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The spectrum of the cqq baryons contains a few states whose nature is not clearly a three-quark
composite and which might have a sizable baryon-meson component. Examples include the Σcð2800Þ or
the Λcð2940Þ. Here we explore the spectrum of two-body systems composed of a light, octet baryon and a
charmed meson (or antimeson) within a simple contact-range theory in which the couplings are saturated
by light-meson exchanges. This results in the prediction of a series of composite anticharmed pentaquarks
(c̄qqqq) and singly charmed baryons (cq̄qqq). Among the latter we find J ¼ 1

2
ΞD and J ¼ 3

2
ΞD� bound

states with masses matching those of the recently observed Ωcð3185Þ and Ωcð3327Þ baryons.
DOI: 10.1103/PhysRevD.109.014023

I. INTRODUCTION

The discovery of a plethora of new heavy hadrons in
experimental facilities calls for their theoretical description
and classification [1–4]. While a large number of them are
standard three-quark baryons or quark-antiquark mesons,
others do not easily fit into this explanation and are
suspected to be exotic. If we consider charmed baryons,
a few of them do not conform to the theoretical expect-
ations for cqq states. For instance, the mass of the
Λcð2940Þ [5–7] is somewhat large compared with quark
model predictions [8–11] and is really close to the D�0p
threshold, two factors which have in turn prompted its
molecular interpretation [12–17]. The case of the Σcð2800Þ
[18] is similar [17,19] and there are a few excited Ξc states
(e.g., the Ξcð3055Þ and Ξcð3123Þ [20]) which might also be
amenable for a bound state explanation owing to their
closeness to meson-baryon thresholds (though the most
common theoretical explanation of the Ξcð3055Þ and
Ξcð3123Þ is that they are compact hadrons [21–25]).
The Ωcð3185Þ and Ωcð3327Þ states recently observed by
the LHCb [26] might provide another example, being really
close to the ΞD and ΞD� thresholds (check, for instance,
Ref. [27] for a molecular explanation of their decays or
Refs. [28,29] for their interpretations within the quark
model). Much of the theoretical speculations are driven by

the lack of detailed experimental information about these
charmed baryons. Often, we do not even know their
quantum numbers or whether a particular charmed, non-
strange baryon is a Λc or a Σc (i.e., the case of the
Λcð2765Þ, which is considered to be aΛc in Ref. [30], but it
could also be a Σc or a superposition of Λc and Σc [31]).
In view of the previous situation, the investigation of the

bound state spectrum of a light baryon and a charmed
meson is well justified. Identifying in which configurations
to expect molecular charmed baryons could improve
our priors when confronted with a new experimental
discovery or our posteriors when analyzing previous
observations. To deal with the spectroscopy of these states,
we formulate here a contact-range theory where the
couplings are saturated from light-meson exchanges in
the line of what we previously did in Refs. [32,33]. This
approach is indeed able to reproduce a few hadrons which
are often though to be exotic, such as the Xð3872Þ [34] or
the Yð4230Þ [35], and in the present manuscript we will
particularize it to the case at hand (i.e., charmed meson and
light baryon).
Regarding the aforementioned Σcð2800Þ and Λcð2940Þ,

it turns out that they might be identified with two of the
most attractive NDð�Þ configurations within our model,
giving support to the idea that they might be molecular after
all [12–17,19], though more so for the Λcð2940Þ than for
the Σcð2800Þ. If we turn our attention to the Ωcð3185Þ and
Ωcð3327Þ, their masses are easily reproduced if they are
ΞD and ΞD� states with spin J ¼ 1

2
and 3

2
, respectively (in

the latter case coinciding with the preferred spin of the
Ωcð3327Þ according to Ref. [27]). Yet, besides these
candidates, we are able to identify other attractive con-
figurations that may lead to a molecular singly charmed

*mpavon@buaa.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 014023 (2024)

2470-0010=2024=109(1)=014023(15) 014023-1 Published by the American Physical Society

https://orcid.org/0000-0003-0181-0761
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.014023&domain=pdf&date_stamp=2024-01-22
https://doi.org/10.1103/PhysRevD.109.014023
https://doi.org/10.1103/PhysRevD.109.014023
https://doi.org/10.1103/PhysRevD.109.014023
https://doi.org/10.1103/PhysRevD.109.014023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


baryon or anticharmed pentaquark (though in this latter
case there are no experimental candidates).

II. SATURATION OF THE
CONTACT-RANGE COUPLINGS

We describe the charmed meson–octet baryon interac-
tion with a contact-range theory of the type

VCðq⃗Þ ¼ C0 þ C1σ⃗L1 · σ⃗L2; ð1Þ

where C0 and C1 are coupling constants, σ⃗L1 and σ⃗L2 are
the light-spin operators for the meson and baryon, respec-
tively, where for the octet baryon the light spin is identical
to the total spin (as it does not contain a heavy quark), and q⃗
is the momentum exchanged between the particles.
This description is valid provided the following con-

ditions are met: (i) the typical momentum of the particles
is considerably smaller than the mass of the scalar and
vector mesons (σ, ρ, ω), and (ii) pion exchanges are
perturbative. We remind that this potential is singular
though (it corresponds to a Dirac-delta in r-space) and
will have to be regularized with a regularization scale or
cutoff Λ, as we will explain later.
To determine the value of the couplings C0 and C1 we

exploit the first of the previous conditions—that jq⃗j < mσ,
mρ, mω—and combine it with a specific choice of the
regularization scale Λ. At low enough momenta the finite-
range potential generated by the exchange of a meson can
be effectively approximated by a contact-range potential.
If the regularization scale is of the order of the mass of the
aforementioned meson, i.e., Λ ∼mσ , mρ, mω, the value of
the contact-range couplings will be saturated by light-
meson exchanges [36,37]. The scalar meson, which gen-
erates the potential

VSðq⃗Þ ¼ −
gS1gS2
m2

S þ q⃗2
; ð2Þ

will contribute to the couplings C0 and C1 as follows

CS
0ðΛ ∼mSÞ ∝ −

gS1gS2
m2

S
; ð3Þ

CS
1ðΛ ∼mSÞ ∝ 0; ð4Þ

where gS1, gS2 are the scalar couplings of hadron 1 and 2
and mS the mass of the scalar meson. For the vector
mesons, the potential reads

VVðq⃗Þ ¼
gV1gV2
m2

V þ q⃗2
þ fV1fV2

6M2

m2
V

m2
V þ q⃗2

σ⃗L1 · σ⃗L2 þ…; ð5Þ

where the dots indicate either higher partial wave operators
or Dirac-delta contributions. This leads to the saturated
couplings

CV
0 ðΛ ∼mVÞ ∝

gV1gV2
m2

V
; ð6Þ

CV
1 ðΛ ∼mVÞ ∝

fV1fV2
6M2

; ð7Þ

where we have obviated isospin or flavor factors for
simplicity and with gV1, gV2 the electriclike couplings,
fV1, fV2 the magneticlike ones, mV the mass of the
vector meson and M a scaling mass which is often taken
to be the nucleon mass (M ¼ mN , with mN ≈ 940 MeV).
Here we notice that the higher partial wave operators do
not contribute to the saturation of the S-wave couplings,
while the Dirac-delta contributions are regularized by
the finite size of hadrons 1 and 2 and only contribute
to the saturation of the couplings at the regularization
scale Λ ∼MH, with MH the characteristic momentum
scale of the finite size effects for a hadron H. In general
MH ≫ mV , which is why we ignore the Dirac-delta
contributions [32].
At this point we encounter a problem: saturation is

expected to work for a regularization scale similar to the
mass of the light-meson being exchanged, yet the
masses of the scalar and vector mesons are different.
This means that there is a small mismatch in the ideal
saturation scale for scalar (Λ ∼mS) and vector (Λ ∼mV)
mesons. This is however easily solvable from the
renormalization group (RG) evolution of the saturated
couplings, which can be derived from the condition that
the matrix elements of the contact-range potential are
independent of the cutoff [38]

d
dΛ

hΨjVCðΛÞjΨi ¼ 0: ð8Þ

If the wave function has a power-law behavior ΨðrÞ ∼
rα=2 at distances r ∼ 1=Λ, the RG equation above leads
to

CðΛ1Þ
Λα
1

¼ CðΛ2Þ
Λα
2

; ð9Þ

from which we can combine the scalar and vector
meson contributions as

CðmVÞ ¼ CVðmVÞ þ
�
mV

mS

�
α

CSðmSÞ: ð10Þ

The intuitive meaning of this equation is that the relative
strength of the contribution of a lighter meson scales as
1=m2þα (instead of 1=m2 if we do not consider their RG
evolution). For the exponent α we use the semiclassical
approximation together with the Langer correction [39],
leading to ΨðrÞ ∼ ffiffiffi

r
p

or α ¼ 1.
Finally, if we plug in the expected values of the coupling

constants from saturation we end up with
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CsatðmVÞ ∝
gρ1gρ2
m2

V

�
1þ κρ1κρ2

m2
V

6M2
ŜL12

�
T̂12

þ gω1gω2
m2

V

�
1þ κω1κω2

m2
V

6M2
ŜL12

�
ζ

þ
�
mV

mϕ

�
gϕ1gϕ2
m2

ϕ

�
1þ κϕ1κϕ2

m2
ϕ

6M2
ŜL12

�
ζ

−
�
mV

mS

�
gS1gS2
m2

S
; ð11Þ

where we have now included isospin factors (T̂12¼ ˆ⃗T1 ·
ˆ⃗T2,

with ˆT⃗ ¼ T⃗=T a normalized isospin operator and T the
isospin of the particle), defined ŜL12 ¼ σ⃗L1 · σ⃗L2 and taken
into account that α ¼ 1. In the previous equation we use the
decomposition fV ¼ κVgV for the magneticlike couplings
and introduce the G-parity sign ζ, which is ζ ¼ þ1 or −1
for molecular anticharmed pentaquarks and charmed bary-
ons, respectively. The ρ and ω contributions are kept
separate because for the nucleon we have gρ ≠ gω. For
the masses of the vector mesons we take mV ¼ ðmρ þ
mωÞ=2 ¼ 775 MeV for V ¼ ρ, ω (i.e., the average of the ρ
and ω masses) and mϕ ¼ 1020 MeV. The only thing left is
the proportionality constant, which can be determined from
the condition of reproducing the binding energy of a known
molecular candidate.

III. QUALITATIVE FEATURES
OF THE SPECTRUM

From the previous formalism we can already determine
the qualitative characteristics of the two-body light baryon
and charmed (anti)meson bound state spectrum.
First, we need the couplings of the scalar and vector

mesons to the light baryons and charmed mesons, for which
we will refer to Table I. For the vector mesons (ρ, ω and ϕ)
we have simply made use of the mixing of these mesons
with the electromagnetic current (vector meson dominance
[40–42]) as a way to determine the gV and κV (E0 and M1)
couplings: we can match gV and κV to the charge and
magnetic moment of the particular hadron we are interested

in. The κV couplings are written in terms of the magnetic
moments of the constituent quarks, μq, in units of the
nuclear magneton (we take μu ¼ 1.9μN , μd ¼ −μu=2,
μs ¼ −0.6μN with μN the nuclear magneton). For the
scalar meson the linear sigma model [43] predicts gS ¼ffiffiffi
2

p
mN=fπ ≃ 10.2 for the nucleon, wheremN is the nucleon

mass and fπ ≃ 132 MeV the pion weak decay constant.
For the charmed meson, which contains one light-quark
instead of three, we assume the quark model [44] relation
gSqq ¼ gS=3, i.e., that the coupling of the sigma is propor-
tional to the number of light-quarks within the hadron. In
the strange sector we will assume that the coupling of the
scalar to the s quark is approximately the same as to the u
and d quarks: gSuu ¼ gSdd ¼ gSss. This assumption works
well when comparing the DD̄ and DsD̄s systems pre-
dicted in the lattice and for the 27-plet dibaryons (i.e.,
the NN, ΣN, ΣΣ, ΣΞ, and ΞΞ in the 1S0 partial wave and
in their respective maximum isospin configurations). The
only exception to this rule will be the Λ hyperon, for
which a coupling gSΛΛ ≃ 0.75gS is necessary for repro-
ducing the NΛ and ΛΛ scattering lengths correctly. A more
complete explanation of our choice can be found in
the Appendix.
Second, for simplicity in the discussion that follows we

will use the SU(3)-symmetric limit of the vector meson
masses and the previous couplings. That is, now we will
assume mρ¼mω¼mK� ¼mϕ, μs ¼ −μu=2, and gSΛΛ ¼ gS.
In contrast, for the actual quantitative predictions of the
next section, we will use the values of Table I and the vector
meson masses specified below Eq. (11).
Third, the light baryons and charmed mesons belong to

the 8 and 3̄ representations of SU(3)-flavor. Conversely,
the two-hadron interaction can be decomposed in a sum
of contributions from different irreducible representations
of SU(3):

VC ¼
X
R

λRVR
C; ð12Þ

where R indicates a particular representation and λR is a
numerical factor (actually, the square of the relevant SU(3)
Clebsch-Gordan coefficient, which we take from [45]).
For the scalar meson contribution, the decomposition will
be trivial

CR
S ¼ −

1

3

g2S
m2

S
; ð13Þ

independently of the representation R.
For the vector mesons the decomposition is not trivial,

but it is still straightforward. If we consider the baryon—
charmed meson two-body system, the SU(3) decomposi-
tion is 8 ⊗ 3̄ ¼ 3̄ ⊕ 6 ⊕ 15. The electric-type vector
meson contributions are

TABLE I. Choice of couplings for light-meson exchange
saturation in this work. For their concrete values we take
gS ¼ 10.2, gV ¼ 2.9, μu ¼ 1.9 and μs ¼ −0.6.

Hadron gσ gρ gω gϕ κρ κω κϕ

D, D� 1
3
gS gV gV 0 3

2
μu

3
2
μu 0

Ds, D�
s

1
3
gS 0 0

ffiffiffi
2

p
gV 0 0 −3μs

N gS gV 3gV 0 5
2
μu

1
2
μu 0

Λ 0.75gS 0 2gV
ffiffiffi
2

p
gV 0 0 −3μs

Σ gS 2gV 2gV
ffiffiffi
2

p
gV μu μu −μs

Ξ gS gV gV 2
ffiffiffi
2

p
gV − 1

2
μu − 1

2
μu 2μs
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C3̄
V0 ¼ −8

g2V
m2

V
; ð14Þ

C6
V0 ¼ −4

g2V
m2

V
; ð15Þ

C15
V0 ¼ 0; ð16Þ

while the magnetic-type ones are

C3̄
V1 ¼ −8g2V

m2
V

6M2
κ2q; ð17Þ

C6
V1 ¼ þ 4

3
g2V

m2
V

6M2
κ2q; ð18Þ

C15
V1 ¼ 0; ð19Þ

where κq ¼ 3
2
ðμu=μNÞ, i.e., the value of κV for a light-quark

in the SU(3)-symmetric limit. If we consider the baryon–
charmed antimeson two-body system instead, the SU(3)
decomposition is 8 ⊗ 3 ¼ 3 ⊕ 6̄ ⊕ 15. In this case, the E0
vector meson contributions are

C3
V0 ¼ −4

g2V
m2

V
; ð20Þ

C6̄
V0 ¼ 0; ð21Þ

C15
V0 ¼ þ4

g2V
m2

V
; ð22Þ

while the M1 are

C3
V1 ¼ 0; ð23Þ

C6̄
V1 ¼ −4g2V

m2
V

6M2
κ2q; ð24Þ

C15
V1 ¼ þ 8

3
g2V

mV

6M2
κ2q: ð25Þ

The SU(3) decomposition of the light baryon and
charmed (anti)meson potential is shown in Tables II and
III. While the strength of scalar meson exchange is the same
for all the baryon-meson molecules in the SU(3) symmetric
limit, this is not the case for vector meson exchange, which
is the factor deciding what are the most attractive mole-
cules. If we consider the baryon-meson case, the total
strength of the central and spin-spin pieces of vector meson
exchange is shown in Table II. For the molecules involving
the D and Ds pseudoscalar charmed mesons the spin-spin
interaction does not contribute and, provided all configu-
rations are attractive enough to bind, we will expect the
following hierarchy for the binding energies

Bmol

�
NDð0Þ;ΣD

�
1

2

��

> BmolðΞD;ΞDsÞ
> BmolðΛDs; NDð1Þ;ΛD;ΣDsÞ

> Bmol

�
NDs;ΣD

�
3

2

�
;ΞDð1Þ

�
; ð26Þ

where Bmol if defined as positive (such that the mass of a
two-hadron bound state is given by M ¼ m1 þm2 − Bmol,
with m1, m2 the masses of the hadrons) and the number in
parentheses refers to the isospin of a given molecule (if
there is more than one isospin configuration). If we change
the pseudoscalar charmed mesons by antimesons, the
hierarchy will be instead

Bmol

�
ΣD̄

�
1

2

�
;ΞD̄ð0Þ

�

> BmolðND̄ð0Þ; ND̄sÞ
> BmolðΛD̄;ΛD̄s;ΞD̄ð1Þ;ΣD̄sÞ

> Bmol

�
ND̄ð1Þ;ΣD̄

�
3

2

�
;ΞD̄s

�
; ð27Þ

though it should be noted that the molecules with charmed
antimesons are in general less attractive than the ones

TABLE II. SU(3) decomposition of the light octet baryon and
charmed meson system, which can be decomposed into the 8 ⊗
3̄ ¼ 3̄ ⊕ 6 ⊕ 15 representations. “System” refers to the two-
body system under consideration, λR the numerical flavor factor
for the VR contribution to the potential (where R ¼ 3̄,6, or 15),
CV
0 and CV

1 the relative strength of the electric- and magnetic-type
piece of vector meson exchange and Mth, M�

th the threshold (in
MeV) for the system containing a ground (D or Ds) or excited
state (D� or D�

s) charmed meson.

System S I λ3̄ λ6 λ1̄5 CV
0 CV

1 Mth M�
th

NDs þ1 1
2

0 0 1 0 0 2907.3 3051.1

ND 0 0 3
4

0 1
4

−6 −6 2806.2 2947.5
ΛDs 0 0 1

4
0 3

4
−2 −2 3084.1 3227.9

ND 0 1 0 1
2

1
2

−2 þ 2
3

2806.2 2947.5
ΣDs 0 1 0 1

2
1
2

−2 þ 2
3

3161.5 3305.4

ΛD −1 1
2

1
16

3
8

9
16

−2 0 2983.0 3124.3
ΣD −1 1

2
9
16

3
8

1
16

−6 −4 3060.4 3201.7
ΞDs −1 1

2
3
8

1
4

3
8

−4 − 8
3

3286.7 3430.5

ΣD −1 3
2

0 0 1 0 0 3060.4 3201.7

ΞD −2 0 0 1 0 −4 þ 4
3

3185.5 3326.9

ΞD −2 1 0 0 1 0 0 3185.5 3326.9
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containing charmed mesons, owing to the sign of ω and ϕ
exchange.
For the molecules containing a D� (D̄�) or D�

s (D̄�
s)

vector charmed (anti)meson, the spin-spin interaction
generates a hyperfine splitting between the J ¼ 1

2
and 3

2

configurations. The sign of this splitting will depend on the
sign of CV1, where we will have

M

�
J ¼ 1

2

�
< M

�
J ¼ 3

2

�
for CV1 > 0;

M

�
J ¼ 1

2

�
> M

�
J ¼ 3

2

�
for CV1 < 0; and

M

�
J ¼ 1

2

�
¼ M

�
J ¼ 3

2

�
for CV1 ¼ 0: ð28Þ

We find examples of these three types of hyperfine splitting
in Tables II and III.

IV. CALIBRATION AND QUANTITATIVE
PREDICTIONS

For calibrating the proportionality constant of the Csat

coupling we need a reference state, i.e., a molecular
candidate from which we can calculate the coupling by
reproducing its mass. Two suitable choices are the
Σcð2800Þ and Λcð2940Þ charmed baryons, which have
been proposed to be molecular:

(i) Of the two states, the Λcð2940Þ fits the molecular
interpretation better and is usually interpreted as a
JP ¼ 3

2
− ND� bound state [12–17] (though it should

be noticed that its JP is not completely estab-
lished yet).

(ii) For the Σcð2800Þ its interpretation as a molecular
state is that of a JP ¼ 1

2
− ND bound/virtual state or

resonance [17,19], but it is more contested [16,46].
First, for the calculation of the binding energies we begin

by regularizing the contact-range potential:

hp⃗0jVCjp⃗i ¼ Csat
molðΛHÞf

�
p0

ΛH

�
f

�
p
ΛH

�
; ð29Þ

where fðxÞ is a regularization function and ΛH the regulari-
zation scale.We choose a Gaussian fðxÞ ¼ e−x

2

and a cutoff
ΛH ¼ 0.75 GeV (i.e., close to the vector meson mass).
This potential is inserted into the bound state equation

1þ 2μmolCsat
molðΛHÞ

Z
∞

0

q2dq
2π2

f2ðq=ΛHÞ
q2 þ γ2mol

; ð30Þ

that is, the Lippmann-Schwinger equation as particularized
for the poles of the scattering amplitude. Within the bound
state equation, μmol is the two-body reduced mass and γmol
the wave number of the bound state, which is related to its
binding energy Bmol by γmol ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μmolBmol

p
. Notice that we

define Bmol > 0 for bound states and that the mass of the
molecular state will be given by Mmol ¼ Mth − Bmol, with
Mth the two-body threshold. For the regulator we are using,
fðxÞ ¼ e−x

2

, the loop integral is given by
Z

∞

0

q2dq
2π2

f2ðq=ΛHÞ
q2þ γ2mol

¼ 1

8π2

� ffiffiffiffiffiffi
2π

p
ΛH −2e2γ

2
mol=Λ

2
Hπγmolerfc

� ffiffiffi
2

p
γmol

ΛH

��
; ð31Þ

with erfcðxÞ the complementary error function. Depending
on the choice of sign for γmol, we will talk about bound
(γmol > 0) or virtual (γmol < 0) states.
The calibration of Csat

mol involves its calculation for
the reference state (for which the mass is known), i.e.,
we take “mol ¼ ref.” For the Σcð2800Þ and Λcð2940Þ
cases, this results in Csat

ref ¼ −1.76 fm2 and −1.74 fm2,
respectively (where we use the couplings of Table I). For
other molecules we define the ratio

Rmol ¼
μmolCsat

mol

μrefCsat
ref

; ð32Þ

which can be determined from Eq. (11) or its SU(3)-flavor
extension. After this, we find the mass of the molecule
by solving

1þ ð2μrefCsat
refÞRmol

Z
∞

0

q2dq
2π2

f2ðq=ΛHÞ
q2 þ γ2mol

¼ 0: ð33Þ

This leads to the spectrum we show in Tables IV and V for
the molecular charmed baryons and anticharmed penta-
quarks, respectively.

TABLE III. SU(3) decomposition of the light octet baryon and
anticharmed meson system, which can be decomposed into the
8 ⊗ 3 ¼ 3 ⊕ 6̄ ⊕ 15 representations. We refer to Table II for the
conventions used here.

System S I λ3 λ6̄ λ15 CV
0 CV

1 Mth M�
th

ND̄ 0 0 0 1 0 0 −4 2806.2 2947.5

ND̄ 0 1 0 0 1 þ4 þ 8
3

2806.2 2947.5

ND̄s −1 1
2

3
8

1
4

3
8

0 0 2907.3 3051.1
ΛD̄ −1 1

2
1
16

3
8

9
16

þ2 0 2982.9 3124.3
ΣD̄ −1 1

2
9
16

3
8

1
16

−2 − 3
2

3060.4 3201.7

ΣD̄ −1 3
2

0 0 1 þ4 þ 8
3

3060.4 3201.7

ΛD̄s −2 0 1
4

0 3
4

þ2 þ2 3084.1 3227.9
ΞD̄ −2 0 3

4
0 1

4
−2 þ 2

3
3185.5 3326.9

ΞD̄ −2 1 0 1
2

1
2

þ2 − 2
3

3185.5 3326.9
ΣD̄s −2 1 0 1

2
1
2

þ2 − 2
3

3161.5 3305.4

ΞD̄s −3 1
2

0 0 1 þ4 þ 8
3

3286.7 3430.5
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TABLE IV. Molecular charmed baryons predicted in our model. “System” refers to the octet baryon–charmed meson pair under
consideration, S, I, JP to their strangeness, isospin and spin-parity, Rmol to the relative strength (central value) of the saturated coupling
with respect to the Λcð2940Þ or Σcð2800Þ as NDð�Þ molecules, Bmol to the binding energy (central value), Mmol to the mass of the
molecule (includes uncertainties), “Candidate” to a possible molecular candidate corresponding to the configuration we are calculating,
and Mcand to the mass of this candidate. A superscript V over the binding energy or mass indicates a virtual state solution. The
uncertainties in Mmol come from varying the scalar meson mass in the (400–550) MeV range (while a change in the sheet, e.g., from
virtual to bound, is indicated with a B or V superscript in parentheses and next to the error). All binding energies and masses are in units
of MeV.

System S I JP RmolðΛ�
cÞ Bmol Mmol RmolðΣ�

cÞ Bmol Mmol Candidate Mcand

NDs þ1 1
2

1
2
− 0.60 ð2.2ÞV ð2905.0þ2.2ðBÞ

−6.9 ÞV 0.91 2.8 2904.5� 1.4 � � � � � �
ND�

s þ1 1
2

1
2
− 0.62 ð1.7ÞV ð3049.4þ1.7ðBÞ

−6.3 ÞV 0.95 3.4 3047.7þ1.6
−1.5 � � � � � �

ND�
s þ1 1

2
3
2
− 0.62 ð1.7ÞV ð3049.4þ1.7ðBÞ

−6.4 ÞV 0.95 3.4 3047.7þ1.6
−1.5 � � � � � �

ND 0 0 1
2
− 0.79 0.6 2805.6þ0.5

−1.2 1.20 17.7 2788.5þ4.9
−6.8 Λcð2765Þ 2766.6� 2.4 [31]

ND� 0 0 1
2
− 0.44 ð16ÞV ð2932þ14

−34 ÞV 0.66 1.2 2946.3þ1.0
−10.5 Λcð2940Þ 2939.6þ1.3

−1.5 [31]
ND� 0 0 3

2
− 1 (Input) 7.9 2939.6 1.51 42 2906þ15

−22 Λcð2940Þ 2939.6þ1.3
−1.5 [31]

ND 0 1 1
2
− 0.66 ð0.6ÞV ð2805.6þ0.6ðBÞ

−3.1 ÞV 1 (Input) 6.2 2800.0 Σcð2800Þ ∼2800 [31]

ND� 0 1 1
2
− 0.72 ð0.0ÞV ð2947.5þ0.0ðBÞ

−1.1 ÞV 1.09 10.4 2937.1þ1.3
−1.7

ND� 0 1 3
2
− 0.66 ð0.7ÞV ð2946.8þ0.7ðBÞ

−3.7 ÞV 0.99 5.7 2941.8þ0.6
−0.5

ΛDs 0 0 1
2
− 0.54 ð5.0ÞV ð3079.0þ3.7

−1.9 ÞV 0.82 0.4 3083.6� 0.2
ΛD�

s 0 0 1
2
− 0.51 ð7.0ÞV ð3220.9þ5.2

−2.1 ÞV 0.77 0.0 3227.9þ0.0ðVÞ
−0.3

ΛD�
s 0 0 3

2
− 0.59 ð3.0ÞV ð3224.9þ2.5

−2.4 ÞV 0.87 1.4 3226.5þ0.0ðVÞ
−0.3

ΣDs 0 1 1
2
− 0.74 0.0 3164.5þ0.0ðVÞ

−1.9
1.12 10.6 3150.9þ1.6

−1.3 � � � � � �
ΣD�

s 0 1 1
2
− 0.74 0.0 3305.3þ0.0ðVÞ

−2.1
1.13 10.7 3294.7þ2.1

−1.8 � � � � � �
ΣD�

s 0 1 3
2
− 0.77 0.2 3305.2þ0.2ðVÞ

−2.4
1.16 12.5 3292.9þ1.4

−1.2 � � � � � �
ΛD −1 1

2
1
2
− 0.57 ð3.4ÞV ð2979.6þ2.5

−4.3 ÞV 0.87 1.3 2981.7þ0.2
−0.3 � � � � � �

ΛD� −1 1
2

1
2
− 0.59 ð2.6ÞV ð3121.6þ2.1

−3.9 ÞV 0.89 1.8 3122.5þ0.3
−0.4 Ξcð3123Þ 3122.9� 1.3 [31]

ΛD� −1 1
2

3
2
− 0.59 ð2.6ÞV ð3121.6þ2.1

−3.9 ÞV 0.89 1.8 3122.5þ0.3
−0.4 Ξcð3123Þ 3122.9� 1.3 [31]

ΣD −1 1
2

1
2
− 0.92 3.8 3056.6þ1.9

−2.5 1.40 28.1 3023.3þ6.1
−8.2 Ξcð3055Þ 3055.9� 0.4 [31]

ΣD� −1 1
2

1
2
− 0.66 ð0.6ÞV ð3201.1þ0.6ðBÞ

−5.8 ÞV 0.99 5.0 3196.8þ3.0
−3.2 � � � � � �

ΣD� −1 1
2

3
2
− 1.10 11.5 3190.3þ1.1

−1.2 1.66 47 3155þ14
−18 � � � � � �

ΣD −1 3
2

1
2
− 0.69 ð0.1ÞV ð3060.3þ0.1ðBÞ

−3.4 ÞV 1.05 7.3 3053.1þ2.3
−2.1 � � � � � �

ΣD� −1 3
2

1
2
− 0.71 ð0.0ÞV ð3201.7þ0.0ðBÞ

−2.7 ÞV 1.08 8.4 3193.3þ2.5
−2.2 � � � � � �

ΣD� −1 3
2

1
2
− 0.71 ð0.0ÞV ð3201.7þ0.0ðBÞ

−2.7 ÞV 1.08 8.4 3193.3þ2.5
−2.2 � � � � � �

ΞDs −1 1
2

1
2
− 0.82 1.0 3286.7þ0.9

−3.2 1.25 16.6 3270.0þ0.4
−0.3 � � � � � �

ΞD�
s −1 1

2
1
2
− 0.91 3.1 3427.4þ2.3

−3.8 1.38 24.2 3406.3þ2.0
−2.5 � � � � � �

ΞD�
s −1 1

2
3
2
− 0.81 0.8 3429.8þ0.6

−3.4 1.23 15.3 3415.2þ1.6
−1.4 � � � � � �

ΞD −2 0 1
2
− 0.90 2.8 3182.7þ2.1

−3.2 1.36 23.9 3161.6þ3.0
−3.9 Ωcð3185Þ 3185.1þ7.6

−1.9 [26]
ΞD� −2 0 1

2
− 1.03 7.6 3319.3þ2.5

−3.0 1.56 36.7 3290.2þ7.5
−10.0 � � � � � �

ΞD� −2 0 3
2
− 0.87 2.0 3324.8þ1.9

−3.6 1.32 20.9 3306.0þ1.1
−1.4 Ωcð3327Þ 3327.1þ1.2

−1.8 [26]

ΞD −2 1 1
2
− 0.73 0.0 3185.5þ0.0ðVÞ

−2.1
1.11 9.8 3175.8þ2.6

−2.3 � � � � � �
ΞD� −2 1 1

2
− 0.76 0.1 3326.8þ0.1ðVÞ

−2.6
1.15 11.1 3315.8þ2.8

−2.5 � � � � � �
ΞD� −2 1 1

2
− 0.76 0.1 3326.8þ0.1ðVÞ

−2.6
1.15 11.1 3315.8þ2.8

−2.5 � � � � � �
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For the uncertainties, we will do as follows: the largest
source of error in the saturated couplings is the σ meson, the
parameters and nature of which are not particularly well
known. Besides, the RG-improved saturated coupling is most
sensitive to the contribution of the σmeson owing to its lighter
mass when compared to the vector mesons. Thus wewill vary

the scalar meson mass within its RPP window of mσ ¼
ð400–550Þ MeV as a practical method to estimate the
uncertainties of our model. In addition to this uncertainty
there is of course the uncertainty coming from the choice of a
reference state, which results in two different sets of predic-
tionsdependingonwhetherweuse theΛcð2940ÞorΣcð2800Þ.

TABLE V. Molecular anticharmed pentaquarks predicted in our model. We refer to Table IV for the conventions used, where the only
significant difference with the aforementioned table is that here there are no experimental candidates (and hence we do not include the
“Candidate” and Mcand columns). All binding energies and masses are in units of MeV.

System S I JP RmolðΛ�
cÞ Bmol Mmol RmolðΣ�

cÞ Bmol Mmol

ND̄ 0 0 1
2
− 0.59 ð2.7ÞV ð2803.4þ2.6

−7.4ÞV 0.90 2.3 2803.8þ1.2
−1.3

ND̄� 0 0 1
2
− 0.36 ð30ÞV ð2918þ24

−68 ÞV 0.54 ð7.0ÞV 2940.5þ6.9
−35.9

ND̄� 0 0 3
2
− 0.73 0.0 2947.5þ0.0ðVÞ

−0.9
1.11 11.7 2935.8þ1.8

−2.4

ND̄ 0 1 1
2
− 0.46 ð13ÞV ð2793þ11

−26 ÞV 0.70 ð0.4ÞV ð2805.8þ0.4ðBÞ
−5.7 ÞV

ND̄� 0 1 1
2
− 0.64 ð1.1ÞV ð2946.4þ1.1ðBÞ

−4.6 ÞV 0.97 4.7 2942.8þ1.0
−0.9

ND̄� 0 1 3
2
− 0.39 ð23ÞV ð2924þ19

−51 ÞV 0.59 ð4.0ÞV ð2943.4þ4.0ðBÞ
−22.7 ÞV

ND̄s −1 1
2

1
2
− 0.60 ð2.2ÞV ð2905.0þ2.2ðBÞ

−6.9 ÞV 0.92 2.7 2904.5� 1.4

ND̄�
s −1 1

2
1
2
− 0.62 ð1.7ÞV ð3049.4þ1.7ðBÞ

−6.3 ÞV 0.94 3.4 3047.7� 1.5

ND̄�
s −1 1

2
3
2
− 0.62 ð1.7ÞV ð3049.4þ1.7ðBÞ

−6.3 ÞV 0.94 3.4 3047.7� 1.5

ΛD̄ −1 1
2

1
2
− 0.42 ð16ÞV ð2967þ11

−20 ÞV 0.64 ð1.6ÞV ð2981.4þ1.4
−4.3ÞV

ΛD̄� −1 1
2

1
2
− 0.44 ð14ÞV ð3110þ10

−19 ÞV 0.66 ð1.1ÞV ð3123.2þ1.1ðBÞ
−3.8 ÞV

ΛD̄� −1 1
2

3
2
− 0.44 ð14ÞV ð3110þ10

−19 ÞV 0.66 ð1.1ÞV ð3123.2þ1.1ðBÞ
−3.8 ÞV

ΣD̄ −1 1
2

1
2
− 0.77 0.2 3060.2þ0.2ðVÞ

−2.1
1.17 13.2 3047.2� 0

ΣD̄� −1 1
2

1
2
− 0.69 ð0.1ÞV ð3201.6þ0.1ðBÞ

−3.6 ÞV 1.05 7.2 3194.5þ2.8
−2.6

ΣD̄� −1 1
2

3
2
− 0.84 1.3 3200.4þ1.3ðVÞ

−2.9
1.27 19.0 3182.7þ1.7

−2.2

ΣD̄ −1 3
2

1
2
− 0.54 ð5.1ÞV ð3055.3þ5.1ðBÞ

−18.1 ÞV 0.81 0.4 3060.0þ0.4ðVÞ
−3.0

ΣD̄� −1 3
2

1
2
− 0.75 0.1 3201.7þ0.1ðBÞ

−2.0
1.13 11.1 3190.6þ1.5

−1.3

ΣD̄� −1 3
2

1
2
− 0.45 ð12ÞV ð3190þ11

−38 ÞV 0.69 ð0.5ÞV ð3201.2þ0.5ðBÞ
−13.6 ÞV

ΛD̄s −2 0 1
2
− 0.47 ð10.1ÞV ð3073.9þ7.1

−13.0ÞV 0.72 ð0.1ÞV ð3083.9þ0.1ðBÞ
−1.1 ÞV

ΛD̄�
s −2 0 1

2
− 0.53 ð5.5ÞV ð3222.4þ4.2

−7.8ÞV 0.80 0.3 3227.6þ0.2
−0.3

ΛD̄�
s −2 0 3

2
− 0.46 ð10.9ÞV ð3217.0þ7.9

−15.0ÞV 0.70 ð0.3ÞV ð3227.6þ0.3ðBÞ
−1.9 ÞV

ΣD̄s −2 1 1
2
− 0.67 ð0.4ÞV ð3161.2þ0.4ðBÞ

−4.7 ÞV 1.02 5.9 3155.6þ3.6
−2.8

ΣD̄�
s −2 1 1

2
− 0.70 ð0.0ÞV ð3305.3þ0.0ðBÞ

−3.1 ÞV 1.07 7.8 3297.5þ3.1
−2.7

ΣD̄�
s −2 1 3

2
− 0.68 ð0.2ÞV ð3305.1þ0.2ðBÞ

−4.5 ÞV 1.03 6.3 3299.0þ3.2
−3.1

ΞD̄ −2 0 1
2
− 0.82 0.8 3184.2þ0.8ðVÞ

−3.0
1.24 16.3 3169.2� 0

ΞD̄� −2 0 1
2
− 0.89 2.6 3324.3þ2.1

−3.6 1.35 22.7 3304.1þ1.8
−2.4

ΞD̄� −2 0 3
2
− 0.82 0.8 3326.1þ0.6

−3.3 1.23 15.7 3311.1þ1.0
−0.8

ΞD̄ −2 1 1
2
− 0.65 ð0.6ÞV ð3184.9þ0.6ðBÞ

−6.7 ÞV 0.99 4.6 3181.0þ3.6
−3.9

ΞD̄� −2 1 1
2
− 0.62 ð1.3ÞV ð3325.5þ0.8

−10.2ÞV 0.94 2.9 3324.0þ3.1
−4.8

ΞD̄� −2 1 1
2
− 0.70 ð0.1ÞV ð3326.8þ0.1ðBÞ

−4.1 ÞV 1.06 7.1 3319.8þ3.7
−3.5

ΞD̄s −3 1
2

1
2
− 0.68 ð0.2ÞV ð3286.4þ0.2ðBÞ

−5.3 ÞV 1.03 6.0 3280.7þ3.3
−3.8

ΞD̄�
s −3 1

2
1
2
− 0.76 0.1 3430.4þ0.1ðBÞ

−9.7
1.15 11.5 3419.0þ2.8

−4.5

ΞD̄�
s −3 1

2
3
2
− 0.66 ð0.4ÞV ð3430.1þ0.4ðBÞ

−2.6 Þ 1.00 5.0 3425.5� 3.7
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Regarding the predictions for the molecular baryons in
Table IV, we find it worth commenting the following:

(i) Predictions derived from the Σcð2800Þ are consid-
erably more attractive than the ones derived from
the Λcð2940Þ.

(ii) We find molecular matches of the Ξcð3055Þ (ΣD),
Ξcð3123Þ (ΛD�) and the Ωcð3185Þ (ΞD) and
Ωcð3327Þ (J ¼ 3

2
ΞD�) [26].

(iii) The recent LHCb manuscript in which the
Ωcð3185=3327Þ have been discovered [26] also
indicates that no structures have been observed in

Ξþ
c Kþ. ΣDð�Þ

s molecules can decay into this channel
via a short-range operator (exchange of a light-
baryon). Though only expected to generate a narrow
width, the size of this matrix element grows with the
binding energy,1 disfavoring the use of Σcð2800Þ as
a reference state because of the large bindings it

entails for ΣDð�Þ
s .

(iv) Curiously, if Σcð2800Þ is the reference state, we
predict two I ¼ 0 ND� bound states that might
correspond to the Λcð2940Þ (but now appearing as a
J ¼ 1

2
state) and the recently discovered Λcð2910Þ

[47] (as a J ¼ 3
2
state). This interpretation coincides

with the one proposed in [48], but not with
Refs. [46,49] that consider the Λcð2910Þ as compact
or at least nonmolecular.

If we consider the anticharmed pentaquarks predicted
in Table V, the first problem we are confronted with is the
lack of candidates. Nonetheless, there is experimental
information about I ¼ 0 ND̄ scattering at low energies
from the ALICE collaboration [50], which constrained the
values of the inverse scattering length2 of this system to the
following range:

f−10 ðI ¼ 0Þ∈ ½−0.4; 0.9� fm−1: ð34Þ

The calculation of f0 in our formalism is given by

−
1

f0
¼ 2π

μrefCsat
ref

1

Rmol
þ 2

π

Z
∞

0

dqf2
�

q
ΛH

�
; ð35Þ

and, depending on the reference state used, we arrive at

f−10 ðI ¼ 0Þ ¼ þ0.34 fm−1 for ref ¼ Λcð2940Þ;
f−10 ðI ¼ 0Þ ¼ −0.24 fm−1 for ref ¼ Σcð2800Þ: ð36Þ

That is, from the prediction of the inverse scattering length
we conclude that both reference states comply with this
experimental constraint.
Alternatively, we might compare the spectrum in Table V

with previous theoretical predictions. The first predictions
of a c̄qqqq pentaquark are maybe the ones by Gignoux
et al. [51] and Lipkin [52], who calculated that the
anticharmed-strange pentaquark configurations could be
stable and located below the ND̄s threshold. Here the ND̄s
system shows a remarkable amount of attraction, but
binding is subordinate to our choice of reference state:
from the Σcð2800Þ we indeed find a shallow bound state,
but if we use the Λcð2940Þ instead, we end up with a virtual
state (albeit close to threshold). Hofmann and Lutz [53]
proposed that the ND̄s-ΛD̄-ΣD̄ and ΛD̄s-ΞD̄ systems
might generate bound states at 2.78 and 2.84 GeV, respec-
tively (and also a hidden-charmed pentaquark at 3.52 GeV,
probably one of the first predictions of these states). Even
though we find considerably less attraction for the afore-
mentioned systems than in [53], these systems are still
attractive and able to bind within our model. More recently,
Yalikun and Zou [54] have studied possible ΣD̄ and ΣD̄�
bound states within the one boson exchange model. We
find three possible near-threshold states in these configu-
rations in agreement with [54]. That is, in general the
qualitative features of the spectrum we predict align with
previous results, though there are differences at the quan-
titative level, which will only be elucidated once we have
further experimental results.

V. ISOSPIN BREAKING EFFECTS
AND THE Ωcð3185=3327Þ

The previous predictions have been done in the isospin
symmetric limit, i.e., our calculations use the isospin
averages of the charmed meson and light octet baryon
masses.
The inclusion of explicit isospin breaking effects will

have different effects depending on the particular two-body
system under consideration. The effects are trivial in
meson-baryon systems for which there is only one particle
channel per isospin state (e.g., ΞDs for which the two
isospin states are j 1

2
1
2
iI ¼ jΞ0Dþ

s i and j 1
2
− 1

2
iI ¼ jΞ−Dþ

s i).
Here isospin breaking only entails a shift in the mass of the
molecule equal to the shift of the physical and isospin
symmetric thresholds (e.g., �3.4 MeV for the Ξ−Dþ

s and
Ξ0Dþ

s molecules, with respect to the ΞDs calculations
of Table IV).
More interesting is the case of the ND and ΞD systems,

for which isospin mixing of the I ¼ 0 and I ¼ 1 states
is possible (or the ΣD system, where mixing happens
between the I ¼ 1

2
and I ¼ 3

2
configurations, though we will

not consider this case in detail here). For ND and ΞD with
MI ¼ 0 (with MI the third component of the isospin wave
function) we have a light and heavy particle channel

1More binding implies a larger probability of the two particles
being close to each other, which for a short-range operator would
be a necessary condition for having a non-negligible matrix
element.

2In [50] the sign convention of the scattering length is f0 > 0
(f0 < 0) for a two-body system with a virtual (bound) state.
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j00iI ¼
1ffiffiffi
2

p ½jLi − jHi�; ð37Þ

j10iI ¼
1ffiffiffi
2

p ½jLi þ jHi�; ð38Þ

where jLi ¼ jpD0i or jΞ0D0i and jHi ¼ −jnDþi or
−jΞ−Dþi,3 depending on the system. This decomposition
implies that the contact-range potential now becomes a
matrix in the fjLi; jHig basis. The identity and product
isospin operators change to

1 →

�þ1 0

0 þ1

�
and T̂12 →

�þ1 −2
−2 þ1

�
; ð39Þ

from which the explicit expression of the saturated contact-
range potential reads

CsatðmVÞ∝
�þ1 −2
−2 þ1

�
gρ1gρ2
m2

V

�
1þ κρ1κρ2

m2
V

6M2
ŜL12

�

þ
�þζ 0

0 þζ

�
gω1gω2
m2

V

�
1þ κω1κω2

m2
V

6M2
ŜL12

�

þ
�−1 0

0 −1

��
mV

mS

�
gS1gS2
m2

S
; ð40Þ

where it is apparent that the isospin breaking effects derive
from ρ exchange between the L and H channels.
The bound state equation becomes now a two-channel

linear system

ϕAþ2μref
X
B

ϕBCsat
refðΛÞRAB

mol

Z
q2dq
2π2

f2ðqΛÞ
q2þ γ2molðAÞ

¼ 0; ð41Þ

where A;B ¼ L, H are indices denoting the channels,

ϕA the vertex function for channel A, γmolðAÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μAðMthðAÞ −MmolÞ

q
with Mmol the mass of the predicted

molecule, MthðAÞ the mass of threshold A and μA the
reduced mass of channel A. The ratio RAB

mol is given by

RAB
mol ¼

μACsat
molðABÞðΛÞ

μrefCsat
refðΛÞ

; ð42Þ

where the indices AB in the saturated coupling refer to the
components of Csat in matrix form for a given molecule
“mol.” For simplicity, Csat

ref will refer to the coupling of the

reference state in the isospin symmetric limit. For the
MI ¼ 0 ND and ΞD systems—i.e., the states with third
component of their isospin wave function jIMIi equal zero,
check Eqs. (37) and (38)—the I ¼ 0 and I ¼ 1 configu-
rations correspond to the vertex functions

ϕðI ¼ 0Þ ¼ ðϕL;ϕHÞ ¼
�

1ffiffiffi
2

p ;−
1ffiffiffi
2

p
�
; ð43Þ

ϕðI ¼ 1Þ ¼ ðϕL;ϕHÞ ¼
�

1ffiffiffi
2

p ;þ 1ffiffiffi
2

p
�
: ð44Þ

Owing to the different masses of the L and H channels,
the I ¼ 0 and I ¼ 1 configurations will mix. In turn, this
will entail changes in the predicted masses. Naively, the
size of this effect is expected to be of the order of the ratio
of the binding energy over the mass gap of the L and H
channels. However, in practice what we find is that if in the
isospin symmetric limit the molecular state is predicted
below the threshold of the L channel, the impact of isospin
breaking in its mass will be rather small.
With the previous formalism we can estimate the effects

of isospin breaking in the two reference states:
(i) We first calculate Csat

ref in the isospin limit for a given
reference state.

(ii) Then we recalculate the mass of said reference state
after the inclusion of isospin breaking in the masses
of the hadrons.

From this, the reference states are now postdicted at
(a) For the Λcð2940Þ, the new mass is 2939.2 MeV

(previously: 2939.6) and the L and H vertex functions
are now ðϕL;ϕHÞ ¼ ð0.76;−0.65Þ, indicating a small
deviation with respect to a pure I ¼ 0 state.

(b) For the Σcð2800Þ, the mass is ∼2800.6 MeV (before:
∼2800 MeV) and ðϕL;ϕHÞ ¼ ð0.41; 0.91Þ, i.e., a
larger deviation from the isospin symmetric limit
when compared with the Λcð2940Þ.

That is, for the masses of the two previous molecular states
isospin symmetry breaking seems to be a perturbative
correction over the isospin symmetric limit. But this is only
true provided the mass of the molecular state is predicted
below the L channel threshold: for predictions above the L
threshold, which is what happens in the DΞ and D�Ξ
systems, there will be significant changes in the predicted
masses.
In the particular case of the DΞ and D�Ξ molecules, the

two particles channels corresponding to the I ¼ 0, 1,MI ¼ 0
configurations are relatively far away from each other

mðD0Ξ0Þ ¼ 3179.3 MeV; ð45Þ

mðDþΞ−Þ ¼ 3191.4 MeV; ð46Þ

mðD�0Ξ0Þ ¼ 3321.8 MeV; ð47Þ

3Here we are making use of the existence of a relative sign for
the isospin states of the light antiquarks: jd̄i ¼ −j 1

2
1
2
iI and

jūi ¼ j 1
2
− 1

2
iI . If we extend this convention to the charmed

mesons, which contain an antiquark, we arrive at the minus sign
for the definition of the jHi state.
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mðD�þΞ−Þ ¼ 3332.0 MeV; ð48Þ

where the predictions of the saturation model fall in
between the two thresholds when the reference state is
the Λcð2940Þ. In this latter case, concrete calculations show
that the I ¼ 0 and I ¼ 1 ΞD states we originally predicted
in Table IV now become a pair of predominantly Ξ0Dð�Þ0

and Ξ−Dð�Þþ states, as shown in Table VI. For ΞD (with
Λcð2940Þ as the reference state) we predict the masses

mðΞ0D0ðLÞÞ ¼ 3178.5 MeV; ð49Þ

mðΞ−DþðHÞÞ ¼ 3190.7 MeV; ð50Þ

where the higher energy state is relatively close to the
experimental mass (M ¼ 3185þ7.6

−1.9 MeV). Conversely, for
J ¼ 3

2
D�Ξ we predict now

mðΞ0D�0ðLÞÞ ¼ 3320.8 MeV; ð51Þ

mðΞ−D�þðHÞÞ ¼ 3331.2 MeV: ð52Þ

Again, the heavier molecule is not far away from the
experimental mass (M ¼ 3327.1þ1.2

−1.8 MeV). The vertex
functions for the L and H channels, ϕL and ϕH, are also
listed in Table VI, where it is apparent that isospin is
badly broken at the level of the wave function and neither of
the two states can be interpreted as a I ¼ 0 or I ¼ 1 state.
However, when we use the Σcð2800Þ as the reference
state, which implies more attraction, and the prediction
of the I ¼ 0 state happens below the L threshold in the
isospin symmetric limit, then the changes in the mass after
including isospin breaking in the masses are relatively
small, check Tables IV and VI.
As a consequence, if the Ωcð3185=3327Þ are molecular

they should appear as a double peak: (i) a peak close to the
Dð�ÞþΞ− threshold, roughly corresponding to what is seen
in the experiment, and (ii) a second, lighter peak close to

the Dð�Þ0Ξ0 threshold. Prima facie, this seems to contradict
the experimental findings, as there is no Ωc listed with the
mass of the lighter peak. Yet, regarding the Ωcð3185Þ,
Ref. [26] states: “A two-peak structure also describes the
data well in the mass region around 3185 MeV, hence the
presence of two states in this region cannot be excluded.”
Unfortunately, the masses of the two-peak solution are

not given, neither it is said explicitly whether this also
applies to the Ωcð3327Þ. For the latter, in Table VI we
predict that the J ¼ 1

2
and 3

2
Ξ−D�þ peaks are almost at

the same mass, which (within the two-peak hypothesis)
might explain why the uncertainties in the Ωcð3327Þ mass
are much smaller (3327.1þ1.2

−1.8 MeV) than those of the
Ωcð3185Þ (3185.1þ7.6

−1.9 MeV).
Moreover, if the Ωcð3185Þ and Ωð3327Þ were double

peaks, this factor could indeed explain their large observed
widths in [26]. A pure molecular explanation will result in a
narrow state because the ΞD → ΞcK̄ transition depends on
short-range dynamics (e.g., the exchange of a light-
baryon). These dynamics are expected to be suppressed
if the wave function has a large size. Within this scenario,
the relatively large width (for a molecular state) of the
experimental peaks could be a consequence of its double
peak nature.
More insight might be gained from a comparison with

the compact hadron hypothesis.4 From the equal spacing
rule, we expect the partners of the Ωcð3185Þ and Ωð3327Þ
to have a similar spacing to that of the lowest mass charmed
baryon sextet, that is, MðΩcÞ −MðΞ0

cÞ ∼ 125 MeV and
MðΞ0

cÞ −MðΣcÞ ∼ 125 MeV. Thus we might expect the
sextets:

Σcð2940Þ; Ξcð3060Þ; Ωcð3185Þ; ð53Þ

TABLE VI. Predictions for the Ωc molecular baryons when isospin breaking effects in the masses of the Ξ0D0ð�Þ and Ξ−Dþð�Þ are
taken into account. “System” refers to the particular ΞDð�Þ molecule under consideration, JP to its spin and parity, Rmol is the relative
strength of the contact-range interaction as defined in Eq. (42), ðϕL;ϕHÞ the vertex function for the lower and higher mass channels,
Mmol the mass of the predicted state and Mcand the mass of the Ωc candidate states. The uncertainties in Mmol come from varying the
scalar meson mass in the (400–550) MeV range. All masses are in units of MeV.

System JP RmolðΛ�
cÞ ðϕL;ϕHÞ Mmol RmolðΣ�

cÞ ðϕL;ϕHÞ Mmol Mcand

Ξ0D0 − Ξ−Dþ 1
2
− ð 0.82

−0.08
−0.08
0.82 Þ

ð−0.86; 0.51Þ 3178.5þ1.2
−3.0 ð 1.23

−0.12
−0.12
1.24 Þ

ð−0.86; 0.51Þ 3159.7þ2.1
−3.4 � � �

ð0.07 − 0.30i; 0.95Þ 3190.7þ0.8
−3.0 (0.28, 0.96) 3177.6þ2.1

−1.4 3185.1þ7.6
−1.9 [26]

Ξ0D�0 − Ξ−D�þ 1
2
− ð 0.89

−0.14
−0.14
0.89 Þ

ð−0.86; 0.51Þ 3317.1þ2.3
−3.1 ð 1.35

−0.21
−0.21
1.36 Þ

ð−0.79; 0.62Þ 3289.3þ7.0
−9.8 � � �

ð0.07 − 0.30i; 0.95Þ 3330.3þ2.2
−3.7 (0.45, 0.89) 3316.5þ2.4

−1.8 � � �

Ξ0D�0 − Ξ−D�þ 3
2
− ð 0.81

−0.06
−0.06
0.82 Þ

ð−0.97; 0.26Þ 3320.8þ0.8
−3.3 ð 1.23

−0.09
−0.09
1.24 Þ

ð−0.89; 0.45Þ 3303.9þ0.4
−0.9 � � �

ð0.00 − 0.16i; 0.99Þ 3331.2þ0.7
−3.2 (0.27, 0.96) 3317.8þ2.2

−1.7 3327.1þ1.2
−1.8 [26]

4Regarding this hypothesis, we mention in passing that
recently Ref. [28] has proposed that the Ωcð3327Þ is a compact
1D5

2
state, while Ref. [29] interprets the Ωcð3185Þ and Ωcð3327Þ

as 2S1
2
and 2S3

2
states.
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Σcð3075Þ; Ξcð3200Þ; Ωcð3327Þ: ð54Þ

Currently, only the Ξcð3055Þ fits within the previous
pattern. However, the identification of the Ξcð3055Þ as a
partner of the Ωcð3185Þ is problematic in what regards
the widths: the Ξcð3055Þ has a width of a few MeV
(Γ ¼ 7.8� 1.9 MeV [31]), while for theΩcð3185Þ it is of a
few tens of MeV (Γ ¼ 50� 7þ10

−20 MeV [26]), a difference
of one order of magnitude. This suggests that they are not
partners, though confounding factors might exist: a com-
pact Ξcð3055Þ and Ωcð3185Þ could both mix with the
nearby meson-baryon thresholds, muddling the comparison
between the two.

VI. CONCLUSIONS

We have considered the spectroscopy of charmed meson
and octet baryon molecules within a phenomenological
model. This model is a contact-range theory in which the
couplings are saturated by the exchange of the light scalar
and vector mesons (σ, ρ, ω, K�, and ϕ). The choice of a
contact-range interaction is motivated by the difference in
scales between the range of light-meson exchange (short-
range) and the size of the molecular states predicted (long-
range). The saturation of the couplings exploits their RG
evolution to combine the contributions from light-mesons
with different masses. The couplings are determined up to
a proportionality constant that has to be calibrated by
reproducing a given reference state, i.e., a known state with
a plausible molecular interpretation. For this we use the
Λcð2940Þ (as an I ¼ 0, J ¼ 3

2
ND� molecule) and the

Σcð2800Þ (I ¼ 1, J ¼ 1
2
NDmolecule). Each reference state

leads to quantitative differences in the charmed baryon and
anticharmed pentaquark spectra.
Among the molecular charmed baryons we predict, there

are ΣD and ΛD�
s bound states that might correspond with

the Ξcð3055Þ and Ξcð3123Þ baryons. Yet, the more inter-
esting result might be the prediction of ΞD and ΞD� bound
states with masses matching those of the recently observed
Ωcð3185Þ and Ωcð3327Þ. For this molecular interpretation
to be valid it would be required that the Ωcð3185Þ is
composed of two narrow peaks with a mass difference of
about 10 MeV (i.e., the gap between the Ξ−Dþ and Ξ0D0

thresholds). It is noteworthy that the Ωcð3185Þ indeed
accepts a two peak description [26], though the masses of
each of the peaks is not mentioned. For the Ωcð3327Þ the
situation might be more complex because the two spin
configurations (J ¼ 1

2
and 3

2
) of the ΞD� system bind,

meaning that there could be up to four peaks (though this
might depend on the magnitude of the isospin splitting).
Yet, the J ¼ 1

2
and 3

2
Ξ−D�þ bound states are predicted

about the same mass, representing a simplification with
respect to the four peak scenario. In this latter case, if the
Ωcð3327Þ turns out to contain two nearby peaks with a

mass difference smaller than the Ξ−D�þ and Ξ0D0 thresh-
olds gap, this would support a molecular interpretation.
Finally, we predict a few molecular anticharmed penta-

quarks. In this case there are no experimental candidates
and the only comparison left is with other theoretical
models [51–54], which in general do agree on the quali-
tative features of the molecular spectrum (for instance,
the possibility of ND̄ð�Þ

s [51–53] or ΣD̄ð�Þ [54] states). Yet,
there is experimental information about the I ¼ 0 ND̄
interaction from the ALICE collaboration [50]: its inverse
scattering length. This datum is reproduced by our RG
saturation model independently of the input [Λcð2940Þ
or Σcð2800Þ].
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APPENDIX: LIGHT-MESON COUPLINGS

Here we explore in more detail our choice of couplings
for the light baryons. We begin with the vector meson
couplings, which are derived from the mixing with the
electromagnetic current. We continue with the scalar
couplings, whose choice requires a more careful compari-
son with molecular predictions in a few system. This leads
to the conclusion that this coupling is weaker for the Λ than
for the other octet baryons.

1. Vector couplings

For the vector couplings, we determined them from the
fact that the neutral vector mesons can mix with the photon
current (because they have the same charge and quantum
numbers JPC ¼ 1−−), i.e., from vector meson dominance
[40–42]. For this we consider the nonrelativistic interaction
between a hadron h and a vector meson V as given by the
Lagrangian

LhhV ¼ gVh†
�
∂0V0 þ

κV
2M

ϵijkŜi∂jVk

�
h; ðA1Þ

with gV and κV the electric- and magneticlike couplings,
Ŝi the i ¼ 1, 2, 3 spatial component of the reduced spin

operator ˆS⃗ ¼ S⃗=S (with S the spin of hadron h) and M a
scaling mass, for which we choose the nucleon mass.
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For simplicity we have not indicated the isospin or flavor
indices explicitly. Next we make the substitutions

ρ0μ → ρ0μ þ
1

2

e
g
Aμ; ðA2Þ

ωμ → ωμ þ
1

6

e
g
Aμ; ðA3Þ

ϕμ → ϕμ −
1

3
ffiffiffi
2

p e
g
Aμ; ðA4Þ

which dependonwhether thevectormeson is a neutral ρ (ρ0),
anω or a ϕ, μ is a Lorentz index andAμ the photon field; e is
the proton charge and g ¼ mV=2fπ ≃ 2.9 the universal
vector meson coupling (in the fπ ¼ 132 MeV normaliza-
tion). We match the Aμ piece of the previous substitution to
the nonrelativistic electromagnetic Lagrangian for the light-
quark content of the hadron H

Lhhγ ¼ eh†
�
QL∂0A0 þ

μL
2M

ϵijkŜi∂jAk

�
h; ðA5Þ

whereQL is the charge of the light quarkswithin the hadronh
(in units of e) and μL its magnetic moments in units of
e=ð2MÞ (or nuclear magnetons, if M is chosen to be the
nucleon mass). Of course, if isospin or flavor are explicitly
considered, QL and μL will become matrices. The gV
couplings depend on the charges of the isospin components
of the hadrons, while κV on their (light) magnetic moments.
By using the quark model calculation of the magnetic
moments of the octet baryons and the part of the charmed
meson magnetic moments that come from the light-quarks,
we arrive at the κV couplings of Table I.

2. Scalar coupling

Here we explore in more detail the couplings of the
scalar meson in the strange sector for the light baryons and
charmed mesons. Our baseline scenario is that this cou-
plings is given by gSqq ¼ 3.4 for q ¼ u, d, s, as derived
from the linear sigma model [43], the quark model [44] and
the additional assumption that the coupling to the s quark is
similar to the u and d quarks. We will decide whether this
baseline value requires corrections or not by calculating the
spectra of a few two-hadron systems and comparing with
experimental information or other theoretical models.
For the coupling of the scalar meson to the light baryons,

we calculate a few two light baryon systems using the two-
nucleon 1S0 virtual state as the reference state (or, equiv-
alently, by using the 1S0 scattering length as input,
a0ð1S0Þ ¼ −23.7 fm). First, we notice that in terms of
SU(3) symmetry, the two-nucleon 1S0 configuration and a
series of other configurations:

jNNð1S0; I ¼ 1Þi ¼ j27i; ðA6Þ
����ΣN

�
1S0; I ¼

3

2

��
¼ j27i; ðA7Þ

jΣΣð1S0; I ¼ 2Þi ¼ j27i; ðA8Þ
����ΞΣ

�
1S0; I ¼

3

2

��
¼ j27i; ðA9Þ

jΞΞð1S0; I ¼ 1Þi ¼ j27i; ðA10Þ

are all in the 27-plet SU(3)-flavor representation, from
which the potential should be the same in the flavor-
symmetric limit. Indeed, all of these systems happen to
show large scattering lengths that are in a few cases positive
(indicating a bound state). Following [33] we use a softer
cutoff in the light sector, Λ ¼ 0.5 GeV, in which case
saturation yields

B2

�
ΣN; I ¼ 3

2

�
¼ 1.1 MeV; ðA11Þ

B2ðΣΣ; I ¼ 2Þ ¼ 1.6ð0 − 0.01Þ MeV; ðA12Þ

B2

�
ΞΣ; I ¼ 3

2

�
¼ 1.0ð0.58 − 0.19Þ MeV; ðA13Þ

B2ðΞΞ; I ¼ 1Þ ¼ 2.1ð0.40 − 1.0Þ MeV; ðA14Þ

where the values in parentheses correspond to chiral EFT
results when terms up to order Q2 are included in the
potential [55], where we notice that (i) for the 1S0 ΣN no
bound state is predicted in [55], though there is consid-
erable attraction if we look at the scattering length and
(ii) that the order Q0 results would be more similar to our
ΞΣ [(2.23–6.18) MeV in [55] versus our 1.0 MeV result]
and ΞΞ predictions [(2.56–7.27) MeV in [55] versus
2.1 MeV]. Taking into account that we are not considering
exchange of pseudoscalar mesons, which lead to less
attraction in the strangeness S ¼ −1 and −2 system relative
to the singlet, the results we obtain are sensible. We could
have also compared the scattering lengths, in which case we
would have had

a0ðΣNÞ ¼ 6.4 fm; ðA15Þ

a0ðΣΣÞ ¼ 5.2ð60.6 − ð−286.0ÞÞ fm; ðA16Þ

a0ðΞΣÞ ¼ 6.2ð8.4 − 13.8Þ fm; ðA17Þ

a0ðΞΞÞ ¼ 4.4ð9.7 − 6.5Þ fm; ðA18Þ

where results in parentheses are again from Ref. [55].
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Alternatively, we can compare instead to the lattice QCD
results of Ref. [56], which after extrapolation to the
physical pion mass lead to a bound 1S0 system with binding
energy

Blin ðquadÞ
2 ðNN; I ¼ 0Þ ¼ 6.4þ6.3

−6.5ð9.9þ4.6
−4.5Þ MeV; ðA19Þ

depending on whether a linear or quadratic (in parentheses)
extrapolation is used to reachmπ ¼ 138 MeV. By using the
linear extrapolation as input we obtain

B2

�
ΣN; I ¼ 3

2

�
¼ 14.9ð8.4þ7.8

−6.6Þ MeV; ðA20Þ

B2ðΣΣ; I ¼ 2Þ ¼ 15.4ð1.0� 6.1Þ MeV; ðA21Þ

B2

�
ΞΣ; I ¼ 3

2

�
¼ 12.8ð5.9þ5.7

−5.8Þ MeV; ðA22Þ

B2ðΞΞ; I ¼ 1Þ ¼ 16.2ð9.6þ4.5
−4.7Þ MeV; ðA23Þ

while if we use the quadratic extrapolation as input

B2

�
ΣN; I ¼ 3

2

�
¼ 20.1ð11.5þ5.7

−4.8Þ MeV; ðA24Þ

B2ðΣΣ; I ¼ 2Þ ¼ 20.4ð5.8þ4.2
−4.3Þ MeV; ðA25Þ

B2

�
ΞΣ; I ¼ 3

2

�
¼ 17.2ð9.5þ3.8

−4.0Þ MeV; ðA26Þ

B2ðΞΞ; I ¼ 1Þ ¼ 21.1ð12.4þ3.0
−3.1Þ MeV; ðA27Þ

where the results in parentheses are from Ref. [56]. In this
case our predictions tend to bind more than the extrapolated
lattice results. The point is though that the naive choice of
couplings works (within reason) in this particular case, and
thus we do not modify it for the N, Σ, and Ξ baryons.
Yet, for the Λ baryon we actually have to modify its

coupling to the scalar meson in order to reproduce current
theoretical estimations of the ΛN and ΛΛ scattering length.
If we use gσΛΛ ¼ gσNN (and the 1S0 virtual state as a
reference state), in general we find excessive attraction,
where the scattering lengths are

a0ðΛN; 1S0Þ ¼ 53.1 fm; ðA28Þ

a0ðΛN; 1S0Þ ¼ 346.8 fm; ðA29Þ

a0ðΛΛÞ ¼ 16.2 fm; ðA30Þ

where the positive scattering lengths indicate the existence
of bound states, in disagreement with other theoretical
models. In contrast, for gσΛΛ ¼ ð3=4ÞgσNN we obtain

a0ðΛN; 1S0Þ ¼ −3.1 fm; ðA31Þ

a0ðΛN; 1S0Þ ¼ −2.9 fm; ðA32Þ

a0ðΛΛÞ ¼ −1.3 fm; ðA33Þ

which compare well (though not perfectly) with other
models: (i) for the ΛN case, we have a0ðΛN;1S0Þ¼−2.9,
−2.6, and −2.6 fm and a0ðΛN; 3S1Þ ¼ −1.7, −1.7 and
−1.7 fm with chiral potentials at the next-to-leading order
(NLO) [57], the Jülich 04 model [58] and the Nijmegen soft
core potential [59], respectively, while (ii) for the ΛΛ case,
a0ðΛΛÞ ¼ −ð0.33–0.85Þ fm in chiral NLO [60], a0ðΛΛÞ ¼
−0.81� 0.23þ0.0

−0.13 fm in the lattice [61]. Even though it is
possible to further fine-tune the parameters to match better
the results of other models, we consider that the current
change (gSΛΛ ¼ ð3=4ÞgSNN) is enough for our purposes.
The charmed meson case is simpler. Here we will use the

recent lattice QCD prediction of JPC ¼ 0þþ DD̄ and DsD̄s
bound states [62] as pseudodata. We notice in passing that
the Xð3960Þ [63] is interpreted as a DsD̄s molecular state
too [64,65], where the location of the pole (bound or
virtual) is usually not far away from the lattice result. For
this prediction, we use the Xð3872Þ as the reference state
(interpreted as a I ¼ 0, JPC ¼ 1þþ D�D̄ bound state) and a
cutoff of Λ ¼ 1.0 GeV as in [33]. The binding energies of
the DD̄ state is calculated to be

B2ðDD̄Þ ¼ 4.0þ5.0
−3.7 MeV; ðA34Þ

and we will use it as input in our calculations. For theDsD̄s
state there are two calculations, a single channel one in
which a bound state is found

BSC
2 ðDsD̄sÞ ¼ 6.2þ2.0

−3.8 MeV; ðA35Þ

and a coupled channel one, in which we have a resonance
instead with energy

ECC
2 ðDsD̄sÞ ¼ −0.2þ0.17

−4.9 −
i
2
ð0.27þ2.5

−0.15Þ MeV; ðA36Þ

where E2 is the energy of the state with respect to theDsD̄s
threshold. If we assume g0S ¼ gS, we will predict this state
to be at

BSC
2 ðDsD̄sÞ ¼ ð1.0ÞV MeV; ðA37Þ

ECC
2 ðDsD̄sÞ ¼

�
−2.4 −

i
2
1.5

�
V
MeV; ðA38Þ

with both solutions corresponding to a virtual state (where
in the coupled channel case this specifically means a pole in
the (I,II) Riemann sheet). Even though outside the error
bands of the lattice predictions, these two results are still in
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line with them. From this point of view, it might not be
necessary to tweak the scalar coupling. If we take gSDsDs

¼
1.15gSDD instead, we will predict

BSC
2 ðDsD̄sÞ ¼ 1.5 MeV; ðA39Þ

ECC
2 ðDsD̄sÞ ¼

�
−0.25 −

i
2
0.42

�
MeV; ðA40Þ

where the single channel calculation is now a bound state,
in agreement with Ref. [62], and the coupled channel

calculation a resonance in the (II,I) Riemann sheet (we
notice that in this case, Ref. [62] finds that this state is in
the (II,I) sheet in 70% of the bootstrap samples and in (I,II)
in the rest). However, even though this change improves
the agreement with lattice, we do not consider that it is
necessary to include it (the improvement is marginal) and
will opt instead for the more simple gSDsDs

¼ gSDD choice.
Finally, we also notice that the reproduction of the
Zcsð3985Þ as a D�D̄s-DD̄�

s molecule from the Zcð3900Þ
(D�D̄) also requires gSDsDs

≥ gSDD [66].
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