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In this paper, we study the holographic quantum error correcting code properties in different boundary
fractal-like structures. We construct and explore different examples of the uberholographic bulk
reconstruction corresponding to these structures in higher dimensions for Cantor-like sets, thermal states,
and TT̄-deformed conformal field theories. We show how the growth of the dimensionality of the system
emphasizes the role of the Cantor set, due to the special bound naturally arising in this context.
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I. INTRODUCTION

The study of the entanglement entropy in the context of
holographic duality has led to fruitful investigations of how
various aspects of quantum information including the
quantum error correction (QEC) theory fit into the gravita-
tional picture of quantum information [1–3]. Extraordinary
connection between such different, at first sight, theories like
gravity andQEChas recently attracted considerable interest.
This connection is essentially based on the notion of the
entanglement wedge and hypotheses related to it [4–6]. The
QEC theory was first applied to resolve the apparent
inconsistency in the relation between subregion-subregion
duality and some properties of operator algebra in quantum
field theory, paving the way for progress in our under-
standing of holographic duality through QEC [7–11].
Assuming the connection of quantum error correction and
AdS=CFT correspondence, different problems arising from
particular logical subalgebras can be formulated as the AdS
bulk geometry problem. In [11], the so-called uberholo-
graphic proposal has been made. The (sub)linear scaling of
the price and distance of the logical subalgebra correspond-
ing to a particular holographic code leads to the fact that the
logical subalgebra can have support on the fractal set with
the dimensionality less than the boundary dimension. This
fractal dimension is expected to be a universal feature of
code and shows how the bulk emerges from the system
with lower dimension, as it typically occurs in holography
(see also a recent proposal about the so-called “wedge

holography,” where a system with d − 2 dimensions gives
rise to a d-dimensional bulk).
In [11], the uberholographic property and how it works

have been demonstrated on the Cantor set defined on a
constant time slice of the Poincaré AdS patch, and an
explicit estimate of the code distance has been obtained.
This construction has been extended to the case of
AdS4=CFT3 duality and reconstruction of the Sierpínski
triangle defined on the boundary [12]. In [13], uberholog-
raphy has been discussed in the context of black hole
evaporation. Paper [14] studies uberholography for special
Hamiltonians motivated by the HAPPY code. In this paper,
we study many explicit examples, in which variations of the
construction based on Cantor-like sets can be implemented.
One of the main results of [11] is the estimate of the
distance dðAXÞ of a logical subalgebra associated with the
fractal region X (which is chosen to be a Cantor set) in
the form

dðAXÞ≤
�jRj

a

�
α

; α¼ log2
logð2=rÞ ; r¼ 2ð

ffiffiffi
2

p
−1Þ; ð1Þ

where R is the size of the set,1 and a is the cutoff
(elementary lattice spacing). We generalize this bound to
different setups of excited states and different dimensions,
noting some universal features corresponding to each case.
Let us briefly list our results:

(i) We slice a (d − 1)-dimensional spatial boundary of
the Poincaré AdSdþ1 patch by infinite hyperplanes
and obtain that r ¼ 3 −

ffiffiffi
5

p
for d ¼ 3 and r¼ ffiffiffi

3
p

−1
for d ¼ 4. We reaffirm that this estimate is universal
for d ¼ 3 by considering other slices in a region of
finite size—thin concentric annuli. For larger d, we
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1We mean the set from which we constructed the fractal, using
some iterative procedures.
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find that r ¼ 2=3 serves as the bound for r,
i.e., exactly the value of r corresponding to the
Cantor set.

(ii) We consider the holographic dual of finite temper-
ature 2D CFT and the Cantor set boundary region.
As a result, we find an explicit dependence of r on
the combination γ ¼ T · R (where R is assumed to
be relatively small, while temperature T is large,
such that γ is finite). The generalization to a rotating
Banados-Teitelboim-Zanelli (BTZ) black hole is
also presented.

(iii) We find that asymmetry in the fractal noise (i.e.,
asymmetry added on each step of the iterative fractal
construction) tends to increase r. However, a finite
temperature reduces the effects of asymmetry mak-
ing r more stable against spatial perturbations.

(iv) Finally, we consider TT̄-deformed 2D CFT—the
integrable nonlocal deformation, which can be seen
as an increase in width of the elementary “particles”
(or a coupling to dynamical gravity), obtain the
dependence for r, and comment on it.

The paper is organized as follows. In Sec. II, we recall
how uberholography works using the example of
AdS3=CFT2. In Sec. III, we discuss higher-dimensional
generalization of Cantor-like structures. In Sec. IV, we
consider different excited states in the uberholographic
context.

II. CANONICAL UBERHOLOGRAPHY

Let us review the uberholographic proposal discovered
in [11], the ultimate recoverability property inherent to
holographic duality. The ultimate recoverability means that
operators in the bulk can be recovered for zero measure sets
on the boundary. In [11], this was demonstrated for the
Cantor set example and extended on the Sierpínski fractal
in [12]. In the holographic correspondence, the cornerstone
of any discussion is the Ryu-Takayanagi (RT) formula,
relating the minimal surface area spanned by a subregion A
on the AdS boundary and hanging into the bulk, with
the entanglement entropy of the subregion A in the
boundary CFT

SðAÞ ¼ AreaðAÞ
4G

; ð2Þ

where G is Newton’s constant. The holographic dual of 2D
CFT defined on the line is the metric of the AdS3 Poincaré
patch, which has the form

ds2 ¼ L2
AdS

z2
ð−dt2 þ dx2 þ dz2Þ: ð3Þ

The main example of the boundary subregion A to study
here is a Cantor set—a recursively constructed fractal
object of zero measure.

Ryu-Takayanagi surfaces in AdS3 are geodesics in the
Poincaré patch, namely, the semicircles spanned by A. If A
is a single interval of length l, then one can obtain the
entanglement entropy of A via the RT formula, namely,

SðlÞ ¼ c
3
log

l
ε
; ð4Þ

where the central charge c is identified with LAdS=G as
c ¼ 3=2 · LAdS=G, and ε is the cutoff. A Cantor set is a
special set, which has a number of properties that go
beyond the standard intuition, namely, it has “dimension-
ality” less than 1—its Hausdorff measure is equal to
log 2= log 3, and Lebesgue measure is zero. A Cantor set
is constructed recursively by poking “holes” of a certain
size in the interval of interest. The main “building bricks”
necessary to understand the entanglement features of
Cantor sets are simply two equivalent disjoint intervals
of lengths l1 and l2. For simplicity, we begin with l1 ¼
l2 ¼ rR=2 separated by the distance h ¼ ð1 − rÞR, such
that a total length of the system “intervalsþ hole” is R. It is
well known that in a system of two disjoint intervals of
lengths l1;2 there are two competing configurations of RT
surfaces—the disjoint one with the entropy given by

Sdisj ¼
c
3
log

l1

ε
þ c
3
log

l2

ε
; ð5Þ

and the one with “connected” topology,

Sconn ¼
c
3
logðl1 þ l2 þ hÞ þ c

3
logh −

2c
3
log ε: ð6Þ

We are interested in the transition point of RT surfaces,
which is determined by the minimality condition, i.e., when
the connected RT topology is equal to the disconnected
one, Sconn ¼ Sdis. The phase transition of this type for
various models has been considered in [15,16]. The
solution to this equation for the iterative building bricks
described above with l1 ¼ l2 has the form

r ¼ 2ð
ffiffiffi
2

p
− 1Þ: ð7Þ

Now let us consider the total system and make sym-
metric holes on each step of the iteration. The iterations
terminate at some length a, which can be associated with
the natural cutoff or lattice spacing. After m iterations, we
have that

a ¼
�
r
2

�
m
jRj;

and the region we get (let us call it Rmin) has 2m

components each of the length a. Following the proposal
of [11], the estimate of the distance of the logical operator
(sub)algebra AX associated with the bulk region X is
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derived as follows. The distance dðAXÞ is defined as the
minimal size of boundary region R, not correctable with
respect to X, with the following estimate proposed in [11]:

dðAXÞ ≤
jRminj
a

¼ 2m ¼
�jRj

a

�
α

; ð8Þ

where

α ¼ log 2
logð2=rÞ ¼

1

log2ð
ffiffiffi
2

p þ 1Þ ≈ 0.786: ð9Þ

This implies that the distance for any logical subalgebra is
bounded by dðAXÞ ≤ nα, where n could be considered as
the number of boundary “sites” [11].

III. HIGHER-DIMENSIONAL GENERALIZATION

A. Straight slicing

Now let us consider AdSdþ1=CFTd duality, which relates
(dþ 1)-dimensional gravity and d-dimensional boundary
conformal field theory. The metric of the AdSdþ1 Poincaré
patch has the form

ds2 ¼ LAdS

z2
ð−dt2 þ dz2 þ dx̄2Þ; ð10Þ

thus the dual theory is defined on a d-dimensional plane.
The simplest generalization of the construction described in
the previous section to an arbitrary dimension case is to
slice (d − 1)-dimensional constant time sections of the
boundary into “Cantor lasagna”—infinitely “long” spatial
slices with the Cantor set spatial organization in the
preferred direction. The holographic entanglement entropy
of this single infinitely long slice of the size l in some
spatial direction (let us call it x1 for definiteness) is well
known and has the form

SðlÞ ¼ 1

4Gdþ1

�
2Ld−1

AdS

d − 2

�
l⊥
ε

�
d−2

−
2d−1π

d−1
2 Ld−1

AdS

d − 2

�
Γð d

2d−2Þ
Γð 1

2d−2Þ
�d−1�l⊥

l

�
d−2

�
; ð11Þ

where, again, ε is the cutoff, and l⊥ is the diverging size of
the stripe in the spatial directions complementary to x1.
Following the logic as in the case of one spatial direction in
the boundary system and solving the equation Sdis ¼ Sconn
for the entanglement entropy given by (11), we obtain that
now the scrambling length is given by the solution of the
equation

2dr2
�
LAdS

rR

�
d
− 2ðr − 1Þ2

�
LAdS

R − rR

�
d
− 2

�
LAdS

R

�
d
¼ 0:

ð12Þ

For a particular d, this equation has analytic solutions r,
namely,

d ¼ 3∶ r ¼ 3 −
ffiffiffi
5

p
≈ 0.763932; ð13Þ

d ¼ 4∶ r ¼
ffiffiffi
3

p
− 1 ≈ 0.732051: ð14Þ

The dependence of r on d is monotonic, and for large
d → ∞ one can show (at least numerically) that r exactly
converges to r ¼ 2=3. Also, r ¼ 2=3 delimits the gener-
alized Cantor sets with zero Lebesgue measure and the one
with a positive measure,

d → ∞∶ r ¼ 2=3: ð15Þ

This means that the “Cantor slicing” corresponds to an
infinite number of dimensions d and limits the transition
point for the entanglement wedge.

B. Annular slicing

Now let us consider another Cantor-like slicing of the
plane (to be more precise, the bulk is given by AdS4 with
the boundary at a constant time being a two-dimensional
plane). Instead of straight higher-dimensional belts, now
we organize the set under consideration by poking holes in
the form of annular regions. The entanglement entropy of
the annular region with two radii R1 and R2 was studied
in [17] and is given by

SðR1; R2Þ ¼
c
6

�
2πR1

δ
þ 2πR2

δ
−

4πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ2 − 1

p ðEðκ2Þ

− ð1 − κ2ÞKðκ2ÞÞ þ � � �
�
; ð16Þ

where κ is a constant determined by the ratio R2=R1,

log
R1

R2

¼ 2κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2κ2

κ2 − 1

s
ðKðκ2Þ − Πð1 − κ2jκ2ÞÞ;

where E, K and Π are incomplete elliptic integrals. This
entanglement is given by the RT surface of the hemitorus
form stretched over the annulus. There is a second phase
described by a disconnected solution, which dominates for
large R2=R1. Since we are interested in small size elemen-
tary annular regions, we discard this solution. Another
expression for annular regions has been obtained in [18] via
the entanglement contour proposal,

SðR1;R2Þ¼
c
6

�
2πR2

ε2
þ2πR1

ε1
−4π

ðR2
2þR2

1Þ
ðR2

2−R2
1Þ
þ �� �

�
; ð17Þ

where ε1;2 are cutoffs, which also indicate the difference in
the entanglement contour. Since this expression is simpler,
let us use it first to estimate r. We are interested in thin
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annular regions, i.e., small R2 − R1. Taking the sizes in
terms of R and r as in the previous calculations, it is
straightforward to obtain an equation on r for small R,

4πdðr2 − 6rþ 4Þ
ðr − 1ÞrR þ 2πðr2 − 6rþ 4Þ

ðr − 1Þr ¼ 0: ð18Þ

It has the same solution as for the “straight” slicing
considered above,

r ¼ 3 −
ffiffiffi
5

p
; ð19Þ

which confirms the universality of this quantity.
As we can see, in general, the distance dðAXÞ is defined

by r, and since we are interested in the reconstruction of the
regions with a fractal dimension, only the UV behavior
corresponding to small basic fractal building blocks mat-
ters. For the higher-dimensional “straight-belt” slicing, the
result for r is fixed solely by the dimension, leading to the
universal estimate for dðAXÞ on all scales, while the radial
slicing in d ¼ 3 gives us the same r only in the UV limit.

IV. EXCITED STATES: FINITE
TEMPERATURE TT̄

A. Finite temperature

It is interesting to consider some tractable examples of
excited states in the similar context. One of the simplest
generalizations of the Poincaré metric is the BTZ
black hole,

ds2 ¼ L2

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2
�
;

fðzÞ ¼ 1 − z2=z2h; ð20Þ

which is dual to 2D CFT at finite temperature T ¼
1=ð2πzhÞ fixed by the location of the horizon. The
entanglement entropy for a single interval is given by
the corresponding RT surface, leading to the expression

SðlÞ ¼ c
3
log

�
sinh ðπTlÞ

πTε

�
: ð21Þ

For the spatial organization of the boundary region con-
sidered previously, the parameter r now has the form
explicitly depending on scales through R and T, namely,

r ¼ 2coth−1ðcothðπγÞ þ ffiffiffi
2

p
cschðπγÞÞ

πγ
; ð22Þ

where γ ¼ R · T. Now the distance dðAXÞ is controlled not
only by the size R but also by the temperature. In principle,
according to this estimate, one can obtain the correspond-
ing corrections to the distance dðAXÞ by taking a large
enough temperature. The dependence of r on γ is presented

in Fig. 1, indicating that for large T (and small R) the
distance converges to the estimate dðAXÞ < n.
Now consider how rotating and extremal black holes fit

into this construction. Assuming that z ¼ 1=r, the canoni-
cal form of the rotating BTZ black hole metric has the form

ds2 ¼ −
ðr2 − r2þÞðr2 − r2−Þ

r2
dt2 þ r2

ðr2 − r2þÞðr2 − r2−Þ
dr2

þ r2
�
dϕ −

rþr−
2r2

dt

�
2

: ð23Þ

Black hole rotation leads to two different temperatures T�
for the left and right moving modes of the dual CFT (apart
from the ordinary black hole temperature),

Tþ ¼ rþþ r−
2π

; T− ¼
rþ− r−
2π

; T ¼ r2þ− r2−
2πrþ

: ð24Þ

The entanglement entropy for a single interval of the
dual theory now depends on the temperatures T� and is
given by

SðlÞ¼ c
6
log

�
sinhðTþπlÞ

Tþπϵ

�
þc
6
log

�
sinhðT−πlÞ

T−πϵ

�
: ð25Þ

This leads to the equation determining r,

sinhðπγ−ÞsinhðπγþÞsinhðπð1−rÞγ−Þsinhðπð1−rÞγþÞ
sinh2ð1

2
πrγ−Þcsch2ð12πrγþÞ

¼1:

In Fig. 2, we plot the dependence of r on γþ for different
fixed γ− and one can see that decreasing γ− (i.e., closer to
extremality) decreases the growth of r.

B. Asymmetric regions: Thermal stabilization
and smoothness property?

Now let us turn to the question about what happens if we
slightly deviate from the Cantor set and how the temperature

2 4 6 8 10

0.85

0.90

0.95

1.00

FIG. 1. The dependence of r on γ given by (22).
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affects such construction in the context of uberholography.
TheCantor set is constructed by iterativewithdraw exactly of
the middle third of each subinterval. In fact, even small
variations in the parameters of the withdraw procedure can
lead us to different topological characteristics of the final set.
First, let us consider the following asymmetric partition of the
interval with the length R,

l1 ¼ ð1 − sÞRr; l2 ¼ sRr; h ¼ ð1 − rÞR; ð26Þ

i.e., on the each step of iteration, we obtain the partition of
the system into unequal parts separated by the distance
ð1 − rÞR. For the ground state, i.e., when the entropy is
given by (4), we obtain the solution for r corresponding to
the entanglement wedge phase transition,

r ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðs − 1Þsp þ 1

: ð27Þ

It is straightforward to see that r has theminimumat s ¼ 1=2,
i.e., precisely for the Cantor set. The generalization of
Eq. (27) to the case of finite temperature is straightforward,
although, it does not lead to an analytical formula that can be
written in any readableway. InFig. 3,weplot the dependence
of r on s for different temperatures. Although this does not
lead to the generalization ofdðAXÞ andα (for arbitrary s) in a
straightforward manner, one can try to estimate qualitative
features solely by the behavior of rðsÞ. From this plot, one
can see that the dependence of r on s becomes more stable,
i.e., large enough temperature deviation from s ¼ 1=2 does
not lead to a significant change in r.

C. TT̄ deformation

Finally, let us consider the special kind of nonlocal
exactly solvable quantum field theories—TT̄ deformed 2D
CFT [19–22]. The bulk dual of TT̄ deformation of 2D CFT
is given by locating the boundary theory at a radial cutoff of

the bulk at some finite zc [23]. This deformation admits
different interpretations, for example, it could be considered
as a coupling of a field theory to Jackiw-Teitelboim (JT)
gravity [24,25] or a dynamical coordinate transformation
applied to the field. Also, one can consider the deformation
as the broadening of the fundamental particle’s “width”
(extension/reduction of the phase space or wave function
support in the nonrelativistic case) [26,27]. The computation
of the entanglement entropy2 in different ways has been
shown to be consistent with the prescription given by the
cutoff proposal.
The entanglement entropy of the interval with the length

l is now given by

SðlÞ ¼ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
c

4
þ 1

r
þ lc

2

�
; lc ¼

l
zc
; ð28Þ

which vanishes when l → 0 in contrast to the logarithmic
divergence in the undeformed theory. At the leading
nonvanishing order, the solution to the equation defining
r for Rc ¼ R=zc → 0 is given by

TT̄-deformed 2dCFT∶ r ¼ 1; Rc → 0; ð29Þ

due to linearly decreasing entanglement entropy SðlÞ≈
l=ð2zcÞ. From Fig. 4, one can observe that the coefficient r
being equal to 1 for R → 0 is size dependent, and for large
lc it decreases to its ordinary value, r ¼ 2ð ffiffiffi

2
p

− 1Þ,
corresponding to the 2D CFT vacuum. The interpretation
in terms of the phase space deformation (or broadening the
width of fundamental particles) seems to be consistent with
this change of r. For small lc, the fine structure of the
fractal cannot be taken into account due to the finite size of
particles. It would be interesting to clarify the effect of TT̄
deformations in explicit quantum error correcting codes

2 4 6 8 10

0.85

0.90

0.95

1.00

FIG. 2. The dependence of r on γþ for different γ−. The green
dashed curve corresponds to γ− → 0 and the red one to
γ− ¼ γþ=2. The blue solid curve corresponds to a nonrotating
black hole.

0.2 0.4 0.6 0.8 1.0
s

0.85

0.90

0.95

1.00

r

FIG. 3. The dependence of r on the asymmetry parameter s for
different values of γ (red curve corresponds to zero temperature,
blue one to γ ¼ 1.5, and green one to γ ¼ 3).

2The holographic entanglement entropy in TT̄ deformed
theories has been considered in [28–30].
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and systems using objects of “zero size” (like in the
Gotesman-Preskill-Kitaev protocol, which uses an infinite
sequence of Dirac delta functions to encode a qubit).

V. CONCLUSION

In this paper, we studied some of the quantum error-
correcting properties of the holographic correspondence,
namely, the estimate of logical subalgebra distance dðAXÞ
corresponding to fractal regions X. We obtain a generali-
zation of estimates proposed in [11] of the form

dðAXÞ ≤
�jRj

a

�
α

; α ¼ log 2
logð2=rÞ ;

on different fractal regions and for different dimensions and
excited states, like black holes and TT̄ deformed theories
by calculating the “index” r for each case. We find that the

property of holographic reconstruction of fractal regions,
called in [11] uberholography, also takes place in higher
dimensions. We calculate r corresponding to higher dimen-
sions explicitly for AdSdþ1 duals with d ¼ 3 (r ¼ 3 −

ffiffiffi
5

p
)

and d ¼ 4 (r ¼ ffiffiffi
3

p
− 1). For d ¼ 3, we show that r is

independent of some features of the X structure—namely,
the set obtained by slicing a plane into strips organized in
some direction as a Cantor set, and a similar annular slicing
leads to the same r. This is consistent with the earlier
observations in [11–13] that many properties of the
uberholographic reconstruction are defined by the vacuum
structure of a certain theory (and, as we have shown, by its
dimension). For a finite temperature 2D CFT (i.e., the dual
of the BTZ black hole), we find that similar properties also
take place, for a certain scaling limit of R and temperature
T. Naively, one can think of this limit as a selection of
some special part of the Hilbert space corresponding to a
Cantor set (or, probably, some special state) because the
straightforward consideration of the black hole back-
ground (see, for example, [13]) is also defined by the
vacuum structure. It would be interesting to understand
this aspect of our work better in future research. After
submitting our paper, an interesting proposal was made
in [31], where the bulk entropy is taken into account,
resulting in a state-dependent holographic reconstruction,
which allows us to deal with the black hole in a slightly
different way.
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