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In grand-unified-theory-inspired SO(5) × U(1)X × SU(3)C gauge-Higgs unification (GHU)
in the Randall–Sundrum warped spacetime, the W- and Z-couplings of all 4D fermion
modes become nontrivial. The W- and Z-couplings of zero-mode quarks and leptons
slightly deviate from those in the SM, and the couplings take the matrix form in the space
of Kaluza–Klein (KK) states. In particular, the 4D couplings and mass spectra in the KK
states depend on the Aharonov–Bohm phase θH in the fifth dimension. Nevertheless there
emerge three astonishing sum rules among those coupling matrices, which guarantees the
finiteness of certain combinations of corrections to vacuum polarization tensors. We con-
firm by numerical evaluation that the equality in the sum rules holds with 5- to 7-digit ac-
curacy. Based on the sum rules we propose improved oblique parameters in GHU. Oblique
corrections due to fermion 1-loop diagrams are found to be small.
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1. Introduction
Although the standard model (SM), SU(3)C × SU(2)L × U(1)Y gauge theory, has been success-
ful in describing almost all of the phenomena at low energies, it has a severe gauge hierarchy
problem when embedded in a larger theory such as grand unification. One possible answer to
this problem is the gauge-Higgs unification (GHU) scenario in which gauge symmetry is dy-
namically broken by an Aharonov–Bohm (AB) phase, θH, in the fifth dimension. The 4D Higgs
boson is identified with a 4D fluctuation mode of θH [1–14].

Many GHU models have been proposed, among which SO(5) × U(1)X × SU(3)C GHU mod-
els in the Randall–Sundrum (RS) warped space [15] turn out to be promising candidates for
describing physics beyond the SM. The SO(5) × U(1)X × SU(3)C gauge symmetry naturally
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incorporates the custodial symmetry in the Higgs boson sector [9]. The orbifold boundary con-
dition breaks SO(5) to SO(4) � SU(2)L × SU(2)R. The SU(2)R × U(1)X symmetry is spon-
taneously broken to U(1)Y by a brane scalar on the ultraviolet (UV) brane in the RS space.
The resultant SU(2)L × U(1)Y SM symmetry is dynamically broken to U(1)EM by the Hosotani
mechanism. The 4D Higgs boson is a zero mode of the fifth-dimensional component of gauge
fields in SO(5)/SO(4) which generates an AB phase in the fifth dimension. The finite Higgs
boson mass mH ∼ 125.1 GeV is generated at the quantum level by the dynamics of the AB
phase θH.

A realistic GHU model has been first proposed with quark-lepton multiplets in the vector
(5) representation of SO(5), which is referred to as the GHU A-model [13]. It is recognized,
however, that it is difficult to embed the A-model in the grand unification scheme. A natural
grand-unified-theory (GUT) containing SO(5) × U(1)X × SU(3)C GHU is SO(11) GHU with
fermion multiplets in the spinor (32) and vector (11) representations [16,17]. The GUT-inspired
SO(5) × U(1)X × SU(3)C GHU model is defined with fermion multiplets in the bulk in the (3,
4), (1, 4), (1, 5), and (3, 1) representations of (SU(3)C, SO(5)) [18]. [(3, 4), (1, 4)] is contained
in 32 of SO(11), whereas [(1, 5), (3, 1)] is contained in 11 of SO(11). In addition, Majorana
fermions in the singlet (1, 1) representation are introduced on the UV brane which provide the
inverse seesaw mechanism for neutrinos. The GUT-inspired GHU model is referred to as the
GHU B-model.

The GHU B-model is successful in many respects. It reproduces the quark, lepton, gauge, and
Higgs boson spectra (except for the small mass of the up quark), and yields nearly the same
gauge couplings of the SM particles. It can incorporate the Cabbibo–Kobayashi–Maskawa
(CKM) matrix structure in the W-couplings with Flavour-Changing-Neutral-Currents natu-
rally suppressed [19]. Many of the physical quantities at low energies are described mainly by
the AB phase θH, being mostly independent of the parameters in the dark fermion sector [20].
Both A- and B-models predict Z ’ particles as KK excited states of the photon, Z boson, and
ZR boson. Z’-couplings of quarks and leptons exhibit large parity violation which can be ex-
plored and tested at the 250 GeV e−e+ International Linear Collider (ILC) [21]. By examining
the dependence of event numbers on the polarization of incident electron and positron beams
the A- and B-models can be clearly distinguished [22–26]. Effects of Z ’ bosons can be seen in
single Higgs boson production processes as well [27].

It has been established that useful and convenient quantities to investigate new physics beyond
the SM are the oblique parameters S, T, and U of Peskin–Takeuchi, which represent corrections
to vacuum polarization tensors of W, Z, and photon [28–31]. In the early study of gauge theory
in the RS warped space it was argued that SO(5) × U(1)X GHU models may yield appreciable
corrections to S and T [32]. To evaluate oblique corrections at the 1-loop level in GHU, one
has to know the mass spectrum and gauge couplings of all KK modes. In Ref. [32] S and T
were expressed in terms of truncated propagators of gauge bosons and fermions, by adopting
a perturbative expansion in θH.

In this paper we use exactly determined mass spectra of fermion KK states at general θH at
the tree level, and evaluate W- and Z-couplings of the fermion KK states by making use of
exactly determined wave functions of both gauge bosons and fermions in the SO(5) × U(1)X

space. It is known that the W- and Z-couplings of quarks and leptons are nearly the same as
in the SM. The W- and Z-couplings of the KK modes of quark and lepton multiplets become
highly nontrivial, however. They are not diagonal in the KK states at θH �= 0, taking the matrix
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form with nontrivial off-diagonal elements. Further, the wave functions of the W and Z bosons
have substantial components not only in the SU(2)L × U(1)Y space but also in the entire SO(5)
× U(1)X space, which necessitates refinement of the definition of oblique parameters.

One-loop corrections to the vacuum polarization tensors of W, Z, and photon contain di-
vergences. In the 4D SU(2)L × U(1)Y gauge theory certain combinations of those vacuum po-
larization tensors, represented by S, T, and U, are finite. In the GUT-inspired SO(5) × U(1)X

× SU(3)C GHU various combinations of the KK states of fermions run along the loops in
the propagators of gauge bosons. It will be shown that there appear sum rules among the W-
and Z-coupling matrices. We shall confirm those sum rules by numerically evaluating the mass
spectra of the KK modes and their W- and Z-coupling matrices. The sum rules are found to
hold with 5- to 7-digits accuracy. With these sum rules certain combinations of the 1-loop cor-
rections to the vacuum polarization tensors become finite, which leads to improved oblique
parameters. It will be seen that corrections to the improved oblique parameters are small. The
total corrections are found to be S ∼ 0.01, T ∼ 0.12, and U ∼ 0.00004 for θH = 0.1 and the KK
mass scale mKK = 13 TeV, which is consistent with the current experimental data [33]

Although the gauge couplings in GHU in the RS space have a highly nontrivial matrix struc-
ture, they satisfy remarkable identities. The identities in the sum rules discussed in the present
paper are associated with two-point functions of gauge fields. It is known that the exact identi-
ties hold in the combinations of the couplings appearing in three-point functions of gauge fields
in orbifold gauge theory [34,35]. Triangle loop diagrams generally give rise to chiral anomalies
in 4D gauge theory. In 5D orbifold gauge theory anomaly coefficients for the three legs of
various 4D KK modes of gauge fields vary with the AB phase in the fifth dimension. This
phenomenon is called the anomaly flow by an AB phase. Along triangle loops all possible KK
modes of fermions run. The sum of all those loop contributions leads to the total anomaly co-
efficient, which is expressed in terms of the values of the wave functions of gauge fields at the
UV and infrared (IR) branes in the RS space and orbifold boundary conditions (BCs) of the
fermions. In other words there hold sum rules for gauge coupling matrices of the third order.

In Sect. 2 the GUT-inspired SO(5) × U(1)X × SU(3)C GHU is described. We explain how to
determine the mass spectrum and wave functions of gauge bosons and quark-lepton multiplets.
In Sect. 3 the W- and Z-couplings of all fermion modes are determined. In Sect. 4 fermion 1-
loop corrections to the vacuum polarization tensors of the W boson, Z boson, and photon are
evaluated. In Sect. 5 we show that there appear three sum rules among the W- and Z-coupling
matrices of quarks, leptons, and their KK modes. The sum rules are confirmed by numerical
evaluation. Based on the coupling sum rules the improved oblique parameters are introduced
in Sect. 6. The finite corrections to the S, T, and U parameters are evaluated, and are found to
be small. Section 7 is devoted to a summary and discussions. In Appendix A basis functions
used to express wave functions of gauge bosons and fermions are summarized. In Appendix B
wave functions of KK modes of down-type quarks and neutrinos are given.

2. GUT-inspired GHU
SO(5) × U(1)X × SU(3)C GHU is defined in the RS space whose metric is given by [15]

ds2 = gMNdxMdxN = e−2σ (y)ημνdxμdxν + dy2, (1)

where M, N = 0, 1, 2, 3, 5, μ, ν = 0, 1, 2, 3, y = x5, ημν = diag( − 1, +1, +1, +1), σ (y) =
σ (y + 2L) = σ ( − y), and σ (y) = ky for 0 ≤ y ≤ L. In terms of the conformal coordinate
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Table 1. The matter field content in the GUT-inspired GHU model. The (SU (3)C, SO(5))U (1)X content
of each field is shown in the last column.

in the bulk quark (3, 4) 1
6

(3, 1)+− 1
3

(3, 1)−− 1
3

lepton (1, 4)− 1
2

dark fermion �D (3, 4) 1
6

(1, 5)+0 (1, 5)−0
on the UV brane Majorana fermion χ̂ (1, 1)0

brane scalar 	̂ (1, 4) 1
2

z = eky (0 ≤ y ≤ L, 1 ≤ z ≤ zL = ekL)

ds2 = 1
z2

(
ημνdxμdxν + dz2

k2

)
. (2)

The bulk region 0 < y < L is anti-de Sitter spacetime with a cosmological constant 
 = −6k2,
which is sandwiched by the UV brane at y = 0 and the IR brane at y = L. The KK mass scale
is mKK = πk/(zL − 1) � πkz−1

L for zL � 1.
Gauge fields ASO(5)

M , AU (1)X
M , and ASU (3)C

M of SO(5) × U(1)X × SU(3)C satisfy the orbifold BCs(
Aμ

Ay

)
(x, y j − y) = Pj

(
Aμ

−Ay

)
(x, y j + y)P−1

j (3)

where (y0, y1) = (0, L). In terms of

PSO(5)
4 = diag (I2, −I2) ,

PSO(5)
5 = diag (I4, −I1) , (4)

P0 = P1 = PSO(5)
5 for ASO(5)

M in the vector representation and P0 = P1 = 1 for AU (1)X
M and ASU (3)C

M .
The 4D Higgs field is contained in the SO(5)/SO(4) part of ASO(5)

y . The orbifold BCs break
SO(5) to SO(4) � SU(2)L × SU(2)R.

The matter content in the GUT-inspired GHU (B-model) is summarized in Table 1 [18].
Quark and lepton multiplets are introduced in three generations. They satisfy

�(3,4)(x, y j − y) = −PSO(5)
4 γ 5�(3,4)(x, y j + y),

�(3,1)± (x, y j − y) = ∓γ 5�(3,1)± (x, y j + y),

�(1,4)(x, y j − y) = −PSO(5)
4 γ 5�(1,4)(x, y j + y). (5)

Here 5D Dirac matrices γ a (a = 0, 1, 2, 3, 5) satisfy {γ a, γ b} = 2ηab(ηab = diag( − I1, I4)), and
γ 5 = diag(1, 1, −1, −1). Dark fermion fields satisfy

�D
(3,4)(x, y j − y) = (−1) jPSO(5)

4 γ 5�D
(3,4)(x, y j + y),

�D
(1,5)± (x, y j − y) = ±PSO(5)

5 γ 5�D
(1,5)± (x, y j + y). (6)

In addition, Majorana fermion fields (χ̂ (x)) and a brane scalar field (	̂(x)) are introduced on
the UV brane (at y = 0). The brane scalar field 	̂ spontaneously breaks SU(2)R × U(1)X to
U(1)Y with a vacuum expectation value (VEV) much larger than the KK mass scale mKK. The
Majorana fermion field (χ̂ = χ̂ c) in each generation, combining with � (1, 4) and 	̂, induces the
inverse seesaw mechanism to account for a very small mass of the observed neutrino.
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The action of the GUT-inspired GHU has been given in Ref. [18]. Let �J collectively denote
all fermion fields in the bulk. Then the action of the fermions in the bulk becomes

Sfermion
bulk =

∫
d5x
√

− det G

{∑
J

�JD(cJ )�J

−
∑

α

(
mα

D�α
(3,1)+�−α

(3,1)− + h.c.
)

−
∑

β

(
mβ

V �
β

(1,5)+�
β

(1,5)− + h.c.
)}

, (7)

where � = i�†γ 0 and

D(c) = γ AeA
M
(

DM + 1
8
ωMBC[γ B, γC]

)
− cσ ′(y),

DM = ∂M − igSASU (3)
M − igAASO(5)

M − igBQX AU (1)
M . (8)

The dimensionless parameter c in D(c) is called the bulk mass parameter, which controls the
wave functions of the zero modes of the fermions. mα

D and mβ

V are pseudo-Dirac mass terms.
The action for the Majorana fermion field (χ̂α) is

Sχ̂

brane =
∫

d5x
√

− det G δ(y)
{

1
2
χ̂αγ μ∂μχ̂α − 1

2
Mαβχ̂αχ̂β

}
(9)

where Mαβ represents Majorana masses. In the present paper we take Mαβ = Mαδαβ for sim-
plicity.

In addition there are gauge-invariant brane interactions given by

Sint
brane =

∫
d5x
√

− det G δ(y) (L1 + L2 + L3) ,

L1 = −
{
καβ �α

(3,4)	̂(1,4) · �
β

(3,1)+ + h.c.
}

,

L2 = −
{̃
κ ′αβ �α

(1,4) �
a ˜̂	(1,4) ·

(
�

β

(1,5)−

)
a
+ h.c.

}
,

L3 = −
{
κ̃

αβ

1 χβ ˜̂	†
(1,4)�

α
(1,4) + h.c.

}
, (10)

where κ’s are coupling constants. 	̃(1,4) denotes a conjugate field in (1, 4) formed from 	∗
(1,4).

The brane field 	̂ develops a nonvanishing expectation value 〈	̂〉 �= 0.
In the electroweak sector there are two 5D gauge couplings, gA and gB, corresponding to the

gauge groups SO(5) and U(1)X, respectively. The 5D gauge coupling g5D
Y of U(1)Y is given by

g5D
Y = gAsφ, sφ = gB√

g2
A + g2

B

. (11)

The 4D SU(2)L and U(1)Y gauge coupling constants are given by

gw = gA√
L

, gY = g5D
Y√
L

. (12)

The bare weak mixing angle θ0
W is given by

sin θ0
W = gY√

g2
w + g2

Y

= sφ√
1 + s2

φ

. (13)

As is seen below, the mixing angle determined from the ratio of mW to mZ slightly differs from
the one in Eq. (13) even at the tree level in GHU in the RS space; mW /mZ|tree �= cos θ0

W .
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The 4D Higgs boson field is a part of ASO(5)
y . ASO(5)

z = (kz)−1ASO(5)
y (1 ≤ z ≤ zL) in the tensor

representation is expanded as

A( j5)
z (x, z) = 1√

k
φ j (x)uH (z) + · · · , uH (z) =

√
2

z2
L − 1

z,

	H (x) = 1√
2

(
φ2 + iφ1

φ4 − iφ3

)
. (14)

	H(x) corresponds to the doublet Higgs field in the SM. 	H develops a nonvanishing expec-
tation value at the quantum level by the Hosotani mechanism. Without loss of generality we
take 〈φ1〉, 〈φ2〉, 〈φ3〉 = 0, and 〈φ4〉 �= 0. The AB phase θH in the fifth dimension is given by

Ŵ = P exp
{

igA

∫ L

−L
dy
〈
ASO(5)

y

〉}
= exp

{
iθH · 2T (45)

}
. (15)

Here 〈ASO(5)
y 〉 = (2k)−1/2〈φ4〉vH (y)T (45), vH(y) = kekyuH(z) for 0 ≤ y ≤ L, and vH( − y) = vH(y)

= vH(y + 2L). In terms of θH, A(45)
z is expanded as

A(45)
z (x, z) = 1√

k

{
θH fH + H (x)

}
uH (z) + · · · ,

fH = 2
gA

√
k

z2
L − 1

= 2
gw

√
k

L
(
z2

L − 1
) . (16)

The 4D neutral Higgs field H(x) is the fluctuation mode of the AB phase θH.

2.1. Spectrum and wave functions of gauge fields
When the VEV |〈	̂〉| = w is sufficiently large, w � mKK, the spectra of the W and Z towers,
{mW (n) = kλW (n), mZ(n) = kλZ(n)}, are determined by the zeros of

2S(1; λW (n) )C′(1; λW (n) ) + λW (n) sin2
θH = 0,

2S(1; λZ(n) )C′(1; λZ(n) ) + (1 + s2
φ

)
λZ(n) sin2

θH = 0, (17)

where the functions C(z; λ) and S(z; λ) are given in Appendix A. Note (1 + s2
φ )−1 = cos2 θ0

W .
The lowest modes are W = W(0) and Z = Z(0). For zL � 1 their masses at the tree level are
approximately given by

mtree
W � sin θH

π
√

kL
mKK,

mZ �
√

1 + s2
φ

sin θH

π
√

kL
mKK � mtree

W

cos θ0
W

. (18)

In this paper mZ = mtree
Z = 91.1876 GeV is taken as one of the input parameters. As typical

values we take mKK = 13 TeV, θH = 0.1, sin2
θ0

W = 0.230634, and αEM(mZ) = 1/128, which
implies that zL = 3.86953 × 1011 and kL = 26.6816. The precise values determined from Eq.
(17) give mZ(0) cos θ0

W /mW (0) = 1.00002.
Each mode of the gauge boson tower has components in the SO(5) × U(1)X space. Let

us decompose the SO(5) generators {T jk = −T k j ; j, k = 1 ∼ 5} into SU(2)L and SU(2)R

generators {T a
L/R = 1

2 ( 1
2ε

a jkT jk ± T a4) ; a, j, k = 1 ∼ 3} and {T̂ p = 2−1/2T p5 ; p = 1 ∼ 4}. We

denote the generator of U(1)X as QX. Then 5D gauge potentials (
√

k)−1
[
ASO(5)

μ (x, z) +
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(gB/gA)AU (1)X
μ (x, z)QX

]
have expansion∑

n

W (n)
μ (x)

{
hL

W (n) (z)
T 1

L + iT 2
L√

2
+ hR

W (n) (z)
T 1

R + iT 2
R√

2
+ ĥW (n) (z)

T̂ 1 + iT̂ 2

√
2

}
(19)

for the W tower component,∑
n

Z(n)
μ (x)

{
hL

Z(n) (z)T 3
L + hR

Z(n) (z)T 3
R + ĥZ(n) (z)T̂ 3 + hB

Z(n) (z)
gB

gA
QX

}
(20)

for the Z tower component, and∑
n

Aγ (n)
μ (x)

{
hL

γ (n) (z)T 3
L + hR

γ (n) (z)T 3
R + hB

γ (n) (z)
gB

gA
QX

}
(21)

for the photon tower component. Here⎛⎜⎜⎝
hL

W (n) (z)

hR
W (n) (z)

ĥW (n) (z)

⎞⎟⎟⎠ = 1√
2 rW (n)

⎛⎜⎜⎝
(1 + cos θH )C(z, λW (n) )

(1 − cos θH )C(z, λW (n) )

−√
2 sin θH Ŝ(z, λW (n) )

⎞⎟⎟⎠,

⎛⎜⎜⎜⎜⎜⎝
hL

Z(n) (z)

hR
Z(n) (z)

ĥZ(n) (z)

hB
Z(n) (z)

⎞⎟⎟⎟⎟⎟⎠ = 1√
2 rZ(n)

{⎛⎜⎜⎜⎜⎜⎝
(1 + cos θH )C(z, λZ(n) )

(1 − cos θH )C(z, λZ(n) )

−√
2 sin θH Ŝ(z, λZ(n) )

0

⎞⎟⎟⎟⎟⎟⎠

− 2 sin θ0
W

⎛⎜⎜⎜⎜⎜⎝
sin θ0

W

sin θ0
W

0√
1 − 2 sin2

θ0
W

⎞⎟⎟⎟⎟⎟⎠C(z, λZ(n) )

}
,

⎛⎜⎜⎝
hL

γ (n) (z)

hR
γ (n) (z)

hB
γ (n) (z)

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
sin θ0

W

sin θ0
W√

1 − 2 sin2
θ0

W

⎞⎟⎟⎟⎠
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1√
rγ (n)

C(z, λγ (n) ) for n ≥ 1,

1√
kL

for n = 0,

(22)

where the normalization factors {rW (n), rZ(n), rγ (n)} are determined by∫ zL

1

dz
z

∑
α

|hα
n (z)|2 = 1 (23)

in each mode. Ŝ(z, λ)is given in Eq. (A1). The photon (γ (0)) coupling is e QEM where e =
gw sin θ0

W and QEM = T 3
L + T 3

R + QX .

2.2. Spectrum and wave functions of fermion fields
The spectra {mn = kλn} of the KK towers of up-type quarks and charged leptons are deter-
mined by the zeros of

SL(1; λn, c)SR(1; λn, c) + sin2 θH

2
= 0 (24)

where SL/R(z; λ, c) is defined in Eq. (A3). The bulk mass parameter c of each doublet multiplet
is determined such that the lowest value λ0 reproduces mu, mc, mt, me, mμ, or mτ . For θH = 0.1
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and mKK = 13 TeV, (cu, cc, ct) = (−0.859, −0.719, −0.275) and (ce, cμ, cτ ) = (−1.01, −0.793,
−0.675). Although Eq. (24) is satisfied by either positive or negative c, the negative values for
c are chosen in the B-model to have the spectra of the KK towers of down-type quarks and
neutrinos consistent with observation as explained below.

Wave functions of {u(n)} and {e(n)} in the first generation are contained in the SO(5) spinor
multiplets �(3, 4) and �(1, 4), which are denoted as (u, d, u′, d ′) and (νe, e, ν ′

e, e′), respectively. (u,
d) and (νe, e) are SU(2)L doublets, whereas (u′, d ′) and (ν ′

e, e′) are SU(2)R doublets. 5D (u, u′)(x,
z) fields are expanded as

1
z2

(
u

u′

)
=

√
k

∞∑
n=0

{
u(n)

L (x)

(
f u(n)

L (z)

gu(n)

L (z)

)
+ u(n)

R (x)

(
f u(n)

R (z)

gu(n)

R (z)

)}
(25)

where, in terms of functions defined in Eq. (A3),(
f u(n)

L (z)

gu(n)

L (z)

)
= 1√

ru(n)L

(
cos 1

2θHCL(z, λu(n), cu)

i sin 1
2θH ŜL(z, λu(n), cu)

)
,

(
f u(n)

R (z)

gu(n)

R (z)

)
= 1√

ru(n)R

(
cos 1

2θH SR(z, λu(n), cu)

i sin 1
2θHĈR(z, λu(n), cu)

)
. (26)

The normalization factor in each mode is determined by the condition∫ zL

1
dz
{| fn(z)|2 + |gn(z)|2} = 1 for

(
fn(z)

gn(z)

)
. (27)

One can show that ru(n)L = ru(n)R ≡ ru(n) . Note that with the use of Eq. (24) one can express
( f u(n)

R , gu(n)

R ) as (
f u(n)

R (z)

gu(n)

R (z)

)
= 1√

r′
u(n)R

(
sin 1

2θH ŜR(z, λu(n), cu)

−i cos 1
2θHCR(z, λu(n), cu)

)
. (28)

At θH = 0, λu(0) = 0 so that the zero mode u(0) has a purely chiral structure; (u(0)
L , d (0)

L ) becomes
an SU(2)L doublet, whereas u(0)

R and d (0)
R become SU(2)L singlets.

Wave functions of {e(n)} have the same structure as those of {u(n)}. Formulas for {e(n)} are
obtained from Eqs. (25)–(28) by replacing u(n) and cu by e(n) and ce.

For mass spectra and wave functions of down-type quark and neutrino multiplets the SO(5)
singlet fields �(3,1)± and Majorana brane fermions χ̂ intertwine. In general, the coupling con-
stants κ’s in the brane interactions given in Eq. (10) are not diagonal in the generation space.
The L1 term in Eq. (10), with 〈	̂〉 �= 0, leads to the Kobayashi–Maskawa mixing matrix in the
quark sector. Further complex καβ ’s give rise to CP-violation phases. In the present paper we
analyze the case in which the brane interactions given in Eq. (10) are diagonal in the generation
space.

In the first generation the d and d ′ components in �(3, 4) and �(3,1)± ≡ D± intertwine with
each other. The mass spectrum {mn = kλn} is determined by the zeros of(

SQ
L SQ

R + sin2 θH

2

) (
SD

L1SD
R1 − SD

L2SD
R2

)+ |μ|2CQ
R SQ

R

(
SD

L1CD
L1 − SD

L2CD
L2

) = 0 (29)

where SQ
L/R = SL/R(1; λ, cu), SD

L j = SL j (1; λ, cD, m̃D), etc. The functions SL/R j , CL/R j are given
in Eq. (A5). cD is the bulk mass parameter of the �(3,1)± field, and m̃D = mD/k where mD is a
Dirac mass connecting D+ and D−. The parameter μ represents the strength of a brane inter-
action among �(3, 4), �(3,1)± , and 	̂, which is necessary to reproduce a mass of each down-type
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quark. As typical values we take (m̃d , m̃s, m̃b) = (1, 1, 1) and (μd, μs, μb) = (0.1, 0.1, 1). We de-
termine bulk mass parameters cD’s to reproduce a down-type quark mass in each generation,
finding (cDd , cDs, cDb ) = (0.6244, 0.6563, 0.8725). We have chosen the negative values for (cu, cc,
ct). With positive cu, cc > 1

2 there would arise an exotic extra light mode of charge QEM = − 1
3

with a mass much less than mKK in the first and second generations from Eq. (29), which contra-
dicts with the observation. One comment is in order. Eqs. (24) and (29) imply that the up-type
quark mass is larger than the corresponding down-type quark mass, although in the first gen-
eration mu < md. The resolution of this problem is left for future investigation. In this paper we
take (mu, md ) = (20, 2.9) MeV at the mZ scale. This does not affect gauge couplings and KK
spectra of (u, d) multiplets in the discussions below as mu, md � mKK ∼ 13 TeV.

In the first generation there are two types of series, {d (n); n ≥ 0} and {D(n); n ≥ 1}.1 For θH =
0.1 and mKK = 13 TeV, the mass spectra of the KK excited states are (md (1), md (2), md (3), · · · ) =
(12.2, 17.8, 25.1, · · · ) TeV and (mD(1), mD(2), mD(3), · · · ) = (8.4, 16.7, 22.8, · · · ) TeV. The (d, d ′,
D+, D−) fields are expanded as

1
z2

⎛⎜⎜⎜⎜⎜⎝
d

d ′

D+

D−

⎞⎟⎟⎟⎟⎟⎠ =
√

k
∞∑

n=0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d (n)

L (x)

⎛⎜⎜⎜⎜⎜⎝
f d (n)

L (z)

gd (n)

L (z)

hd (n)

L (z)

kd (n)

L (z)

⎞⎟⎟⎟⎟⎟⎠+ d (n)
R (x)

⎛⎜⎜⎜⎜⎜⎝
f d (n)

R (z)

gd (n)

R (z)

hd (n)

R (z)

kd (n)

R (z)

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

+
√

k
∞∑

n=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D(n)

L (x)

⎛⎜⎜⎜⎜⎜⎝
f D(n)

L (z)

gD(n)

L (z)

hD(n)

L (z)

kD(n)

L (z)

⎞⎟⎟⎟⎟⎟⎠+ D(n)
R (x)

⎛⎜⎜⎜⎜⎜⎝
f D(n)

R (z)

gD(n)

R (z)

hD(n)

R (z)

kD(n)

R (z)

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (30)

Wave functions are normalized by∫ zL

1
dz
{| f |2 + |g|2 + |h|2 + |k|2} = 1 (31)

in each mode. The explicit forms of the wave functions are given in Eqs. (B1) and (B2).
In the neutrino sector the ν and ν

′
components in � (1, 4) and the brane Majorana fermion

χ̂ mix with each other. χ̂ (x) = χ̂ c(x) has a Majorana mass M. The brane interaction L3 in
Eq. (10) generates a mixing brane mass term (mB/

√
k)( ¯̂χν ′

R + ν̄ ′
Rχ̂ ). Because of the Majorana

mass term eigen modes in the neutrino sector have both left- and right-handed components.
The mass spectra {mν±(n) = kλν±(n)} are determined by

K±
ν ≡ (kλ ∓ M )

{
SL

LSL
R + sin2 θH

2

}
+ m2

B

k
SL

RCL
R = 0 (32)

where SL
L/R = SL/R(1; λ, ce) etc. in the first generation. For ce < − 1

2 and M > 0 the gauge-
Higgs seesaw mechanism, similar to the inverse seesaw mechanism, is at work in the K+

ν series
to generate a small neutrino mass [37]:

mνe = kλν+(0) � m2
eM

(−2ce − 1)m2
B

. (33)

There arises no light mode in the K−
ν series. For the KK excited modes the two series are nearly

degenerate; λν−(n) � λν+(n) for n ≥ 1. We note that with ce > 1
2 the mass of the lightest mode

1In Ref. [36] the series has been decomposed into {d(n)}, {d
′(n)}, {D+(n)}, and {D−(n)}.
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becomes ∼ m2
eMz2ce+1

L /(2ce + 1)m2
B so that unnecessarily large mB is required to reproduce

a small neutrino mass. Further ce > 1
2 yields an additional exotic mode with a mass of

O(10 GeV). We adopt ce, cμ, cτ < − 1
2 .

The Majorana field χ̂ is decomposed as

χ̂ =
(

ξ

η

)
, χ̂ c = eiδC

(+σ 2η∗

−σ 2ξ ∗

)
= χ̂ . (34)

The fields are expanded as

1
z2

(
ν

ν ′

)
=

√
k

∞∑
n=0

{
ν

+(n)
L (x)

(
f ν+(n)

L (z)

gν+(n)

L (z)

)
+ ν

+(n)
R (x)

(
f ν+(n)

R (z)

gν+(n)

R (z)

)}

+
√

k
∞∑

n=1

{
ν

−(n)
L (x)

(
f ν−(n)

L (z)

gν−(n)

L (z)

)
+ ν

−(n)
R (x)

(
f ν−(n)

R (z)

gν−(n)

R (z)

)}
,

η =
∞∑

n=0

ν
+(n)
L (x) hν+(n) +

∞∑
n=1

ν
−(n)
L (x) hν−(n)

,

ν
±(n)
R = ±eiδC σ 2

(
ν

±(n)
L

)∗
. (35)

Wave functions are normalized as∫ zL

1
dz
{| fL|2 + |gL|2 + | fR|2 + |gR|2}+ |h|2 = 1 (36)

in each mode. The explicit forms of the wave functions are given in Eq. (B3).

3. W- and Z-couplings
The γ -, W-, and Z-couplings of the fermion fields are contained in the part of the action∫

d4x
∫ zL

1

dz
k

∑
J

¯̌�Jγ μ(−i)
(

gAASO(5)
μ + gBQX AU (1)X

μ

)
�̌J (37)

where �̌J = z−2�J . By inserting the KK expansions of the gauge and fermion fields into Eq.
(37), γ (n), W(n), and Z(n) couplings among the fermion KK modes are evaluated. The photon γ

= γ (0) couplings are universal. They are diagonal in the KK space, and are given by e QEM =
gw sin θ0

W (T 3
L + T 3

R + QX ).
The W = W(0) couplings in the first generation of the quark multiplets are given by

gw√
2

Wμ

[ ∞∑
n,m=0

{
ĝW ud

L,nmū(n)
L γ μd (m)

L + ĝW ud
R,nmū(n)

R γ μd (m)
R

}

+
∞∑

n=0

∞∑
m=1

{
ĝW uD

L,nmū(n)
L γ μD(m)

L + ĝW uD
R,nmū(n)

R γ μD(m)
R

}]
(38)

where

ĝW ud
L/R,nm =

√
kL
∫ zL

1
dz
{

hL
W (0) f u(n)∗

L/R f d (m)

L/R + hR
W (0)gu(n)∗

L/Rgd (m)

L/R

+ i√
2

ĥW (0)

(
f u(n)∗

L/R gd (m)

L/R − gu(n)∗
L/R f d (m)

L/R

)}
. (39)
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ĝW uD
L/R,nm is obtained by replacing d(m) by D(m) in Eq. (39). The values in the SM correspond to

ĝW ud
L,00 = 1 and ĝW ud

R,00 = 0. In the RS space off-diagonal components of ĝW ud
L/R,nm are nonvanishing.

For θH = 0.1 and mKK = 13 TeV, for instance, the coupling matrices are given by

ĝW ud
L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.997645 −0.024904 0.000020 −0.002827 10−6 · · ·
−0.024904 0.002498 0.028389 10−7 0.000510

0.000020 0.028389 0.997618 −0.024548 0.000022

−0.002827 10−7 −0.024548 0.002498 0.027021

10−6 0.000510 0.000022 0.027021 0.997620
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝW ud
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10−12 10−7 10−7 10−9 10−7 · · ·
10−8 0.002498 0.024145 10−8 10−6

10−7 0.024145 0.997632 −0.022564 0.000018

10−10 10−8 −0.022564 0.002498 0.025826

10−8 10−6 0.000018 0.025826 0.997625
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(40)

where 10−7, for instance, implies O(10−7). Notice that the couplings for the KK excited
states are nearly vector-like. However, they have very small axial-vector components; ĝW ud

A =
1
2 (ĝW ud

R − ĝW ud
L ) is O(10−3) or less. As is shown below, those small numbers must be properly

taken into account to establish the coupling sum rules. The ĝW uD
L/R,nm couplings are very small;

max |ĝW uD
L/R,nm| ∼ 2 × 10−6.

In the lepton sector there are two types of the neutrino towers, {ν+(n)} (νe1 series) and {ν−(n)}
(νe2 series), both of which have W-couplings. In the first generation the couplings are given by

gw√
2

Wμ

[ ∞∑
n,m=0

{
ĝW νe1e

L,nm ν̄
+(n)
eL γ μe(m)

L + ĝW νe1e
R,nm ν̄

+(n)
eR γ μe(m)

R

}

+
∞∑

n=1

∞∑
m=0

{
ĝW νe2e

L,nm ν̄
−(n)
eL γ μe(m)

L + ĝW νe2e
R,nm ν̄

−(n)
eR γ μe(m)

R

}]
(41)

where

ĝW νe1e
L,nm =

√
kL
∫ zL

1
dz

{
hL

W (0) f ν
+(n)
e ∗

L/R f e(m)

L/R + hR
W (0)g

ν
+(n)
e ∗

L/R ge(m)

L/R

+ i√
2

ĥW (0)

(
f ν

+(n)
e ∗

L/R ge(m)

L/R − gν
+(n)
e ∗

L/R f e(m)

L/R

)}
,

ĝW νe2e
L,nm =

√
kL
∫ zL

1
dz

{
hL

W (0) f ν
−(n)
e ∗

L/R f e(m)

L/R + hR
W (0)g

ν
−(n)
e ∗

L/R ge(m)

L/R

+ i√
2

ĥW (0)

(
f ν

−(n)
e ∗

L/R ge(m)

L/R − gν
−(n)
e ∗

L/R f e(m)

L/R

)}
. (42)

11/36



PTEP 2023, 063B01 Y. Hosotani et al.

The values in the SM correspond to ĝW νe1e
L,00 = 1 and ĝW νe1e

R,00 = 0. For θH = 0.1, mKK = 13 TeV,
and Me = 103 TeV, for instance, the coupling matrices are given by

ĝW νe1e
L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.997647 −0.023607 0.000018 −0.002964 10−7 · · ·
−0.016689 0.001766 0.020087 10−8 0.000319

−0.000013 −0.020092 −0.705422 0.017130 0.000015

0.002094 10−8 0.017115 −0.001765 −0.019154

10−7 −0.000318 −0.000015 −0.019170 −0.705382
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝW νe1e
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10−23 10−17 10−17 10−19 10−17 · · ·
10−9 0001766 0.016811 10−8 −0.000095

10−8 −0.016814 −0.705432 0.015656 −0.000012

10−10 10−8 0.015642 −0.001765 −0.018204

10−9 0.000095 −0.000012 −0.018219 −0.705385
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(43)

and

ĝW νe2e
L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0.016688 −0.001766 −0.020086 10−8 −0.000319

0.000013 0.020092 0.705422 −0.017130 0.000015

−0.002094 10−8 −0.017107 0.001764 0.019145

10−7 0.000319 0.000015 0.019171 0.705414
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝW νe2e
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
10−9 −0001766 −0.016810 10−8 0.000095

10−8 0.016814 0.705432 −0.015656 0.000012

10−10 10−8 −0.015635 0.001764 0.018196

10−9 −0.000095 0.000012 0.018220 0.705418
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (44)

Here we have set ĝW νe2e
L/R,0n = 0. It is seen that in the part of the KK excited states, ĝW νe1e

L,nm ∼ ĝW νe1e
R,nm

and ĝW νe2e
L,nm ∼ ĝW νe2e

R,nm for n, m ≥ 1, and ĝW νe1e
L/R,nm + ĝW νe2e

L/R,nm ∼ 0 for n ≥ 1, m ≥ 0. Those couplings

are almost vector-like. As in the (u, d) case, they have very small axial-vector components; ĝW νe1e
A

and ĝW νe2e
A are O(10−3) or less.

The W-couplings of the zero modes, namely the couplings of quarks and leptons in three
generations, are summarized in Table 2. Except for (t, b) the W-couplings are universal to high
accuracy; ĝW

L ∼ 0.997645 ≡ ĝW,GHU and ĝW
R ∼ 0. The observed lepton coupling should be iden-

tified as gobs
w = gw ĝW,GHU.
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Table 2. The W-couplings of quarks and leptons in units of gw for θH = 0.1, mKK = 13 TeV, and M =
103 TeV.

ĝW
L ĝW

R

(νe, e) 0.997647 3 × 10−23

(νμ, μ) 0.997644 3 × 10−21

(ντ , τ ) 0.997642 4 × 10−20

(u, d) 0.997645 2 × 10−12

(c, s) 0.997643 8 × 10−10

(t, b) 0.997969 0.000011

The Z = Z(0) couplings are evaluated similarly. The couplings in the up-type quark sector are
given in the form

gw

cos θ0
W

Zμ

∞∑
n,m=0

{
ĝZu

L,nmū(n)
L γ μu(m)

L + ĝZu
R,nmū(n)

R γ μu(m)
R

}
. (45)

As is suggested from the structure of the wave functions in Eq. (22), it is convenient to decom-
pose the Z-couplings into the U(1)EM part and the rest. We define

hQ
Z(n) (z) =

√
2

rZ(n)

C(z, λZ(n) ) (46)

and write

ĝZu
L/R,nm = ĝZu,su2

L/R,nm − sin2
θ0

W ĝZu,EM
L/R,nm. (47)

Then

ĝZu,su2
L/R,nm = T 3

u cos θ0
W

√
kL
∫ zL

1
dz
{

hL
Z(0) f u(n)∗

L/R f u(m)

L/R + hR
Z(0)gu(n)∗

L/Rgu(m)

L/R

+ i√
2

ĥZ(0)

(
f u(n)∗

L/R gu(m)

L/R − gu(n)∗
L/R f u(m)

L/R

)}
,

ĝZu,EM
L/R,nm = Qu cos θ0

W

√
kL
∫ zL

1
dz hQ

Z(0)

{
f u(n)∗

L/R f u(m)

L/R + gu(n)∗
L/Rgu(m)

L/R

}
(48)

where T 3
u = 1

2 and Qu = 2
3 . With the normalization rZ(0) in Eq. (22), ĝZu,su2

L,00 = 0.498844,
ĝZu,su2

R,00 = 5 × 10−12, ĝZu,EM
L,00 = 0.666791, and ĝZu,EM

R,00 = 0.666725 for θH = 0.1, mKK = 13 TeV,
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and sin2
θ0

W = 0.230634. The Z-coupling matrices are given by

ĝZu
L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.345059 −0.012453 0.000009 −0.001414 10−7 · · ·
−0.012453 −0.152531 0.014195 −0.000004 0.000255

0.000009 0.014195 0.345047 −0.012275 0.000010

−0.001414 −0.000004 −0.012275 −0.152531 0.013511

10−7 0.000255 0.000010 0.013511 0.345048
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝZu
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.153769 0.000012 10−7 −0.000011 10−7 · · ·
0.000012 −0.152536 0.012073 −0.000003 0.000001

10−7 0.012073 0.345054 −0.011282 0.000008

−0.000011 −0.000003 −0.011282 −0.152532 0.012913

10−7 0.000001 0.000008 0.012913 0.345050
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (49)

The couplings in the space of KK excited states, namely n, m ≥ 1 elements of ĝZu
nm, are nearly

vector-like. The axial-vector components are small; ĝZu
A = 1

2 (ĝZu
R − ĝZu

L ) is O(10−3) or less.
In the down-type quark sector there are {d(n)} and {D(n)} series. The couplings are written

as

gw

cos θ0
W

Zμ

[ ∞∑
n,m=0

{
ĝZdd

L,nmd̄ (n)
L γ μd (m)

L + ĝZdd
R,nmd̄ (n)

R γ μd (m)
R

}

+
∞∑

n=0

∞∑
m=1

{
ĝZdD

L,nmd̄ (n)
L γ μD(m)

L + ĝZdD
R,nmd̄ (n)

R γ μD(m)
R

}

+
∞∑

n=1

∞∑
m=0

{
ĝZDd

L,nmD̄(n)
L γ μd (m)

L + ĝZDd
R,nmD̄(n)

R γ μd (m)
R

}

+
∞∑

n,m=1

{
ĝZDD

L,nmD̄(n)
L γ μD(m)

L + ĝZDD
R,nmD̄(n)

R γ μD(m)
R

}]
. (50)

With the decomposition ĝZdd
L/R,nm = ĝZdd,su2

L/R,nm − sin2
θ0

W ĝZdd,EM
L/R,nm etc., the couplings are given by

ĝZdd,su2
L/R,nm = T 3

d cos θ0
W

√
kL
∫ zL

1
dz
{

hL
Z(0) f d (n)∗

L/R f d (m)

L/R + hR
Z(0)gd (n)∗

L/R gd (m)

L/R

+ i√
2

ĥZ(0)

(
f d (n)∗

L/R gd (m)

L/R − gd (n)∗
L/R f d (m)

L/R

)}
,

ĝZdd,EM
L/R,nm = Qd cos θ0

W

√
kL
∫ zL

1
dz hQ

Z(0)

(
f d (n)∗

L/R f d (m)

L/R + gd (n)∗
L/R gd (m)

L/R

+ hd (n)∗
L/R hd (m)

L/R + kd (n)∗
L/R kd (m)

L/R

)
. (51)
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Here T 3
d = − 1

2 and Qd = − 1
3 . The expressions for the ĝZdD, gZDd , gZDD components are ob-

tained by the replacement d(n) → D(n) and/or d(m) → D(m) in Eq. (51). Note that ĝZdd,su2
L,00 =

−0.498844, ĝZdd,su2
R,00 = −1 × 10−13, ĝZdd,EM

L,00 = −0.333395, and ĝZdd,EM
R,00 = −0.333372 for θH =

0.1, mKK = 13 TeV, and sin2
θ0

W = 0.230634.
The Z-coupling matrices are given by

ĝZdd
L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.421952 0.012453 −0.000011 0.001414 10−7 · · ·
0.012453 0.075640 −0.014195 0.000002 −0.000255

−0.000011 −0.014195 −0.421937 0.012275 −0.000012

0.001414 0.000002 0.012275 0.0756407 −0.013511

10−7 −0.000255 −0.000012 −0.013511 −0.421938
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝZdd
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.076887 10−8 10−8 10−10 10−8 · · ·
10−8 0.075643 −0.012073 0.000002 −0.000001

10−8 −0.012073 −0.421945 0.011282 −0.000010

10−10 0.000002 0.011282 0.075641 −0.012913

10−8 −0.000001 −0.000010 −0.012913 −0.421940
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (52)

As in the case of ĝZu, the couplings in the space of the KK excited states are almost vector-like;
ĝZdd

A = 1
2 (ĝZdd

R − ĝZdd
L ) is O(10−3) or less. The su2 components of {D(n)} series are very small;

|ĝZDD,su2
L/R,nm | is O(10−12) or less. Off-diagonal elements of ĝZDD,EM

L/R are O(10−6) or less. All diagonal

elements are about −0.33339 and |ĝZDD,EM
L,nn − ĝZDD,EM

R,nn | = O(10−6). Also ĝZdD
L/R,nm = (ĝZDd

L/R,mn)∗ =
O(10−6) or less.

The Z-couplings of charged lepton multiplets have the same structure as in the up-type quark
sector. The couplings of the electron multiplet are

gw

cos θ0
W

Zμ

∞∑
n,m=0

{
ĝZe

L,nmē(n)
L γ μe(m)

L + ĝZe
R,nmē(n)

R γ μe(m)
R

}
, (53)

where ĝZe
L/R,nm are given by the expressions obtained by replacing, in Eqs. (47) and (48), u(n) by

e(n), T 3
u by T 3

e = − 1
2 , and Qu by Qe = −1. ĝZe,su2

L,00 = −0.498845, ĝZe,su2
R,00 = −4 × 10−15, ĝZe,EM

L,00 =
−1.00019, and ĝZe,EM

R,00 = −1.00009 for θH = 0.1, mKK = 13 TeV, and sin2
θ0

W = 0.230634. The

15/36



PTEP 2023, 063B01 Y. Hosotani et al.

Z-coupling matrices are given by

ĝZe
L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.268168 0.011804 −0.000006 0.001482 10−7 · · ·
0.011804 0.229421 −0.014207 0.000006 −0.000256

−0.000006 −0.014207 −0.268158 0.012113 −0.000008

0.001482 0.000006 0.012113 0.229421 −0.013556

10−7 −0.000256 −0.000008 −0.013556 −0.268158
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝZe
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.230654 10−7 10−8 10−7 10−8 · · ·
10−7 0.229429 −0.011890 0.000004 0.000067

10−8 −0.011890 −0.268163 0.011071 −0.000006

10−7 0.000004 0.011071 0.229423 −0.012884

10−8 0.000067 −0.000006 −0.012884 −0.268160
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (54)

The axial-vector components in the space of KK excited states are small; ĝZe
A,nm (n, m ≥ 1) are

O(10−3) or less.
In the neutrino sector the couplings are given by

gw

cos θ0
W

Zμ

[ ∞∑
n,m=0

{
ĝZνe11

L,nmν̄
+(n)
eL γ μν

+(m)
eL + ĝZνe11

R,nmν̄
+(n)
eR γ μν

+(m)
eR

}

+
∞∑

n=0

∞∑
m=1

{
ĝZνe12

L,nmν̄
+(n)
eL γ μν

−(m)
eL + ĝZνe12

R,nmν̄
+(n)
eR γ μν

−(m)
eR

}

+
∞∑

n=1

∞∑
m=0

{
ĝZνe21

L,nmν̄
−(n)
eL γ μν

+(m)
eL + ĝZνe21

R,nmν̄
−(n)
eR γ μν

+(m)
eR

}

+
∞∑

n,m=1

{
ĝZνe22

L,nmν̄
−(n)
eL γ μν

−(m)
eL + ĝZνe22

R,nmν̄
−(n)
eR γ μν

−(m)
eR

} ]
(55)

where

ĝZνeab
L/R,nm = T 3

νe
cos θ0

W

√
kL
∫ zL

1
dz
{

hL
Z(0) f ν

a(n)
e ∗

L/R f ν
b(m)
e

L/R + hR
Z(0)g

ν
a(n)
e ∗

L/R gν
b(m)
e

L/R

+ i√
2

ĥZ(0)

(
f ν

a(n)
e ∗

L/R gν
b(m)
e

L/R − gν
a(n)
e ∗

L/R f ν
b(m)
e

L/R

)}
. (56)

16/36



PTEP 2023, 063B01 Y. Hosotani et al.

Here T 3
νe

= 1
2 and we have denoted that (ν1(n)

e , ν
2(n)
e ) = (ν+(n)

e , ν
−(n)
e ). Note ĝZνe21

L/R = (ĝZνe12
L/R )†. We

set ĝZνe12
L/R,n0, ĝZνe21

L/R,0n, ĝZνe22
L/R,0n, ĝZνe22

L/R,n0 = 0. The Z-coupling matrices are given by

ĝZνe11
L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.498845 −0.008345 −0.000008 0.001047 10−7 · · ·
−0.008345 0.000624 −0.007102 10−8 −0.000113
−0.000008 −0.007102 0.249412 −0.006051 0.000007
0.001047 10−8 −0.006051 0.000624 0.006772

10−7 −0.000113 0.000007 0.006772 0.249384
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝZνe11
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

10−32 10−18 10−17 10−19 10−18 · · ·
10−18 0.000624 −0.005944 10−8 0.000034
10−17 −0.005944 0.249417 −0.005531 0.000006
10−19 10−8 −0.005531 0.000624 0.006436
10−18 0.000034 0.000006 0.006436 0.249386

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝZνe22
L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0 0.000624 −0.007102 10−8 −0.000113
0 −0.007102 0.249412 −0.006048 0.000007
0 10−8 −0.006048 0.000623 0.006769
0 −0.000113 0.000007 0.006769 0.249407
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝZνe22
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0 0.000624 −0.005943 10−8 0.000034
0 −0.005943 0.249417 −0.005528 0.000006
0 10−8 −0.005528 0.000623 0.006433
0 0.000034 0.000006 0.006433 0.249409
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝZνe12
L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.008344 0.000008 −0.001047 10−7 · · ·
0 −0.000624 0.007102 10−8 0.000113
0 0.007102 −0.249412 0.006048 −0.000007
0 10−8 0.006051 −0.000623 −0.006772
0 0.000113 −0.000007 −0.006769 −0.249395
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ĝZνe12
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 10−18 10−18 10−19 10−18 · · ·
0 −0.000624 0.005944 10−8 −0.000034
0 0.005943 −0.249417 −0.005528 −0.000006
0 10−8 0.005531 −0.000623 −0.006436
0 −0.000034 −0.000006 −0.006433 −0.249397
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (57)
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Table 3. The Z-couplings of leptons and quarks in units of gw/ cos θ0
W for θH = 0.1, mKK = 13 TeV, and

M = 103 TeV. For reference the SM values T 3
L − sin2

θSM
W QEM with sin2

θSM
W = 0.2312 are listed as well.

ĝZ
L ĝZ

R ĝZ
L ĝZ

R

νe 0.498845 2 × 10−32 e − 0.268168 0.230654
νμ 0.498843 1 × 10−32 μ − 0.268167 0.230654
ντ 0.498842 1 × 10−32 τ − 0.268166 0.229961
SM 0.5 0 SM − 0.2688 0.2312

u 0.345059 − 0.153769 d − 0.421952 0.076887
c 0.345058 − 0.153769 s − 0.421950 0.076887
t 0.345390 − 0.153439 b − 0.421945 0.076890
SM 0.3459 − 0.1541 SM − 0.4229 0.0771

Notice that in the space of KK excited states ĝZνe11
L,nm ∼ ĝZνe22

L,nm ∼ −ĝZνe12
L,nm ∼ −ĝZνe21

L,nm, ĝZνe11
R,nm ∼

ĝZνe22
R,nm ∼ −ĝZνe12

R,nm ∼ −ĝZνe21
R,nm, and |ĝZνeab

R,nm − ĝZνeab
L,nm| are O(10−3) or less for n, m ≥ 1.

The Z-couplings of the zero modes, namely those of leptons and quarks in three generations,
are summarized in Table 3. The deviations from the SM values are tiny.

In observation the weak coupling constant is measured from the Wνee and Wνμμ couplings.
Normalized by ĝW νe1e

L,00 , the Z-couplings in the first generation become

1

ĝW νe1e
L,00

⎛⎜⎜⎜⎜⎜⎝
ĝZνe11

L,00

ĝZνe11
R,00

ĝZe
L,00

ĝZe
R,00

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0.500022

2 × 10−32

−0.268800

0.231198

⎞⎟⎟⎟⎟⎟⎠,

1

ĝW νe1e
L,00

⎛⎜⎜⎜⎜⎜⎝
ĝZu

L,00

ĝZu
R,00

ĝZdd
L,00

ĝZdd
R,00

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0.345873

−0.154132

−0.422947

0.077068

⎞⎟⎟⎟⎟⎟⎠. (58)

The values in Eq. (58) are very close to those in the SM with sin2
θSM

W = 0.2312. For (t, b)
quarks

1

ĝW νe1e
L,00

⎛⎜⎜⎜⎜⎜⎝
ĝZt

L,00

ĝZt
R,00

ĝZbb
L,00

ĝZbb
R,00

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0.346205

−0.153801

−0.422940

0.077071

⎞⎟⎟⎟⎟⎟⎠. (59)

The deviations in the Zb couplings from the SM are very small, which should be contrasted to
the situation in some models in the RS warped space formulated in the early days [32]. The ZtL

coupling is 0.09% larger than that in the SM, whereas the ZtR coupling is 0.19% smaller than
that in the SM.

As shown in Eqs. (47) and (48), the Z-coupling is decomposed into the su2 part and
EM part. The su2 part consists of three components: the hL

Z(0) [a], hR
Z(0) [b], ĥZ(0) [c] parts,
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ĝZ,su2
L/R = ĝZ,a

L/R + ĝZ,b
L/R + ĝZ,c

L/R. All of them are important. For (u, d) quarks, for instance,

ĝZ,a

ĝZ,b

ĝZ,c

ĝZ,su2

:

:

:

:

uL dL uR dR

0.49884 −0.49884 0.0012459 −0.000026196

10−23 10−26 0.0012459 −0.000026196

10−12 10−13 −0.0024918 0.000052392

0.49884 −0.49884 10−11 10−13

. (60)

It is seen that the SO(5) structure is crucial to have consistent gauge couplings of quarks and
leptons. Vanishingly small ĝZu,su2

R and ĝZd,su2
R are due to the cancellation among the a, b, and c

components, which is possible in the SO(5) × U(1)X gauge theory, but not in SU(2)L × SU(2)R

× U(1) gauge theory.
The WWZ-coupling is evaluated similarly. Triple couplings are written as

−igw cos θ0
W

∑
n,m,�

ĝW †(n)W (m)Z(�)K[W †(n),W (m), Z(�)],

K[A, B,C] = AμνBμCν + BμνCμAν + CμνAμBν,

Aμν = ∂μAν − ∂νAμ etc. (61)

The SM value is gSM
WW Z = gw cos θSM

W . In the current model one finds

ĝW †(n)W (m)Z(�) =
√

kL

2 cos θ0
W

∫ zL

1

dz
z

{
2hL

W (n)hL
W (m)hL

Z(�) + 2hR
W (n)hR

W (m)hR
Z(�)

+ (
hL

W (n) + hR
W (n)

)
ĥW (m) ĥZ(�) + ĥW (n)

(
hL

W (m) + hR
W (m)

)
ĥZ(�)

+ ĥW (n) ĥW (m)

(
hL

Z(�) + hR
Z(�)

) }
. (62)

For θH = 0.1 and mKK = 13 TeV

ĝW †(0)W (0)Z(0) − 1 = 2.7 × 10−7,⎛⎜⎜⎜⎜⎜⎝
ĝW †(0)W (0)Z(1)

ĝW †(0)W (0)Z(2)

ĝW †(0)W (0)Z(3)

ĝW †(0)W (0)Z(4)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−2 × 10−4

3 × 10−8

−8 × 10−6

−3 × 10−8

⎞⎟⎟⎟⎟⎟⎠. (63)

The deviation in the W†WZ = W†(0)W(0)Z(0) coupling is extremely tiny.

4. Fermion 1-loop corrections
With the W- and Z-couplings obtained in the previous section we are going to evaluate oblique
corrections in the GUT-inspired SO(5) × U(1)X × SU(3)C GHU. Let gauge fields Xμ and Yμ

couple to fermions ψ1 and ψ2 by

Xμψ̄2γ
μ
(
gX,V

21 − gX,A
21 γ 5)ψ1 + Yμψ̄1γ

μ
(
gY,V

12 − gY,A
12 γ 5)ψ2. (64)
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The vacuum polarization �
μν

XY (p) in which fermions ψ1 and ψ2 are running along the loop is
given by

i �μν

XY (p) = (−1)
∫

d4q

(2π )4 Tr (−iγ μ)
(
gX,V

21 − gX,A
21 γ 5) i

/q − m1 + iε

× (−iγ ν )
(
gY,V

12 − gY,A
12 γ 5) i

/q + /p − m2 + iε
. (65)

In the dimensional regularization it becomes

�
μν

XY (p) = − i
(4π )d/2

�
(
2 − 1

2 d
) ∫ 1

0
dx
(

μ2

�

)2−d/2

×
[ (

gX,V
21 gY,V

12 + gX,A
21 gY,A

12

) {(
x(1 − x)p2 − �

)
ημν − 2x(1 − x)pμpν

}
+ (

gX,V
21 gY,V

12 − gX,A
21 gY,A

12

)
m1m2η

μν

]
≡ �XY (p2) ημν − �XY (p2) pμpν,

� = �(x; p2, m1, m2) = −x(1 − x)p2 + (1 − x)m2
1 + xm2

2. (66)

Expanded around d = 4, �XY(p) contains divergent pole terms:

�XY
(
p2) = �div

XY

(
p2)+ �finite

XY

(
p2) ,

�div
XY

(
p2) = 1

4π2

[ (
gX,V

21 gY,V
12 + gX,A

21 gY,A
12

) { 1
3 p2 − 1

2

(
m2

1 + m2
2

)}
+ (

gX,V
21 gY,V

12 − gX,A
21 gY,A

12

)
m1m2

]
Ê ≡ KdivÊ,

�finite
XY

(
p2) = 1

4π2

∫ 1

0
dx ln �

[ (
gX,V

21 gY,V
12 + gX,A

21 gY,A
12

) {
x (1 − x) p2 − �

}
+ (

gX,V
21 gY,V

12 − gX,A
21 gY,A

12

)
m1m2

]
,

Ê = − 2
4 − d

+ γE − ln 4πμ2. (67)

In terms of

b0(s, m1, m2) =
∫ 1

0
dx ln �(x; s, m1, m2) = b0(s, m2, m1),

b1(s, m1, m2) =
∫ 1

0
dx x ln �(x; s, m1, m2) =

∫ 1

0
dx (1 − x) ln �(x; s, m2, m1),

b2(s, m1, m2) =
∫ 1

0
dx x(1 − x) ln �(x; s, m1, m2) = b2(s, m2, m1), (68)
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�finite
XY (p2) is expressed as

�finite
XY

(
p2) = 1

4π2

[ (
gX,V

21 gY,V
12 + gX,A

21 gY,A
12

) {
2p2 b2

(
p2, m1, m2

)
− m2

1 b1
(
p2, m2, m1

)− m2
2 b1

(
p2, m1, m2

) }
+ (

gX,V
21 gY,V

12 − gX,A
21 gY,A

12

)
m1m2 b0

(
p2, m1, m2

) ]
. (69)

We note that

�finite
XY (p2, m1, m2) = μ2 �finite

XY

(
p2

μ2
,

m1

μ
,

m2

μ

)
− Kdiv ln μ2 (70)

where Kdiv is defined in Eq. (67). It will be seen to be convenient to take μ = mKK in Eq. (70)
to evaluate finite parts of oblique corrections in the current model.

In Sect. 3 we have obtained W- and Z-couplings of fermions. We adopt the convention
for vector and axial-vector couplings given by gV = 1

2 (gR + gL) and gA = 1
2 (gR − gL) so that

gRg′
R + gLg′

L = 2(gV g′
V + gAg′

A). To simplify expressions we introduce

G[ p2; ĝV , ĝA; ĝV ′, ĝA′ ; m1n, m2� ]

=
∞∑

n,�=0

[
(ĝV,n�ĝV ′,�n + ĝA,n�ĝA′,�n)

{ ( 1
3 p2 − 1

2

(
m2

1n + m2
2�

))
Ê

+ 2p2 b2(p2, m1n, m2�) − m2
1n b1(p2, m2�, m1n) − m2

2� b1(p2, m1n, m2�)
}

+
(

ĝV,n�ĝV ′,�n − ĝA,n�ĝA′,�n

)
m1nm2�

{
Ê + b0(p2, m1n, m2�)

}]
. (71)

Then, for the WW vacuum polarization, contributions from the (u, d) multiplets are given by

�ud
WW (p2) = NCg2

w

8π2

{
G
[

p2; ĝW ud
V , ĝW ud

A ; ĝW †ud
V , ĝW †ud

A ; mu(n), md (�)

]
+ G

[
p2; ĝW uD

V , ĝW uD
A ; ĝW †uD

V , ĝW †uD
A ; mu(n), mD(�)

] }
(72)

where NC = 3. Note that ĝW †ud
V/A,�n = (ĝW ud

V/A,n�)∗ etc. Contributions from the (νe, e) multiplets are

�
νee
WW (p2) = g2

w

8π2

2∑
a=1

G
[

p2; ĝW νeae
V , ĝW νeae

A ; ĝW †νeae
V , ĝW †νeae

A ; m
ν

(n)
ea

, me(�)

]
. (73)

For the ZZ vacuum polarization, contributions from the (u, d) multiplets are

�ud
ZZ(p2) = NCg2

w

4π2 cos2 θ0
W

{
G
[
p2; ĝZu

V , ĝZu
A ; ĝZu

V , ĝZu
A ; mu(n), mu(�)

]
+ G

[
p2; ĝZdd

V , ĝZdd
A ; ĝZdd

V , ĝZdd
A ; md (n), md (�)

]
+ G

[
p2; ĝZDD

V , ĝZDD
A ; ĝZDD

V , ĝZDD
A ; mD(n), mD(�)

]
+ 2 G

[
p2; ĝZdD

V , ĝZdD
A ; ĝZDd

V , ĝZDd
A ; md (n), mD(�)

] }
. (74)
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Here we have set ĝZdD
V/A,n0 = ĝZDd

V/A,0n = ĝZDD
V/A,n0 = ĝZDD

V/A,0n = 0. Contributions from the (νe, e) mul-
tiplets are

�
νee
ZZ(p2) = g2

w

4π2 cos2 θ0
W

{
G
[
p2; ĝZe

V , ĝZe
A ; ĝZe

V , ĝZe
A ; me(n), me(�)

]

+
2∑

a=1

2∑
b=1

G
[

p2; ĝZνeab
V , ĝZνeab

A ; ĝZνeba
V , ĝZνeba

A ; m
ν

(n)
ea

, m
ν

(�)
eb

] }
. (75)

The photon couplings are universal. They are diagonal and vector-like. Noting that
b1(p2, m, m) = 1

2 b0(p2, m, m), one finds for the γ γ vacuum polarization that

�ud
γ γ (p2) = NCg2

w sin2
θ0

W

4π2
p2

{ ∞∑
n=0

Q2
u

( 1
3 Ê + 2b2(p2, mu(n), mu(n) )

)

+
∞∑

n=0

Q2
d

( 1
3 Ê + 2b2(p2, md (n), md (n) )

)

+
∞∑

n=1

Q2
D

( 1
3 Ê + 2b2(p2, mD(n), mD(n) )

) }
,

�νee
γ γ (p2) = g2

w sin2
θ0

W

4π2
p2

∞∑
n=0

Q2
e

( 1
3 Ê + 2b2(p2, me(n), me(n) )

)
(76)

where Qu = 2
3 , Qd = QD = − 1

3 , and Qe = −1. For the Zγ vacuum polarization one finds that

�ud
Zγ (p2) = NCg2

w sin θ0
W

4π2 cos θ0
W

p2

{ ∞∑
n=0

QuĝZu
V,nn

( 1
3 Ê + 2b2(p2, mu(n), mu(n) )

)

+
∞∑

n=0

Qd ĝZdd
V,nn

( 1
3 Ê + 2b2(p2, md (n), md (n) )

)

+
∞∑

n=1

QDĝZDD
V,nn

( 1
3 Ê + 2b2(p2, mD(n), mD(n) )

) }
,

�
νee
Zγ (p2) = g2

w sin θ0
W

4π2 cos θ0
W

p2
∞∑

n=0

QeĝZe
V,nn

( 1
3 Ê + 2b2(p2, me(n), me(n) )

)
. (77)

Note that �γγ (0) = �Zγ (0) = 0 as a consequence of the Ward–Takahashi identity in U(1)EM.
Expressions for �(p2) for the second and third generations are obtained similarly.

5. Coupling sum rules
Each �(p2) in the previous section contains divergent terms proportional to Ê . In the SM some
of them are absorbed by renormalization constants, and specific combinations of the �(p2)’s,
namely the S, T, and U combinations, remain finite [28–31]. In GHU all KK modes of fermions
contribute to �(p2), and their couplings ĝW

V/A and ĝZ
V/A are highly nontrivial. The couplings ĝW

V/A

and ĝZ
V/A take the matrix form with nonvanishing off-diagonal elements. Further, even in the

subspace of the KK excited states the axial vector couplings are nonvanishing.
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In this section we show that there exist three identities among the W- and Z-coupling matrices
in each fermion doublet-multiplet, which are associated with the divergent terms in �WW(p2),
�ZZ(p2), and �Zγ (p2). We define the W3 coupling matrix ĝW 3

V , say for the (u, d) multiplet, by

ĝZu
V,n� = ĝW 3u

V,n� − sin2
θ0

W Qu δn�,(
ĝZdd

V,n�

ĝZDD
V,n�

)
=
(

ĝW 3dd
V,n�

ĝW 3DD
V,n�

)
− sin2

θ0
W Qd δn�. (78)

We stress that ĝW 3u
V and ĝW 3dd

V slightly differ from ĝZu,su2
V and ĝZdd,su2

V as defined in Eqs. (47)
and (51). Numerically all elements of ĝW 3DD

V , ĝZDD
A , ĝZdD

V/A , and ĝZDd
V/A are O(10−6) or less. In the

following we safely omit the contributions coming from the D modes in the expressions for the
coupling sum rules.

We define

Aud
0 = Tr

{
ĝW 3u

V ĝW 3u
V + ĝZu

A ĝZu
A + ĝW 3dd

V ĝW 3dd
V + ĝZdd

A ĝZdd
A

}
,

Aud
1 =

∑
n,�

{
ĝW 3u

V,n�ĝW 3u
V,�n(mu(n) − mu(�) )2 + ĝZu

A,n�ĝZu
A,�n(mu(n) + mu(�) )2

+ ĝW 3dd
V,n� ĝW 3dd

V,�n (md (n) − md (�) )2 + ĝZdd
A,n�ĝZdd

A,�n(md (n) + md (�) )2
}
,

Bud = QuTr ĝW 3u
V + Qd Tr ĝW 3dd

V ,

Cud = Q2
uTr I + Q2

d Tr I,

Dud
0 = Tr

{
ĝW ud

V ĝW †ud
V + ĝW ud

A ĝW †ud
A

}
,

Dud
1 =

∑
n,�

{
ĝW ud

V,n� ĝW †ud
V,�n (mu(n) − md (�) )2 + ĝW ud

A,n� ĝW †ud
A,�n (mu(n) + md (�) )2

}
. (79)

Here Tr in Q2
uTr I implies the trace over the u(n) states. Then the divergent parts of �ud(p2) are

expressed as

�ud
ZZ(p2)div = NCg2

w

4π2 cos2 θ0
W

{
1
3

(
Aud

0 − 2 sin2
θ0

W Bud + sin4
θ0

W Cud
)

p2 − 1
2

Aud
1

}
Ê,

�ud
Zγ (p2)div = NCg2

w sin θ0
W

4π2 cos θ0
W

1
3

(
Bud − sin2

θ0
W Cud

)
p2 Ê,

�ud
γ γ (p2)div = NCg2

w sin2
θ0

W

4π2

1
3

Cud p2 Ê,

�ud
WW (p2)div = NCg2

w

8π2

{
1
3

Dud
0 p2 − 1

2
Dud

1

}
Ê . (80)

For the (νe, e) doublet-multiplet

ĝZe
V,n� = ĝW 3e

V,n� − sin2
θ0

W Qeδn� (81)
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and we define

Aνee
0 = Tr

{
ĝW 3e

V ĝW 3e
V + ĝZe

A ĝZe
A +

2∑
a=1

2∑
b=1

(
ĝZνeab

V ĝZνeba
V + ĝZνeab

A ĝZνeba
A

)}
,

Aνee
1 =

∑
n,�

(
ĝW 3e

V,n�ĝW 3e
V,�n(me(n) − me(�) )2 + ĝZe

A,n�ĝZe
A,�n(me(n) + me(�) )2

+
2∑

a=1

2∑
b=1

{
ĝZνeab

V,n� ĝZνeba
V,�n (m

ν
(n)
ea

− m
ν

(�)
eb

)2 + ĝZνeab
A,n� ĝZνeba

A,�n (m
ν

(n)
ea

+ m
ν

(�)
eb

)2
})

,

Bνee = QeTr ĝW 3e
V ,

Cνee = Q2
eTr I,

Dνee
0 =

2∑
a=1

Tr
{

ĝW νeae
V ĝW †νeae

V + ĝW νeae
A ĝW †νeae

A

}
,

Dνee
1 =

2∑
a=1

∑
n,�

{
ĝW νeae

V,n� ĝW †νeae
V,�n (m

ν
(n)
ea

− me(�) )2 + ĝW νeae
A,n� ĝW †νeae

A,�n (m
ν

(n)
ea

+ me(�) )2
}
. (82)

The divergent parts of �νee(p2) are given by the expressions in Eq. (80) where NC = 1 and the
superscript ‘ud’ is replaced by ‘νee’. Note that these coefficients depend on the fermion doublet;
Aud

0 �= Aνee
0 etc.

Although all of the coupling matrices ĝV/A are rather nontrivial as shown in Sect. 3, there ap-
pear astonishing relations among A0, A1, B, D0, and D1. We are going to establish, by numerical
evaluation from the coupling matrices, the following coupling sum rules

⎧⎪⎪⎨⎪⎪⎩
Aud

0 = hud Bud

Dud
0 = 2Aud

0

Dud
1 = 2Aud

1

,

⎧⎪⎪⎨⎪⎪⎩
Aνee

0 = hνeeBνee

Dνee
0 = 2Aνee

0

Dνee
1 = 2Aνee

1

(83)

to high accuracy, where

hud = ĝZu,su2
L,00 − ĝZdd,su2

L,00 , hνee = ĝZνe11
L,00 − ĝZe,su2

L,00 . (84)

Similar relations hold for the second and third generations. For the (t, b) doublet, we use htb =
−2ĝZbb,su2

L,00 . Numerical values of ĝZ,su2
L,00 and ĝW

L,00 for θH = 0.1, mKK = 13 TeV, and M = 103 TeV
are summarized in Table 4. The factors h are close to, but not exactly 1.

In the SM h = 1, A0 = B = 1
2 D0 = 1

4 , Aud
1 = 1

2 Dud
1 = 1

4 (m2
u + m2

d ), etc. so that the relations
in Eq. (83) are satisfied for each doublet. In the current GHU model the relations are highly
nontrivial. We have included contributions coming from the KK modes n = 0 to n = 12. The
mass spectrum of the KK states and the 13-by-13 coupling matrices are determined with double
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Table 4. The couplings ĝZ,su2
L,00 and ĝW

L,00 for θH = 0.1, mKK = 13 TeV,
and M = 103 TeV.

2ĝZνe11
L,00 −2ĝZe,su2

L,00 ĝW νe1e
L,00

(νe, e) 0.997690 0.997691 0.997647
(νμ, μ) 0.997686 0.997687 0.997644
(ντ , τ ) 0.997684 0.997684 0.997642

2ĝZu,su2
L,00 −2ĝZdd,su2

L,00 ĝW ud
L,00

(u, d) 0.997688 0.997688 0.997645
(c, s) 0.997685 0.997685 0.997643
(t, b) 0.998344 0.997671 0.997969

Table 5. The coupling sum rules. The values of A0, A1, �S, �T, �U, and h in Eqs. (83)–(85) are tabulated
for each doublet for θH = 0.1, mKK = 13 TeV, and M = 103 TeV. The numerical values are evaluated by
including the contributions coming from the KK towers of fermions up to the n = 12 level.

A0 A1/mZ
2 �S �T �U h

(νe, e) 3.24204 44.1410 3.6 × 10−5 5.3 × 10−5 −3.4 × 10−7 0.997690
(νμ, μ) 3.24214 43.5089 7.1 × 10−5 5.3 × 10−5 −3.4 × 10−7 0.997687
(ντ , τ ) 3.24219 43.1535 − 1.5 × 10−5 5.3 × 10−5 −2.7 × 10−7 0.997684

(u, d) 3.24210 43.7063 − 4.0 × 10−6 5.5 × 10−5 −3.4 × 10−7 0.997688
(c, s) 3.24217 43.2862 2.0 × 10−5 5.3 × 10−5 −3.4 × 10−7 0.997685
(t, b) 3.24262 42.5613 1.0 × 10−4 4.1 × 10−5 −2.8 × 10−7 0.997671

precision. To confirm the accuracy of the coupling sum rules we introduce

�S = A0 − hB
A0

,

�T = A1 − 1
2 D1

A1
,

�U = A0 − 1
2 D0

A0
. (85)

Obtained results for A0, A1, �S, �T, and �U are summarized in Table 5.
It is seen that the coupling sum rules (83) are valid with 5- to 7-digit accuracy, at least nu-

merically. In view of the nontrivial matrix structure of the gauge couplings the coupling sum
rules (83) are highly nontrivial. The relations are expected as the consequences of the 5D gauge
invariance in GHU. Although the values of A0 and A1 increase with n, �S, �T, and �U remain
small. For the (νe, e) multiplet, for instance, as n increases from 12 to 16, the variations are A0:
3.24 → 4.24, A1/mZ

2 : 44.1 → 57.9, �S: 3.6 × 10−5 → 7.4 × 10−5, �T: 5.34 × 10−5 → 5.34 ×
10−5, �U: −3.44 × 10−7 → −3.41 × 10−7.

In this paper we have considered the vacuum polarization tensors of the photon, W, and Z
bosons only. Rigorous theoretical derivation of the coupling sum rules would require treating
all the KK towers of the SO(5) × U(1)X gauge bosons, which is beyond the scope of the current
paper. It is expected that similar coupling sum rules hold even in each sector of the KK excited
modes of the gauge fields.
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One comment is in order about the appearance of the h factor in the relation A0 = hB. The
relation involves the Z- and U(1)EM couplings. As emphasized in Sect. 3, around Eq. (60), the Z-
couplings have the effective SU(2)eff × U(1)EM structure. In the SM the Z-couplings to quarks
and leptons are given by (gw/ cos θSM

W )(T 3
L − sin2

θSM
W QEM). In GHU the W- and Z-couplings

to a doublet β = [(u, d), (νe, e), ···] are given approximately by

W :
gw ĝW β

L,00√
2

(
T 1

eff + i T 2
eff

)
,

Z :
gw hβ

cos θ0
W

(
T 3

eff − sin2
θ0

W

hβ
QEM

)
, (86)

where left-handed (right-handed) quarks and leptons are SU(2)eff doublets (singlets), and hβ =
ĝZβu,su2

L,00 − ĝZβd ,su2
L,00 for β = (βu, βd). The factor hβ is not equal to 1 in GHU even at the tree

level. It is very close to ĝW β

L,00. The relevant quantity for the forward-backward asymmetry in
e−e+ → f f̄ at the Z pole, for instance, is sin2

θ0
W /hβ which is about sin2

θSM
W . The h factor

in Eq. (86) effectively appears in the relation A0 = hB, which affects the definition of the S
parameter in GHU as discussed below.

6. Improved oblique parameters
The oblique parameters S, T, and U of Peskin–Takeuchi are useful to investigate new
physics beyond the SM. These parameters are expressed in terms of the vacuum polariza-
tion tensors of W, Z, and photon. Certain combinations of those vacuum polarization ten-
sors are finite, and are expected to represent important parts of the corrections to physical
quantities.

In GHU some improvement is necessary. In the most general situation the S, T, and U pa-
rameters should be defined as certain combinations of the vacuum polarization tensors of all
SO(5) × U(1)X gauge fields including the KK excited modes. Only the combinations which are
finite at the quantum level could serve as quantities measuring corrections to physical quanti-
ties. In this section we examine the finite corrections to the S, T, and U parameters associated
with the vacuum polarization tensors of W, Z, and photon. We should remember that these
quantities are not directly measured physical quantities. Directly measured physical quantities
expressed in terms of four-fermi vertices, for instance, involve contributions coming from the
KK modes of the gauge bosons in GHU.

In the previous section we have established three coupling sum rules to high accuracy. For
each fermion doublet β the sum rules are

⎧⎪⎪⎨⎪⎪⎩
Aβ

0 = hβBβ for S,

Aβ

1 = 1
2 Dβ

1 for T,

Aβ

0 = 1
2 Dβ

0 for U.

(87)

26/36



PTEP 2023, 063B01 Y. Hosotani et al.

With these sum rules at hand we propose the following S, T, and U for each fermion doublet
β at the 1-loop level:

α∗Sβ = sin2 2θ0
W

m2
Z

{
�

β

ZZ

(
m2

Z

)− �
β

ZZ (0) − cos 2θ0
W + hβ − 1

sin θ0
W cos θ0

W

�
β

Zγ

(
m2

Z

)
−
(

1 + hβ − 1

cos2 θ0
W

)
�β

γγ

(
m2

Z

) }
,

α∗T β = 1

m2
Z cos2 θ0

W

�
β

WW (0) − 1
m2

Z

�
β

ZZ (0) ,

α∗U β = 1

m2
Z cos2 θ0

W

{
�

β

WW

(
m2

W

)− �
β

WW (0)
}

− cos2 θ0
W

m2
Z

{
�

β

ZZ

(
m2

Z

)− �
β

ZZ (0)
}

− sin 2θ0
W

m2
Z

�
β

Zγ

(
m2

Z

)− sin2
θ0

W

m2
Z

�β
γγ

(
m2

Z

)
(88)

where α∗ = αEM(m2
Z ). In GHU mZ cos θ0

W �= mtree
W . The terms proportional to hβ − 1 in α∗Sβ

represent the improvement from the standard expression for S. It is straightforward to con-
firm that S, T, U defined by Eq. (88) are finite as a consequence of the sum rules in Eq.
(87). In the numerical evaluation of finite Sβ , Tβ , Uβ by using the gauge coupling matri-
ces of finite-dimensional rows and columns, one has to use the h factor defined by hβ =
Aβ

0 /Bβ , otherwise the result would be afflicted with the uncertainty associated with the diver-
gence. Also notice that the weak mixing angle θ0

W entering in Eq. (88) is the angle defined in
Eq. (13).

To explicitly express Sβ , Tβ , and Uβ in terms of the gauge couplings and mass spectra, it is
convenient to introduce

b̌0 (s, m1, m2) = b0 (s, m1, m2) − b0 (0, m1, m2) ,

b̌1 (s, m1, m2) = b1 (s, m1, m2) − b1 (0, m1, m2) ,

J± (mV , m1, m2) = −b2
(
m2

V , m1, m2
)± m1m2

2m2
V

b̌0
(
m2

V , m2, m1
)

+ m2
1

2m2
V

b̌1
(
m2

V , m2, m1
)+ m2

2

2m2
V

b̌1
(
m2

V , m1, m2
)
, (89)
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and

H [ĝV , ĝA; ĝV ′, ĝA′ ; mV , m1n, m2�]

=
∞∑

n,�=0

{
ĝV,n�ĝV ′,�nJ−(mV , m1n, m2�) + ĝA,n�ĝA′,�nJ+(mV , m1n, m2�)

}
,

K[ĝV , ĝA; ĝV ′, ĝA′ ; m1n, m2�]

=
∞∑

n,�=0

{(
ĝV,n�ĝV ′,�n + ĝA,n�ĝA′,�n

)[
m2

1nb1(0, m2�, m1n) + m2
2�b1(0, m1n, m2�)

]
− (ĝV,n�ĝV ′,�n − ĝA,n�ĝA′,�n

)
m1nm2� b0(0, m1n, m2�)

}
. (90)

We note that b0(s, m, m) = 2b1(s, m, m). Then S(u, d) is given by

α∗S(u,d ) = −2NC sin2
θ0

W

π2

{
H
[
ĝW 3u

V , ĝZu
A ; ĝW 3u

V , ĝZu
A ; mZ, mu(n), mu(�)

]
+ H

[
ĝW 3dd

V , ĝZdd
A ; ĝW 3dd

V , ĝZdd
A ; mZ, md (n), md (�)

]
+ h(u,d )

∞∑
n=0

(
QuĝW 3u

V,nnb2
(
m2

Z, mu(n), mu(n)

)+ Qd ĝW 3dd
V,nn b2

(
m2

Z, md (n), md (n)

)) }
. (91)

T(u, d) is given by

α∗T (u,d ) = NC

4π2 cos2 θ0
W m2

Z

{
− 1

2
K
[

ĝW ud
V , ĝW ud

A ; ĝW †ud
V , ĝW †ud

A ; mu(n), md (�)

]
+ K

[
ĝW 3u

V , ĝZu
A ; ĝW 3u

V , ĝZu
A ; mu(n), mu(�)

]
+ K

[
ĝW 3dd

V , ĝZdd
A ; ĝW 3dd

V , ĝZdd
A ; md (n), md (�)

] }
. (92)

U(u, d) is given by

α∗U (u,d ) = NC

2π2

{
− 1

2
H
[

ĝW ud
V , ĝW ud

A ; ĝW †ud
V , ĝW †ud

A ; mW , mu(n), md (�)

]
+ H

[
ĝW 3u

V , ĝZu
A ; ĝW 3u

V , ĝZu
A ; mZ, mu(n), mu(�)

]
+ H

[
ĝW 3dd

V , ĝZdd
A ; ĝW 3dd

V , ĝZdd
A ; mZ, md (n), md (�)

] }
. (93)

For the lepton doublet (νe, e), S(νe,e) is given by

α∗S(νe,e) = −2 sin2
θ0

W

π2

{
H
[
ĝW 3e

V , ĝZe
A ; ĝW 3e

V , ĝZe
A ; mZ, me(n), me(�)

]

+
2∑

a=1

2∑
b=1

H
[
ĝZνeab

V , ĝZνeab
A ; ĝZνeba

V , ĝZνeba
A ; mZ, m

ν
(n)
ea

, m
ν

(�)
eb

]

+ h(νe,e)
∞∑

n=0

QeĝW 3e
V,nnb2

(
m2

Z, me(n), me(n)

) }
. (94)
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Table 6. Corrections to Sβ , Tβ , Uβ for θH = 0.1 and mKK = 13 TeV. The numerical values are evaluated
by including the contributions coming from the KK towers of fermions up to the n = nmax = 12 level.
The values in the neutrino sector are obtained by setting mνe = mνμ

= mντ
= 10−12 GeV and Majorana

masses Me = Mμ = Mτ = 106 GeV. In the last row the average increments per level, namely (total)/nmax,
are listed.

β Sβ Tβ Uβ

(νe, e) 0.0010 0.0126 3.7 × 10−6

(νμ, μ) 0.0009 0.0122 3.7 × 10−6

(ντ , τ ) 0.0016 0.0129 3.7 × 10−6

(u, d) 0.0028 0.0382 1.1 × 10−5

(c, s) 0.0026 0.0360 1.1 × 10−5

(t, b) 0.0013 0.0058 7.9 × 10−6

total 0.010 0.12 0.00004

per level 8.4 × 10−4 9.7 × 10−3 3.4 × 10−6

T (νe,e) is given by

α∗T (νe,e) = 1

4π2 cos2 θ0
W m2

Z

{
− 1

2

2∑
a=1

K
[

ĝW νeae
V , ĝW νeae

A ; ĝW †νeae
V , ĝW †νeae

A ; m
ν

(n)
ea

, me(�)

]
+ K

[
ĝW 3e

V , ĝZe
A ; ĝW 3e

V , ĝZe
A ; me(n), me(�)

]
+

2∑
a=1

2∑
b=1

K
[

ĝZνeab
V , ĝZνeab

A ; ĝZνeba
V , ĝZνeba

A ; m
ν

(n)
ea

, m
ν

(�)
eb

] }
. (95)

U (νe,e) is given by

α∗U (νe,e) = 1
2π2

{
− 1

2

2∑
a=1

H
[

ĝW νeae
V , ĝW νeae

A ; ĝW †νeae
V , ĝW †νeae

A ; mW , m
ν

(n)
ea

, me(�)

]
+ H

[
ĝW 3e

V , ĝZe
A ; ĝW 3e

V , ĝZe
A ; mZ, me(n), me(�)

]
+

2∑
a=1

2∑
b=1

H
[

ĝZνeab
V , ĝZνeab

A ; ĝZνeba
V , ĝZνeba

A ; mZ, m
ν

(n)
ea

, m
ν

(�)
eb

] }
. (96)

Formulas for the quark-lepton multiplets in the second and third generations are obtained
similarly.

We have evaluated the improved S, T, U described above from the gauge coupling matrices
determined in the space of the KK modes of n = 0 to nmax = 12 levels. In the evaluation the
usage of the identity (70) reduces numerical errors. In the combinations of the above Sβ , Tβ ,
Uβ the sum of the Kdivln μ2 part in Eq. (70) vanishes thanks to the coupling sum rules in Eq.
(87). In Table 6 we have tabulated the values of Sβ , Tβ , Uβ beyond the SM contributions for
θH = 0.1, mKK = 13 TeV, and M = 103 TeV. The total values are S ∼ 0.01, T ∼ 0.12, and U ∼
0.00004 when the contributions of fermions up to the nmax = 12 level are taken into account.

Unlike the case of the coupling sum rules, however, the parameters S, T, U evaluated in this
manner seem to increase as nmax is increased. Let us denote these parameters as S(0), T(0), U(0)

to stress that they are oblique parameters associated with the zero modes W(0), Z(0), and γ (0)
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0

Fig. 1. The θH-dependence of the S, T, U parameters is plotted for mKK = 13 TeV and nmax = 12. S0, T0,
and U0 are the values of S, T, and U at θH = 0.1, respectively.

of the gauge fields. The average increments in S(0), T(0), U(0) per level are small (as listed in
the last row in Table 6), but do not vary very much in the range 12 ≤ nmax ≤ 16. This does
not necessarily mean that oblique corrections to physical quantities become large in GHU.
The current estimates of S, T, U from experimental data in the SM framework are SRPP =
−0.02 ± 0.10, TRPP = 0.03 ± 0.12, and URPP = 0.01 ± 0.11 where the superscript RPP stands
for Review of Particle Physics [38]. As emphasized at the beginning of this section, oblique
corrections associated not only with W(0), Z(0), and γ (0), but also with the KK excited modes
W(n), Z(n), and γ (n), become important for physical observable quantities in GHU. In particular,
the couplings of left-handed quarks and leptons to W(1), Z(1), and γ (1) are large in the GUT-
inspired GHU. To compare with SRPP, TRPP, and URPP, one needs to include, in addition to S(0),
T(0), and U(0), oblique corrections to the propagators of the KK gauge bosons. Contributions
coming from internal fermions at the high KK levels equally affect the oblique corrections to
the KK gauge boson propagators. To have definitive understanding of the contributions of KK
fermions at the 1-loop level in GHU, it is necessary to directly evaluate observable quantities,
which is left for future investigation.

So far we have presented the results for θH = 0.1 with mKK = 13 TeV. The θH-dependence
of the oblique parameters is explored similarly. It should be noted that with mKK = 13 TeV
fixed, the value of θH can be lowered to θmin

H ∼ 0.08 to reproduce the mass of the top quark. To
realize smaller values of θH, one needs to increase mKK. One expects that the oblique corrections
should get smaller as θH gets smaller. Indeed this is the case. The θH-dependences of S, T, and
U are depicted in the range 0.085 ≤ θH ≤ 0.105 in Fig. 1 for mKK = 13 TeV and nmax = 12. For
larger values of θH the oblique corrections get larger. It is anticipated from the viewpoint that as
θH varies from 0 to π , the gauge symmetry changes from SU(2)L × U(1)Y to SU (2)R × U (1)Y ′ .
The reliable numerical evaluation of the Z-couplings, particularly in the bottom quark tower,
becomes harder for larger values of θH because of the singular behavior of the hb(n)

L/R and kb(n)

L/R

components of the wave functions near the UV brane at z = 1.

7. Summary and discussions
In this paper we have examined the GUT-inspired SO(5) × U(1)X × SU(3)C GHU model in
the RS warped space. The W- and Z-couplings of quarks, leptons, and their KK excited modes
take the matrix form in the KK space. These coupling matrices have nontrivial off-diagonal
elements, and have both vector and axial-vector components. Nevertheless, these coupling ma-
trices satisfy three sum rules (87). We have confirmed these coupling sum rules numerically
from the evaluated W- and Z-coupling matrices. Rigorous derivation of the coupling sum rules
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would require the full treatment of the gauge bosons in the SO(5) × U(1)X theory. It is notewor-
thy that the sum rules hold even in the subspace of the W, Z, and photon vacuum polarization
tensors to very high accuracy. The appearance of the hβ �= 1 factor in the relation Aβ

0 = hβBβ in
Eq. (87) is anticipated from the vertex correction in the Z-couplings at the tree level as exhibited
in the approximate formula in Eq. (86).

With the coupling sum rules at hand, one can evaluate the finite oblique corrections unam-
biguously. The corrections are evaluated by using the mass spectrum and gauge coupling matri-
ces determined numerically. We have found for θH = 0.1 and mKK = 13 TeV that S ∼ 0.01, T ∼
0.12, and U ∼ 0.00004 when the contributions of the fermion loops up to the nmax = 12 level are
taken into account. It was argued at a very early stage of the investigation [32] that there may
arise a large correction to S in gauge theory in the RS space. We have found that the corrections
in the GUT-inspired GHU are small by direct evaluation of 1-loop diagrams. We note that Yoon
and Peskin have evaluated the oblique corrections in a different SO(5) × U(1)X GHU model
using a different method [14]. Their result also indicates small corrections for mKK = 13 TeV.
However, to have definitive understanding of the contributions of KK fermions at the 1-loop
level, it is necessary to evaluate observable quantities, by taking account of oblique corrections
to the KK modes of the gauge fields.

The coupling sum rules presented in this paper are highly nontrivial. There must be some
reason behind them, possibly originating from the 5D gauge invariance in the GHU scheme.
Further investigation is necessary.
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Appendix A. Basis functions
We summarize the basis functions used for wave functions of gauge and fermion fields. For
gauge fields we introduce

Fα,β (u, v) ≡ Jα(u)Yβ (v) − Yα(u)Jβ (v),

C(z; λ) = π

2
λzzLF1,0(λz, λzL),

S(z; λ) = −π

2
λzF1,1(λz, λzL),

C′(z; λ) = π

2
λ2zzLF0,0(λz, λzL),

S′(z; λ) = −π

2
λ2zF0,1(λz, λzL),

Ŝ(z; λ) = C(1; λ)
S(1; λ)

S(z; λ), (A1)
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where Jα(u) and Yα(u) are Bessel functions of the first and second kinds. They satisfy

−z
d
dz

1
z

d
dz

(
C

S

)
= λ2

(
C

S

)
, (A2)

with the BCs C(zL; λ) = zL, C
′
(zL; λ) = S(zL; λ) = 0, S

′
(zL; λ) = λ, and CS

′ − SC
′ = λz.

For fermion fields with a bulk mass parameter c, we define(
CL

SL

)
(z; λ, c) = ±π

2
λ
√

zzLFc+ 1
2 ,c∓ 1

2
(λz, λzL),

(
CR

SR

)
(z; λ, c) = ∓π

2
λ
√

zzLFc− 1
2 ,c± 1

2
(λz, λzL),

(
ŜL

ĈR

)
(z; λ, c) = CL(1; λ, c)

SL(1; λ, c)

(
SL

CR

)
(z; λ, c),

(
ŜR

ĈL

)
(z; λ, c) = CR(1; λ, c)

SR(1; λ, c)

(
SR

CL

)
(z; λ, c). (A3)

These functions satisfy

D+(c)

(
CL

SL

)
= λ

(
SR

CR

)
,

D−(c)

(
CR

SR

)
= λ

(
SL

CL

)
, D±(c) = ± d

dz
+ c

z
, (A4)

with the BCs CR/L = 1, SR/L = 0 at z = zL, and CLCR − SLSR = 1. We also use

CL1(z; λ, c, m̃) = CL(z; λ, c + m̃) + CL(z; λ, c − m̃),

CL2(z; λ, c, m̃) = SL(z; λ, c + m̃) − SL(z; λ, c − m̃),

SL1(z; λ, c, m̃) = SL(z; λ, c + m̃) + SL(z; λ, c − m̃),

SL2(z; λ, c, m̃) = CL(z; λ, c + m̃) − CL(z; λ, c − m̃),

CR1(z; λ, c, m̃) = CR(z; λ, c + m̃) + CR(z; λ, c − m̃),

CR2(z; λ, c, m̃) = SR(z; λ, c + m̃) − SR(z; λ, c − m̃),

SR1(z; λ, c, m̃) = SR(z; λ, c + m̃) + SR(z; λ, c − m̃),

SR2(z; λ, c, m̃) = CR(z; λ, c + m̃) − CR(z; λ, c − m̃). (A5)

Appendix B. Wave functions
Wave functions of down-type quark and neutrino multiplets are given below.

32/36



PTEP 2023, 063B01 Y. Hosotani et al.

B.1. Down-type quarks
The (d, d

′
, D+, D−) fields are expanded as in Eq. (30). The wave functions are given by⎛⎜⎜⎜⎜⎜⎝

f d (n)

L (z)

gd (n)

L (z)

hd (n)

L (z)

kd (n)

L (z)

⎞⎟⎟⎟⎟⎟⎠ = 1√
rd (n)

⎛⎜⎜⎜⎜⎜⎝
αd (n)CL(z; λd (n), cu)

βd (n)SL(z; λd (n), cu)

ad (n)CL2(z; λd (n), cDd , m̃Dd ) + bd (n)CL1(z; λd (n), cDd , m̃Dd )

ad (n)SL1(z; λd (n), cDd , m̃Dd ) + bd (n)SL2(z; λd (n), cDd , m̃Dd )

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

f d (n)

R (z)

gd (n)

R (z)

hd (n)

R (z)

kd (n)

R (z)

⎞⎟⎟⎟⎟⎟⎠ = 1√
rd (n)

⎛⎜⎜⎜⎜⎜⎝
αd (n)SR(z; λd (n), cu)

βd (n)CR(z; λd (n), cu)

ad (n)SR2(z; λd (n), cDd , m̃Dd ) + bd (n)SR1(z; λd (n), cDd , m̃Dd )

ad (n)CR1(z; λd (n), cDd , m̃Dd ) + bd (n)CR2(z; λd (n), cDd , m̃Dd )

⎞⎟⎟⎟⎟⎟⎠ (B1)

for the d(n) mode where

βd (n) = −i
cos 1

2θH SR(1, λd (n), cu)

sin 1
2θHCR(1, λd (n), cu)

αd (n),

ad (n) = i
μd SR(1, λd (n), cu)

sin 1
2θH

SL2(1; λd (n), cDd , m̃Dd )
F1(1; λd (n), cDd , m̃Dd )

αd (n),

bd (n) = −SL1(1; λd (n), cDd , m̃Dd )
SL2(1; λd (n), cDd , m̃Dd )

ad (n),

F1 = SL1SR1 − SL2SR2. (B2)

For the D(n) mode the formulas are obtained by replacing d(n) by D(n) in Eqs. (B1) and (B2).
Except for the d(0) mode, namely d-quark, the d(n) (n ≥ 1) modes are mostly contained in (d,

d
′
) fields, whereas the D(n) (n ≥ 1) modes are mostly contained in (D+, D−) fields. In Table B1

the norm of each component (Nf = ∫ zL

1 dz | f |2 etc.) is tabulated. For comparison we list the
norms of u and u

′
components of the u(n) modes in Table B2.

One can see that (u(0)
L , d (0)

L ) is an SU(2)L doublet. On the other hand u(0)
R and d (0)

R are nearly
SU(2)L singlets. Further d (0)

R has major components in the D± fields. Its SU(2)R portion is small.
Although the W boson acquires a small SU(2)R portion at θH = 0.1, its coupling to (u(0)

R , d (0)
R )

is suppressed significantly.

B.2. Neutrinos
The (ν, ν ′, χ̂ ) fields are expanded as in Eq. (35). The wave functions are given by⎛⎜⎜⎜⎜⎜⎝

f ν±(n)

L (z)

gν±(n)

L (z)

f ν±(n)

R (z)

gν±(n)

R (z)

⎞⎟⎟⎟⎟⎟⎠ = 1√
rν±(n)

⎛⎜⎜⎜⎜⎜⎝
sin 1

2θHCL(z; λν±(n), ce)/SR(1; λν±(n), ce)

−i cos 1
2θH SL(z; λν±(n), ce)/CR(1; λν±(n), ce)

sin 1
2θH SR(z; λν±(n), ce)/SR(1; λν±(n), ce)

−i cos 1
2θHCL(z; λν±(n), ce)/CR(1; λν±(n), ce)

⎞⎟⎟⎟⎟⎟⎠,

hν±(n) = 1√
rν±(n)

−imB

kλν±(n) ∓ M
. (B3)

The normalization factor rν±(n) is determined by Eq. (36).
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Table B1. The norm of each component for the d(n) and D(n) modes.
Nf = ∫ zL

1 dz | f |2 etc.

Nf (d ) Ng (d ′) Nh (D+) Nk (D−)

d (0)
L 1. 1 × 10−23 3 × 10−14 2 × 10−14

d (1)
L 2 × 10−22 1. 1 × 10−10 1 × 10−11

d (2)
L 1. 7 × 10−22 1 × 10−12 1 × 10−12

d (3)
L 8 × 10−22 1. 3 × 10−10 2 × 10−10

d (4)
L 1. 2 × 10−21 2 × 10−12 1 × 10−12

d (0)
R 5 × 10−5 0.021 0.387 0.592

d (1)
R 1 × 10−14 1. 2 × 10−10 1 × 10−10

d (2)
R 1. 3 × 10−14 2 × 10−12 8 × 10−13

d (3)
R 2 × 10−14 1. 3 × 10−10 4 × 10−10

d (4)
R 1. 3 × 10−14 3 × 10−12 8 × 10−13

D(1)
L 9 × 10−14 8 × 10−11 0.697 0.303

D(2)
L 2 × 10−12 7 × 10−11 0.633 0.367

D(3)
L 2 × 10−13 3 × 10−10 0.284 0.716

D(4)
L 3 × 10−12 1 × 10−10 0.781 0.219

D(1)
R 2 × 10−5 7 × 10−3 0.125 0.868

D(2)
R 7 × 10−6 3 × 10−3 0.952 0.045

D(3)
R 6 × 10−6 2 × 10−3 0.034 0.964

D(4)
R 5 × 10−6 2 × 10−3 0.973 0.025

Table B2. The norm of the u(n) modes. Nf = ∫ zL

1 dz | f |2 etc.

Nf (u) Ng (u′)

u(0)
L 1. 2 × 10−20

u(1)
L 2 × 10−19 1.

u(2)
L 1. 3 × 10−19

u(3)
L 6 × 10−19 1.

u(4)
L 1. 8 × 10−19

Nf (u) Ng (u′)

u(0)
R 0.002 0.998

u(1)
R 2 × 10−11 1.

u(2)
R 1. 1 × 10−11

u(3)
R 1 × 10−11 1.

u(4)
R 1. 1 × 10−11

The ν+(0) mode is nearly left-handed, saturated with νL. ν±(n) (n ≥ 1) modes are almost vector-
like. ν±(2� − 1) (� ≥ 1) modes are saturated by νL and νR, whereas ν±(2�) (� ≥ 1) modes are sat-
urated by ν ′

L and ν ′
R. As an example we take mνe = 10−3 eV and Me = 106 GeV, which gives

mBe = 4.8 × 105 GeV. The norm of each component is tabulated in Table B3.
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Table B3. The norm of the ν±(n) modes. Nf = ∫ zL

1 dz | f |2 etc.

NfL (ν) NgL (ν ′) NfR (ν) NgR (ν ′) Nh

ν+(0) 1. 6 × 10−61 1 × 10−20 4 × 10−18 1 × 10−18

ν+(1) 1 × 10−28 0.5 1 × 10−17 0.5 1 × 10−15

ν+(2) 0.5 9 × 10−28 0.5 5 × 10−17 1 × 10−17

ν+(3) 2 × 10−27 0.5 4 × 10−17 0.5 4 × 10−15

ν+(4) 0.5 7 × 10−26 0.5 1 × 10−15 3 × 10−16

ν−(1) 2 × 10−28 0.5 2 × 10−17 0.5 2 × 10−15

ν−(2) 0.5 1 × 10−27 0.5 5 × 10−17 1 × 10−17

ν−(3) 3 × 10−27 0.5 8 × 10−17 0.5 7 × 10−15

ν−(4) 0.5 2 × 10−26 0.5 3 × 10−16 7 × 10−17
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