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Abstract We consider a generic description of interact-
ing dynamical Dark Energy, characterized by an equation
of state with a time dependent coefficient w(t), and which
may interact with both radiation and matter. Without referring
to any particular cosmological model, we find a differential
equation which must be satisfied by w(t) and involving the
function Q(t) which describes the interaction between Dark
Energy and the other cosmological fluids. The relation we
find represents a constraint for various models of interact-
ing dynamical Dark Energy. In addition, an observable is
proposed, depending on kinematic variables and on density
parameters, which may serve as a new test for �CDM.

1 Introduction

The accelerating expansion of our Universe [1,2] can be
described by a cosmological constant in the Einstein-Hilbert
action of General Relativity, introduced by Einstein [3] in
order to have a static Universe. There are a few well known
good reasons to be unsatisfied with the description of Dark
Energy (DE) in terms of a cosmological constant, but the
known difficulties, or seemingly unnatural coincidences, can
be solved invoking very peculiar initial conditions [4]. In the
hopeful wait of an experimental conclusive evidence, theo-
rists since long time provided us with a variety of alternative
models for DE [5], with the request that any cosmological
model should reproduce an Universe which, at our epoch, is
almost perfectly flat and filled by matter and DE in the ratio
of about 3/7, where the DE is effectively approximated by
a constant. In Literature many “dynamical” alternatives for
DE can be found, like, for instance, the quintessence models
[6,7], where the role of the cosmological constant is played
by scalar potentials, suitably parametrized to get the desired
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behavior, and the K-essence models [8–10], likewise built in
terms of scalar fields, where the accelerated expansion of the
Universe is driven by the kinetic term. Both quintessence and
K-essence models belong to the wider category of modified
theories of gravity, whose purpose is to extend their range of
validity to large, galactic, scales. In the most general case,
any dynamical, as opposed to constant, model for DE may
interact with all the components of the cosmological perfect
fluid in terms of which is written the energy momentum ten-
sor appearing at the right hand side of the Einstein equations

Rμν − 1

2
gμνR = 8πG Tμν. (1.1)

The coupling could be minimal, through the metric depen-
dent invariant measure, or non-minimal, with direct and non-
trivial coupling with gravity, like in the scalar-tensor theo-
ries, or by means of direct interactions with baryonic matter,
and/or with neutrinos, and/or with Dark Matter [11–16].

In this paper we keep a very general perspective. Without
referring to any particular DE model, we assume only that DE
is realized by means of a perfect fluid satisfying an Equation
of State (EoS) with a time dependent w-coefficient

pDE = w(t)ρDE (1.2)

and that DE interacts non-minimally with any cosmological
component. The interactions result in broken covariant con-
servation laws of the energy momentum tensors of the single
cosmological components

∇μ(Ti )
μ
ν = (Qi )ν i = matter, radiation, DE (1.3)

keeping the total energy momentum tensor conserved. The
aim of this paper is to give a criterion to select amongst
different models of interacting dynamical DE, assuming only
the validity of the Friedmann equations for the scale factor
appearing in the Robertson–Walker metric. This subject has
been faced following different strategies [17–26], all of which
need some kind of assumptions, on the phenomenological
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form of the interactions Qi , or on the choice of the potential in
the quintessence models, for instance. In this paper, we try to
be as much general as possible, adopting a model independent
cosmographic approach (see [27] for an updated review).

In order to reach this goal, in Sect. 2 we relate the time
derivative of the DE EoS coefficient w(t) to the interactions
Q(t), by means of the kinematic variables associated to the
scale factor a(t): the Hubble parameter H(t), the deceler-
ation q(t) and the jerk j (t), sometimes called statefinder
r(t)-parameter [28]. In Sect. 3 we discuss the implications
of our analysis for the �CDM model and we propose an
observable, written in terms of kinematic variables and den-
sity parameters, whose non-vanishing value would imply a
failure of �CDM. In the concluding Sect. 4 we summarize
and discuss our results.

2 Constraints on interacting dynamical dark energy

The energy momentum tensor for a cosmological perfect
fluid is:

Tμν = (ρ + p)UμUν + pgμν, (2.1)

whereUμ is the fluid four-velocity, ρ is the rest-frame energy
density and p is the isotropic rest-frame pressure. The EoS
relates pressure and energy density and its general form is:

p = p(ρ), (2.2)

whose simplest case is represented by the linear relation

p = wρ, (2.3)

where w is a coefficient not depending from the energy den-
sity ρ.

Following [29], we consider here the more general EoS
(2.2), whose Taylor expansion around the energy density at
the present epoch ρ0 = ρ(t)|t=t0 is [29]

p(ρ) = p0 + κ0(ρ − ρ0) + O[(ρ − ρ0)
2], (2.4)

where p0 = p(ρ0) and κ0 = dp
dρ

∣
∣
∣
t=t0

.1

The aim is to express the first two coefficients of the above
expansion in terms of the scale factor a(t) appearing in the
Robertson - Walker metric

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

]

,

(2.5)

where k is a constant parameter related to the spatial cur-
vature: k = 0, k > 0 and k < 0 for flat, closed and open
Universes, respectively.

1 From now on, O0 ≡ O(t)|t=t0 , for any observable O(t), where t0
stands for the present epoch.

More precisely, we would like to write p0 and κ0 in terms
of the kinematic variables related to the dimensionless time
derivatives of a(t), namely the Hubble parameter H(t), the
deceleration q(t) and the jerk j (t), which are observables
quantities, thus making this approach independent from a
particular cosmological model. The kinematic variables are
defined as follows

H = ȧ

a
(2.6)

q = − ä

aH2 (2.7)

j =
...
a

aH3 . (2.8)

It is customary to suppose that the cosmological fluid is
an incoherent mixture of the three forms of canonical fluids
(i = 1 matter, i = 2 radiation, i = 3 DE represented by
a cosmological constant �) plus, following a standard nota-
tion [30], the spatial curvature contribution (i = 4 ), each
satisfying the linear EoS

pi = wiρi . (2.9)

Consequently, the EoS (2.3) takes the form

4
∑

i=1

pi =
4

∑

i=1

wiρi . (2.10)

Once we define the density parameters

	i = 8πG

3H2 ρi , (2.11)

the Friedmann equation can be written
∑

i

	i = 1. (2.12)

As done in [29], we denote with O the average of generic
physical observables Oi weighted by the density parameters
	i of each fluid [29]:

O ≡
4

∑

i

Oi	i . (2.13)

Consequently, from the EoS (2.3) we have

w = p

ρ
=

∑

i pi
∑

i ρi
=

∑

i wiρi
∑

i ρi
=

∑

i wi	i
∑

i 	i

=
∑

i

wi	i = w. (2.14)

In this paper we introduce the following two generaliza-
tions with respect to the approach described in [29]:

1. We allow a time dependence of the EoS coefficients wi

appearing in (2.9)

pi = wi (t)ρi . (2.15)
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Even though we are mostly interested in physical situa-
tions where only the DE fluid may have a time dependent
w3(t), for the moment we take a more general attitude.
The known scalar quintessence model for DE is an exam-
ple of DE fluid with a time dependent EoS coefficient,
but we point up that in this paper we do not necessarily
limit ourselves to this particular case.

2. The energy momentum tensor (2.1) is given by the sum
of the different components of the perfect cosmological
fluid. We give the possibility to each component to break
the conservation law:

∇μ(Ti )
μ
ν = (Qi )ν, (2.16)

keeping the total energy momentum tensor conserved,
which implies a constraint on the breakings

∇μT
μ
ν = 0 ⇒

∑

i

(Qi )ν = 0. (2.17)

In most cases, only the matter and DE components of
the energy momentum tensor possibly display a break-
ing of the conservation law in the late Universe, not the
radiation nor the curvature contributions. Again, for the
moment we stay on general grounds, and the breakings
Qi , which, because of the constraint (2.17) must be at
least two, physically correspond to interactions between
the cosmological components fluids. Examples of non-
vanishing DE interactions are given in [17–24].

Deriving both sides of the Friedmann equation (2.12) with
respect to time, we have

∑

i

	̇i = 0 ⇒
∑

i

d

dt

( ρi

H2

)

= 0. (2.18)

To calculate ρ̇i , we use the covariant conservation of the
energy momentum tensor (2.1), The ν = 0 component of
(2.16) gives

ρ̇i = −3H(ρi + pi ) + Qi , (2.19)

where we defined

Qi ≡ −(Qi )0 = +(Qi )
0. (2.20)

On the other hand

Ḣ = ä

a
−

(
ȧ

a

)2

= −H2(1 + q), (2.21)

where we used the definition (2.7) of the deceleration q(t).
Coming back to Eq. (2.18), we can now write

0 =
∑

i

(
ρ̇i

H2 − 2

H3 ρi Ḣ

)

(2.22)

=
∑

i

[−3H(1 + wi )ρi

H2 + Qi

H2 + 2

H3 ρi H
2(1 + q)

]

(2.23)

= −3H(1 + w) + 2H(1 + q), (2.24)

where we used (2.19), (2.9) and (2.21), and we used the
definition of weighted average (2.13) for the quantities wi (t)
and the constraint (2.17) on the breakings Qi .

Therefore, using (2.14), the following relation holds

w = w = 2q − 1

3
, (2.25)

which, in particular, relates the first coefficient of the Taylor
expansion of the EoS (2.4) to the deceleration q(t), since

p0 = w0ρ0 = 2q0 − 1

3
ρ0. (2.26)

Notice that the relation (2.25), which has been derived in [29]
for non-interacting DE with constant EoS w-parameter, has
a general validity, since it holds also for ẇi �= 0 and Qi �= 0.

Let us now consider κ0, the second coefficient of the EoS
Taylor expansion (2.4):

κ = dp

dρ
= ṗ

ρ̇
=

∑

i ṗi
∑

i ρ̇i
=

∑

i (wi ρ̇i + ẇiρi )
∑

i ρ̇i

=
∑

i {wi [−3H(1 + wi )ρi + Qi ] + ẇiρi }
∑

i [(−3H)(1 + wi )ρi + Qi ]

=
∑

i [(−3H)(wi + w2
i )ρi + wi Qi + ẇiρi ]

∑

i (−3H)(1 + wi )ρi

= w + w2

1 + w
− 8πG

9H3

∑

i wi Qi

1 + w
− ẇ

3H(1 + w)
, (2.27)

where we took into account (2.19), (2.17) and (2.13). We
need ẇ, i.e. the weighted average of the time derivatives
of the EoS coefficients wi (t), which vanish in the �CDM
model. To obtain it, we look for an expression for the time
derivative of the weighted average ẇ:

ẇ =
∑

i

d

dt
(wi	i ) = ẇ + 8πG

3

∑

i

wi
d

dt

( ρi

H2

)

= ẇ + 8πG

3

∑

i

(
ρ̇i

H2 − ρi
2

H3 Ḣ

)

= ẇ+8πG

3

∑

i

[
(−3H)(1+wi )ρi+Qi

H2 +ρi
2

H
(1+q)

]

= ẇ−3H(w + w2)+8πG

3H2

∑

i

wi Qi+3Hw(1 + w),

(2.28)

where, in the last row, we used (2.25) to eliminate the decel-
eration q in favor of w. Introducing the variance of the values
wi

σ 2
w = w2 − w2, (2.29)
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we get

ẇ = ẇ + 3Hσ 2
w − 8πG

3H2

∑

i

wi Qi . (2.30)

It is easily seen that, using in (2.27) the above expression
(2.30) for ẇ and the definitions of the deceleration q(t) (2.7)
and of the jerk j (t) (2.8), we finally get

κ = dp

dρ
= j − 1

3(1 + q)
, (2.31)

which, as w(t) (2.25), is an universal quantity, whose expres-
sion is valid whether ẇi �= 0 and Qi �= 0 or not.

Let us take for a moment Eq. (2.30) at ẇi = Qi = 0,
which is the standard case we are generalizing in this paper.
The variance (2.29) reduces to

σ 2
w = − ẇ

3H
= 2

9
[ j − q(1 + 2q)], (2.32)

where w(t) in (2.25) and the definition (2.8) of the jerk
j (t) have been used. The above expression for σ 2

w tells
us how the weighted accuracy on the estimate of the wi ,
assumed to be constant, evolves in time, driven by the time
dependence of the cosmological parameters 	i only. In gen-
eral, it is not allowed to deduce that the right hand side
of (2.32) is non-negative, since the weights 	i present in
σ 2

w = ∑

i (wi − w)2	i may be negative. Indeed, while 	1

and 	2 are certainly non-negative functions of time, since
they are related to matter and radiation energy density respec-
tively, the density parameters 	3 and 	4, which refer to DE
and curvature, might, in principle, have any sign. What we
can state, is that, at our epoch, 	

(0)
1 � 0.3, 	

(0)
2 � 0 and

	
(0)
3 � 0.7 [1], and, consequently, that the Universe, in excel-

lent approximation, is spatially flat k � 0. Therefore, at our
epoch, but not at any time, the right hand side of (2.32) is
non-negative

j0 ≥ q0(1 + 2q0). (2.33)

Equation (2.33) is a constraint which must be satisfied, at t =
t0, by the kinematic variables related to the time derivatives
of the scale factor a0, namely the deceleration q0 and the jerk
j0.

In case of non-vanishing ẇi and Qi , the more general
relation (2.30) represents a constraint for interacting dynam-
ical DE. In fact, it relates the possible time dependent wi (t)
appearing in the EoS (2.9) of the cosmological fluids (2.3) to
their corresponding interactions (2.16). At the present epoch
t = t0 we have:

ẇ+3Hσ 2
w

∣
∣
∣
t=t0

≡ K0=
∑

i

(

ẇi	i+8πG

3H2 wi Qi

)
∣
∣
∣
∣
∣
t=t0

,

(2.34)

where K0 is a physical observable, depending on measurable
quantities (density parameters and kinematic variables).

Making the reasonable assumption that only the DE com-
ponent of the cosmological perfect fluid may have an EoS of
the form (2.9) with ẇ3(t) �= 0, and observing that the rele-
vant interactions are the ones involving DE, which translates
into Q3 �= 0, the relation (2.34) at t = t0 reduces to

ẇ3	3 + 8πG

3H2 w3Q3

∣
∣
∣
∣
t=t0

= K0, (2.35)

where we used the fact that, for matter, w1 strictly vanishes.
Since the values at our epoch of the DE density parameter

	
(0)
3 , of the coefficient of the DE EoS w

(0)
3 , of the Hubble

constant H0 and of the quantity K0, are known, the rela-
tion (2.35) represents a constraint on the possible theoretical
models of interacting dynamical DE, in particular on the time
dependence of the DE EoS coefficient ẇ

(0)
3 and on the DE

interaction Q(0)
3

w3(t) = w
(0)
3 + ẇ

(0)
3 (t − t0) + O(t2) (2.36)

Q3(t) = Q(0)
3 + O(t). (2.37)

It is a remarkable and, to our knowledge, so far unknown fact
that the interactions involving DE and its dynamical EoS are
not independent one from each other.

3 A new test for �CDM model

The aim of this paper is to put constraints, mainly by means
of the relation (2.35), on the possible models of DE, with
particular concern on the DE EoS and on the interaction DE-
matter. In order to be able to make a comparison, it is useful
to summarize what is predicted by the Standard Model of
Cosmology.

After the observational evidence from supernovae for an
accelerating Universe and a cosmological constant [1], we
know that, at our epoch, our Universe is filled by DE and
(mostly dark) matter :

	
(0)
1 � 0.3 ; 	

(0)
3 � 0.7, (3.1)

where we used the notations adopted in this paper, according
to which the subscripts 1 and 3 stand for matter and DE,
respectively. An immediate consequence of the Friedmann
equation, is that our Universe is almost flat

k � 0, (3.2)

since, at our epoch, the radiation contribution to the whole
cosmological perfect fluid being is highly suppressed:

	
(0)
2 � 0. (3.3)

The �CDM model well describes this scenario, where the
DE is realized by means of a cosmological constant �. The
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Table 1 EoS coefficients and density parameters in �CDM

i = 1: matter i = 2: radiation i = 3: DE i = 4: curvature

	
(0)
i 0.3 0 0.7 0

wi 0 1/3 − 1 − 1/3

�CDM situation, including the EoS coefficients wi of the
single cosmological fluids, is summarized in the following
Table 1.

In the �CDM model the only EoS coefficient which sur-
vives is w3. Its value (w3 = −1) corresponds to the contribu-
tion to the cosmological fluid coming from the cosmological
constant.

According to the �CDM model, the jerk variable (2.8)
should be constant, and in particular

�CDM ⇒ j (t) = 1. (3.4)

This can be seen in many ways. In the particular framework
of this paper, let us consider the expression (2.32) for the
variance of the EoS coefficient w, which holds for ẇi =
Qi = 0 and hence true in the �CDM model:

j = 9

2
σ 2

w + q(2q + 1). (3.5)

From the definition of weighted average (2.13), of variance
(2.29) and using the fact that in the �CDM model the only
non-vanishing EoS coefficient is the DE one, we have

σ 2
w = w2

3	3(1 − 	3). (3.6)

On the other hand, from w in (2.25), we get the following
relation for the deceleration parameter q(t):

q = 3

2
w3	3 + 1

2
. (3.7)

Using (3.6) and (3.7), we get the following relation for the
jerk parameter

j = 1 + 9

2
w3(1 + w3)	3, (3.8)

which is equal to one if the DE is described by a cosmological
constant, i.e. w3 = −1. Therefore, the jerk parameter is a
model independent, kinematic observable valuable to test the
�CDM model, since any deviation from j = 1 is a signal of
alternative descriptions.

Let us now consider K0 defined by the left hand side of
(2.34)

K0 ≡ ẇ + 3Hσ 2
w

∣
∣
∣
t=t0

. (3.9)

According to the �CDM model, the DE has a constant EoS
w-coefficient, and does not interact, hence, from the right
hand side of (2.34), K0 should vanish identically:

�CDM ⇒ K0 = 0. (3.10)

From its definition (3.9), it is easy to check that K0 can be
written in terms of measurable quantities as follows:

K0

H0
= 3	1(1 − 	1) − 2

3
[ j0 − q0(1 + 2q0)] . (3.11)

We point out that, analogously to the case concerning the jerk
parameter j (t) �= 1, a non-vanishing value for K0 would be
a certain signal of the failure of the �CDM model, and we
remark that the case K0 �= 0 is independent of j0 �= 1. It is
easily seen, in fact, that observational situations are possible
where j0 = 1 and K0 �= 0 at the same time, for which we
should conclude against �CDM.

On the other hand, even a K0 compatible with zero would
not represent a confirmation of �CDM. Both cases K0 =
0 and K0 �= 0, in fact, could be realized by means of an
interacting dynamical DE, with ẇ3 �= 0 and/or Q3 �= 0.
Once again, our point of view is to test and constrain possible
models of interacting dynamical DE, assuming that �CDM
is a model which well describes, “only” in an effective way,
the observations on the Universe so far.

The observable K0 is written in terms of measurable vari-
ables, through (3.11). A precise estimate of K0 is highly
nontrivial, and goes beyond the scope of our paper. There
are in fact two kind of difficulties in evaluating K0. The first
is that, at the moment, the quantities in terms of which K0 is
expressed (the Hubble constant H0, the matter EoS parameter
	1, and the kinematic variables q(t) and j (t), all evaluated
at the present epoch) are known with large errors, in partic-
ular the jerk j0, not to mention the known existing tension
on the value of H0. The situation will improve drastically in
the next future, since, for instance, one of the aims of the
forthcoming Euclid experiment is to refine the measure of
the kinematic variables, which therefore will be known with
much greater accuracy. Under this respect, K0 is a variable
which we believe will become very interesting in the future.

The other difficulty concerns the type of analysis which
should be performed. In fact, particular care should be payed
in Cosmology when dealing with “experimental” data, which
should be treated according to the Bayesian analysis. We are
not experts in this kind of analysis, and, even if the observ-
ables in terms of which K0 is expressed were known with
smaller errors, we prefer to leave this task to professionals,
whenever the kinematical variables will be known with more
precision.

Therefore, although a precise Bayesian analysis to deter-
mine K0 is premature, and although our paper focuses on
the formal aspects of a theory of interacting dynamical Dark
Energy, in the final part of this section we give a preliminary,
albeit rough, estimate of K0 based on the publicly available
data sets.
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Table 2 Deceleration and jerk
a b c d

q0 − 0.644 ± 0.223 − 0.6401 ± 0.187 − 0.930 ± 0.218 − 1.2037 ± 0.175

j0 1.961 ± 0.926 1.946 ± 0.871 3.369 ± 1.270 5.423 ± 1.497

Table 3 Estimates of K0 a b c d

K0 − 0.516 ± 0.685 − 0.512 ± 0.622 − 1.026 ± 0.931 − 1.817 ± 1.091

Concerning the deceleration q0 and the jerk j0, evaluated
at our epoch, we report in Table 2 four maximum likelihood
values, with their 68% confidence intervals:

The observational constraints for the deceleration param-
eter q0 and the jerk j0 reported in Table 2 were recently
obtained in [31], and a, b, c and d refer to the following
different combinations of low redshift datasets:

a: BAO +Masers+TDSL+Pantheon,
where BAO stands for the observations from Baryon-
Acoustic-Oscillations [32–36], Masers is the Megamaser
Cosmology Project [37–40], TDSL means time-delay in
strong lensing measurements by H0LiCOW experiment
[41] and Pantheon are the data for SNIa in terms of E(z)
[42,43]

b: a + H0 measurement done in [44,45]
c: a + H(z) measurements (Hubble parameter data (OHD)

as a function of redshift [46])
d: all the data (a + H0 + H(z)).

According to the d-dataset in Table 2, which contains all
the others, it is apparent that the �CDM value j0 = 1 is
incompatible with data, at 3.06σ confidence limit.

Concerning K0, it is convenient to consider the dimension-
less quantity K0/H0, in order to get rid of the well known
tension existing on the Hubble constant [44,45,47,48]. A
rough and preliminary estimate, which takes into account
the values of q0 and j0 given above and the value of the mat-
ter density parameter 	1, which, according to the latest SN
Ia measurements from the Pantheon Catalogue [49], is

	1 = 0.298 ± 0.022, (3.12)

gives the four values listed in Table 3.
All the above values of K0 are compatible with the �CDM

value K0 = 0 within 1 to 2σ . Therefore, according to the data
available so far, there is no evidence against �CDM model. A
more accurate, constrained analysis might be done following
the Bayesian methods in cosmology [50], but for the moment
our aim is just to give an estimate of the right hand side of
our result (2.35), by means of observable quantities.

4 Conclusions

The points where the �CDM model creaks are more and
more. An example of these weaknesses is the well known
tension on the measurements of the Hubble constants H0.
The value given by the Planck collaboration [47,48] in the
framework of the �CDM model is incompatible with other,
model independent, estimates [44,45]. The inconsistencies
become milder if a dynamical DE is invoked [51]. There-
fore, there are strong motivations to investigate models of
dynamical DE which, in the most general case, displays an
EoS with a time dependent coefficient wDE(t) and which may
interact, in principle, with matter and/or radiation through a
(partial) breaking QDE(t) of the covariant conservation of the
energy momentum tensor.

The main and new result of this paper is represented by
the relation (2.34), which must be satisfied, at any time, by
any model of interacting dynamical DE

	DEẇDE + 8πG

3H2 QDEwDE = K , (4.1)

where K (t) is expressed in terms of measurable quantities.
The above equation is a differential equation for the DE EoS
parameter wDE(t) with time dependent coefficients, one of
which is the interaction QDE(t). It must hold at any time, in
particular must be satisfied by phantom DE models, crossing
the �CDM point w = −1 in both directions. The equation
(4.1) is a constraint on the possible parametrization of Dark
Energy which, in its most general dynamical form, turns out
to depend on its interactions, with Dark Matter in particular.
It is not surprising that it must be so, but the explicit form of
how this mutual dependence is realised was not known so far.
We proposed a new observable, which we called K0, which
measures the relation between Dark Energy and its interac-
tions. The analysis which led to (4.1) is model independent,
in the sense that we only assumed that the scale factor a(t)
appearing in the Robertson–Walker metric (2.5) obeys the
Friedmann equation (2.12) and that the quantities involved
in K (t) are the density parameters and the kinematic vari-
ables, hence are directly measurable.
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An important consequence of (4.1) is that, according to
the �CDM model, it must hold

�CDM ⇒ K0 = 0. (4.2)

Any deviation from this value must be interpreted as a fail-
ure of the �CDM model. Low-redshift data show that, at
present time, j0 �= 1 [31], which seems to indicate a failure
of �CDM. It would be greatly interesting to give an accu-
rate estimate of K0, according to the available observational
data, but this task goes beyond the scope of this paper, also
because the available observational data, especially for what
concerns the kinematical variables q(t) (2.7) and j (t) (2.8),
are affected by large errors [29,31], which make difficult any
decisive claim within 3σ . Hopefully, the Euclid space mis-
sion, whose launch date is expected in 2021, will drastically
improve the experimental situation. With this caveat , we
gave a preliminary and rough estimate of K0, which is com-
patible, within 3σ , with zero, hence with the �CDM model.
But, again, a much more accurate evaluation will be possible
in the future.

Finally, the relation (4.1) can be read in several ways,
depending whether the DE is interacting or not (QDE �= 0
or QDE = 0). It is important to emphasize this point because
previous attempts to get informations on the Dark Sector rely
on particular assumptions. Our result may provide a model
independent description of the Dark Sector, as well as a con-
straint for generic parametrizations of the EoS coefficients
wDE and of the interactions QDE(t).
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