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Abstract The Alcubierre warp drive metric is a spacetime
geometry featuring a spacetime distortion, called a warp bub-
ble, where a massive particle inside it acquires global super-
luminal velocities, or warp speeds. This work presents solu-
tions of the Einstein equations for the Alcubierre metric hav-
ing fluid matter as gravity source. The energy–momentum
tensor considered has two fluid contents, the perfect fluid
and the parametrized perfect fluid (PPF), a tentative more
flexible model whose aim is to explore the possibilities of
warp drive solutions with positive matter density content.
Santos-Pereira et al. (Eur Phys J C 80:786, 2020) already
showed that the Alcubierre metric having dust as source con-
nects this geometry to the Burgers equation, which describes
shock waves moving through an inviscid fluid, but led the
solutions back to vacuum. The same happened for two out of
four solutions subcases for the perfect fluid. Other solutions
for the perfect fluid indicate the possibility of warp drive
with positive matter density, but at the cost of a complex
solution for the warp drive regulating function. Regarding
the PPF, solutions were also obtained indicating that warp
speeds could be created with positive matter density. Weak,
dominant, strong and null energy conditions were calculated
for all studied subcases, being satisfied for the perfect fluid
and creating constraints in the PPF quantities such that a
positive matter density is also possible for creating a warp
bubble. Summing up all results, energy–momentum tensors
describing more complex forms of matter or field distribu-
tions generate solutions for the Einstein equations with the
warp drive metric where a negative matter density might not
be a strict precondition for attaining warp speeds.

a e-mail: olsp@if.ufrj.br
b e-mail: evertonabreu@ufrrj.br
c e-mail: mbr@if.ufrj.br (corresponding author)

1 Introduction

It is well known that in general relativity particles can travel
globally at superluminal speeds, whereas locally they cannot
surpass the light speed. The warp drive spacetime geometry
advanced by Alcubierre [1] uses these physical properties to
propel material particles at superluminal speeds. It creates a
limited spacetime distortion, called warp bubble, such that
the spacetime is contracted in front of it and expanded behind
the bubble as it moves along a geodesic. This warp drive
metric is such that a particle trapped inside this bubble would
locally move at subluminal speeds, whereas the bubble with
the particle inside acquires global superluminal velocities, or
warp speeds. In a seminal paper, Alcubierre also concluded
that the warp metric would imply the violation of the energy
conditions since it appeared that a negative energy density
would be required for the creation of the warp bubble.

Since this original work many authors have contributed
to our understanding of the theoretical details of the Alcu-
bierre warp drive metric and the feasibility of matter particles
acquiring warp speeds. Ford and Roman [2] applied quan-
tum inequalities to calculate the amount of negative energy
required to transport particles at superluminal speeds. They
concluded that such energy requirements would be huge, so
the amount of negative energy density necessary for the prac-
tical construction of a warp bubble would be impossible to
achieve. Pfenning and Ford [3] also used quantum inequali-
ties to calculate the necessary bubble parameters and energy
for the warp drive viability, reaching an enormous amount of
energy, ten orders of magnitude greater than the mass-energy
of the entire visible universe, also being negative. Hiscock
[4] computed the vacuum energy–momentum tensor (EMT)
of a reduced two-dimensional quantized scalar field of the
warp drive spacetime. He showed that in this reduced con-
text that the EMT diverges if the apparent velocity of the
bubble is greater than the speed of light. Such a divergence
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is connected to the construction of an horizon in this two-
dimensional spacetime. Due to the semiclassical effects, the
superluminal travel via warp drive might be unfeasible. For
example, to an observer within the warp drive bubble, the
backward and forward walls look like the horizon of a white
hole and of a black hole, respectively, resulting from Hawk-
ing radiation.

The issue of superluminal speeds of massive particles trav-
eling faster than photons has also been studied by Krasnikov
[5], who argued that this would not be possible if some con-
jectures for globally hyperbolic spacetimes are made. He
described some spacetime topologies and their respective
need of the tachyon existence for the occurrence of travel
at warp speeds. This author also advanced a peculiar space-
time where superluminal travel would be possible without
tachyons, named the Krasnikov tube by Everett and Roman
[6], who generalized the metric designed by Krasnikov by
proposing a tube in the direction of the particle’s path pro-
viding a connection between Earth and a distant star. Inside
the tube the spacetime is flat and the lightcones are opened
out in order to allow for one direction superluminal travel. For
the Krasnikov tube to work they showed that huge quantities
of negative energy density would also be necessary. Since
the tube does not possess closed timelike curves, it would be
theoretically possible to design a two way non-overlapping
tube system such that it would work as a time machine. In
addition, the EMT is positive in some regions. Both the met-
ric and the obtained EMT were thoroughly analyzed in Refs.
[7,8].

A relevant contribution to warp drive theory was made by
van de Broeck [9], who demonstrated that a small modifica-
tion of the original Alcubierre geometry greatly diminishes
to a few solar masses the total negative energy necessary
for the creation of the warp bubble distortion, a result that
led him to hypothesize that other geometrical modifications
of this type could further reduce in a dramatic fashion the
amount of energy necessary to create a warp drive bubble.
Natario [10] designed a new warp drive with zero expansion
by using spherical coordinates and the X -axis as the polar
one. Lobo and Visser [11,12] discussed that the center of the
warp bubble, as proposed by Alcubierre, needs to be massless
(see also [13,14]). A linearized model for both approaches
was introduced and it was demonstrated that for small speeds
the amassed negative energy inside the warp field is a robust
fraction of the particle’s mass inside the center of the warp
bubble. Lee and Cleaver [15,16] have looked at how external
radiation might affect the Alcubierre warp bubble, possibly
making it energetically unsustainable, and how a proposed
warp field interferometer could not detect spacetime distor-
tions. Mattingly et al. [17,18] discussed curvature invariants
in the Natario and Alcubierre warp drives.

In a previous paper [19] we have considered some of these
issues, but from a different angle. The Alcubierre metric was

not advanced as a solution of the Einstein equations, as it was
originally proposed simply as an ad hoc geometry designed
to create a spacetime distortion such that a massive parti-
cle inside it travels at warp speeds, whereas locally it never
exceeds the light speed. The basic question was then which
possible types of matter-energy sources are capable of cre-
ating a warp bubble. To answer this question the Einstein
equations have to be solved with some form of EMT as a
source. The simplest one to start with is incoherent matter.
Following this line of investigation, we showed that the dust
solutions of the Einstein equations for the warp drive metric
implied in vacuum, that is, such a distribution is incapable of
creating a warp bubble; nevertheless, the Burgers equation
appeared as part of the solution of the Einstein equations. In
addition, since the Burgers equation describes shock waves
moving in an inviscid fluid, it was also found that these shock
waves behave as plane waves [24–28].

In this paper we generalize the results obtained in Ref.
[19] by following the next logical step, that is, investigating
the perfect fluid as EMT source for the Alcubierre metric.
We also propose a slightly generalized perfect fluid EMT,
called here the parametrized perfect fluid (PPF), in order
to produce a tentatively more flexible model such that the
pressure may have different parameter values. The aim is
to see if more flexible EMT distributions could relax the
original requirement that warp speeds could only be achieved
by means of a negative matter density.

For the perfect fluid EMT solutions we found that two
out of four subcases turn out to be the dust solution of Ref.
[19] where both the matter density and the pressure vanish,
but the Burgers equation also appears as a result of the solu-
tions of the Einstein equations [29–31]. Two other subcases,
however, indicate that warp speeds are possible with positive
matter density, but at the cost of a complex solution for the
warp metric regulating function. Weak, dominant, strong and
null energy conditions were calculate for both EMTs and all
perfect fluid solutions satisfy them. In the case of the PPF,
two out of four solutions give rise to a nonlinear equation of
state linking various pressures to the matter density. Other
solutions produced results where a nonvanishing pressure
occurs with a vanishing matter density, a condition consid-
ered unphysical and then dismissed. The solutions also pro-
duced parameters and equations of state related to pressure
and inequalities that satisfy all the energy conditions. These
results indicate that energy–momentum tensors describing
more complex forms of matter distributions generate solu-
tions for the Einstein equations with the warp drive metric
where negative matter density might not be a strict precon-
dition.

The plan for the paper is as follows. In Sect. 2 we briefly
review the Alcubierre warp drive theory and present the rel-
evant equations and all nonzero components of the Einstein
tensor for the warp drive metric. In Sect. 3 the Einstein equa-
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tions are then solved and solutions presented for the warp
drive metric having a perfect fluid gravity source. In Sect. 4
the nonzero components of the Einstein tensor in the warp
drive geometry are written in terms of the PPF EMT. Solu-
tions for this more flexible EMT are also obtained and stud-
ied in all subcases. Section 5 presents the EMT divergence of
both the perfect fluid and the PPF, whereas Sect. 6 discusses
the energy conditions for the two types of EMTs. Section 7
provides further discussions on the results presented in the
previous sections, and Sect. 8 presents our conclusions.

2 Einstein equations

We shall start this section by briefly reviewing the Alcubierre
warp drive metric. Subsequently, the nonzero components of
the Einstein tensor of this metric will also be explicitly shown.
The expressions presented in this section form the basic set
of equations required for the next sections.

2.1 The Alcubierre warp drive geometry

The geometry advanced in Ref. [1] may be written as follows:

ds2 = −
(
α2 − βiβ

i
)

dt2 +2βi dxi dt +γi j dxi dx j , (2.1)

where dτ is the proper time lapse, α is the lapse function, β i

is the spacelike shift vector and γi j is the spatial metric for
the hypersurfaces.1 The lapse function α and the shift vector
β i are functions to be determined, whereas γi j is a positive-
definite metric on each of the spacelike hypersurfaces, for all
values of time, a feature that makes the spacetime globally
hyperbolic [21,22].

Alcubierre [1] assumed the following particular parameter
choices for Eq. (2.1):

α = 1, (2.2)

β1 = −vs(t) f [rs(t)] , (2.3)

β2 = β3 = 0, (2.4)

γi j = δi j . (2.5)

Hence, the Alcubierre warp drive metric is given by

ds2 = −
[
1 − vs(t)

2 f (rs)
2
]

dt2 − vs(t) f (rs) dx dt

+dx2 + dy2 + dz2, (2.6)

1 Throughout this paper Greek indices will range from 0 to 3, whereas
the Latin ones indicate the spacelike hypersurfaces and will range from
1 to 3.

where vs(t) is the velocity of the center of the bubble moving
along the curve xs(t). This is given by the following expres-
sion:

vs(t) = dxs(t)

dt
. (2.7)

The function f (rs) is the warp drive regulating function. It
describes the shape of the warp bubble, which is given by the
following expression [1]:

f (rs) = tanh [σ(rs + R)] − tanh [σ(rs − R)]

2 tanh(σ R)
, (2.8)

where σ and R are parameters to be determined. The vari-
able rs(t) defines the distance from the center of the bubble
[xs(t), 0, 0] to a generic point (x, y, z) on the surface of the
bubble, given by the following equation:

rs(t) =
√

[x − xs(t)]2 + y2 + z2. (2.9)

From the above one can see that the motion is one-
dimensional, since the x-coordinate is the only one perturbed
by the function xs(t).

2.2 Einstein tensor components

Let us now adopt Alcubierre’s original notation by assuming

β = −β1 = vs(t) f (rs) (2.10)

in Eq. (2.3). Then the nonzero components of the Einstein
tensor for the metric (2.6) are given by the following expres-
sions:

G00 = −1

4

(
1 + 3β2

) [(
∂β

∂y

)2

+
(

∂β

∂z

)2
]

−β

(
∂2β

∂y2 + ∂2β

∂z2

)
, (2.11)

G01 = 3

4
β

[(
∂β

∂y

)2

+
(

∂β

∂z

)2
]

+1

2

(
∂2β

∂y2 + ∂2β

∂z2

)
, (2.12)

G02 = −1

2

∂2β

∂x∂y

−β

2

(
2
∂β

∂y

∂β

∂x
+ β

∂2β

∂x∂y
+ ∂2β

∂t∂y

)
, (2.13)

G03 = −1

2

∂2β

∂x∂z

−β

2

(
2
∂β

∂z

∂β

∂x
+ β

∂2β

∂x∂z
+ ∂2β

∂t∂z

)
, (2.14)
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G11 = −3

4

[(
∂β

∂y

)2

+
(

∂β

∂z

)2
]

, (2.15)

G12 = 1

2

(
2
∂β

∂y

∂β

∂x
+ β

∂2β

∂x∂y
+ ∂2β

∂t∂y

)
, (2.16)

G13 = 1

2

(
2
∂β

∂z

∂β

∂x
+ β

∂2β

∂x∂z
+ ∂2β

∂t∂z

)
, (2.17)

G23 = 1

2

∂β

∂z

∂β

∂y
, (2.18)

G22 = −
[

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2
]

−1

4

[(
∂β

∂y

)2

−
(

∂β

∂z

)2
]

, (2.19)

G33 = −
[

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2
]

+1

4

[(
∂β

∂y

)2

−
(

∂β

∂z

)2
]

. (2.20)

3 Perfect fluid

Besides incoherent matter, or dust, already studied in Ref.
[19], the simplest matter-energy distribution to be consid-
ered as a gravity source for the possible creation of a warp
bubble, and then warp speeds, is the perfect fluid. Hence, this
section will discuss matter content solutions of the Einstein
equations considering a perfect fluid matter source EMT for
the Alcubierre metric.

3.1 Perfect fluid content solutions

The EMT for a perfect fluid may be written as follows:

Tαβ = (μ + p) uαuβ + p gαβ, (3.1)

where μ is the matter density, p is the fluid pressure, gαβ is
the metric tensor and uα is the four-velocity of an observer
inside the fluid. Perfect fluids have no shear stress, rotation,
heat conduction or viscosity, nevertheless this ideal fluid pro-
vides a more complex matter content than simple dust [20],
allowing us to study if a warp bubble can be created with this
gravity source and how the respective gravity field equations
solutions can be understood.

For the metric (2.6) the perfect fluid EMT assumes the
following form:

Tαβ =

⎛
⎜⎜⎝

μ + β2 p −βp 0 0
−βp p 0 0

0 0 p 0
0 0 0 p

⎞
⎟⎟⎠ . (3.2)

Let us now use Eqs. (2.11)–(2.20) with the EMT above in the
Einstein equations. Substituting components G11 = 8πT11

and G01 = 8πT01 into G00 = 8πT00, after some algebra and
simplifications we may write the following expression:

T00 + 2βT01 + 1

3

(
3β2 − 1x

)
T11 = 0 . (3.3)

Substituting the values for the EMT components T00 = μ +
β2 p, T01 = −βp, T11 = p Eq. (3.3) results in the following
expression:

p = 3μ. (3.4)

This is an equation of state for the Alcubierre metric having
a perfect fluid gravity source EMT.

The component G23 is zero since T23 = 0. This case leads
to either ∂β/∂y, or ∂β/∂z, or both, equal to zero. Let us now
analyze these possibilities and its consequences.

Case 1:
[

∂β

∂ z
= 0

]
As β does not depend on z, the Einstein

tensor components G13, G23 and G03 are identi-
cally zero. Substituting this case intoG11 = 8πT11,
whereG11 is given by Eq. (2.15) and T11 = p, there
follows immediately the result

3

4

(
∂β

∂y

)2

= −8πp. (3.5)

Substituting (∂β/∂y)2 above into G01 = 8πT01,
where G01 is given by Eq. (2.12) and T01 = −βp
from Eq. (3.2), as well as G12 = 8πT12 and G02 =
8πT02, where T12 = 0 and T02 = 0, the Einstein
equations are reduced to the following equations:

p = 3μ, (3.6)(
∂β

∂y

)2

= −32

3
πp = − 32π μ, (3.7)

∂2β

∂y2 = 0, (3.8)

∂2β

∂x∂y
= 0, (3.9)

2
∂β

∂y

∂β

∂x
+ ∂2β

∂t∂y
= 0, (3.10)

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2

= −64

3
πp = − 64πμ, (3.11)

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2
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= −128

3
πp = − 128πμ . (3.12)

Equation (3.7) implies that ∂β/∂y must be constant,
since the pressure p is assumed constant. Equation
(3.8) also shows that β must be a linear function
of the y-coordinate, which means that β must have
a possible additional dependence of arbitrary func-
tions on t and x . The two expressions in Eqs. (3.11)
and (3.12) constitute the same homogeneous partial
differential equation, but with different inhomoge-
neous parts, so the solution of the inhomogeneous
equation is not unique, unless the pressure p is zero.
Then, considering these points and Eqs. (3.7) and
(3.10), it follows that

∂β

∂y

∂β

∂x
= 0, (3.13)

which means that either of these partial derivatives,
or both, vanish. Let us discuss both possibilities.

Case 1a:
[

∂β

∂ z
= 0 and

∂β

∂x
= 0

]
For this case the set of

partial differential equations from Eqs. (3.6) to
(3.12) simplify to

p = 3μ, (3.14)

∂β

∂y
= ±√−32πμ. (3.15)

The above equations mean that the matter density μ

must be negative or zero for a non-complex solution
of the Einstein equations, and β must be a function
of only the two coordinates t and x . The equation
above is readily integrated, yielding

β(t, y) = ±√−32πμ y + g(t) , (3.16)

where g(t) is a function to be determined by the
boundary conditions.

Case 1b:
[

∂β

∂ z
= 0 and

∂β

∂ y
= 0

]
In this case the pressures

vanishes, since ∂β/∂y = 0, and the set of partial
differential equations (3.6) to (3.12) simplify to,

p = 3μ = 0, (3.17)

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2

= 0. (3.18)

Therefore, for p = 0 the equation of state p = 3μ

implies zero matter density as well, which reduces
the solution to the dust case and then vacuum. This
also leads to the appearance of shock waves as plane
waves, since β = β(x, t) and the field equations

are reduced to the Burgers equation, as studied in
Ref. [19]. This is the case because Eq. (3.18) can
be written in the following form:

∂β

∂t
+ 1

2

∂

∂x

(
β2

)
= h(t). (3.19)

Here h(t) is a generic function to be determined
by boundary conditions. In its homogeneous form,
where h(t) = 0, it takes the conservation form of
the inviscid Burgers equation,

∂β

∂t
+ 1

2

∂

∂x

(
β2

)
= 0 . (3.20)

See Ref. [19] for details of the Burgers equation in
this context.

Case 2:
[

∂β

∂ y
= 0

]
As β does not depend on the y-

coordinate, it is easy to see that G12, G23 and G02

are identically zero. In addition, considering this
case with G11 = 8πT11, it follows immediately
that

−3

4

(
∂β

∂z

)2

= 8πp. (3.21)

Substituting Eq. (3.21) inG01 = 8πT01, whereG01

is given by Eq. (2.12), T01 = −βp from Eq. (3.2),
and inserting the component G13 = 8πT13 into the
component G03 = 8πT03, where T13 = T03 = 0,
after some algebra we obtain the following expres-
sions:

p = 3μ, (3.22)
(

∂β

∂z

)2

= −32

3
πp, (3.23)

∂2β

∂z2 = 0, (3.24)

∂2β

∂x∂z
= 0, (3.25)

2
∂β

∂z

∂β

∂x
+ ∂2β

∂t∂z
= 0, (3.26)

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2

= −64

3
πp, (3.27)

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2

= −128

3
πp. (3.28)

Equation (3.24) shows that β is a linear function
with respect to the z-coordinate. Equation (3.23)
implies that ∂β/∂z must be constant since the pres-
sure p is assumed to be a constant. This means that
all second partial derivatives of ∂β/∂z must vanish.
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Equations (3.27) and (3.28) are the same homoge-
neous partial differential equation, but their right
hand sides are different. Hence, the solution of the
non-homogeneous equation is not unique, unless
the pressure p is zero. Considering Eq. (3.26), this
case also unfolds in two possibilities, since

∂β

∂z

∂β

∂x
= 0, (3.29)

and either or both are zero. Let us now analyze each
subcase.

Case 2a:
[

∂β

∂ y
= 0 and

∂β

∂x
= 0

]
For this case Eqs. (3.22) to

(3.28) yield

p = 3μ , (3.30)

∂β

∂z
= ±√−32πμ , (3.31)

∂β

∂z
= ±√±96πμ . (3.32)

Equation (3.31) means that the matter density μ

must be negative or zero for a non-complex solution
of the Einstein equations. Equation (3.32) allows
for a possible positive matter density. In addition,
β has its dependence reduced to β = β(z, t). If
the matter density μ is assumed constant, then the
above expressions can be integrated, yielding

β(z, t) = ±√−32πμ z + ḡ(t) , (3.33)

β(z, t) = ±√±96πμ z + h̄(t) , (3.34)

where ḡ(t) and h̄(t) are arbitrary functions to be
determined by boundary conditions.

Case 2b:
[

∂β

∂ y
= 0 and

∂β

∂ z
= 0

]
For this subcase Eq. (3.23)

implies zero pressure, and the set of partial differ-
ential equations (3.22) to (3.28) simplify to

p = 3μ = 0, (3.35)

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2

= 0 , (3.36)

where the last equation is the result of the only
nonzero Einstein tensor components, G22 and G33.
These results are the same as Case 1b above, that
is, the dust solution for the Alcubierre warp drive
metric that results in the Burgers equation (3.19)
and its inviscid form given by Eq. (3.20), and shock
waves as well as plane waves [19]. ��

Table 1 summarizes all cases and their respective results of
the Einstein equations with the Alcubierre warp drive metric
having a perfect fluid matter content as gravity source.

3.2 Discussion

Cases 1b and 2b are simply the dust case already studied
in Ref. [19], which apparently is unable to generate a warp
bubble since this is a vacuum solution, although it connects
the warp metric to the Burgers equation and then to shock
waves in the form of plane waves.

Cases 1a and 2a share the equation of state p = 3μ, but the
coordinate dependencies are different, since β = β(y, t) and
β = β(z, t), respectively. For β to be a real valued function
the matter density μ must be negative in Case 1a. From Eqs.
(3.16) and (3.33) we have assumed a constant matter density,
which means a straightforward integration, but μ can be also
a function of the two coordinates t and y in Case 1a, or a
function of the t and z coordinates in Case 2a.

Inasmuch as the matter density must be negative for real
solutions, one could think of defining the total mass-energy
density as follows:

μ
(
t, x j

)
= μ+ + a

(
t, x j

)
μ− ≤ 0,

x j = y, z, (3.37)

where μ+ is the positive portion of the matter density of the
perfect fluid and μ− its negative portion that would allow the
warp bubble to exist. a(t, x j ) would be a regulating function
that depends on both time t and space x j coordinates, being
related to the shape and location of the bubble. Remembering
that x j = y for Case 1a and x j = z for Case 2a, since
μ(t, x j ) must be negative there would be a restriction for the
positive and negative portions of the matter density in Eq.
(3.37).

It might be argued that there is no problem in complex
solutions for β, but in the warp drive scenario β = vs(t) f (rs)
determines both the velocity and the shape of the bubble,
so either the velocity vs(t) or the regulating function f (rs)
of the bubble shape must be complex. A complex velocity
has no physical meaning, but a complex regulating function
could be acceptable if we only consider its real part. Thus,
in such a situation the formation of a warp bubble capable of
generating warp speeds could still be possible in the presence
of a perfect fluid positive matter density EMT as gravity
source.

Nevertheless, caution is required here because if the result
of integrating β turns out to be purely imaginary it is not clear
what the bubble shape being represented by an imaginary
function means. Therefore, in principle it seems reasonable
to start with β being a real function and the warp bubble
requiring a perfect fluid with negative mass-energy density
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Table 1 Summary of all
solutions of the Einstein
equations with the Alcubierre
warp drive metric having perfect
fluid EMT as mass-energy
source

Case Condition Results

1)
∂β

∂z
= 0 1a)

∂β

∂x
= 0

p = 3μ

β = β(y, t)
∂β

∂y
= ±√−32πμ

1b)
∂β

∂y
= 0

p = 3μ = 0
β = β(x, t)
∂β

∂t
+ 1

2

∂

∂x
(β2) = h(t)

→ this is the dust solution of Ref. [19]

2)
∂β

∂y
= 0 2a)

∂β

∂x
= 0

p = 3μ

β = β(z, t)
∂β

∂z
= ± √−32πμ

∂β

∂z
= ±√± 96πμ

2b)
∂β

∂z
= 0

p = 3μ = 0
β = β(x, t)
∂β

∂t
+ 1

2

∂

∂x
(β2) = h(t)

→ this is the dust solution of Ref. [19]

for warp speeds to be physically viable. But it seems to us
that this point remains open to debate.

Considering the results above it is apparent that a perfect
fluid EMT generated a more complex set of solutions of the
Einstein equations than the dust one, then it is conceivable
that viable warp speeds are also possible in more complex
EMTs. One such possibility will be discussed next.

4 Parametrized perfect fluid

Let us propose a generalization of the perfect fluid EMT
having seven quantities, namely the mass-energy density μ,
the β function and five different pressures A, B,C, D and
p. The last quantity D is a momentum density parameter. In
the perfect fluid of Eq. (3.2) the pressure denoted by p is all
the same in the EMT, a constraint that has been relaxed here.
Let us call the perfect fluid generalization with the quantities
above the parametrized perfect fluid (PPF). Its respective
EMT may be written

Tασ =

⎛
⎜⎜⎝

μ + β2 p −βD 0 0
−βD A 0 0

0 0 B 0
0 0 0 C

⎞
⎟⎟⎠ . (4.1)

The quantities A, B,C, D and p will not be assumed to be
constants, but rather functions of the spacetime coordinates
(t, x, y, z).

This is clearly a more flexible EMT than the perfect fluid,
and it is being proposed here as a tentative model in order to
explore the consequences of more complex EMTs in terms of
generating possible positive matter solutions of the Einstein

equations with the warp drive metric without the caveats of
the perfect fluid solutions discussed above. It is a tentative
proposal for a more flexible, or toy, model for the possible
creation of warp bubbles, and then warp speeds. Section 7.2
provides more details on the physics of this specific fluid
proposal.

The nonzero components of the Einstein equations for the
PPF are given by the following expressions:

−1

4
(1 + 3β2)

[(
∂β

∂y

)2

+
(

∂β

∂z

)2
]

−β

(
∂2β

∂y2 + ∂2β

∂z2

)
= 8π(μ + β2 p), (4.2)

3

4
β

[(
∂β

∂y

)2

+
(

∂β

∂z

)2
]

+1

2

(
∂2β

∂y2 + ∂2β

∂z2

)
= −8πβD, (4.3)

−1

2

∂2β

∂x∂y
− β

2

(
2
∂β

∂y

∂β

∂x

+β
∂2β

∂x∂y
+ ∂2β

∂t∂y

)
= 0, (4.4)

−1

2

∂2β

∂x∂z
− β

2

(
2
∂β

∂z

∂β

∂x

+β
∂2β

∂x∂z
+ ∂2β

∂t∂z

)
= 0, (4.5)

−3

4

[(
∂β

∂y

)2

+
(

∂β

∂z

)2
]

= 8π A, (4.6)

1

2

(
2
∂β

∂y

∂β

∂x
+ β

∂2β

∂x∂y
+ ∂2β

∂t∂y

)
= 0, (4.7)

123



133 Page 8 of 22 Eur. Phys. J. C (2021) 81 :133

1

2

(
2
∂β

∂z

∂β

∂x
+ β

∂2β

∂x∂z
+ ∂2β

∂t∂z

)
= 0, (4.8)

1

2

∂β

∂z

∂β

∂y
= 0, (4.9)

−
[

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2
]

−1

4

[(
∂β

∂y

)2

−
(

∂β

∂z

)2
]

= 8πB, (4.10)

−
[

∂2β

∂t∂x
+ β

∂2β

∂x2 +
(

∂β

∂x

)2
]

+1

4

[(
∂β

∂y

)2

−
(

∂β

∂z

)2
]

= 8πC. (4.11)

Substituting Eqs. (4.6) and (4.3) into Eq. (4.2) it follows
immediately that

μ = β2(2D − A − p) + A

3
. (4.12)

This expression shows that the fluid density not only depends
on the pressure components A and p, but also on the momen-
tum component D and the warp bubble, since it varies with
the shift vector β and, hence, the bubble movement. So, the
bubble shape modifies the fluid density in a local way, a result
that may imply an analogy with classical fluid dynamics and
shock waves in fluids with global velocity greater than the
speed of sound in that medium.

Applying this analogy to the warp drive, it may mean that
the warp bubble plays the role of a shock wave in a fluid
that moves with apparent velocity greater than the speed of
light for an outside observer far away from the bubble, this
being a result of the nonlinearity of the Einstein equations.
The bubble modifies the fluid density, which then causes the
bubble motion. This classical relativistic fluid analogy may
be a physical argument for a mechanism which accounts for
the great amount of energy necessary for the feasibility of
the warp drive.

After some algebra on the set of Einstein equations above
they can be rewritten

β2(2D − A − p) + A

3
= μ, (4.13)

∂2β

∂x∂y
= 0, (4.14)

∂2β

∂x∂z
= 0, (4.15)

(
∂β

∂y

)2

+
(

∂β

∂z

)2

= −32

3
π A, (4.16)

(
∂β

∂y

)2

−
(

∂β

∂z

)2

= 16π(C − B), (4.17)

2
∂β

∂y

∂β

∂x
+ ∂2β

∂t∂y
= 0, (4.18)

2
∂β

∂z

∂β

∂x
+ ∂2β

∂t∂z
= 0, (4.19)

∂β

∂z

∂β

∂y
= 0, (4.20)

∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= −32π(B + C), (4.21)

∂2β

∂y2 + ∂2β

∂z2 = 16πβ(A − D). (4.22)

Equation (4.20) shows that the solutions for the set of dif-
ferential equations above have similar alternative cases to
the perfect fluid solutions, that is, either ∂β/∂z = 0 and/or
∂β/∂y = 0. Both situations and their respective subcases
will be discussed next.

Case 1:
[

∂β

∂ z
= 0

]
The set of equations (4.13)–(4.22) sim-

plify to

μ = β2(2D − A − p) + A

3
, (4.23)

∂2β

∂x∂y
= 0, (4.24)

(
∂β

∂y

)2

= −32

3
π A = 16π(C − B), (4.25)

2
∂β

∂y

∂β

∂x
+ ∂2β

∂t∂y
= 0, (4.26)

∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= −32π(B + C). (4.27)

∂2β

∂y2 = 16πβ(A − D). (4.28)

From Eq. (4.25) a relation between the pressures
A, B and C is straightforward,

B = C + 2

3
A. (4.29)

From Eqs. (4.24) and (4.25) it is easy to verify that
A and C − B do not depend on the x-coordinate.
In addition, for real solutions A must be nega-
tive, assuming only real values that are equal to or
smaller than zero. Differentiating Eq. (4.25) with
respect to x yields

2
∂β

∂y

∂2β

∂x∂y
= 0 �⇒ ∂β

∂y
= 0 and/or

∂2β

∂x∂y
= 0,

(4.30)
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and inserting the result ∂β/∂y = 0 into Eq. (4.26)
it follows that

∂2β

∂t∂y
= 0. (4.31)

The result ∂β/∂y = 0 means that A = D from Eq.
(4.28) and C = B from Eq. (4.25). Hence, the set
of equations from Eqs. (4.23) to (4.27) simplify for
∂β/∂y = 0,

μ = β2(D − p) + D

3
= β2(A − p) + A

3
,

(4.32)
∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= −64πB = −64πC.

(4.33)

From the result ∂2β/∂x∂y = 0 of Eq. (4.30) the set
of equations (4.23)–(4.28) is recovered. Therefore,
Eqs. (4.30) show that this case separates itself in
two conditions, either ∂β/∂x = 0 or ∂β/∂y = 0.
Next we analyze both conditions.

Case 1a:
[

∂β

∂ z
= 0 and

∂β

∂x
= 0

]
Setting Eq. (4.27) equal

to zero, then B = −C , and the set of equations
(4.23)–(4.28) simplify to

μ = β2(2D − A − p) + A

3
, (4.34)

B = −C = 1

3
A, (4.35)

(
∂β

∂y

)2

= 32πC, (4.36)

∂2β

∂y2 = 16πβ(A − D). (4.37)

For this case, there is an equation of state given by
Eq. (4.34), β is a function of time and y coordinates
and must be found by solving both Eqs. (4.36) and
(4.37) in terms of the pressures A,C and D. Note
that Eq. (4.35) relates the pressures A, B and C .
The EMT for this case may be written as follows:

Tασ =

⎛
⎜⎜⎝

β2(2D − A) + A/3 −βD 0 0
−βD A 0 0

0 0 A/3 0
0 0 0 −A/3

⎞
⎟⎟⎠ .

(4.38)

One should also note that for the T00 component
from Eq. (4.38) to be of positive value the following
inequality must hold:

β2 >
A

3(A − 2D)
. (4.39)

Case 1b:
[

∂β

∂ z
= 0 and

∂β

∂ y
= 0

]
Since Eq. (4.25) is equal

to zero, then B = C . Similarly for Eq. (4.28) it is
clear that A = D. Consequently, the set of equa-
tions (4.23)–(4.28) simplify to

μ = β2(2D − A − p) + A

3
, (4.40)

B = C + 2

3
A, (4.41)

B = C, (4.42)

A = D, (4.43)

∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x

(
β2

)]
= −64πB. (4.44)

But from Eq. (4.25) we have A = 0 because
B = C . So, from Eq. (4.32) we have μ = −β2 p,
and one is left with a non-homogeneous Burgers
equation. This case reduces the above set of equa-
tions to

μ = −β2 p, (4.45)

B = C, (4.46)

∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= −64πB. (4.47)

Equation (4.45) represents an equation of state
between matter density μ and the pressure p. The
pressures B and C are functions of the spacetime
coordinates (t, x, y, z) and from Eq. (4.46) they
are equal. Equation (4.47) is a non-homogeneous
Burgers equation, since its right hand side cannot
be readily integrated. It might mean that there is
no conservation law that can describe the warp
drive for the PPF EMT. The only possible way
leading to conservation law is for B being a con-
stant, which then allows a straightforward integra-
tion. However, since this is not the case, namely,
all the pressures from the EMT are not, necessar-
ily, constant functions, it is necessary to determine
these functions through the boundary conditions.
The EMT for Case 1b case then yields

Tασ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 B 0
0 0 0 B

⎞
⎟⎟⎠ . (4.48)

The only non-vanishing components of the PPF
EMT above are T22 and T33. This case recovers
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the perfect fluid Case 1b, that is, the dust EMTs
when one chooses p = B = 0. For B �= 0, one
would have to solve Eq. (4.47) to determine how
the bubble moves in this type of fluid spacetime.
Again, a negative matter density emerges from the
Einstein equation solutions for this specific choice
of EMT.
Nevertheless, this is a rather peculiar EMT, since
the T00 component is zero, but the equation of state
(4.45) remains and only two diagonal terms are
not zero. In addition, it is contradictory with the
perfect fluid solution because the PPF reduces to
the perfect fluid under the condition

p = A = B = C = D, (4.49)

but in this solution A = 0, but B �= 0. So, we
discard this case as unphysical.

Case 2:
[

∂β

∂ y
= 0

]
The set of equations (4.13)–(4.22) sim-

plify to

μ = β2(2D − A − p) + A

3
, (4.50)

∂2β

∂x∂z
= 0, (4.51)

(
∂β

∂z

)2

= −32

3
π A = − 16π(B − C), (4.52)

2
∂β

∂z

∂β

∂x
+ ∂2β

∂t∂z
= 0, (4.53)

∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= −32π(B + C) ,(4.54)

∂2β

∂z2 = 16πβ(A − D). (4.55)

Equation (4.52) straightforwardly implies the fol-
lowing relationship between pressures A, B and
C :

B = C + 2

3
A. (4.56)

Equations (4.51) and (4.52) indicate that A and
B−C do not depend on the x-coordinate. In addi-
tion, for real solutions A must be negative or zero.
Finally, Eq. (4.51) shows that this case also unfolds
in two subcases: ∂β/∂z = 0 and/or ∂β/∂x = 0.

Case 2a:
[

∂β

∂ y
= 0 and

∂β

∂x
= 0

]
Clearly B = −C as a

consequence of Eq. (4.54). Then the set of equa-
tions (4.50)–(4.55) simplify to

μ = β2(2D − A − p) + A

3
, (4.57)

B = −C = A

3
, (4.58)

(
∂β

∂z

)2

= 32πC, (4.59)

∂2β

∂z2 = 16πβ(A − D). (4.60)

The EMT for this case is given by the following
expression:

Tασ =

⎛
⎜⎜⎝

β2(2D − A) + A/3 −βD 0 0
−βD A 0 0

0 0 −A/3 0
0 0 0 A/3

⎞
⎟⎟⎠ ,

(4.61)

which is almost equal to Case 1a (Eq. (4.38)), apart
from the change of signs in the components T22 and
T33. Both have the same T00 component and hence,
the same equation of state, and the condition for T00

to be of positive is given by

β2 >
A

3(A − 2D)
. (4.62)

Besides, this expression determines another inequal-
ity that T00 must obey to be positive,

A − 2D > 0. (4.63)

Case 2b:
[

∂β

∂ y
= 0 and

∂β

∂ z
= 0

]
The set of equations

(4.50) to (4.55) immediately simplify to

μ = β2(2D − A − p) + A

3
, (4.64)

B = C − 2

3
A, (4.65)

B = C, (4.66)

A = D = 0, (4.67)

∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= −64πB = −64πC .

(4.68)

Therefore μ = −β2 p, a non-homogeneous Burg-
ers equation is also present, and the expressions
above are reduced to

μ = −β2 p, (4.69)
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B = C, (4.70)

∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= −64πB, (4.71)

which are the same results as obtained in Case 1b
and the EMT, that is,

Tασ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 B 0
0 0 0 B

⎞
⎟⎟⎠ . (4.72)

��

Again, because this solution cannot fulfill the requirement
given by Eq. (4.49)—in fact it contradicts it since one cannot
have both A = 0 and B �= 0—this solution is, similarly to
Case 1b, dismissed as unphysical.

Table 2 summarizes the Einstein equations solutions
obtained as a result of the PPF EMT in the Alcubierre warp
drive metric.

4.1 Discussion

As in the perfect fluid situations, Cases 1b and 2b are the same
for the PPF, producing the same equations of state, coordinate
dependency for the β function and a non-homogeneous Burg-
ers equation. As stated above, only for a constant pressure
B a conservation law could possibly emerge from the Burg-
ers equation (4.71) that is common to both cases. Otherwise
this expression cannot be readily integrated unless further
boundary conditions are met (see Sect. 5.3). Nevertheless,
because the solutions of these two cases cannot satisfy the
requirement established by Eq. (4.49) for reducing the PPF
to the perfect fluid, they are dismissed as unphysical.

Regarding Cases 1a and 2a, the only physically plausible
solutions remaining for the PPF EMT, they must obey the
same inequalities (4.62) and (4.63) so that the T00 component
be positive in both Eqs. (4.38) and (4.61). The function β

depends on the y coordinate in the former case and on the z
coordinate in the latter, and they, respectively, are a result of
the integration of the following differential equations:

β
∂β

∂y
= C

A − D
, (4.73)

β
∂β

∂z
= C

A − D
. (4.74)

However, the quantities A, C and D are functions of the
coordinates, thus integrating the expressions above requires
further conditions, such as the ones, respectively, discussed
in Sects. 5.1 and 5.2.

4.1.1 Equations of state

The perfect fluid solutions have equations of state given by
[32, Ref. p. 14],

p = p(μ) = (γ − 1)μ, γ̇ = dγ

dt
= 0. (4.75)

Ordinary fluids can be approximated with 1 ≤ γ ≤ 2, where
incoherent matter, or dust, corresponds to γ = 1, and radia-
tion to γ = 4

3 .
In the analysis above we found that for the perfect fluid

content solution Cases 1a and 2a for the warp drive metric
the equation of state is given by p = 3μ (see Table 1), which
corresponds to γ = 4. However, they do not allow for simple
expressions for the equation of state similar to Eq. (4.75) for
the PPF solutions 1a and 2a (see Table 2). The PPF content
solutions for Cases 1b and 2b were dismissed as unphysical,

5 EMT divergence of the perfect fluid and PPF

In this section we will investigate the associated conservation
laws to the Einstein equations under a warp drive spacetime
by means of the usual condition that the EMT divergence
must be zero for both the perfect fluid and PPF. We shall start
with the EMT for the PPF because from its very definition the
perfect fluid can be recovered by setting the equality (4.49).

For the fluids discussed here, setting T ασ ;σ = 0 in the
EMT (4.1) results in the following expressions:

−∂β

∂x
(D + μ) − ∂μ

∂t

−β

[
∂D

∂x
+ ∂μ

∂x
+ ∂β

∂t
(2p + A − 3D)

]
(5.1)

+β2
[
∂D

∂t
− ∂p

∂t
+ 3

∂β

∂x
(D − p)

]

+β3
(

∂D

∂x
− ∂p

∂x

)
= 0, (5.2)

∂A

∂x
+ ∂β

∂t
(D − A)

+β

[
3
∂β

∂x
(D − A) + ∂D

∂t
− ∂A

∂t

]

+β2
(

∂D

∂x
− ∂A

∂x

)
= 0,

∂B

∂y
+ β

∂β

∂y
(D − A) = 0, (5.3)

∂C

∂z
+ β

∂β

∂z
(D − A) = 0. (5.4)
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Table 2 Summary of all
solutions of the Einstein
equations for the Alcubierre
warp drive metric having the
parametrized perfect fluid (PPF)
EMT. The cases, conditions and
their respective designations are
the same as in Table 1

Case Conditions Results

1)
∂β

∂z
= 0 1a)

∂β

∂x
= 0

μ = β2(2D − A − p) + A

3
β = β(t, y)

B = −C = A

3(
∂β

∂y

)2

= 32πC,

∂2β

∂y2 = 16πβ(A − D)

1b)
∂β

∂y
= 0

μ = −β2 p
β = β(t, x)
B = C
A = D = 0
∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= −64πB

→ solution dismissed as unphysical

2)
∂β

∂y
= 0 2a)

∂β

∂x
= 0

μ = β2(2D − A − p) + A

3
β = β(t, z)

B = −C = A

3(
∂β

∂z

)2

= 32πC

∂2β

∂z2 = 16πβ(A − D)

2b)
∂β

∂z
= 0

μ = −β2 p
β = β(t, x)
B = C
A = D = 0
∂

∂x

[
∂β

∂t
+ 1

2

∂

∂x
(β2)

]
= −64πB

→ solution dismissed as unphysical

5.1 Case 1a:
[

∂β

∂ z
= 0 and

∂β

∂x
= 0

]

Equations (5.1)–(5.4) are reduced to

− ∂μ

∂t
− β

[
∂D

∂x
+ ∂μ

∂x
+ ∂β

∂t
(2p + A − 3D)

]

+ β2
(

∂D

∂t
− ∂p

∂t

)

+ β3
(

∂D

∂x
− ∂p

∂x

)
= 0, (5.5)

∂A

∂x
+ ∂β

∂t
(D − A) + β

(
∂D

∂t
− ∂A

∂t

)

+ β2
(

∂D

∂x
− ∂A

∂x

)
= 0, (5.6)

∂B

∂y
+ β

∂β

∂y
(D − A) = 0, (5.7)

∂C

∂z
= 0. (5.8)

The results above concern the PPF. These four equations
together with the five ones shown in the respective results of
Table 2 mean an overdetermined system for the six unknowns
μ, p, A, B,C , D.

The perfect fluid is recovered by setting Eq. (4.49). Hence,
Eqs. (5.5)–(5.8) become

−∂μ

∂t
− β

(
∂p

∂x
+ ∂μ

∂x

)
= 0, (5.9)

∂p

∂x
= 0, (5.10)

∂p

∂y
= 0, (5.11)

∂p

∂z
= 0, (5.12)

and, thus, the pressure does not depend on the spatial coor-
dinates. In addition, Eq. (5.9) reduces to the expression

∂μ

∂t
+ β

∂μ

∂x
= 0, (5.13)
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which is the continuity equation, where μ plays the role of
the fluid density and β is the flow velocity vector field. It
is worth mentioning that for a constant density the fluid has
incompressible flow; then all the partial derivatives of β in
terms of the spatial coordinates vanish and the flow velocity
vector field has null divergence, this being a classical fluid
dynamics scenario, and the local volume dilation rate is zero.

5.2 Case 2a:
[

∂β

∂ y
= 0 and

∂β

∂x
= 0

]

Equations (5.1)–(5.4) simplify to the following expressions:

− ∂μ

∂t
− β

[
∂D

∂x
+ ∂μ

∂x

+∂β

∂t
(2p + A − 3D)

]

+ β2
(

∂D

∂t
− ∂p

∂t

)

+ β3
(

∂D

∂x
− ∂p

∂x

)
= 0, (5.14)

∂A

∂x
+ ∂β

∂t
(D − A)

+ β

(
∂D

∂t
− ∂A

∂t

)

+ β2
(

∂D

∂x
− ∂A

∂x

)
= 0, (5.15)

∂B

∂y
= 0, (5.16)

∂C

∂z
+ β

∂β

∂z
(D − A) = 0. (5.17)

Assuming Eq. (4.49) the perfect fluid is recovered, resulting
in the already discussed Eqs. (5.9)–(5.12) and the continuity
equation (5.13).

5.3 Cases 1b and 2b:
[

∂β

∂ y
= 0 and

∂β

∂ z
= 0

]

It follows from Table 1 that conditions 1b and 2b for the
perfect fluid imply μ = p = 0, which also means A =
B = C = D = 0. Then Eqs. (5.1)–(5.4) of the null EMT
divergence are immediately satisfied for the perfect fluid.

Regarding the PPF, we have already seen that in these
cases the solutions were dismissed as unphysical. Nonethe-
less, it is worth analyzing the resulting expressions to show
that they lead to trivial cases or to the dust solution already
studied in Ref. [19].

Table 2 shows the following solutions for the PPF EMT
considering Cases 1b and 2b: A = D = 0, B = C , and μ =
−β2 p. Hence, Eqs. (5.1)–(5.4) are reduced to the following

expressions:

− ∂μ

∂t
− β

(
∂μ

∂x
+ 2p

∂β

∂t

)

− β2 ∂p

∂t
− β3 ∂p

∂x
= 0, (5.18)

∂B

∂y
= 0, (5.19)

∂C

∂z
= ∂B

∂z
= 0. (5.20)

Equations (5.19) and (5.20) imply that B does not depend on
both the y and the z coordinates. Inserting the state equation
μ = −β2 p (see Table 2) into Eq. (5.18) yields

pβ2 ∂β

∂x
= 0. (5.21)

This expression can be separated in three subcases: β = 0,
p = 0, ∂β/∂x = 0. According to Eq. (4.71) the last subcase
implies B = 0 and, hence, there is no Burgers equation. Let
us discuss below the consequences of each of these subcases.

5.3.1 Subcase [ β = 0 ]

This solution reduces the warp drive metric (2.6) into a
Minkowski flat spacetime. There is no warp bubble and,
therefore, no warp drive.

5.3.2 Subcase [ B = 0 ]

Remembering Eqs. (4.48) and (4.72) this means that all EMT
components are zero, even though the equation of state μ =
−β2 p remains. But, since there is no EMT, both μ and pmust
vanish, hence this case reduces itself to the dust solution [19].

5.3.3 Subcase [ p = 0 ]

Considering the equation of state μ = −β2 p, then the mat-
ter density is also zero. The EMT for the PPF assumes the
form given by Eq. (4.72), which implies pressure without
matter density, an unphysical situation that should either be
dismissed or assumed to be just the dust solution.

6 Energy conditions

The energy conditions are the well-known inequalities dis-
cussed by Hawking and Ellis [23], which may be applied
to the matter content in physical systems as boundary condi-
tions and to test if the energy of such systems follows positive
constraint values.
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This section aims at obtaining these conditions for the
Alcubierre warp drive geometry considering the previously
discussed EMTs for both the perfect fluid and the PPF. Our
focus will be on the main classical inequalities, namely, the
weak, dominant, strong and null energy conditions. Our anal-
ysis starts with the PPF EMT defined in Eq. (4.1) in order
to constrain its quantities so that the inequalities are satisfied
for each of the four just named conditions. Then the same
analysis for the perfect fluid is performed by reducing the
results to the choice set by Eq. (4.49), but considering only
the physically plausible cases.

6.1 Weak energy condition (WEC)

The WEC requires that at each point of the spacetime the
EMT must obey the following inequality:

Tασ uαuσ ≥ 0. (6.1)

This is valid for any timelike vector u (uαuα < 0) as well
as for any null vector k (kαkα = 0; see Sect. 6.4). For
an observer with a unit tangent vector v at some point of
the spacetime, the local energy density measured by any
observer is non-negative [23]. Considering the Eulerian (nor-
mal) observers from [1] with four-velocity given by the
expressions

uα = (1, β, 0, 0) , uα = (−1, 0, 0, 0) , (6.2)

and the EMT, given by Eq. (4.1), computing the expression
Tασ uαuσ for the WEC yields

Tασ uαuσ = T00 u
0u0 + 2T01 u

0u1 + T11 u
1u1

= μ + β2(p − 2D + A) . (6.3)

Let us now calculate the WEC for all perfect fluid and PPF
Einstein equations solutions obtained in the previous sections
as referred to in Table 2.

6.1.1 Cases 1a and 2a

Let us start by considering the PPF. Substituting the equation
of state (4.12) into Eq. (6.3) yields

Tασ uαuσ = A

3
≥ 0. (6.4)

So, the pressure A must positive. Considering that both cases
led to Eq. (4.58), the pressure C must be negative. Besides,
for the state equation (4.12) the density μ becomes positive
if

A + p ≤ 2D . (6.5)

This inequality implies that it is possible for the fluid density
to account for both negative and positive values in a local way
depending on how the momentum and pressure components
relate to each other in the spacetime.

Remembering Eq. (4.49), the resulting inequality (6.4)
indicates that the WEC is satisfied with the perfect fluid
EMT for a positive pressure p. Considering Eqs. (3.30) and
(3.31) that would mean a complex solution for β, a possibil-
ity already envisaged in Sect. 3.2. Note that this is a general
result for the perfect fluid with a cross term solution.

6.1.2 Cases 1b and 2b

It has been shown above that in these two cases the PPF
solutions result in A = D = 0 and μ = −β2 p, which
substituted in Eq. (6.3) yield Tασ uαuσ = 0. Hence, the WEC
is not violated for the PPF.

For the perfect fluid, Table 1 shows that in these two cases
the perfect fluid solutions reduce to the dust content solution
for the warp drive metric, which trivially satisfies the WEC
[19, Ref. p. 6].

6.2 Dominant energy condition (DEC)

The DEC states that for every timelike vectorua the following
inequality must be satisfied:

T αβ uαuβ ≥ 0, and FαFα ≤ 0, (6.6)

where Fα = T αβuβ is a non-spacelike vector. This condition
means that for any observer the local energy density is non-
negative and the local energy flow vector is non-spacelike. In
any orthonormal basis the energy dominates the other com-
ponents of the EMT,

T 00 ≥ |T ab|, for each a, b. (6.7)

Hawking and Ellis [23] suggested that this condition must
hold for all known forms of matter and that it should be the
case in all situations.

Evaluating this condition for PPF, the first DEC inequality
is given by the following expression:

T αβ uαuβ = T 00 = β2(A − 2D + p) + μ ≥ 0, (6.8)

whereas the second inequality FαFα ≤ 0 yields

(
T αβ uβ

) (
Tαβ uβ

) = − μ2 − A2β4 − β4 p2

+ A2β2 −
(

4β4 − β2
)
D2

+ 2
(

2Aβ4 − Aβ2
)
D
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− 2
(
Aβ2 − 2β2D

)
μ

− 2(Aβ4 − 2β4D + β2μ)p ≤ 0.

(6.9)

As before, let us analyze next the solutions of the Einstein
equations considering each group of subcases as referred to
in Table 2.

6.2.1 Cases 1a and 2a

The two important results for these two cases are Eqs. (4.57)
and (4.58). Substituting them into the two DEC inequalities
above results in the following expressions:

T αβ uαuβ = A

3
≥ 0, (6.10)

(
T αβ uβ

) (
Tαβ uβ

)

=
[
(A − D)β + A

3

] [
(A − D)β − A

3

]
≤ 0. (6.11)

Equation (6.10) is equal to Eq. (6.4), so this dominant energy
condition is the same as the weak one. Equation (6.11) sep-
arates in two inequalities,

− A

3 (D − A)
≤ β ≤ A

3 (D − A)
, (6.12)

− A

3 (A − D)
≤ β ≤ A

3 (A − D)
, (6.13)

which can be rewritten as

|β| ≤ 1

3

∣∣∣∣
A

D − A

∣∣∣∣ . (6.14)

In addition to the inequalities above, Eq. (6.11) also leads to
the following solutions:

β = ± A

3(A − D)
. (6.15)

Equation (6.14) shows that β is upper bounded, but since
both A and D have no constraints, β can be greater than unity.
Remembering that β = vs(t) f [rs(t)], the dominant energy
condition is not violated for cases where the apparent warp
bubble speed is greater than the speed of light. This result also
depends on the relation between the pressure component A
and the momentum component D as can be seen in Eqs.
(6.12) and (6.13). As an example suppose that A = D + 1
in Eq. (6.12), so that

−D + 1

3
≤ vs(t) f [rs(t)] ≤ D + 1

3
. (6.16)

The symmetry on the negative and positive values that β

may assume means the direction in which the warp bubble is
moving on the x-axis on the spatial hyper surface. Note that,
depending on the value of D, the warp bubble may assume
the speed vs(t) greater than the speed of light.

Regarding the perfect fluid, choosing as in Eq. (4.49) the
DEC is given by the following expressions:

T αβ uαuβ = p

3
≥ 0, (6.17)

(
T αβ uβ)(Tαβ uβ

) = p2 ≥ 0, (6.18)

which means that for the DEC to be satisfied a positively
valued matter density is enough (see Table 1), although this
also means a complex result for β (see Sect. 3.2).

6.2.2 Cases 1b and 2b

In these cases the PPF solutions, although considered
unphysical, produced B = C , A = D = 0 and μ = −β2 p
(see Table 2). So, as shown by the following expressions the
DEC is immediately satisfied:

T αβ uαuβ = T 00 = 0, (6.19)(
T αβ uβ

) (
Tαβ uβ

) = 0 . (6.20)

The perfect fluid is the dust solution for both cases (see Table
1), which is a vacuum solution and satisfies the inequalities
above trivially.

6.3 Strong energy condition (SEC)

For any timelike vector uα the EMT must obey the following
inequality for the SEC to be valid:

(
Tαβ − 1

2
T gαβ

)
uαuβ ≥ 0. (6.21)

This requirement is stronger than the WEC and only makes
sense in a general relativistic framework because this the-
ory is governed by the Einstein equations. These conditions
imply that gravity is always attractive.

To obtain an expression for the SEC let us start with the
scalar T = gαβTαβ , where gαβ is given by the Alcubierre
warp drive metric and Tαβ is the EMT for the PPF (Eq. (4.1)).
The result is

T = gαβTαβ = −μ+A+B+C+β2 (2D − p − A) . (6.22)

Substituting the equation of state (4.12) into the expression
above yields

T = 2

3
A + B + C. (6.23)
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As shown in Sect. 6.1 above, Eq. (4.12) implies that
Tασuαuσ = A/3 for uσ = (1, β, 0, 0). Inasmuch as
gασuαuσ = −1, the SEC are given by the following expres-
sion:

(
Tασ − 1

2
T gασ

)
uαuσ = 2A

3
+ (B + C)

2
≥ 0. (6.24)

The particular cases, as summarized in Table 2, can now be
discussed.

6.3.1 Cases 1a and 2a

These cases resulted in the constraint B = −C = A/3.
Equation (6.24) may then be rewritten in the form

(
Tασ − 1

2
T gασ

)
uαuσ = 2A

3
= 2B ≥ 0 . (6.25)

Clearly, for the SEC to be satisfied it is only necessary that
the pressure component A must be non-negative.

Regarding the perfect fluid its respective SEC reads

(
Tασ − 1

2
T gασ

)
uαuσ = 2p

3
≥ 0. (6.26)

So, the SEC can be satisfied by the perfect fluid in these
subcases by requiring a positive pressure p.

6.3.2 Cases 1b and 2b

In these cases the PPF solutions stated that A = D = 0 and
B = C . Hence, the SEC is satisfied under the constraint

(
Tασ − 1

2
T gασ

)
uαuσ = B ≥ 0, (6.27)

despite providing unphysical solutions. The perfect fluid
solutions are just the dust solution, that is, a vacuum solution
[19], thus satisfying the SEC trivially.

6.4 Null energy condition (NEC)

The SEC and WEC are satisfied in the limit of the null
observers with four-velocities k. To satisfy the NEC the EMT
must obey the inequality

Tασ kαkσ ≥ 0, for any null vector kα. (6.28)

To calculate the NEC let us consider the following null vector:

kα = (a, b, 0, 0), (6.29)

where the relation between a and b can be obtained by impos-
ing the condition

kαk
α = 0, (6.30)

which leads to

a2β2 − 2abβ − a2 + b2 = 0, (6.31)

whose roots for a/b yield

a

b
= 1

β + 1
and

a

b
= 1

β − 1
. (6.32)

Considering the results above, the NEC may be written as
follows:

Tασ kαkσ = T00k
0k0 + 2T01k

0k1 + T11k
1k1, (6.33)

where Tασ is the PPF EMT of Eq. (4.1). So, the null condition
is given by the following expression:

Tασ kαkσ = a2β2 p − 2abβD + b2A + a2μ ≥ 0. (6.34)

Substituting the two roots in Eqs. (6.32) into Eq. (6.34) results
in the expressions

b2

(β + 1)2

[
μ − β2 (2D − A − p)

+2β(A − D) + A] ≥ 0, (6.35)

b2

(β − 1)2

[
μ − β2(2D − A − p)

−2β(A − D) + A] ≥ 0. (6.36)

Next, as before, we shall proceed to investigate first Cases
1a and 2a and then 1b and 2b, as defined in Tables 1 and 2,
for the PPF and the perfect fluid.

6.4.1 Cases 1a and 2a

Considering the PPF first, the equation of state (4.57) is a
solution of both cases (see Table 2), so the resulting NEC
given by Eqs. (6.35) and (6.36) simplify to the following
expressions:

b2

(β + 1)2

[
4A

3
+ 2β(A − D)

]
≥ 0, (6.37)

b2

(β − 1)2

[
4A

3
− 2β(A − D)

]
≥ 0, (6.38)

whose solutions for β yield the NEC for the PPF EMT:

β ≥ 2

3

A

D − A
and β �= −1, (6.39)
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β ≤ 2

3

A

A − D
and β �= 1. (6.40)

Remembering that β = vs(t) f (rs), then Eq. (6.39) states
that the warp bubble cannot assume the negative sign of the
speed of light, but it may assume values above it. To verify
that, we have to choose A = D − 1 > 2/3 and β > 1.
Equation (6.40) states that β cannot assume the exact value
of the speed of light and it is bounded by a superior value
which can be greater than the speed of light. To have this,
one just have to choose for example A = D + 1 > 2/3.

For the perfect fluid, according to Eq. (4.49) all pressures
are equal. Hence, substituting the two values for a/b found
in Eq. (6.34) into Eqs. (6.35) and (6.36) they then simplify
to the expressions

b2

(β + 1)2 (μ + p) ≥ 0, (6.41)

b2

(β − 1)2 (μ + p) ≥ 0. (6.42)

These results mean that the NEC is satisfied for the perfect
fluid provided that

μ + p ≥ 0. (6.43)

Remembering that p = 3μ for the perfect fluid in these two
cases, then the NEC is fulfilled if the matter density does not
have negative values.

6.4.2 Cases 1b and 2b

These cases, although set as unphysical, we already con-
cluded that the PPF relates its pressures by the following
expressions: A = D = 0 and B = C . Therefore, Eqs. (6.35)
and (6.36) yield

b2

(β + 1)2

(
μ + β2 p

)
≥ 0, (6.44)

b2

(β − 1)2

(
μ + β2 p

)
≥ 0. (6.45)

So, the NEC establishes that μ + β2 p ≥ 0, which is readily
satisfied since in these cases we already concluded that μ =
−β2 p, provided that β �= −1 for the former and β �= 1 for
the latter. Regarding the perfect fluid, these cases reduce to
the dust solution studied in [19], which is a vacuum solution
and, therefore, immediately satisfies the NEC.

Table 3 summarizes the results of all energy conditions
for the PPF and perfect fluid EMTs with the Alcubierre warp
drive metric.

7 Further discussions

This section discusses some points, and raises others, all
related to the physics of the warp drive as suggested by the
results presented in the previous sections. It aims at offer-
ing some thoughts that may be important in fostering further
understanding on how a superluminal travel can be achieved.

7.1 Regulating function and the Burgers equation

The regulating function (2.8) describes the shape of the warp
bubble, but it is not uniquely determined. However, the inte-
gration of the Einstein equations in both the perfect fluid and
the PPF led to the appearance of generic functions in the
dynamic equations which may end up connected to the reg-
ulating function, a situation that adds to its nonuniqueness.
This means that physically feasible superluminal speeds will
require the specification of these generic functions, possibly
by boundary conditions. We shall show below an example of
this situation using the dust solution.

Considering Eqs. (2.3) and (2.10) the partial derivative of
the Burgers equation (3.19) yields

∂β

∂t
= f

d2xs
dt2 + vs

∂ f

∂rs

∂rs
∂t

, (7.1)

where the simplified notation f = f [rs(t)] and vs = vs(t)
was adopted. Since

∂β

∂x
= vs

∂ f

∂rs

∂rs
∂x

, (7.2)

the Burgers equation becomes

f
d2xs
dt2 + vs

∂ f

∂rs

∂rs
∂t

+ v2
s f

∂ f

∂rs

∂rs
∂x

= h(t). (7.3)

The partial derivative of Eq. (2.8) may be written as follows:

∂ f

∂rs
= σ

2 tanh (σ R)

{
sech2 [σ (rs + R)]

−sech2 [σ (rs − R)]
}

. (7.4)

The partial derivatives of rs yield

∂rs
∂t

= ±dxs
dt

= ±vs(t), (7.5)

∂rs
∂x

= ±1, (7.6)

and remembering that in the dust case β = β(x, t), then rs(t)
is given by (see Eq. (2.9))

rs(t) =
√

[x − xs(t)]2 = |x − xs(t)|. (7.7)
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Table 3 Summary of all energy
conditions results for the perfect
fluid and PPF EMTs with the
Alcubierre warp drive spacetime
geometry

Cases (refer to Tables 1 and 2) Energy Conditions Results

1a and 2a Weak Perfect fluid: p ≥ 0
PPF: A ≥ 0

Dominant
Perfect Fluid: p ≥ 0

PPF: A ≥ 0 and |β| ≤ 1

3

∣∣∣∣
A

D − A

∣∣∣∣

Strong Perfect fluid : p ≥ 0
PPF : A ≥ 0

Null

Perfect fluid : μ + p ≥ 0

PPF : β ≥ 2

3

A

D − A
and β �= −1

PPF : β ≤ 2

3

A

A − D
and β �= 1

1b and 2b Weak immediately satisfied for perfect fluid and PPF.

Dominant immediately satisfied for perfect fluid and PPF.

Strong Perfect fluid: immediately satisfied.
PPF: B ≥ 0

Null immediately satisfied for perfect fluid and PPF.

Considering the expressions above, Eq. (7.3) may be rewrit-
ten as follows:

f
d2xs
dt2 ± v2

s
σ F

2 tanh (σ R)

±v2
s f

σ F

2 tanh (σ R)
= h(t), (7.8)

where

F (rs) ≡ sech2 [σ (rs + R)]

−sech2 [σ (rs − R)] . (7.9)

Remembering that the regulating function f [rs(t)], as
defined by Eq. (2.8), can be approximated by a top hat func-
tion when σ � R (see Ref. [19], §2.1), in this limit Eq. (7.8)
takes the following form inside the bubble:

d2xs
dt2 = h(t), (7.10)

where f = 1. Outside the bubble f = 0 and then h(t) = 0,
which means plane shock waves described by the inviscid
Burgers equation [19].

Hence, the nonuniqueness of the shift vector β =
vs(rs) f [rs(t)] arises not only from the fact that the func-
tion h(t) is arbitrary, but also because the regulating function
f [rs(t)] only requires a top hat behavior with null values out-
side the bubble. So, any well-behaved function that respects
such constraints may be part of a solution of the Burgers
equation. Moreover, from the energy conditions calculated
for the PPF, as summarized in Table 3, one can see that β

plays a fundamental role in Cases 1a and 2a for the null and
dominant energy conditions to be satisfied, which adds fur-
ther physical constraints to its behavior. So, it is clear that the
nonlinearity of the Einstein equations imply that the generic
functions appearing in their integration become entangled
with the regulating function in a non-trivial manner.

To extend this analysis to the perfect fluid and PPF con-
tents requires further constraints on the shift vector, some-
thing which at this stage would be done in an entirely arbitrary
manner. Perhaps in the future this can be done under more
physically plausible reasoning.

7.2 Anisotropic fluids

The PPF proposed in Sect. 4 aimed at offering an alternative
EMT for solving the Einstein equations endowed with the
warp drive metric. As we shall see below, the PPF can actually
be seen as an anisotropic fluid with heat flux [33].

In general relativity the energy–momentum tensor Tμν

represents the source of energy and momentum, where T00 is
the flow of energy across a surface of constant time (energy
density), T0i is the energy flux across a surface in the i direc-
tion (constant xi ), Ti0 is the momentum density and Ti j is
the momentum flux. If we choose a comoving frame of ref-
erence that moves with the same velocity as the fluid this
means that particles in this fluid will have zero velocity and
the flux of energy will be only through the flux of heat, and
the momentum flux will be via some sort of dissipative phe-
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nomena such as viscosity, thermal radiation or even some
sort of electromagnetic type of radiation.

The general stress–energy tensor of a relativistic fluid can
be written in the form [33,34]

T αβ = μuαuβ + phαβ + uαqβ + uβqα + παβ, (7.11)

where

hαβ = gαβ + ua ub (7.12)

projects tensors onto hypersurfaces orthogonal to uα , μ is the
matter density, p is the fluid static pressure, qα is the heat flux
vector and παβ is the viscous shear tensor. The world lines of
the fluid elements are the integral curves of the four-velocity
vector uα . The heat flux vector and viscous shear tensor are
transverse to the world lines, that is,

qa u
a = 0, πab u

b = 0. (7.13)

In terms of coordinates we can write the energy–momentum
tensor for a general fluid as

Tαβ =
(

ε qa
qb πab

)
, (7.14)

where qa is the three-vector heat flux vector, ε is a scalar
function and πab is a three-by-three matrix viscous stress
tensor, which is symmetric and traceless. Both qa and πab

have, respectively, three and five linearly independent com-
ponents. Together with the density μ and the static pressure
p, this makes a total of ten linearly independent components,
which is the number of linearly independent components in a
four-dimensional symmetric rank two tensor. We noticed that
the Einstein tensor components are highly nonlinear for the
warp drive metric and the off-diagonal terms require those
free parameters for a non-overdetermined solution. For a non-
curved metric, i.e., the Minkowski metric ηαβ , the energy–
momentum tensor for a perfect fluid with anisotropic pres-
sures can be written as

Tαβ =

⎛
⎜⎜⎝

μ 0 0 0
0 px 0 0
0 0 py 0
0 0 0 pz

⎞
⎟⎟⎠ . (7.15)

Isotropic static pressure means that px = py = pz = p. The
perfect fluid has no heat flux or dissipative phenomena, then
(qα = 0, παβ = 0). This special case with dust content is
the well-known EMT, that is,

T αβ = μuαuβ + phαβ = (μ + p)uαuβ + pgαβ . (7.16)

The PPF proposed in Sect. 4 has the matrix form given by
Eq. (4.1), which may be broken down as the sum of a perfect

fluid in a warp drive background as given by Eq. (3.2), and
a dissipative fluid with the heat flux four-vector given by
qα = − 1

2 (q0, q1, 0, 0). Hence

qαuβ + qβuα =

⎛
⎜⎜⎝

q0 q1 0 0
q1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (7.17)

since the four-velocity for the moving frame is uα =
(−1, 0, 0, 0). The isotropic term is given by

παβ =

⎛
⎜⎜⎝

π00 0 0 0
0 π01 0 0
0 0 π02 0
0 0 0 π03

⎞
⎟⎟⎠ (7.18)

and

μ + β2 p → (μ + π00 + q0) + β2 p . (7.19)

So, the four parameters of the PPF are as follows:

A = π01 + p , (7.20)

B = π02 + p , (7.21)

C = π03 + p , (7.22)

D = p − q1

β
. (7.23)

The tensorπαβ must be traceless, giving us one more equation
to solve for the free parameters (anisotropic pressures)

π00 + π01 + π02 + π03 = 0. (7.24)

From the above one can see that the warp drive met-
ric endowed with the PPF allows one to make a study of
fluid anisotropy coupled with possible dissipative effects
that could lead to a warp drive bubble. Perfect fluids are
well known to be part of solutions for the Einstein equa-
tions, this being the case of the standard FLRW cosmolog-
ical model that accounts for the expansion, isotropy and
spatial homogeneity of the universe. On the other hand,
anisotropic imperfect fluids offer a more complex source of
gravitational effects, presenting dissipative processes, shear
and bulk viscous pressures, interaction between fluids, radi-
ation processes, electromagnetic interaction and even col-
lision between particles, charged or not. These fluids are
even known to avoid the big bang singularity in cosmologi-
cal models [35–39]. MacCallum [40] discussed various ways
of generating anisotropy such as the presence of electromag-
netic fields, the presence of viscous terms and the anisotropic
stresses due to the anisotropic expansion of a cloud of col-
lisionless particles. Another way to account for viscosity,
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heat and energy flux is the interaction of two or more fluids
[41,42].

7.3 Other aspects of warp drive physics

The points presented above regarding the physical feasibility
of superluminal travel with the Alcubierre spacetime geom-
etry by no means exhaust this discussion. Several issues
remain open, with each of them deserving separate studies
that are beyond the scope of this paper, since in here we
focused on the basic properties of the solutions of the Ein-
stein equations of the warp drive metric with fluid content.
With respect to the open issues, one can point out the amount
of mass-energy density, exotic or not, necessary for the fea-
sibility for the warp drive in the context of both the perfect
fluid and the PPF, and also quantum effects and the ques-
tion of stability or instability in our solutions. These issues
deserve further investigations and are the subject of ongoing
research.

8 Conclusions

In this work we have analyzed the Einstein equations for
the Alcubierre warp drive metric having as gravity source
two types of energy–momentum tensors (EMT) for a fluid,
namely the perfect fluid and the parametrized perfect fluid
(PPF). The latter is defined by allowing the EMT pressure
components of the perfect fluid to be different from one
another and dependent on all coordinates.

After obtaining the components of the Einstein tensor for
the warp drive metric we calculated the dynamic equations
for both fluids by solving the respective Einstein equations.
Solutions were found in the form of various equations of
state, and, by further imposing the null divergence for the
EMTs, new constraints were also found for the various vari-
ables. The weak, dominant, strong and null energy conditions
were also calculated, which implied further constraints upon
the free quantities for the EMTs. For the perfect fluid these
were on the matter density μ and pressure p. For the PPF that
occurred these were on the pressure components p, A, B,C ,
the matter density for the fluid μ and the momentum com-
ponent D.

We found two main groups of solution subcases possess-
ing different conditions for each EMT. For the perfect fluid,
one solution may be interpreted as requiring that the warp
bubble can only be viable with negative matter density. The
alternative interpretation is that the warp bubble is possible
with positive matter density, but in this case the regulating
function f (r, s), which shapes the warp bubble, becomes a
complex function. This comes from results allowing the pos-
sibility that the function β = vs(t) f (rs) may have complex
solutions once the matter density is positive. Other results in

both fluids reinforce our earlier finding in Ref. [19] that the
warp bubble necessary for generating superluminal veloci-
ties, or warp speeds, can be interpreted as a shock wave from
classical fluid dynamics theory.

We mentioned four cases arising from the solutions of the
Einstein equations: 1a, 1b, 2a and 2b. However, Cases 1a and
2a are very similar, or equal, to each other, and we have the
same for Cases 1b and 2b. For this reason they were grouped
together in the tables that summarize all results.

Specifically, Cases 1b and 2b for the perfect fluid reduced
the solutions to the ones found for dust content already stud-
ied in Ref. [19], that is, a vacuum solution unable to create
a warp bubble, but which connects the warp metric to the
inviscid Burgers equation, also yielding β as a function of t
and x coordinates. The null EMT divergence is satisfied and
a continuity equation was also found (Eq. (5.13)).

Cases 1b and 2b for the PPF resulted in an equation of state
of the form μ = −β2 p, the coordinate dependency of the β

function became β = β(x, t) and a non-homogeneous Burg-
ers equation (4.71) emerged. However, the pressures were
constrained in such a way that this PPF EMT solution for the
warp drive was dismissed as unphysical.

Cases 1a and 2a for the perfect fluid produced an equa-
tion of state relating pressure and matter density given by
p = 3μ. The β function dependencies became β = β(y, t)
in the former case and β = β(z, t) in the latter case, and both
produced a differential equation for β that either requires a
negative density for β to be a real valued function, or a pos-
itive matter density which then leads to a complex solution
for β, which in turn leads to a complex regulating function
f (rs) whose possible real part would then be related to a
physically viable warp bubble.

Cases 1a and 2a for the PPF resulted in an equation of
state relating almost all quantities, in the form μ = β2(2D−
A − p) + A/3 which is valid for both cases. The coordinate
dependency on β that occurred, respectively, resulted in β =
β(y, t) and β = β(z, t). The function β is also governed
by the first order differential equations (4.73) and (4.74),
respectively.

The null EMT divergence T ασ ;σ = 0 was calculated,
producing further sets of very nonlinear differential equations
constraining all quantities in the PPF which could be used,
in principle, to determine all pressures and matter density in
this fluid. For the perfect fluid, Cases 1a and 2a are reduced to
a continuity equation (5.13) including the function β, which
is interpreted as playing the role of the flow velocity vector
field. Cases 1b and 2b reduced the PPF to either the trivial
condition of Minkowski flat spacetime with no warp drive,
or an EMT with all components being zero, that is, a vacuum
case.

It has already been seen in Ref. [19] that the Burgers equa-
tion appears to be connected to the dust solution of the warp
drive metric, which is in fact a vacuum solution. Cases 1b
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and 2b of the perfect fluid became reduced to the dust solu-
tion, and a non-homogeneous form of the Burgers equation
appears in these respective cases for the PPF, although the
whole solutions in these cases were dismissed as unphysical.
The solutions that presented themselves as the most plausible
ones for creating warp speeds, 1a and 2a for both the perfect
fluid and the PPF, do not generate a Burgers equation.

The weak, dominant, strong and null energy conditions
were also studied in the context of the perfect fluid and
PPF energy–momentum tensors for a warp drive metric. The
resulting expressions were found to satisfy all conditions in
the perfect fluid EMT. Regarding the PPF, specific expres-
sions constraining its EMT quantities were obtained in order
to satisfy these energy conditions, but they do not necessarily
lead to the conclusion that negative matter density is always
necessary for viable warp speeds, particularly because in the
PPF the pressure A must assume values equal to or greater
than zero.

Summing up, the results of this paper indicate that warp
speeds might be physically viable in the context of positive
matter density as some solutions of the Einstein equations for
both fluids keep open this possibility. Nevertheless, such a
situation creates the additional issue in the perfect fluid con-
text concerning the meaning of a possible complex regulating
function in the warp metric, a result that may be interpreted
as a caveat, or major stumbling block. Such a difficulty does
not appear to occur in the PPF scenario, although this fluid
was considered here mainly as a hypothetical model whose
aim was to investigate whether or not new possibilities arise
in the solutions of the Einstein field equations considering
more complex energy–momentum tensors having the Alcu-
bierre warp drive metric. On this front it seems then that the
initial conclusions about the unphysical nature of the warp
drive, or the impossibility of generating warp speeds, may
not be not as stringent as initially thought, or, perhaps, are
not valid at all.
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