Therefore we have two
constants of motion, the conserved energy E = −pt and
the conserved angular momentum L = pφ (about the axis
of symmetry). Since we have the separable solution of the
above differential Eq. (67), the Jacobi action can be written
in terms of already known constants of the motion as,

S = 1

2
μ2λ − Et + Lφ + Sr (r) + Sθ (θ), (69)

where μ is the rest mass of the test particle. Therefore, for
a photon or null geodesic, we consider μ = 0. The metric
tensor components of general rotating spacetime (37) are
given as,

gtt = −
H − a2G sin2 θ + 2a2

√
G
F sin2 θ

P
, (70)

grr = FH + a2 sin2 θ

H
, (71)

gθθ = 1

H
, (72)

gφφ = − G csc4 θ

2a2G2 − 4a2G
√

G
F + a2

(G
F

) − GH csc2 θ

, (73)

gtφ = gφt =
a

(√
G
F − G

)

P
, (74)

where,

P = −GH + 2a2G2 sin2 θ − 4a2G

√
G

F
sin2 θ + a2

(
G

F

)
sin2 θ

(75)

Substituting Eq. (69) into Eq. (67), and using the components
of the metric tensor, we obtain the following expression:

−
(
FH + a2 sin2 θ

)(
dSr
dr

)2

+

((√
F
G H + a2 sin2 θ

)
E − aL

)2

FH + a2 sin2 θ
− (L − aE)2

=
(
dSθ

dθ

)2

+ L2 cot2 θ − a2E2 cos2 θ, (76)

Note that, left and right hand side of above Eq. (76) are only
functions of r and θ respectively, therefore one can write
each side equal to a separation constant since Jacobi action

principle is separable solution,

−
(
FH + a2 sin2 θ

) (
dSr
dr

)2

+

((√
F
G H + a2 sin2 θ

)
E − aL

)2

FH + a2 sin2 θ

− (L − aE)2 = K, (77)(
dSθ

dθ

)2

+ L2 cot2 θ − a2E2 cos2 θ = K, (78)

where the separation constant K is known as the Carter con-
stant. Using above differential equations one can write down
the following separated null geodesic equations for radial (r )
and tangential (θ ) part as,

H2
(
dr

dλ

)2

− R(r) = 0, (79)

H2
(
dθ

dλ

)2

− �(θ) = 0, (80)

where, R(r) and �(θ) can be considered as radial and tan-
gential part of effective potentials respectively, which can be
defines as,

R(r) = [X (r) − aξ ]2 − 
(r)
[
η + (ξ − a)2

]
, (81)

�(θ) = η + (ξ − a)2 −
(

ξ

sin θ
− a sin θ

)2

(82)

where, ξ = L
E and η = K

E2 . The functions X (r) and 
(r)
can be define as,

X (r) =
√

F

G
H + a2 sin2 θ, (83)


(r) = FH + a2 sin2 θ. (84)

Note that, R(r) and �(θ) must be non-negative for photon
motion. In a general rotating spacetime, unstable circular
orbits exist when the following conditions hold,

R(rph) = 0,
dR(rph)

dr
= 0,

d2R(rph)

dr2 ≤ 0. (85)

where, r = rph is the radius of the unstable photon orbit.
Using the above conditions (85), we obtain the critical impact
parameters corresponding to the maxima of the R(r) as,

ξ = X ph

′
ph − 2
ph X ′

ph

a
′
ph

, (86)

η =
4a2X ′

ph
ph −
[
(X ph − a2)
′

ph − 2X ′
ph
ph

]2

a2
′2
ph

, (87)

where prime denoted for derivative concerning r and sub-
script “ph” denoted for the quantities which are evaluated at
r = rph . The above expressions are the general forms of the
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critical impact parameters ξ and η for the unstable photon
orbits, which would be important to find out the shape of the
shadows. However, one can obtain the apparent shape of the
shadow by using the celestial coordinates α and β which lie
in the line of sight of the observer direction. The expressions
of the celestial coordinates α and β can be written in the
following way,

α = lim
r0→∞

(
−r2

0 sin θ0
dφ

dr

)
, (88)

β = lim
r0→∞

(
r2

0
dθ

dr

)
, (89)

where r0 and θ0 are the coordinates of the asymptotic
observer. Note that, if we consider the general rotating met-
ric to be an asymptotically flat in the limit of r → ∞, then
we can consider G → 1, F → 1, H → r2, X → r2 and

 → r2. Therefore, the above expressions of the celestial
coordinates α and β becomes,

α = − ξ

sin θ0
, (90)

β = ±
√

η + a2 cos2 θ0 − ξ2 cot2 θ0, (91)

from the above expressions (86) and (87), one can obtain the
celestial coordinates α and β for the rotating JNW space-
time by using its metric tensor components. Note that, we
used JNW metric tensor components without adopting any
complexification method since the general rotating metric
we obtained by skipping the complexification method. The
metric tensor components of the JNW spacetime are given
as,

G = F =
(

1 − 2M

rν

)ν

; H = r2
(

1 − 2M

rν

)1−ν

(92)

using above equations we can find that the expressions for
X (r) and 
(r),

X (r) = r2
(

1 − 2M

rν

)1−ν

+ a2 sin2 θ, (93)


(r) = r2
(

1 − 2M

rν

)
+ a2 sin2 θ. (94)

therefore, using the above expressions, one can calculate the
critical impact parameters and celestial coordinates for the
rotating JNW spacetime. We have constructed the shape of
the shadows using the expressions of celestial coordinates for
rotating JNW spacetime, where we consider the inclination
angle of the observer θ0 = π/2.

In Fig. 1, we have shown that the shape of the shadows for
different values of spin parameter a and scalar field charge
q, where the blue line indicate the shadows in rotating JNW
spacetime and the red dotted line indicate the shadows in the
Kerr spacetime. It is well known that the shadow shapes in
the Kerr black hole spacetime always be in contour shape,

and as we increase the spin parameter, it will become more
and more prolate. One can see in Fig. 1, the horizontal radius
of the red dotted line will decreases from the left side as we
increase the value of a spin parameter. On the other hand, we
found that the shadows in rotating JNW spacetime changes
from contour shape to arc shape as we increase the values of
spin parameter and scalar field charge or one of them.

4 Timelike geodesics in rotating JNW spacetime

In this section, we derive the effective potential and the orbit
equation for a test particle in rotating JNW spacetime. Solv-
ing the orbit equation numerically, we determine the nature
of the orbit precession. We proceed by considering a general
form of the spacetime metric, i.e.,

ds2 = −gtt dt
2 + grrdr

2 − 2gtφdtdφ

+gθθdθ2 + gφφdφ2 (95)

which is written in the Boyer–Lindquist Coordinates (BLC).
For the above spacetime metric, the effective potential takes
the form

Vef f = 1

2grr
+ e2 − 1

2
+ L2gtt + 2eLgtφ − e2gφφ

2grr (g2
tφ + gtt gφφ)

(96)

where, we have considered a case of equatorial orbits for the
mathematical simplicity. Substituting the metric components
and taking θ = π

2 into Eq. (96), we obtain the effective
potential for the orbits in equatorial plane of rotating JNW
spacetime.

Vef f = (L − ae)2

2r2

(
1 − 2M

rν

)2ν−1

− 1

2

+
 + 2ae (L − ae)

2r2

(
1 − 2M

rν

)ν−1

. (97)

Now, we proceed to derive an orbit equation. For the general
rotating spacetime metric (95), we obtain [42]
(
dr

dφ

)2

= − (gtφ)2 + gtt gφφ

grr (egtφ + Lgtt )2 [(gtφ)2 − e2gφφ + 2eLgtφ

+gtt (L
2 + gφφ)] (98)

where, θ = π
2 . Now, using the differential relation d2r

dφ2 =
1

2 dr
dφ

d
dφ

(
dr
dφ

)2
., we can determine the orbit equation as,

d2u(φ)

dφ2 = − 1

r2

d2r

dφ2 + 2

r3

(
dr

dφ

)2

(99)

where, u = 1
r . The above Eq. (99) is the non-linear second

order differential equation, thus it is very difficult to find the
complete analytic solution of this equation. Hence, we can
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 Figure shows the shape of the shadow cast by the rotating JNW naked singularity for various values of scalar field charge q and spin
parameter a. Here, we consider M = 1 and θ = π/2 for the shape of shadows in celestial coordinates. The details of this figure are discussed in
the text
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Fig. 2 The figure shows the timelike bound orbits in the rotating JNW
naked singularity spacetime for scalar field charge q = 0.4, 12 and spin
parameter a = 0.3, 0.5 respectively. Here, we consider mass (ADM
mass for JNW) M = 1, conserved angular momentum L = 6 and total
energy E = −0.006. Note that we consider the timelike bound orbits in
the equatorial plane (i.e. θ = π/2). The black dotted lines represent the

bound orbits in the Kerr spacetime, and the solid green lines represent
the bound orbits in the JNW spacetime. The corresponding minimum
approach of a test particle towards the center is shown by the blue (in
the Kerr metric) and the red (in the JNW metric) circles. The details of
this figure are discussed in the text
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solve this orbit equation numerically for the rotating JNW
metric.

In Fig. 2, we show the timelike bound orbits in rotating
JNW spacetime and compare them with the orbits in Kerr
spacetime. Note that, for simplicity, we define the particle
motion in the equatorial plane (i.e. θ = π/2). In Fig. 2a–d,
we show the bound orbits for scalar field charge q = 0.4, 12
corresponding to the spin parameter a = 0.3, 0.5. The green
and black dotted lines represent the orbits of the particles
in the rotating JNW and Kerr spacetimes respectively. The
red and blue circles denote the periastron points (minimum
approach towards the center) for rotating JNW and Kerr
spacetime respectively. The parameters we have consider
the mass (ADM mass for JNW) M = 1, conserved angu-
lar momentum L = 6, total energy E = −0.006.

One can see from the Fig. 2, the timelike bound orbital
motion in the JNW spacetime is significantly different from
the orbital motion in Kerr spacetime. We find that the time-
like bound orbits can have negative (or opposite) precession
in rotating JNW spacetime. In other words, if the angular
distance traveled by a particle between two successive peri-
astron points is less than 2π , then the next orbit would shift
in the opposite direction of the particle’s orbiting direction.
Hence, it is known as negative (or opposite) precession. On
the other hand, in [67], it is shown that the negative preces-
sion is not present in the Kerr spacetime. The Kerr spacetime
exhibits positive precession since the angular distance trav-
eled by a particle between two successive periastron points
is always greater than 2π .

The spherically symmetric and static JNW spacetime can
cast the shadow due to the existence of the photon sphere
[28]. The photon sphere exist for the range of parameter
0.5 ≤ ν < 1 and absent for the range of 0 < ν < 0.5.
On the other hand, the negative precession of timelike bound
orbits is present [65] only within the range 0 < ν < 0.1.
Therefore, in [28], it is shown that the negative precession
of the timelike bound orbits and shadow formation can not
occur simultaneously. Similarly in the rotating JNW space-
time, the parametric range slightly differs as we increase the
spin parameter a.

5 Discussions and conclusions

The conclusions of this paper are in the following way.

• We construct the rotating JNW spacetime using the NJA
without employing the complexification of coordinates.
We have shown that the rotating JNW spacetime obtained
using the NJA with considering the complexification step
cannot be written into the BLC. If we anyhow write that
metric into the BLC-like form by performing an improper
coordinate transformation, we find that it does not satisfy

the energy conditions. To resolve this problem, we drop
the complexification step in the NJA so that the rotating
solution can properly be transformed into the BLC. As
a result, we obtain the rotating JNW spacetime into the
BLC, which does satisfy the energy conditions.

• As we know, the rotating Kerr black hole can cast pro-
late contour shape shadow (see dotted red line in Fig. 1).
While we increase the spin parameter up to M ≥ a, it will
become more and more prolate contour, where M is the
mass of the black hole. But, as we reach the M < a limit,
the Kerr black hole becomes the Kerr naked singularity
and it would not cast any shadow. To get more insight,
in this paper, we obtain the shape of the shadows cast
by rotating JNW naked singularity and compare them
with the shape of shadows cast by the Kerr black hole.
We find that the shape of the shadows in rotating JNW
spacetime becomes prolate arc shape from the prolate
contour shape as we increase the scalar field charge q
and/or spin parameter a (see blue line in Fig. 1).

• In [65,67], we have shown that the Schwarzschild and
Kerr black holes admit only positive orbital precession.
In other words, timelike bound orbits only precess in the
direction of particle’s motion. Here, we have examined
the precession of timelike bound orbits in rotating JNW
spacetime. We find that the rotating JNW spacetime can
have positive as well as negative (or opposite) precession
of the timelike bound orbits.

In the context of the observations by the EHT, GRAVITY,
SINFONI, and UCLA galactic center groups, these studies
on shadows and precession of timelike bound orbits are very
useful. These novel features of the shadow shape (prolate
arc) and precession of timelike bound orbits (negative pre-
cession) in rotating JNW spacetime could be observationally
significant to differentiate the naked singularities from the
black holes.
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Appendix

We discuss about the energy conditions of the metric (8)
obtained using the original NJA. Consider the inverse form
of the spacetime metric.

∂2
s = −

(
1 − 2Mr

νρ2

)−ν

×
{

1 − a2 sin2 θ




[
1 −

(
1 − 2Mr

νρ2

)ν]2
}

∂2
t

+ 1

ρ2

(
1 − 2Mr

νρ2

)ν−1 {

∂2

r + ∂2
θ

}

−2a




[
1 −

(
1 − 2Mr

νρ2

)ν]
∂t∂φ

+ 1


 sin2 θ

(
1 − 2Mr

νρ2

)ν

∂2
φ (100)

It can be written as

∂2
s = −

(
1 − 2Mr

νρ2

)−ν

∂2
t + 1

ρ2

(
1 − 2Mr

νρ2

)ν−1

×[

∂2

r + ∂2
θ

] +
(

1 − 2Mr

νρ2

)ν

×
[
a sin θ√




{
1 −

(
1 − 2Mr

νρ2

)−ν
}

∂t

+ 1√

 sin θ

∂φ

]2

(101)

Now, we choose a set of orthonormal basis {uμ, eμ
r , eμ

θ , eμ
φ },

which satisfies uμuμ = −1, eμ
i (ei )μ = 1, uμ(ei )μ = 0;

where, (i → r, θ, φ).

uμ =
((

1 − 2Mr

νρ2

)−ν/2

, 0, 0, 0

)
(102)

eμ
r =

(
0,

√



ρ

(
1 − 2Mr

νρ2

) ν−1
2

, 0, 0

)
(103)

eμ
θ =

(
0, 0,

1

ρ

(
1 − 2Mr

νρ2

) ν−1
2

, 0

)
(104)

eμ
φ =

(
1 − 2Mr

νρ2

)ν/2

×
(
a sin θ√




{
1 −

(
1 − 2Mr

νρ2

)−ν
}

, 0, 0,
1√


 sin θ

)

(105)

Using Eqs. (60)–(63), we determine the components of the
energy momentum tensor. For mathematical simplicity we
take θ = π/2.

ρe = Pr + 2a2M2(1 − ν)2

r6ν2

(
1 − 2M

rν

)−3+ν

(106)

Pr = −Pθ = M2(1 − ν2)

r4ν2

(
1 − 2M

rν

)−2+ν

(107)

Pφ = Pθ − 2a2M2(1 − ν2)

r6ν2

(
1 − 2M

rν

)−3+ν

(108)

We see that

ρe + Pr + Pθ + Pφ = ρe + Pφ

= −4a2M2(1 − ν)

r6ν

(
1 − 2M

rν

)−3+ν

< 0 (109)

which implies that the spacetime metric (8) does not obey the
weak energy condition, null energy condition, and the strong
energy condition. We note that the dominant energy condition
is also violated. Thus, the rotating spacetime metric obtained
using the Newman-Janis algorithm with complexification is
not physically a valid solution of the Einstein field equation.
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