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We present a one-parameter family of large N disordered models, with and without supersymmetry, in
three spacetime dimensions. They interpolate from the critical large N vector model dual to a classical
higher spin theory toward a theory with a classical string dual. We analyze the spectrum and operator
product expansion data of the theories. While the supersymmetric model is always well-behaved the
nonsupersymmetric model is unitary only over a small parameter range. We offer some speculations on the
origin of strings from the higher spins.
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Introduction.—The planar expansion of large N gauge
theories [1] is suggestive of string perturbation theory, and
motivates the holographic AdS/CFT correspondence [2].
Large N vector models, which capture criticality in a wide
class of physical systems, eg., liquid-vapor, superfluid, and
Curie transition in ferromagnets [3–6], on the other hand,
are dual to the higher spin gravity in an anti-de Sitter
spacetime [7–9]. Theories interpolating between the two
limits, e.g., N ¼ 4 supersymmetric Yang-Mills [10,11] or
Chern-Simons matter theories [12], are at best understood
at the two extremes.
Models with intermediate behavior, like the Sachdev-Ye-

Kitaev (SYK) model [13–16] and its cousins [17–23],
characterized by melonic diagrams dominating the large N
limit, offer new perspectives. Quantum mechanical exam-
ples (d ¼ 1) capture features of semiclassical gravity
[24,25], while d ≥ 2 examples have classical finite tension
string duals [18,20,22], owing to the lack of sparsity in the
spectrum and submaximal Lyapunov exponent [26]. We
construct herein a one-parameter family of solvable three-
dimensional (3D) theories (cf., [20] for 2D examples)
where the higher spin symmetry gets Higgsed as we turn
on the deformation. The higher spin states, however,
remain in the spectrum, suggesting an emergent string
theory with finite tension.
We consider examples with two sets of fields trans-

forming as vectors under OðNÞ and OðMÞ, respectively

(indexed by i; j ¼ 1;…; N and a; b ¼ 1;…;M). We will
discuss in parallel two sets of models: (i) an N ¼ 2

supersymmetric (susy) model with chiral superfields pi

and sa; and (ii) a bosonic (bos) model with fields ϕi and σa,
obtained from the above, by retaining just the real parts of
the bottom component of pi and the top component of sa.
The dynamics of the two models is characterized by the

(Euclidean) Lagrangian densities [29]

Lsusy ¼ −
Z

d2θd2θ̄½p̄iðy†ÞpiðyÞ þ s̄aðy†ÞsaðyÞ�

−
�Z

d2θ
1

2
gaijsaðyÞpiðyÞpjðyÞ þ c:c:

�
:

Lbos ¼
1

2
∂μϕi∂

μϕi þ 1

2
gaijσaϕiϕj −

1

4
ðσaÞ2: ð1Þ

The couplings gaij are Gaussian random variables with zero
mean and variance

hgaijgbkli ¼
2J
N2

δabδiðkδlÞj; ½J�classical ¼ 1: ð2Þ

The bosonic model has a positive semidefinite
Hamiltonian; classically integrating out the auxiliary field
σa results in a vector model with a random quartic potential:

VðϕÞ ¼ 1

4

XM
a¼1

�XN
i;j¼1

gaijϕiϕj

�2

: ð3Þ

When M ¼ 1 the random coupling g1ij can be absorbed
by a GLðN;RÞ field redefinition reducing to the critical
vector model or its N ¼ 2 susy cousin [30–33]. We will
solve the models to leading order in the 1=N expansion
while holding 't Hooft coupling λ fixed:
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N → ∞; λ≡M
N
; fixed: ð4Þ

The λ → ∞ limit is a variant of the bosonic 3D SYK model
with q ¼ 4 (bSYK3D

q¼4) [34]. The N ¼ 2 susy 3D SYK

model [22] is obtained for λ ¼ 1
2
.

The IR fixed points.—The models can be solved analo-
gously to the SYK model [14,15] by realizing the
Schwinger-Dyson equations truncate [35]. We illustrate
the calculations for the bosonic model with the susy case
generalizing straightforwardly by working with superfields,
cf., [22]. Some details are given in the Supplemental
Material [36].
The two-point functions hϕiðxÞϕjð0Þi ¼ δijGϕðxÞ and

hσaðxÞσbð0Þi ¼ δabGσðxÞ are obtained by iterating melonic
diagrams (Fig. 1) leading to

GϕðpÞ ¼
1

p2 − Σϕð−pÞ
; GσðpÞ ¼ −

1
1
2
þ Σσð−pÞ

;

ΣϕðxÞ ¼ λJGϕðxÞGσðxÞ; ΣσðxÞ ¼
1

2
JGϕðxÞ2: ð5Þ

At scales below that set by J we can ignore the bare
propagators. Picking a conformal ansatz

GϕðxÞ ¼
bϕ

jxj2Δϕ
; GσðxÞ ¼

bσ
jxj2Δσ

; ð6Þ

we solve for the scaling dimensions and one combination of
the normalization coefficients. We find [40]

Δσ ¼ 3 − 2Δϕ; Δs ¼ 2 − 2Δp;

λbos ¼
ðΔϕ − 2Þð2Δϕ − 3Þ½1þ sec ð2πΔϕÞ�

4ð2Δϕð4Δϕ − 5Þ þ 3Þ ;

λsusy ¼
ðΔp − 1Þ½1þ sec ð2πΔpÞ�

2ð2Δp − 1Þ : ð7Þ

For a fixed 't Hooft coupling λ, the susy model has an
unique solution satisfying the unitarity bound Δp;Δs ≥ 1

2
,

while the bosonic model has multiple solutions of the
dimensions Δϕ and Δσ. We focus on the branch contin-
uously connected to the λ ¼ 0 theory [41].

In Fig. 2, we plot the scaling dimension of the OðNÞ
vectors in the two models. Some salient features of interest
are (i) λ ¼ 0 in both cases corresponds to the critical OðNÞ
vector models with ϕi and pi having free field dimensions
while Δσ ¼ 2 and Δs ¼ 1. (ii) The bosonic model limits
bSYK3D

q¼4 as λ → ∞ with ðΔϕ;ΔσÞ → ð3=4; 3=2Þ. In the
susy model we find ðΔp;ΔsÞ → ð3=4; 1=2Þ, whence s
becomes a free field. (iii) The intermediate value λ ¼ 1

2

gives ðΔp;ΔsÞ ¼ ð2=3; 2=3Þ, related to the fixed point
of [22]. The bosonic theory is related to bSYK3D

q¼3 with
ðΔϕ;ΔσÞ ¼ ð1; 1Þ but lies on a different branch of solutions.
Single-trace operatory spectrum.—An advantage of the

disordered models is that one can obtain the spectrum of
single-trace operators and OPE coefficients. To do so we
look at four-point functions, the connected contribution to
which, denoted F , is obtained by summing over the ladder
diagrams and suitably diagonalizing the space of four-point
correlators (see Supplemental material [36]). We focus here
for simplicity on the singlet channel, which can be
motivated by averaging over the external operators (as is
common in the SYK literature). There also are nonsinglet
channels from the tensor product of two vector representa-
tions [of OðNÞ or OðMÞ] in the theory, which are
qualitatively similar; cf., [22]. We also note that there is
no hierarchical separation between the singlets and the
nonsinglets in the large N limit.
Expanding in the (super)conformal partial wave basis

one can write F in terms of a contour integral involving the
(super)conformal blocks, a spectral function ρðΔ;lÞ, and a
ladder kernel kðΔ;lÞ, as in various earlier explorations
[15,18]. We can schematically write

F ¼ 1

N

X
l

I
dΔ
2πi

ρðΔ;lÞ
1 − kðΔ;lÞGΔ;l: ð8Þ

The contour of integration forΔ is along the principal series
line for (super)conformal representations, i.e., along Δ ¼
ð3=2Þ þ iR for the bosonic, and Δ ¼ 1

2
þ iR for the susy

model and closing toward Δ → þ∞. This picks up the
residues at the poles dictated by

FIG. 1. Diagrammatic representation of the Schwinger-Dyson
equations. FIG. 2. Scaling dimensions Δϕ and Δp as we vary λ. The

bosonic model is unitary for Δϕ ∈ ½0.5; 0.52765Þ (region left of
the dashed vertical line).
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kðΔ;lÞ ¼ 1 for

�
ℜðΔbosÞ > 3

2
;

ℜðΔsusyÞ > 1
2
;

ð9Þ

giving thence the spectrum of the single-trace operators.
The residues at the poles are the squares of the OPE
coefficients. We discuss the two models in turn below.
Bosonic model: For the bosonic model, we consider

correlators involving both ϕi and σa and obtain the ladder
kernel entering Eq. (8). In the limit λ → ∞ (Δϕ → ð3=4Þ),
the ladder kernel at generic value [42] of Δ coincides with
the one of bSYK3D

q¼4 [43]:

lim
λ→∞

kðΔ;lÞ ¼ kbSYK3D
q¼4
ðΔ;lÞ: ð10Þ

The spectrum is organized into Regge trajectories,

Δ ¼ 2Δα þ lþ 2nþ γαðl; nÞ; α ∈ fϕ; σg; ð11Þ

for l ∈ 2Z≥0 and n ∈ Z≥0. The operators on the leading
Regge trajectory (leading twist) have twist Δ − l behaving
as depicted in Fig. 3(a). The l ¼ 0 trajectory terminates at
Δϕ ¼ 0.52765 because the conformal dimension of the
operator becomes complex on the principal series Δ ¼
ð3=2Þ þ iν when Δϕ > 0.52765 (λ≳ 0.222). This signals

that the model becomes nonunitary beyond this point. Such
behavior was also observed in the bosonic SYK model and
tensor models in [44] and is consistent with the limiting
behavior noted in Eq. (10) [45]. The l ¼ 2 line with the
constant unit twist corresponds to the stress tensor. The
twists of the higher spin operators (l > 2) increase along
with Δϕ [48].
As λ → 0, the spectrum of the leading twist operators

approaches that of the critical OðNÞ model as

Δ →

�
2 for l ¼ 0;

lþ 1þ 16
3π2

l−2
3þ2ðl−2Þ λ for l ¼ 2; 4;…:

ð12Þ

In addition, besides the double twist operators with Δ →
lþ 4þ 2n in the σσ → σσ channel, operators in the
subleading and higher Regge trajectories decouple from
the spectrum, as their OPE coefficients approach zero,
verifying indeed that as λ → 0 we revert to the critical
OðNÞ model.
In the large spin and large twist limits, the anomalous

dimensions γϕ and γσ scale as

lim
l≫1

γϕ;σðl; nÞ ∼
1

l2Δϕ
; lim

n≫1
γϕ;σðl; nÞ ∼

1

n4Δϕ
; ð13Þ

consistent with the large spin analytic bootstrap [49,50].
The central charge of the theory can be obtained from the
ϕiϕiTμν OPE coefficient. We find

CT → N

�
3

2
−

20

3π2
λþ � � �

�
as λ → 0; ð14Þ

as expected for a system of N free bosons.
Beside the spectral information, the Lyapunov exponent

λhypL of the out-of-time-order (OTO) four-point function in
hyperbolic space is also encoded in kðΔ;lÞ [18],

λhypL ¼ l� − 1; k

�
3

2
;l�

�
¼ 1: ð15Þ

The behavior of λhypL is shown in Fig. 4(a). At the two
extreme ends Δϕ → f1=2; 3=4g we find λhypL attains
the value in critical OðNÞ model and bSYK3D

q¼4,
respectively.[51].
Susy model: The analysis of the susy model is similar

though we work directly with superconformal blocks as in
[22,31]. The results for the leading twist spectrum
and hyperbolic chaos exponent are plotted in Figs. 3(b)
and 4(a), respectively. The single-trace spectrum is again
organized into two Regge trajectories:

Δ ¼ 2Δa þ lþ 2nþ γaðl; nÞ; a ∈ fp; sg ð16Þ

with l; n ∈ Z≥0.

FIG. 3. The dimensions of the leading twist operators for
(a) the bosonic model, and (b) the supersymmetric model.
The spin-0 spectrum for the bosonic model is complex for
Δϕ > 0.528 (λ > 0.222).
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In limiting case Δp →
1
2
, we recover the N ¼ 2 susy

OðNÞ model [30–33] with λðΔpÞ. The spectrum simplifies:
in the pp̄ → pp̄ channel we find a tower of higher spin
currents at leading twist

Δ → lþ 1þ 8

π2
2l − 1þ ð−1Þl

2lþ 1
λ: ð17Þ

The higher twist operators in this channel decouple in the
limit and only operators with Δ → lþ 2þ 2n from the
ss̄ → ss̄ channel survive.
At the other end, as Δp → ð2=3Þ we encounter the N ¼

2 susy 3D SYK model studied in [22]. The two theories
have identical λhypL ¼ 0.15207 with spectrum of the latter
model being contained in ours. We, however, have two
flavors of fields and thus also have a Uð1Þf flavor
symmetry wherein qðsÞ ¼ −2qðpÞ in addition to a
Uð1ÞR R symmetry. The current multiplets are the
l ¼ 0, 1 trajectories in Fig. 3(b). Computing the OPE
coefficients of the current multiplets, we find the central
charges for the models consistent with results obtained
using supersymmetric localization (see Supplemental
Material [36]).
Discussion.—We have at hand a one-parameter family of

disordered models smoothly interpolating from the large N
critical OðNÞ vector model, breaking the higher spin
symmetry as λ > 0. The bosonic model is unitary for a

small window λ ∈ ½0; 0.222Þ, but the susy model is sensible
for λ ∈ R≥0.
For λ > 0 the higher spin operators pick up nonvani-

shing anomalous dimensions, cf., Fig. 3, leading one to
expect a classical string dual description resulting from this
Higgsing. In conventional AdS=CFT examples, the free
field limit has been analyzed in several works [10,12,52,53]
with recent constructions of the worldsheet string descrip-
tion [11,54,55] but it is as yet unclear how to connect them
to the supergravity description at strong coupling. While we
do not yet have an explicit dual, the tractability of the
models and the λ ¼ 0 limit being dual to higher spin AdS
gravity offers tantalizing possibilities.
The higher spin states are always in the spectrum, so one

expects a dual with a finite string tension. Moreover, their
anomalous dimensions exhibit a power-law behavior seen
in analytic bootstrap [49,50] and not the logarithmic growth
expected from semiclassical strings [56]. As explained in
[57], this may be attributed to the fact that vector models
have operators with twists close to the unitarity bound.
So how may we expect strings to emerge? A speculation

we can offer is the following: at the higher spin limit the
bulk degrees of freedom are the bilocal collective fields
[58,59], the two-point functions Gðx1; x2Þ. Let us visualize
these bilocal objects to be one-dimensional with end points
given by the two operators; we simply have a free Fock
space of these collective fields. However, as we turn on λ
we should anticipate some linking between different
bilocals, leading to a two-dimensional structure, an incipi-
ent worldsheet. The glue binding these worldsheets is not as
strong as in planar gauge theories so we do not quite make
it to the supergravity point. It remains to be seen how to
flesh out these ideas, but having analytic control over the
field theory is a promising starting point for a perturbative
analysis for small λ.
We have focused on the IR fixed point vacuum, but real-

time thermal dynamics, be it retarded response, or OTO
observables, should give us clues about the nature of stringy
black holes duals, through connections to quasinormal
modes andLyapunov exponents.A promising avenuewould
be to understand the mean-field description of OTO corre-
lators [60] to glean clues about the stringy dual.
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