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Abstract We investigate the presence of topological struc-
tures and multiple phase transitions in the O(3)-sigma model
with the gauge field governed by Maxwell’s term and sub-
ject to a so-called Gausson’s self-dual potential. To carry
out this study, it is numerically shown that this model sup-
ports topological solutions in 3-dimensional spacetime. In
fact, to obtain the topological solutions, we assume a spher-
ically symmetrical ansatz to find the solutions, as well as
some physical behaviors of the vortex, as energy and mag-
netic field. It is presented a planar view of the magnetic field
as an interesting configuration of a ring-like profile. To cal-
culate the differential configurational complexity (DCC) of
structures, the spatial energy density of the vortex is used. In
fact, the DCC is important because it provides us with infor-
mation about the possible phase transitions associated with
the structures located in the Maxwell–Gausson model in 3D.
Finally, we note from the DCC profile an infinite set of kink-
like solutions associated with the parameter that controls the
vacuum expectation value.

1 Introduction

The interest in the O(3)-sigma model arises from the descrip-
tion of cosmic strings [1–3] as well as phenomena in con-
densed matter physics [4]. In the low energy regime, Wilczek
and Zee [5] proposed that solitons of the O(3)-sigma model
in certain conditions acquire a new statistical behavior, i. e.,
the possibility of fractional spin solitons [5]. In 1983, Hal-
dane [6] observed that the dynamics of these structures in the
O(3)-sigma model allow to describe the behavior of Heisen-
berg antiferromagnetic materials [7]. The study of this model
has aroused the interest of several researchers due to these
and other applications in different areas of physics [8–10].
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In 1995, Schroers showed the presence of Bogomol’nyi
solitons in a gauged O(3)-sigma model [8]. He showed that
the scale invariance of the sigma model can be broken by
gauging a subgroupU (1) of the O(3) symmetry, e. g., includ-
ing the Maxwell gauge field. In 1996, a new proposal was
made to find topological and non-topological solitons in a
model involving the Chern–Simons field [11]. Subsequently,
further studies on the O(3)-sigma model with Maxwell field
were carried out, e. g., studies of the sigma model with non-
minimal coupling and with Maxwell–Chern–Simons fields
[12], as well as studies of topological multivortex solutions
in the Maxwell–Chern–Simons self-dual model [13].

In a general context, the pioneering work of Nilsen and
Olesen [1] demonstrated the existence of static vortices in a
Maxwell–Higgs theory. Later, motivated by this work, sev-
eral researchers have intensively studied Maxwell’s vortices
in different models [14–16].

Topological solutions of the gauged O(3)-sigma model
have been extensively studied [11,17–22]. In the Skyrme
model [23,24], a gauge symmetry is required for the scale
invariance of a O(3)-sigma model with the dynamics of the
gauge field governed by Maxwell term [20,25].

It is interesting to mention that there are several types of
topological structures. Among these defects, we have the vor-
tices that arise in 3D models [26,27]. Particularly, the study
of the vortex solution is interesting because can eventually
give us explanations of some applications, such as the frac-
tional quantum Hall effect [28] and superconductivity at high
temperatures [29].

To study vortices in our model, we use a technique known
as the Bogomol’nyi–Prasad–Sommerfield (BPS) method.
This method consists of a series of inequalities for the solu-
tions of partial differential equations that depend on the
homotopy class of the solutions at spatial infinity [30,31].
In other words, the BPS method represents a limit of energy
saturation for a given model that allows reducing the order of
the equations of motion. The equations of motion obtained
at the limit of energy saturation are called BPS equations.
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In this work, we propose an Abelian O(3)-sigma model,
governed by a Maxwell term, with a Gausson potential, and
show that this model admits topological vortex solutions.
Gausson models were initially discussed in the context of
relativistic theory [32,33] and non-relativistic one [34]. This
discussion has recently returned with the study of kinks gen-
erated by Gausson-like potentials in Ref. [35] and with gener-
alized models using Gausson-like logarithmic terms in Refs.
[36,37]. It is worth noting that Gausson-like logarithmic
potentials are interesting for describing quantum Bose liq-
uids [38], and quantum gravity theory [39].

Configurational entropy (CE) of BPS vortices in an
Abelian model with logarithmic interaction is discussed.
The term configurational entropy appeared in Refs. [40,41],
underpinned by information theory of Claude E. Shannon
[42]. From a quantum mechanical point of view, Shannon’s
entropy gives us information on the probability of a particle
transitioning from one quantum state to another [43,44]. In
other words, Shannon’s entropy is the hidden information in
a random process. The CE was reintroduced as a proposed
measure of stability in localized structures. There are sev-
eral studies using configurational entropy in different sys-
tems. For instance, the CE can be used to investigate sta-
ble Q-ball solutions [45,46] at the Chandrasekhar limit for
white dwarfs; in the study of the non-equilibrium dynamics
of spontaneous symmetry breaking [46]; in the study of Bose-
Einstein condensates [47], and in braneworlds to investigate
field configurations of multi-kink type [48].

Our work is organized as follows: In Sect. 2, we investigate
the Maxwell–Gausson O(3)-sigma model through the BPS
method. The spherically symmetrical ansatz is considered to
demonstrate that magnetic flux is quantized in each topolog-
ical sector. Using the interpolation method, the topological
vortex solutions of the model are obtained numerically. In
Sect. 3, we investigate the DCC to analyze the phase transi-
tions that can create new topological structures in the model.
Finally, in Sect. 4 we discuss our findings.

2 The Maxwell–Gausson O(3)-sigma model

Motivated by the models presented in Refs. [11,18,21], we
consider the Lagrangian of the Maxwell–Gausson O(3)-
sigma model in (2 + 1)D spacetime as

L = 1

2
DμΦ · DμΦ − 1

4
FμνF

μν − ρφ2
3 ln

(
φ2

3

ϑ2

)
. (1)

Here Φ is a triplet of scalar fields, a vector in the internal
space that respects the following constraint

Φ · Φ = M2, (2)

Fig. 1 Potential behavior of the model

with

φi = Φ · n̂i . (3)

where we consider M = 1 (see Ref. [8]), and {n̂i } are a basis
of unit orthogonal vectors. The Lagrangian of the model is
invariant under an rotation around a preferred axis n̂3 =
(0, 0, 1).

Note that the component of the φ3 field is responsible for
the spontaneous breaking of symmetry. We use a metric with
signature (+,−,−). The SO(2) [U (1)] subgroup is gauged
by the vector potential Aμ whose dynamics are dictated by
the Maxwell term. The electromagnetic field tensor is

Fμν = ∂μAν − ∂ν Aμ. (4)

The covariant is given by

DμΦ = ∂μΦ + Aμn̂3 × Φ, (5)

in natural units, i. e., h̄ = c = e = 1.
The equations of motion of the model are

DνD
νΦ = − ∂V

∂Φ
, (6)

and

∂νF
νμ = jμ, (7)

where V = ρφ2
3 ln(φ2

3/ϑ2) and jμ = −Jμ · n̂3 with

Jμ = −Φ × DμΦ. (8)

The behavior of the potential responsible for the sponta-
neous breaking of symmetry is displayed in Fig. 1.

Looking at Gauss’ law (component μ = 0 in Eq. (7))
and seeking to investigate purely magnetic and stationary
vortices (i. e. structures that have a magnetic flux and are
independent of time) we choose the gauge A0 = 0. This leads
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us to electrically neutral vortex configurations. It is possible
to have other vortex solutions that describe more complex
structures with electric and magnetic field flux. However, in
this work we turn our attention to the study of purely magnetic
vortices.

The energy functional is obtained by integrating T00 of
the energy-momentum tensor over all space. In this way, the
energy functional is

E = 1

2

∫
d2x

[
(DiΦ)2 + (F12)

2 + 2ρφ2
3 ln

(
φ2

3

ϑ2

)]
. (9)

The functional that describes the energy of the vortices is
rearranged as

E = 1

2

∫
d2x

{
(DiΦ ± εi jΦ × DjΦ)2

+
[
F12 ±

√
2ρφ2

3 ln

(
φ2

3

ϑ2

)]2}
± 4π

∫
dx2Q0. (10)

The topological charge of the Maxwell–Gausson O(3)-
sigma model [8,11] is defined as

Qμ = 1

8π
εμνλ

[
Φ · (DνΦ × DλΦ) − Fνλ

√
2ρφ2

3 ln

(
φ2

3

ϑ2

)]
. (11)

From Eq. (10) the Bogomol’nyi energy or BPS energy of
the model is given by

EBPS = 4π

∫
d2xQ0. (12)

The energy is limited by EBPS , i. e.,

E ≥ EBPS . (13)

When E = EBPS the equations that describe the BPS
vortex structures of the model are

DiΦ = ∓εi jΦ × DjΦ, (14)

and

F12 = ±φ3

√
2ρln

(
φ2

3

ϑ2

)
. (15)

Equations (14) and (15) are equations of Bogomol’nyi for
the sigma model and similar of those in Ref. [8].

To investigate the spherically symmetrical vortex struc-
tures we assume the well-known ansatz [8,11,18]:

φ1 = sin f (r) cos nθ; (16)

φ2 = sin f (r) sin nθ; (17)

φ3 = cos f (r). (18)

This ansatz is conveniently chosen so that the O(3)-sigma
constraint is respected, i.e.

Φ · Φ = [sin2 f (r) cos2 nθ + sin2 f (r) sin2 nθ + cos2 f (r)]
= [sin2 f (r) + cos2 f (r)] = 1. (19)

We consider the behavior of the gauge field [8] is

A = −na(r)

r
êθ , (20)

where n is the winding number of the topological structure
[20,21].

To obtain topological vortex structures, the scalar field and
the gauge field must behave as

f (r → 0) = 0, f (r → ∞) = π, (21)

and,

a(r → 0) = 0, a(r → ∞) = −η1, (22)

which we will discuss in what follows.
Using (21) and (22), the magnetic field of the vortex is

B = ∇ × A → B = ||B|| = −na′(r)
r

= −F12, (23)

therefore, the magnetic flux ΦB of the vortex is

ΦB =
∫
S

∫
B · dS = −n

∫ 2π

0

∫ ∞

0

a′(r)
r

rdrdθ

ΦB = −2πn[a(∞) − a(0)] → ΦB = 2πnη1, (24)

from the previous expression, it is clear that the magnetic
flux of the vortex is quantized in each topological sector.

2.1 Asymptotic behavior and numerical solution

We turn our attention to the study of the asymptotic behav-
ior and numerical solutions describing the magnetic vortex
structures. The BPS Eqs. (14) and (15) are written in terms
of the variable field, namely,

f ′(r) = ±n
a(r) + 1

r
sin f (r), (25)

and

a′(r) = ±2
r

n
cos f (r)

√
ρln

(
cos f (r)

ϑ

)
. (26)
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Let us discuss the asymptotic behavior of the possible
solutions of Eqs. (25) and (26). To ensure no singularity at
the origin, the field near the origin must have the form:

f (r) = nπ + O(r), (27)

where n ∈ N.
For this behavior of the variable field f (r) near to the

origin, the gauge field must assume a null behavior, i. e.
a(0) = 0.

To analyze the existence of vortex solutions, we investi-
gate the existence of solutions near to the asymptotic points
assumed in Eqs. (21) and (22). First let us consider the initial
condition f (0) = 0, it is convenient introduce χ(r) so that
f (r) = π + χ(r). For positive winding numbers, the neg-
ative sign of Eq. (25) is chosen. We consider χ(r) 	 1 so
that the origin the field takes the form

χ(r) = A0r
n, (28)

and the gauge field behaves as

a(r) 
 1

2n
√

ρln(ϑ−2)

{
− ρr2ln(ϑ−2)

+ A
2
0r

2(n+1)

2(n + 1)
[ln(ϑ−2) + 1]

}
+ O(r), (29)

On the other hand, for negative winding number f (r)
behaves with

χ(r) = B0r
−n, (30)

and

a(r) 
 1

2n
√

ρln(ϑ−2)

{
ρr2ln(ϑ−2)

− B0r2(1+n)

2(1 + n)
[1 + ln(ϑ−2)]

}
+ O(r), (31)

where O(r) are the higher order terms.
Meanwhile, at infinity, the variable field obeys f (∞) =

π . Similar to the above analysis f (r) = π + χ(r), so that
for finite energy configurations a(∞) = ξ1. In this case,

χ(r) = C∞rn(1−ξ1). (32)

and

a(r) 
 1

2n
√

ρln(ϑ−2)

{
ρr2ln(ϑ−2)

− C∞ρr2[1+n(1−ξ1)]

2 − 2n(ξ1 − 1)
[1 + ln(ϑ−2)]

}
+ O(r). (33)

Fig. 2 Numerical solution for the variable field f (r). We assume that
n = ρ = 1 and ϑ = 0.5

Finally, for

f (∞) = π, and a(∞) = ξ2, (34)

with n < 0,

f (r) = D∞rn(1+ξ2), (35)

and

a(r) 
 1

2n
√

ρln(ϑ−2)

{
− ρr2ln(ϑ−2)

+ D∞ρr2[1+n(1+ξ2)]

2 − 2n(1 + ξ2)
[1 + ln(ϑ−2)]

}
+ O(r). (36)

The ξ1,2 parameters indicate whether the solutions are
topological or non-topological.

We investigate the numerical solution of the BPS equa-
tions (25) and (26), using the interpolation method (for more
details on the interpolation method for solving differential
equations see Ref. [49]). The result of the variable field of
the scalar field is shown in Fig. 2.

Returning the Eqs. (25) and (26) and considering the topo-
logical boundary conditions (22), the solution of the variable
field corresponding to the gauge field is obtained and pre-
sented in Fig. 3.

From the Eq. (23), the numerical solution of the magnetic
field responsible for the flux of the vortex investigated. The
magnetic field is shown in Fig. 4a, the planar magnetic field
of the vortex is shown in Fig. 4b.

The BPS energy of the model can be found from Eq. (12).
The corresponding numerical solution is shown in Fig. 5.

From the results found, we observed that Maxwell vortices
are purely magnetic due to the fact that we assume A0 = 0.
From the numerical result of the energy, it is observed that
an intense BPS energy density at the origin. An interesting
result arises when the magnetic field is investigated, i. e., due
to the B(r) function profile, the planar vortex has a ring-like
profile. This behavior of the magnetic field seems to occur
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Fig. 3 Solution of the field variable corresponding to the gauge field
when n = ρ = 1 and ϑ = 0.5

due to the fact that the gauge field presents an exponential-
like behavior until it reaches the value −η1. We emphasize
that the shape of solutions for the magnetic field has already
been noted in other models [36]

3 Phase transitions and configurational entropy

Configurational entropy is inspired by Shannon entropy
which was proposed in 1948 [42]. Information in Shannon’s
communication theory is defined as

S = −
∑
i

ρi lnρi , (37)

where ρi consists of the probability of message i , given the
corpus of all possible messages. Shannon’s entropy is the
minimum number of bits needed to encode a message to
achieve a maximal transmission rate of information between
a sender and receiver, i. e., the capacity of the channel [42,50].
In recent years this quantity has been studied in several phys-

Fig. 5 BPS energy density of the vortex with n = ρ = 1 and ϑ = 0.5

ical scenarios, such as in the study of quantum mechanical
systems [51–53].

Motivated by the theory presented by Shannon, configura-
tional entropy emerges. Initially, the configurational entropy
appears as the informational complexity of localized field
configurations. The messages in configurational entropy are
the components of the power spectrum (see for example the
Refs. [45,50,54]).

For the study of the phase transitions of the BPS topo-
logical vortices, we use the concept of differential entropy
defined in Refs. [41,45,46,50,54]. The differential entropy
is

S =
∫

ρ(k)lnρ(k) dk. (38)

Although differential entropy is finite, it is not invariant
under a change of coordinates. This is a consequence of the
fact that the probability density transforms as a scalar den-
sity under coordinate transformations x → x̃ and hence the
density transforms as ρ(x) → | ∂ x̃

∂x |ρ(x̃).
Differential configurational entropy is intended to mea-

sure the formational complexity of a particular field configu-

(a) (b)

Fig. 4 a Magnetic field of the BPS vortex with n = ρ = 1 and ϑ = 0.5. b The planar magnetic field of the vortex
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ration. Consider an energy density E(r) of the field, located in
space. The decomposition into wave modes in d-dimensional
space is provided by the Fourier transform:

G(k) = (2π)−(d/2)

∫
E(r)e−ik·r ddr. (39)

A detector sensitive to the full spectrum of wave modes
will detect a wave mode within of a volume ddk centered on
k with probability proportional to the power in that modes,
i. e.,

p(k |ddk) ∝ |G(k)|2 ddk. (40)

The relative contribution of a wave mode to a |k∗| is the
modal fraction,

g(k) = |G̃(k)|2
|G̃(k∗)|2

. (41)

The DCC is

SC = −
∫

g(k)ln[g(k)] ddk, (42)

since the modal fraction is ≤ 1, the DCC is positive definite.
For the spherical symmetry, the hyperspheric Fourier

transform is given by

G(k) = k1− d
2

∫ ∞

0
E(r)Jd

2 −1(kr) r
d/2 dr (43)

where Jν is the Bessel function and E(r) is the energy density
of the vortex.

The differential configurational complexity is calculated
as

SC = −2πd/2

Γ
( d

2

)
∫ ∞

0
kd−1g(k)ln[g(k)] dk, (44)

where the entropy density ρE is the DCC integrand.
It is important to mention that in the context of braneworlds,

the configurational entropy is able to describe new topolog-
ical structures, for instance, multi-kink solutions which are
fruits of multiples phase transition [48]. In the context in
which we are applying the study of this quantity, we want to
understand whether the vortex solutions discussed above are
unique and whether our nonpolynomial model admits such
multiple transitions.

The calculations of the DCC are not so simple, due to our
energy density profile in field internal space. Conscious of
the difficulties, we evaluate numerically the entropic density
of the model (where is spherical symmetry considered) and
show the results in Fig. 6. To obtain this entropic densities
we consider the numerical vortex solutions of Eqs. (25) and

Fig. 6 Configurational entropy density for the variable field of the vor-
tex

(26) in Eq. (44). We aware that the parameter ϑ is responsible
for changing the topological structures of the model, since
it is related to the vacuum expectation value (v.e.v.). There-
fore, we study numerically how this quantity influences the
Shannon entropy and how it could generates possible topo-
logical structures in the model and consequently new phase
transitions.

From the numerical solution of entropic density, is inves-
tigated the configurational entropy of the model. The numer-
ical result is shown in Fig. 7. In fact, it is noticed that around
the core of the vortex, i. e., r ≈ 0, the entropy densities are
greater as the parameter ϑ increases. In fact, due to the local-
ized structure is around r = 0 the entropic density is higher
than all region. We note that the parameter ϑ (associated
with v.e.v.) that controls the entropic density is associated
with the magnetic field of the vortex. So, when this parame-
ter increases, the magnitude of the magnetic field decreases,
making the entropic density with a more localized profile.
From Fig. 7 for configurational entropy, it is observed that
the O(3)-sigma model with the Maxwell gauge field and
with a nonpolynomial potential type φ4 admits only kink-
like solution. This solution is shown in Fig. 2. This result,
is unlike the results presented in braneworld scenarios, and
due to the configurational entropy profile of the O(3)-sigma
model, our model does not support multiple phase transitions.
It is noticed that the critical point of the vortex configurational
entropy corresponds to the vacuum expectation value.

4 Conclusion

By choosing a self-interaction logarithmic potential (called
Gausson potential) with symmetry breaking in the O(3)-
sigma model gauged with the Maxwell gauge fields, we get
purely neutral magnetic vortices. These vortices are topolog-
ically stable having quantized magnetic flux ΦB = 2πη1n in
each topological sector. The arising of a magnetic field like a
ring in the planar model is observed. This result seems to be a
consequence of the behavior of the gauge field in the region.
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Fig. 7 Configurational entropy associated with the variable field of the
vortex

Finally, it is observed that these vortices share the desirable
feature of breaking of the scale-invariance.

Considering the spatial profile of the energy density of the
model we investigated whether the studied vortices admitted
multiple phase transitions. It is observed that the configura-
tional entropy assumed a profile delta-function type centered
in the vacuum expectation value. Due to this profile of the
configurational entropy it is clear that the model does not
support multiple phase transitions. Meanwhile, by numerical
simulation it is concluded that all topological solutions sup-
ported by the model are limited to the range −10 ≤ ϑ ≤ 10.
In fact, in this range of values, the solutions will differ only
“how quickly” the fields evolve into a vacuum state.
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