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Abstract: We construct linearized solutions to Vasiliev’s four-dimensional higher spin

gravity on warped AdS3 ×ξ S1 which is an Sp(2) × U(1) invariant non-rotating BTZ-like

black hole with R2×T 2 topology. The background can be obtained from AdS4 by means of

identifications along a Killing boost K in the region where ξ2 ≡ K2 > 0, or, equivalently,

by gluing together two Bañados-Gomberoff-Martinez eternal black holes along their past

and future space-like singularities (where ξ vanishes) as to create a periodic (non-Killing)

time. The fluctuations are constructed from gauge functions and initial data obtained by

quantizing inverted harmonic oscillators providing an oscillator realization of K and of a

commuting Killing boost K̃. The resulting solution space has two main branches in which

K star commutes and anti-commutes, respectively, to Vasiliev’s twisted-central closed two-

form J . Each branch decomposes further into two subsectors generated from ground states

with zero momentum on S1. We examine the subsector in which K anti-commutes to J

and the ground state is U(1)K×U(1)
K̃

-invariant of which U(1)K is broken by momenta on

S1 and U(1)
K̃

by quasi-normal modes. We show that a set of U(1)
K̃

-invariant modes (with

n units of S1 momenta) are singularity-free as master fields living on a total bundle space,

although the individual Fronsdal fields have membrane-like singularities at K̃2 = 1. We

interpret our findings as an example where Vasiliev’s theory completes singular classical

Lorentzian geometries into smooth higher spin geometries.

Keywords: Higher Spin Gravity, Higher Spin Symmetry, Black Holes

ArXiv ePrint: 1903.01399

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2019)171

mailto:raros@unab.cl
mailto:c.iazeolla@gmail.com
mailto:per.anders.sundell@gmail.com
mailto:yinyihao@nuaa.edu.cn
https://arxiv.org/abs/1903.01399
https://doi.org/10.1007/JHEP08(2019)171


J
H
E
P
0
8
(
2
0
1
9
)
1
7
1

Contents

1 Introduction 1

1.1 Higher spin resolution of gravitational singularities 1

1.2 Resolution mechanisms 4

1.3 Vasiliev versus Fronsdal formulations 6

1.4 Outline of the paper 8

2 Resolving of curvature singularities in ALAdS backgrounds 9

2.1 Horizontal forms and quasi-topological noncommutative field theories 9

2.2 Extended Weyl algebra 11

2.3 Vacuum gauge functions and topology change via degenerate metrics 12

2.4 Linearized Weyl zero-form 14

2.5 Particle and black hole states in AdS4 15

2.6 Resolving Coulomb-like singularities 16

3 Topologically extended BTZ-like geometries 17

3.1 Generalities 18

3.2 3D spinless BTZ black hole 20

3.3 4D spinless BGM black hole 23

4 Higher spin fluctuations around 4D spinless BGM black hole 26

5 Construction of zero-form initial data using Fock spaces 29

5.1 Fock spaces associated to different Cartan subalgebras 30

5.2 Diagonalizing the adjoint actions of P and B 33

5.3 Regular presentation of the stargenfunctions 36

5.4 Reality properties of the eigenfunctions 40

5.5 Sp(4;R)-covariant notation for the eigenfunctions 41

5.6 Identification conditions 44

5.7 The conjugate terms 45

6 Fluctuation fields in spacetime 48

6.1 The Weyl zero-form in L-gauge 48

6.2 The scalar field 53

7 Conclusions and outlook 57

A Spinor conventions and AdS4 background 58

B Finite transformations of the Cartan generators 61

C Further comments on the eigenfunctions 62

– i –



J
H
E
P
0
8
(
2
0
1
9
)
1
7
1

D Analysis of membrane-like curvature singularities 63

E Removing the ambiguity between regular and twisted sector 72

F An integral formula using parabolic cylinder functions 74

G Apparent singularity at X0 +X3 = 0 75

1 Introduction

1.1 Higher spin resolution of gravitational singularities

An interesting problem in gravity is whether classical spacetime singularities can be resolved

by switching on higher spin gauge fields. Indeed, the resulting non-abelian interactions

are spacetime non-local already at the classical level, akin to those of a full quantum

effective field theory. Moreover, higher spin gravities contain infinite towers of massless

fields at weak coupling that one may argue become massive due to quantum effects, hence

associated to screened charges in weakly coupled asymptotic regions, while supporting

moduli spaces of classical solutions interpolating between asymptotic regions and strongly

coupled core regions with nontrivial topology. This motivates examining whether classical

spacetime singularities can be completed into smooth higher spin geometries given by

classical solutions to unbroken higher spin gravities with bounded field configurations and

finite observables accessible to asymptotic observers, providing semi-classical realizations

of geometrically entangled quantum states.

To concord with basic properties of the holographic correspondence between generally

covariant theories with anti-de Sitter vacua and conformal field theories in the context of

higher spin theory [1–4], we shall

a) presume a higher spin symmetry breaking mechanism whereby weakly coupled gauge

fields with spins greater than two (and possibly also some fields with spins less than

or equal to two) acquire masses so as to leave a spectrum with massless subsector

corresponding to matter-coupled gravity; and

b) construct exact solutions to unbroken higher spin gravities that describe smooth

higher spin geometries containing asymptotically locally anti-de Sitter (ALAdS) (or

de Sitter) regions where the full theory can be approximated by (free) Fronsdal fields.1

Thus, in the broken phase, the asymptotic fall-off of the fields that have acquired mass

is enhanced, ensuring that they do not affect the leading orders of the Fefferman-Graham

expansion of an effective lower-spin theory containing gravity (even though the spectrum

1For the literature on solutions of this type in four spacetime dimensions, see [5–14]; see also [15–17] for

exact solutions in three spacetime dimensions, and [18] for solutions obtained in axial gauge in oscillator

space.
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of the broken phase is not fully gapped). By this screening mechanism, we envisage weakly

coupled asymptotic regions described by an effective gravity theory glued to strongly cou-

pled core regions described by an unbroken higher spin gravity; that is, we trust the latter

when its curvatures are large, and the former when its curvatures are small.

Moreover, drawing on recent progress in assigning entanglement entropy to topologi-

cally nontrivial spacetimes [19], our working hypothesis is that the emerging higher spin

geometries are not only smooth but also entangled in the sense that

c) the higher spin resolution of a gravitational singularity yields a set of topologies

including manifolds with numerous boundaries; and

d) manifolds with multiple boundaries are represented quantum mechanically by geo-

metrically entangled states.

Combining the dynamical higher spin symmetry breaking mechanisms (a) and (b) with the

geometric entangling mechanisms (c) and (d), we envisage asymptotic observers represented

by operators acting in the Hilbert space of the broken phase (with asymptotically enhanced

mass-gap), sandwiched between geometrically entangled states with one “external” leg in

the broken state space and multiple “internal” legs in unbroken state spaces, represented

semi-classically by ALAdS higher spin geometries with non-trivial core topology. In other

words, we propose that gravitational singularities are resolved into moduli spaces of smooth

higher spin geometries, whereby physical observables are given by sums over unbroken

core states: the latter are organized into ensembles by geometrically entangled states [19]

represented semi-classically by classical solutions to higher spin gravities.

In this paper, we shall focus on (b) by exploring classical solutions to Vasiliev’s equa-

tions in four spacetime dimensions [20]. Vasiliev’s theory has been conjectured [2–4, 21]

to undergo dynamical symmetry breaking due to mixing between (massless) one-particle

states and multi-particle Goldstone modes in the presence of special boundary conditions

in anti-de Sitter spacetime. As this mechanism does not require any coupling to additional

fields, the theory, possibly including Yang-Mills-like gauge fields and fermions [22, 23], pro-

vides a relatively minimalistic framework for studying singularity resolutions already at

the classical level in accordance with (a) and (b).2

The following classical singularities of matter-coupled gravity will be of interest for

this work:

i) Degenerate metrics;

ii) Analytic singularities3 in generalized Weyl curvatures;4

iii) Delta function sources in the equations of motion.

2Stringy extensions [2, 24–26] by extra massive fields are likely required in order to admit flat space

limits with significant mass-gaps.
3We refer to a singularity in an otherwise real-analytic function as an analytic singularity.
4In a matter-coupled gravity theory without fermions, the generalized Weyl curvatures consist of the

spin-two Weyl curvature, the spin-one Faraday tensors and the scalar fields.
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At the center of the Schwarzschild black hole, all three types of singularities arise: the

metric degenerates on trapped spheres (leading to geodesic incompleteness); the Weyl

tensor blows up; and the linearized equations of motion have a delta function source. In

order to disentangle these types singularities, it is useful to instead consider fluctuations

over constantly curved black holes, as the background only exhibits degenerate metrics

related to trapped submanifolds, while the fluctuations can be made to exhibit curvature

singularities.

Constantly curved black holes were first constructed in three dimensions by Bañados,

Teitelboim and Zanelli (BTZ) [27], and further studied by Bañados, Henneaux, Teitelboim

and Zanelli (BHTZ) [28] within the context of a more general moduli space of three-

dimensional constant curvature geometries coordinatized by conjugacy classes of so(2, 2),

including extremal black holes, conical singularities and proper three-dimensional anti-

de Sitter spacetime itself. BHTZ-like geometries in four spacetime dimensions associated

to conjugacy classes of so(2, 3), were first studied by Åminneborg, Bengtsson, Holst and

Peldan in [29, 30], who observed that the uplift of the spinless BTZ black hole only has

quasi-horizons that fail to trap any two-dimensional subspaces. The latter geometry was

later revisited by Bañados, Gomberoff and Martinez (BGM) [31], who properly interpreted

it (by representing it using a three-dimensional Penrose diagram) as a black hole that traps

(one-dimensional) circles rather than any two-manifold.

In this paper, we shall examine fluctuations around the eternal spinless BGM black hole

thought of as a classical solution of Vasiliev’s bosonic higher spin theory in four dimensions.

More precisely, we shall construct linearized massless Weyl tensors of arbitrary integer spin

obeying Bargmann-Wigner equations of motion on the aforementioned background and

subject to various boundary conditions corresponding to different representations of the

background symmetry group, including modes with momenta around the trapped sphere

and quasi-normal modes. Pending a fully non-linear construction, we shall verify our main

hypothesis, namely that the linearized Vasiliev master fields admit analytic continuations

across singularities as well as horizons, so as to create field configurations on extended

manifolds with topologies that differ from that of the original BGM geometry. We shall

focus on resolved geometries with a single asymptotic region, though the formalism readily

produces resolutions with multiple asymptotic regions as well.

We remark that Vasiliev’s four-dimensional theory contains a higher spin connection

in spacetime

1) that remains flat at the fully non-linear level;

2) the holonomies of which can be combined with open Wilson lines in twistor

space [32–35] so as to provide a set of classical observables;

3) reduces to the background connection solutions to Vasiliev’s equations in which the

Weyl zero-form vanishes.

Thus, in rather sharp contrast to the extraction of classical observables for four-dimensional

BHTZ-like geometries in gravity, which has so far turned out to be problematic [36, 37], the

(topologically extended) BHTZ-like higher spin geometries can be labelled faithfully by the

– 3 –
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aforementioned holonomies around the circle resulting from the identification. Moreover,

from the higher spin point-of-view, there is nothing preventing switching on general charges

in so(2, 3) including parameters associated to frame-fields containing rotation and various

conical singularities. In this paper, we shall focus, however, on the issue of topological

extensions of the background and higher spin fluctuation fields in the spinless case, leaving

the construction and analysis of more complicated vacuum solutions to future work.5

1.2 Resolution mechanisms

More broadly speaking, Vasiliev’s higher spin gravity tempers (i) using differential algebras

and (ii) and (iii) using non-commutative algebras. In particular,

I) Degenerate metrics are handled by abandoning the Fronsdal formulation in favour

of the unfolded formulation [39–42], in which the fundamental fields are differential

forms obeying covariant constancy conditions referring to backgrounds with differen-

tial Poisson structures rather than Lorentzian structures. As we shall see, this formal-

ism permits the construction of fluctuation fields from objects defined in coordinate-

free bases that remain well-defined as the frame field degenerates, and that hence

admit continuation across singularities of type (i). To our best understanding, this

mechanism for sending fluctuations through singularities associated to degenerate

metrics has so far not been exhibited in the higher spin literature,6 though degener-

ate background metrics have been considered within the context of “wormholes” of

three-dimensional Chern-Simons higher spin gravity [45], and the first-order formu-

lation of gravity in the context of topology change [46].

II) As for resolving analytic Weyl curvature singularities in higher spin gravity, the basic

mechanism involves assembling infinite-dimensional towers of fields into horizontal

forms on fibered spaces with non-commutative fibers, that we shall refer to as corre-

spondence spaces. Locally, the horizontal forms, that we shall often refer to as master

fields, are forms on the base manifold valued in algebras of quantum mechanical op-

erators realized as various distributions on the fiber including real-analytic functions

and non-real analytic objects such as delta functions and their derivatives. Above

generic points of the base manifold, the master fields are real-analytic with Lorentz-

covariant Taylor expansions in the fiber coordinates, the coefficients of which are

bounded component fields. Closing in on special points, however, the master fields

5It is worth mentioning that, from the point of view of the standard spin-2 geometry, there is no four-

dimensional uplift of the three-dimensional rotating BTZ black hole, since, differently from the spinless

case, the presence of an extra spatial dimension erases the horizon [38]. Since one of the issues to be studied

in this paper is the resolution of singularities of fluctuation fields at the horizon within Vasiliev’s higher spin

gravity, we shall choose to investigate the linearized dynamics around a vacuum solution corresponding to

the four-dimensional (topologically extended) non-rotating BTZ-like black hole.
6Rather, in constructing unfolded systems of equations it is usually assumed that if the frame field

is invertible then the system must admit a dual interpretation as a complex for an algebraic differential

whose cohomology in different degrees consists of the dynamical Fronsdal fields, their gauge parameters,

and equations of motion and Bianchi identities [41]; for analogous treatment of mixed symmetry fields,

see [43, 44].
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approach non-real analytic distributions in the fiber that nonetheless remain well-

defined as symbols of quantum mechanical operators belonging to a star product

algebra with a trace, though their naive interpretation in terms of Lorentz-covariant

component fields clearly breaks down. So far, this mechanism has been shown to

resolve Coulomb-like singularities (of codimension three) in the Weyl curvatures of

four-dimensional higher spin black hole-like solutions of Vasiliev’s theory [10]. In this

paper, we shall extend this result to membrane-like singularities (of codimension one)

in linearized fluctuation fields over BGM black holes as well as AdS4. More precisely,

the mechanism at work trades the analytic spacetime singularities in the Weyl cur-

vatures for delta function singularities in the fiber supported on fiber submanifolds

of codimension two, which can be shown to be well-defined operators in the above

sense upon using a certain regular presentations [8, 10] to be outlined below.

III) Delta function sources in equations of motion typically accompany the singularities in

(II), at least at the linearized level. As for the analytic curvature singularities of odd

codimension referred to above, we expect that the linearized Vasiliev system [41, 47]

provides a map that transfers corresponding delta function sources in the Fronsdal

field equations to delta function sources of codimension two for the noncommuta-

tive twistor space connection. In fact, independently of whether the spacetime fields

are singular or not, any Vasiliev higher spin geometry exhibits a twistor space delta

function source of codimensions two; for a recent treatment of these singularity struc-

tures, see also [35]. Moreover, the latter arises via a vacuum expectation value of a

dynamical two-form of an extension of Vasiliev’s theory off-shell based on an internal

3-graded Frobenius algebra [48, 49], referred to as Frobenius-Chern-Simons (FCS)

gauge theory. We expect that the FCS two-form can develop various expectation val-

ues in spacetime as well including codimension-two delta function sources, as these

can be regularized by embedding spacetime as a Lagrangian submanifold into its non-

commutative cotangent bundle (or phase-spacetime) [10]. This suggests the existence

of fully nonlinear higher spin geometries serving as resolutions of conical singularities

arising in BHTZ-like geometries interpretable as entanglement surfaces extended into

the bulk [19, 50, 51].

In this paper, mechanism (I) is ubiquitous, as the unfolded formalism serves as part of

the definition of the theory. Some of its consequences for topological black holes are spelled

out in section 3, where we contrast the metric-like and unfolded formulations. We do so by

constructing a number of gauge functions that describe various extensions of spinless BTZ

geometries in three and four dimensions that provide solutions to the unfolded equations

of motion but that do not admit an interpretation in terms of the metric-like formulation

simply due to the fact that the extended geometries contain codimension-one surfaces where

the BTZ warp factor vanishes; in particular, the extended BGM geometry, which is most

direct relevance for the rest of the paper, is described in section 3.3.

As for (II), the non-commutative geometry framework for higher spin resolution of

curvature singularities is outlined in section 2; the specific mechanism found in [10] for

resolving Coulomb-like singularities of spherically symmetric genealized Petrov Type D
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solutions found in [7, 10] is spelled out in section 2.6. We tend to the extension of this

mechanism to membrane-like singularities in section 6.1 and appendix D.

As for (III), we have less to report on in this paper. We would nonetheless like to re-

mark that the higher spin singularity resolution mechanisms introduced so far can be imple-

mented off- as well as on-shell, using an adaptation of the Alexandrov-Kontsevich-Schwarz-

Zaboronsky (AKSZ) formalism [52] to Cartan integrable systems on non-commutative man-

ifolds [53]. In fact, as far as one is concerned with resolving degenerate metrics in ordinary

gravity, the AKSZ formalism permits the inclusion of degenerate frame fields into the classi-

cal theory, though quantum corrections are more delicate as they require a balance between

even and odd forms in order for topological anomalies [54] to combine into a finite one-loop

partition function. On the other hand, the FCS model is manifestly topologically super-

symmetric in the sense that its spectrum of even and odd forms is identical thus ensuring

a finite one-loop normalization of the partition function on a given manifold [48, 49, 55].

As for resolving curvature singularities, the attendant non-commutative geometries are not

visible in ordinary gravity nor in the perturbatively defined Fronsdal formulation of higher

spin gravity.

In summary, to our best understanding, the higher spin resolution of classical singu-

larities in gravity relies crucially not only on the higher spin extension as such, but also on

its implementation using Vasiliev’s unfolded formulation in terms of master fields. Thus,

before going further into the details of higher spin singularity resolutions, we would like

to briefly point to a few key geometric features of Vasiliev’s higher spin gravity that dis-

tinguishes it from the perturbative metric-like Fronsdal formulation, and how to think of

these two different frameworks as being dual to each other in asymptotically anti-de Sitter

geometries.

1.3 Vasiliev versus Fronsdal formulations

While the deformed Fronsdal formulation of higher spin gravity refers to a Lorentzian

spacetime background, Vasiliev’s formalism [41, 42, 47] introduces a non-commutative

background for a differential graded (homotopy) associative algebra (DGA) of differen-

tial forms. This algebra is a deformation of the classical algebra of differential forms (with

its compatible wedge product and de Rham differential) along a differential Poisson struc-

ture so as to produce a space of symbols equipped with an associative star product and a

mutually compatible differential.

The DGA operations can be realized together with compatible trace and hermitian

conjugation operations by attaching differential forms as boundary vertex operators to an

induced first-quantized differential Poisson sigma model [56], which is a two-dimensional

topological field theory with an N = 1 supersymmetry (of degree one) generated by the de

Rham differential.7 The fibration of the correspondence space (giving rise to the horizontal

forms) arises from additional supersymmetries (of degree minus one) generated by inner

derivatives along vector fields that preserve the differential Poisson structure, which are

hence special fundamental vector fields [55].

7Within the context of higher spin gravity, one may think of the differential Poisson sigma model as

describing first-quantized conformal particles making up the partons of a tensionless string [24].
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The DGA operations induce a class of star product local functionals given by traces of

star products of horizontal forms and their exterior derivatives. This class remains closed

under the Batalin-Vilkovisky (BV) bracket modulo a set of boundary conditions (usually

solved by choosing a polarization and setting all momenta to zero at the boundary). Thus,

the BV master equation poses a well-defined deformation problem for a gauge invariant

BV path integral measure based on a star product local master action, leading to a notion

of star product local (quasi-)topological non-commutative field theories of AKSZ-type [53].

Assuming the existence of a topological open string on T ∗Sp(4)×C2 (with holomorphic

symplectic structure on C2) obtained from deformation quantization of a single conformal

particle [24], we think of the FCS theory as a truncation that retains the zero- and wind-

ing modes, which thus coordinatize the correspondence space with non-commutative fibers

arising from fermionic zero-modes on C2 induced via the aforementioned special fundamen-

tal vector fields [55]. We then embed Vasiliev’s theory into the FCS theory as an on-shell

branch with “order parameter” given by the aforementioned two-forn vacuum expecta-

tion value.8

The Vasiliev branch contains ALAdS solutions, which are master field configurations

(on the total non-commutative fibered space) subject to boundary conditions giving rise to

asymptotically free Fronsdal fields [8, 9, 35].9 Our basic hypothesis is that the free energy,

i.e. the on-shell action, of the FCS model is finite on these ALAdS configurations. The FCS

free energy given by the on-shell value of a topological vertex operator (TVO) [32, 48, 49],

i.e. a higher spin invariant star product local boundary functional whose total variation

vanish on-shell (such that it can be added to the AKSZ bulk action without affecting the

smoothness and nilpotency of the BRST operator). The FCS theory only admits a finite

number of TVO’s, given by Chern classes and Chern-Simons forms, that is, the FCS free

energy functional contains only a finite number of free parameters. In a stark contrast,

Vasiliev’s theory admits an infinite number of TVO’s, suggesting that these can be used

as building blocks for the FCS free energy functional.

As for classical observables in the Vasiliev branch of the FCS theory, the simplest ones

are zero-form charges [5, 10, 32, 33, 59], which are integrals over the non-commutative

twistor space of constructs formed out of spacetime curvatures and their derivatives evalu-

ated at a single point in spacetime. These observables have cluster decomposition properties

characteristic of extensive variables [10, 59], and hence serve as natural building blocks for

higher spin amplitudes, referred to in [59] as quasi-amplitudes. Indeed, their classical per-

turbative expansion around AdS4 backgrounds reveal a direct correspondence between the

first-quantized topological open string amplitudes and the correlation functions of holo-

graphically dual conformal field theories [33, 34, 60–62].

We expect the deformed Fronsdal theory to be perturbatively equivalent to the Vasiliev

branch of FCS model at the level of amplitudes rather than at the level of spacetime

8We expect that reductions of the FCS model in the presence of various vacuum expectation values

create a moduli space of unfolded systems on the reduced correspondence spaces (with four-dimensional

commuting base manifold and non-commutative C2 fiber), containing the plethora of “formal” higher spin

gravities [57] obtained by deformations of the fiber star product.
9The ALAdS boundary conditions add non-trivial perturbative corrections to the gauge function already

at the linearized level which steer the perturbative expansion away from the singular gauge found in [58].

– 7 –
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vertices [58, 63–65] (or microscopic field configurations). In other words, we propose that

the Fronsdal program set up on a Lorentzian spacetime manifold and the Vasiliev program

set up on a non-commutative manifold are dual (at the level of free energy functionals)

provided the two sides are supplemented with corresponding ALAdS boundary conditions.

The Fronsdal and Vasiliev formulations exhibit an important conceptual difference.

The simplest TVO of the FCS model does not receive any quantum corrections, as it

is built from forms in degree one; for details, see [48, 66]. This simple result is quali-

tatively in agreement with the holographically dual conformal field theory.10 As for the

perturbatively defined Fronsdal action, on the other hand, its natural interpretation is as

a quantum effective action fixed essentially by uplifting the conformal bootstrap approach

into the bulk [67, 68]. Moreover, from its 1/N -expansion it follows that it has no (non-

trivial) classical limit. In other words, it appears that the deformed Fronsdal theory does

not provide any path integral measure based on a classical (possibly quasi-local) action

formulated directly on spacetime.11

In summary, in order to embed the results of this paper (which hold on their own) into

the above broader physical context, we will assume that

– Vasiliev’s equations describe a quantum effective field theory including quantum ef-

fects from second as well as first quantization analogously to string field theory [70];

– there exists a free energy functional that makes Vasiliev’s equations dual to pertur-

batively defined Fronsdal formulation on ALAdS backgrounds.

Thus, to the extent that one expects that quantum corrections are important in order to

smoothen out classical spacetime singularities, Vasiliev’s equations provide a background-

independent formulation for studying such effects within the context of higher spin gravity.

1.4 Outline of the paper

The scope of the paper is to show that probing the spinless BGM black hole in four

dimensions using linearized higher spin master fields leads to smooth linearized higher spin

geometries.

In section 2, we first recall the key geometric structures arising in Vasiliev’s formalism

of relevance for resolving curvature singularities. We then demonstrate the resolution of

the analytic part of the Coulomb-like singularity (in the Weyl curvature) at the level of

linearized master fields; the generalization of this mechanism to membrane-like singularities

is analyzed in section 6 and appendix D.

In section 3, we first recall the basics of the spinless BTZ black hole in three dimensions

and its uplift to the spinless BGM black hole in four dimensions. We then show how the

base manifolds of these black holes can be extended using the gauge function approach so

10Non-trivial quantum corrections to the FCS free energy can be generated by adding TVO’s that depend

on forms in higher form degrees [66].
11Nonetheless, it has been demonstrated [69] that perturbative “re-quantization” of the deformed Fronsdal

theory dual to the free theory can be interpreted sensibly at least at one-loop, suggesting that its realm of

validity can be extended so as to include boundary conditions corresponding to non-trivial conformal field

theories.
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as to cross over singularities as well as include additional boundaries; as we shall see, the

extended topologies are simpler than those in gravity in the sense that there is no longer

any need to attach boundaries to the future and past singularities.

In section 4, we discuss some generalities of switching on higher spin fluctuations

around the topologically extended spinless BGM black hole as a vacuum solution to

Vasiliev’s four-dimensional higher spin gravity; as for the details of the Vasiliev system, we

refer to the literature [20, 47, 71].

In section 5, we construct a space of building blocks for the integration constant of

the Weyl zero-form that gives rise to fluctuation modes on the spinless BGM black hole

background. These building blocks are stargenfunctions of two number operators with

complex eigenvalues that obey kinematical conditions as well as the quantization condition

induced by the BHTZ-like identification on the BGM background. In particular, we find

that quantizing the identification Killing vector implies that the spectrum of the dual

Killing vector has imaginary parts, which we interpret as quasi-normal modes.

In section 6, we unfold the initial datum and extract fluctuation fields in a simple

case (when there are no quasi-normal modes) which allows us to examine the fiber real-

analyticity properties of the Weyl zero-form in detail and exhibit the resolution of its

membrane-like singularity.

In section 7, we conclude, stressing the limitations in our approach visavi non-linear

perturbative corrections, that we hope to present elsewhere.

In the appendices, we spell out our conventions; collect various formulae that are

used in the body of the paper; and analyze in detail the fiber distribution arising at the

membrane-like singularity; and discard an apparent singularity of no physical importance.

2 Resolving of curvature singularities in ALAdS backgrounds

In this section, we outline key features of the unfolded formulation of higher spin gravity

of relevance for resolving singularities and generating vacua with nontrivial topology asso-

ciated to geometrically entangled vacuum states. We exemplify the resolution of analytic

Weyl curvature singularities in the context of codimension-three Coulomb-like singularities

using an extension of the Weyl algebra by delta function distributions, referred to as the

extended Weyl algebra [8, 10, 48].

2.1 Horizontal forms and quasi-topological noncommutative field theories

The fundamental field of the FCS model is a flat horizontal odd multi-form, or Quillen

superconnection, on a fibered non-commutative manifold, or correspondence space, valued

in an internal 3-graded Frobenius algebra. This master field decomposes under the internal

algebra into a set of differential forms of different degrees, including zero, on the total

space, all of which are horizontal, that is, given locally by differential forms on the base

space valued in a space of zero-forms on the fiber space forming an associative operator

algebra. Finally, the flatness condition on the Quillen superconnection implies that all

its horizontal components obey Cartan integrable covariant constancy conditions on the

correspondence space.
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The appearance of horizontal forms has two immediate consequences for resolving

singularities:

a) A finite set of covariantly constant master fields contains an infinite set of covariantly

constant differential forms on the base manifold, capable of capturing ordinary local

degrees of freedom propagating on commutative spacetime leafs of the base manifold;

b) The associative fiber algebra contains various higher spin representations including

delta functions as well as real analytic functions, capable of capturing spacetime

singularities as well as regular, possibly ALAdS, configurations.

Further below, we shall exemplify how (a) and (b) play a crucial role in resolving classical

singularities associated with degenerate frame fields and analytic Weyl curvature singular-

ities, respectively.

The FCS model provides an example of a quasi-topological field theory, i.e. a functo-

rial map [72, 73] into a category of infinite-dimensional tensors, which one may think of as

a set of generalized representation spaces, from a category of topological manifolds with

geometrical decorations, which one may think of as a generalized group; in the case of the

FCS model, differential Poisson manifolds (with conformal infinities and other defects) are

encoded into differential graded star product algebras (with vacuum gauge functions and

other cohomologically nontrivial elements). These maps provide a natural generalization of

the representations used in ordinary quantum mechanics, whereby manifolds with bound-

aries and other defects are mapped to geometrically entangled “vacuum” states on which

locally defined quantum fields act modulo overlap conditions encoding transition functions

and other boundary conditions.

A natural quasi-topological field theory is the two-dimensional gauged Poisson sigma

model of a quantum mechanical system with symplectic manifold S on which acts a group

G. Putting this AKSZ model on a disc with boundaries with marked points for insertions

of boundary vertex operators gives rise to a boundary functor that maps a boundary

point to a space of functions on S realized as operators in a Hilbert space H, and an

oriented open boundary interval to a representation of G in terms of quantum mechanical

evolution operators in H⊗H∗ with group parameters given by vacuum expectation values

for the embedding of the interval into G. Thus, the quasi-topological treatment of ordinary

quantum mechanics gives rise to an interplay between layers of functors acting on points,

intervals and discs, providing an example of a two-category topological field theory [74].

To reach a quasi-topological re-formulation of an ordinary quantum field theory (on a

Lorentzian manifold), one first switches to its unfolded formulation on-shell as a Cartan

integrable system which can be taken off-shell as an two-category AKSZ model in one

higher dimension. One may then ask whether the original S-matrix (or holographic corre-

lation functions) admits a dual realization as a TVO activated on-shell by combinations of

gauge functions for the frame field and Weyl zero-form integration constants [44, 53]. A

closely related topic is the re-formulation of two-dimensional (matter-coupled) gravities in

terms of topological open membranes of AKSZ type [75] as part of a background indepen-

dent formulation of string field theory. In this context, the boundaries of the topological
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bulk theory are two-dimensional surfaces with multiple defects mapped functorially to ge-

ometrically entangled multi-string states obeying overlap conditions induced by transition

functions as synthesized within the group theoretic operator formalism for string scattering

amplitudes [76–78].

As for the quasi-topological re-formulation of quantum field theories containing gravity

in higher dimensions, higher spin gravity provides an interesting testing ground.12 To this

end, we treat AdS spacetime as a manifold with the topology of a circle and a sphere,

and with a circle defect representing the conformal infinity where the frame fields blow

up [48]. This closed manifold can be taken to be the boundary of an AKSZ bulk manifold

in one higher dimension, to which suitable TVO’s can be attached. The resulting quan-

tum field theory provides a functorial map from the topological bulk manifold, viewed as

a morphisms of boundary manifolds with defects to, to a space of geometrically entan-

gled states built from boundary states that in their turn have substructures representing

spacetimes with conformal infinities and other defects inducing local degrees of freedom in

infinite-dimensional representations of higher spin algebras (or other non-compact gauge

algebras). Thus, in the above sense, the quasi-topological formulation of higher spin gravity

(as well as ordinary gravity) is not much different from that if ordinary quantum mechanics

in that both are multi-category gauge theories of AKSZ type.

The resulting partition functions are thus given in the semi-classical approximation by

sums over on-shell boundary states weighted by TVO’s. The latter thus play a role that is

analogous to that of Boltzmann factors in the standard approach to quantum mechanics and

field theory, in that they act as convergence factors in sums over infinite-dimensional spaces

of boundary states, though they arise in quite a different fashion essentially as homogeneous

solutions to the BV master equation triggered by the AKSZ boundary condition.

In what follows, we shall detach ourselves from the above larger picture and limit

ourselves to the construction of semi-classical boundary states, that is, classical solutions

to higher spin gravity with multiple conformal infinities and curvature singularities giving

rise to finite free energies.

2.2 Extended Weyl algebra

To exhibit this resolution mechanism, we take the fiber to be the non-commutative holo-

morphic symplectic C2 with canonical coordinates Yα = (yα, ȳα̇) subject to the canonical

star product commutation rules

[yα, yβ ]? = 2iεαβ , [yα, ȳβ̇ ]? = 0 , [ȳα̇, ȳβ̇ ]? = 2iεα̇β̇ . (2.1)

The chiral star product

f(y, ȳ) ? g(y, ȳ) =

∫
d2ξd2ξ̄d2ηd2η̄

(2π)4
ei(η

αξα+η̄α̇ξ̄α̇)f1

(
y + ξ, ȳ + ξ̄

)
f2 (y + η, ȳ + η̄) , (2.2)

12Several interesting questions can be addressed directly within an AKSZ-inspired semi-classical treatment

of pure gravity; for example, the Gibbons-Hawking entropy can be interpreted as being due to geometrical

entanglement involving de Sitter vacua with boundaries and defects representing static observers [19].
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where each auxiliary doublet is integrated over R2, is equivalent to the Moyal product for

the space P of Weyl ordered polynomials. It admits the following compatible hermitian

conjugation operation:

(yα)† = ȳα̇ , † ◦ † = Id . (2.3)

Realizing the Lie algebras sp(4) and sl(2;C) as Weyl-ordered bilinears, Yα form a real

sp(4)-quartet, and yα a complex sl(2;C)-doublet.

The extended Weyl algebra is defined by

W = P ⊕ (P ? κy)⊕ (P ? κ̄ȳ)⊕ (P ? κy ? κ̄ȳ) , (2.4)

where

κy = 2πδ2(y) , κ̄ȳ = 2πδ2(ȳ) , (2.5)

are Klein operators obeying

κy ? κy = 1 , π(f) = κy ? f ? κy , (2.6)

κ̄ȳ ? κ̄ȳ = 1 , π̄(f) = κ̄ȳ ? f ? κ̄ȳ , (2.7)

where the inner automorphisms

π(yα, ȳα̇) = (−yα, ȳα̇) , π̄(yα, ȳα̇) = (yα,−ȳα̇) . (2.8)

In other words, W is spanned by polynomials and derivatives of holomorphic, anti-

holomorphic and full fiber delta functions. It follows that W is an associative algebra that

is left invariant under chiral Fourier transformation [7] of the Weyl ordered symbols, viz.

W ∼=W ? κy . (2.9)

2.3 Vacuum gauge functions and topology change via degenerate metrics

Vasiliev’s four-dimensional higher spin gravity contains ALAdS vacuum solutions (M(n)
4 ,Ω),

where Ω is an sp(4)-valued connection obeying

i) the flatness condition

dΩ + Ω ? Ω = 0 , (2.10)

on

M(n)
4

top∼= S1 × (S3 \ {P1, . . . , Pn}) , (2.11)

where Pξ, ξ = 1, . . . , n, are points in S3;

ii) ALAdS boundary conditions at S1 × {Pξ}, that is, the π-odd component of Ω is an

invertible frame field in a tubular neighbourhood of S1 × {Pξ}, for ξ = 1, . . . , n.

Thus, we may view the theory as a field theory on

M4

top∼= S1 × S3 , (2.12)
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with a set of marked submanifolds where the π-odd projection of Ω is allowed to blow

up. This boundary value formulation provides an alternative to the standard conformal

compactification of anti-de Sitter spacetime that is convenient in order to describe vacua of

higher spin gravity with multiple boundaries, but that becomes crucial, however, in order

to re-formulate higher spin gravity (or unfolded gravity for that matter) as a quasi-topoligal

AKSZ quantum field theory in one higher dimension [48] (for which D2×S3 appears to be

the most natural choice).

Thus, in any simple region U4 ⊂M(n)
4 we have

Ω = L−1 ? dL , (2.13)

where L : U4 → Sp(4) is a gauge function. Two gauge functions are considered equivalent

as long as they are homotopic in the interior of M(n)
4 and obey the boundary conditions;

keeping the boundary conditions at S1 × {Pξ} fixed there is nothing preventing the gauge

functions from collapsing in the interior of M(n)
4 so as to create a degenerate frame field

as long as no new singularities arise in Ω.

A one-parameter family of AdS vacua with one boundary arises on

M(1)
4 :=M4 \ (S1 × {N})

top∼= S1 × R3 , (2.14)

where N ∈ S3, by coordinatizing the S1 using

T ∈ [0, 2πβ) , β > 0 , (2.15)

and R3 using (ρ, nr), r = 1, 2, 3, obeying

ρ > 0 , nrnr = 1 , (2.16)

and taking

L = exp?(iET ) ? exp?(iPrn
rarcsinhf (1)(ρ)) , (2.17)

where E is the energy operator; Pr are the spatial transvections in so(2, 3) (for conventions,

see appendix A; and the radial function

f (1)(ρ) = ρ , (2.18)

up to homotopic deformations (as these do not affect any physical observables). For any

value of β, the vacuum connection Ω is periodic on S1 with holonomy

HS1(Ω) = exp?(2πiβE) = (κy ? κ̄ȳ)
?[β] ? exp?(2πi(β − [β])E) , (2.19)

where [β] denotes the integer part of β, as can be seen using

exp?(2πiE) = κy ? κ̄ȳ . (2.20)

Thus, standard global AdS4, given by the hyperbola in embedding space covered once,

corresponds to

Global AdS4: β = 1 , HS1(Ω) = κy ? κ̄ȳ , (2.21)
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which thus has a non-trivial holonomy.13

For n = 2, one has

M(2)
4 :=M4 \ S1 × {N,S}

top∼= S1 × S2 × R , (2.22)

where N,S ∈ S3. One may now take

L = exp?(iET ) ? exp?(iPrn
rarcsinhf (2)(ρ)) , (2.23)

with radial function f (2)(ρ) homotopic in the bulk to

f (2)(ρ) =
√
a2 + ρ2 , ρ ∈ R , a > 0 , (2.24)

where a is a constant. The resulting constantly curved manifold has two ALAdS regions in

the tubular neighbourhoods of S1 × {N,S} with conformal infinities given by Lorentzian

S1 × S2. These asymptotic regions are connected by a cylinder with a degenerate metric

ds2 = −(1 + a2 + ρ2)dT 2 +
ρ2dρ2

(a2 + ρ2)(1 + a2 + ρ2)
+ (a2 + ρ2)dΩ2

2 , (2.25)

which is Lorentzian except at ρ = 0; if a > 0, then the non-metricity is due to the

degeneration of ~∂ρ, and if a = 0 then the non-metricity us due to the degeneration of the

metric on the S2 at ρ = 0. One may view the above quasi-Lorentzian geometry as a semi-

classical description of an entangled vacuum state [19] arising upon taking the massless

limit of the eternal Kruskal-Szekeres black hole in AdS4.

The above construction can be generalized so as to introduce further asymptotic re-

gions; we leave the study of the resulting moduli spaces for future work.

2.4 Linearized Weyl zero-form

The higher spin fluctuations around (M(n)
4 ,Ω) are contained in a zero-form Φ, referred to

as the Weyl zero-form, valued in the extended twisted-adjoint representation

T :=
{
T ∈ W : T † = π(T ) , ππ̄(T ) = T

}
, (2.26)

of the extended higher spin Lie algebra

hs(4) :=
{
X ∈ W : X† = −X , ππ̄(X) = X

}
; (2.27)

the twisted adjoint representation map ρ : hs(4)→ End(T) is defined by

ρ(X)T := X ? T − T ? π(X) . (2.28)

The corresponding unextended representations are given by

ȟs(4) := hs(4)|P , Ť := T|P . (2.29)

13In constructing higher spin fluctuation fields in section 6, we shall use the stereographic gauge function,

which is not globally defined but makes explicit an so(1, 3) subalgebra of the isometry sp(4).
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The linearized Weyl zero-form obeys

D(0)Φ := dΦ + Ω ? Φ− Φ ? π(Ω) = 0 , (2.30)

whose general solution is given by

Φ
(L)
Ψ := L−1 ? Φ′ ? π(L) , Φ′ := Ψ ? κy , (2.31)

where Ψ is a constant in W and L is a gauge function. The constant Φ′ contains all space-

time derivatives of the physical fields evaluated at a spacetime point, which we shall refer

to as the unfolding point, that are invariant under linearized (or abelian) higher spin gauge

transformations. The gauge function L “spreads”, or “unfolds” this local datum, which we

shall also refer to as initial datum, on the spacetime chart U4 where L is defined [41, 42].

To construct globally defined configurations for n = 1, 2, we may use the gauge func-

tions in (2.17) and (2.23), respectively, with β ∈ N; in particular, for β = 1, the periodicity

of the linearized Weyl zero-form under T → T + 2π follows from (2.20) and the fact that

ππ̄(Φ′) = Φ′.

2.5 Particle and black hole states in AdS4

Families of (exact) biaxially symmetric, generalized Petrov-type D solutions to Vasiliev’s

equations have been constructed in [10, 11, 13] using gauge functions and Weyl zero-form

integration constants. These integration constants are expanded in special bases such that

each distinct (micro)state consists of an infinite tower of Fronsdal fields. The corresponding

master fields are valued in a fiber algebras spanned by delta functions as well as real-analytic

functions [8–10, 13, 14].

In particular, there are two branches with two compact Killing symmetries, of which

one consists of black-hole states with ALAdS regions, including the linearized fields of the

charged Kerr-AdS black hole of the Einstein-Maxwell theory (which we think of as a broken

phase of the higher spin gravity theory).

At the linearized level, the black hole states arise naturally together with particles

states by taking

Ψ ∈ End(F) , F = F+ ⊕F− , (2.32)

where F+ and F− consist of the direct product of two Fock and anti-Fock spaces, respec-

tively, as E is the Hamiltonian of the two-dimensional harmonic oscillator. The resulting

linearized solution spaces consist of superpositions of generalized Type-D modes Φ
(L)
ΨD

with

initial data

ΨD ∈ AD := Hom(F+,F+)⊕Hom(F−,F−) , (2.33)

and particle modes Φ
(L)
ΨP

with initial data

ΨP ∈ AP := Hom(F+,F−)⊕Hom(F−,F+) . (2.34)

From κy ?F± = F±, it follows that these two types of modes are exchanged by the duality

transformation

AD = κy ?AP . (2.35)
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Presenting the initial data using regular presentations [8, 10, 14], yields the orthogonality

relations

Hom(Fσ,F ′σ) ?Hom(Fσ′′ ,Fσ′′′) = δσ′,σ′′Hom(Fσ,F ′σ) ?Hom(Fσ′ ,Fσ′′′) , (2.36)

where σ, σ′, σ′′, σ′′′ = ±, that is

AD ?AD = AD , AD ?AP = AP , (2.37)

AP ?AD = AP , AP ?AP = AD , (2.38)

which turn out to dictate the self-interactions among particle and black hole states governed

by the quadratic terms in Vasiliev’s equations [10].

2.6 Resolving Coulomb-like singularities

The linearized black hole geometries contain Coulomb-like singularities, which consist of

analytic singularities in the Weyl curvatures and delta function sources for the Fronsdal

curvatures. They arise by first expanding the horizontal forms into Lorentz tensors in the

ALAdS region, and then following these fields towards the origin. On the other hand, the

horizontal forms remain well-defined as symbols of operator algebra elements defined on

the entire correspondence space.

To exhibit this resolution mechanism, we start by observing that if Φ is real-analytic

on all fibers above a region U4 ⊂ M4, then it follows from the master field equations of

motion that

Φ̌α(m),α̇(n) :=
∂m

∂yα(m)

∂n

∂ȳα̇(n)
Φ

∣∣∣∣
(yα,ȳα̇)=(0,0)

∣∣∣∣∣
U4

, (2.39)

are higher spin generalized Weyl tensors and background covariant derivatives thereof obey-

ing source-free Bargmann-Wigner equations in U4. Assembling Φ̌α(m),α̇(n) into an unex-

tended twisted adjoint master field

Φ̌ :=
∑
m,n

1

m!n!
yα(m)ȳα̇(n)Φ̌α(m),α̇(n)

∣∣∣∣
U4

∈ Ť , (2.40)

it follows that (Φ̌−Φ)|U4 = 0. The extension of Φ̌ to all of M4 is a (singular) distribution

on spacetime valued in Ť obeying

D(0)Φ̌ = ŤΦ , D(0)ŤΦ = 0 , on M4 , (2.41)

where the spacetime one-form ŤΦ ∈ Ť is given by a distribution on M4 with support on

M4 \ U4, which we refer to as the Bargmann-Wigner source of Φ̌.

Taking L to be the global gauge function onM(1)
4 (with a single conformal boundary),

the particle modes Φ
(L)
P ≡ Φ

(L)
ΨP

consists of real-analytic Gaussian functions on the fiber for

all points on M(1)
4 . Thus, the corresponding Bargmann-Wigner source on M4 vanishes,

viz. Ť
Φ

(L)
P

= 0.

On the other hand, the black hole modes Φ
(L)
D ≡ Φ

(L)
ΨD

are real-analytic on the fiber in

the asymptotic regions, while they become fiber delta functions over the codimension-three
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submanifold of M4 where ρ = 0. The corresponding Bargmann-Wigner sources Ť
Φ

(L)
D

are

given by Hodge duals of codimension-three delta functions on M4 with support at ρ = 0.

This source is singular in the sense that Ť
Φ

(L)
D

? π(Ť
Φ

(L)
D

) is ill-defined.

The higher spin resolution of these Coulomb-like singularities amounts to the fact that

from the integrability condition it follows that Ť = D(0)χ locally, such that the extended

Weyl zero-form

Φ = Φ̌− χ , (2.42)

obeys a source free equation with initial data Ψ ∈ W that is regular in the sense that Ψ ∈ A
and hence Ψ?Ψ is well-defined (by the assumption that A has a well-defined star product).

We expect that the Fronsdal fields carrying the black hole modes have delta func-

tion sources on M4 [79]. The Fronsdal fields are assembled together with distributions

in Y -space into a spacetime one-form master field valued in the extended higher spin al-

gebra hs(4). Vasiliev’s equations maps this spacetime one-form to a horizontal twistor

space one-form field with a source in non-commutative twistor space of codimension two.

Remarkably, in the FCS model, the latter source has a finite free energy, given by the

on-shell value of a TVO given by the second Chern class on twistor space. Thus, Vasiliev’s

formalism replaces the ill-defined free energy for a Coulomb-like configurations, computed

from singular sources in spacetime using the Fronsdal on-shell action, by a well-defined

finite free energy, computed from the regular source in non-commutative twistor space.

An interesting problem is to extend the black hole solutions of [10], which were con-

structed in trivial topology, to higher spin eternal black holes (with topology R×S2×S1)

by using gauge functions of the form (2.17) with f(ρ) given by (2.24). As f(ρ) is bounded

from below, it follows that the resulting solutions will consist of infinite towers of Lorentz

tensors that are bounded. We leave this for future work.

3 Topologically extended BTZ-like geometries

The BTZ black hole [28] has contributed in many respects to our understanding of gravity.

It provides a remarkable toy model comprehending many crucial aspects of black holes

in higher dimensions: mass and angular momentum; area law for entropy; and a causal

structure making it a proper background geometry for the study of properties of quantum

fields in curved spacetime.

In this section, we outline the following two dual descriptions of the spinless BTZ black

hole in three dimensions and its direct BGM uplift to four dimensions:

– Metric-like formulation : viewing the black hole geometry as a non-compact Lorentzian

generalization [28] of a compact Riemannian Clifford-Klein form Γ\G/H where G/H

is a maximally symmetric space and Γ ⊂ G is a discrete subgroup acting without

fixed points [80, 81], leads to Lorentzian coset spacetimes with geometry as well as

topology induced from extrinsic covering spaces.

– Unfolded formulation : viewing black hole geometry as a flat one-form section of an

H-bundle with fiber given by the Lie algebra of G, leads to locally defined G-valued

functions glued together with transition functions from H into global configurations

subject to (asymptotic) boundary conditions.
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The switch from the metric to the unfolded formulation replaces the metricity condition

inside the bulk with the requirement of well-defined holonomies in G, which leads to topo-

logical extensions of the base manifolds, as will be analysed in three and four dimensions,

respectively, in sections 3.2 and 3.3. We would like to stress that the extended geometries

are vacua of Vasiliev’s higher spin gravity in four as well as three dimensions. Indeed,

holonomies, which are classical observables in three-dimensional gravity as well as higher

spin gravity, remain classical observables in four-dimensional higher spin gravity. Moreover,

the higher spin fluctuations around the four-dimensional topologically extended BTZ-like

geometries, which an be constructed using group algebra methods as we shall spell out in

section 4, give rise to master fields that are bounded on the entire topologically extended

base manifold thought of as horizontal forms, which is the topic of sections 5 and 6.

3.1 Generalities

Three-dimensional gravity. Einstein gravity in three dimensions can be thought of as

a topological theory with structure group SO(1, 2) and dynamical field given by a one-form

Ω valued in the Lie algebra g of G = SO(3, 1), SO(2, 2) or ISO(2, 1) depending on whether

the cosmological constant is positive, negative or null. On-shell, the connection obeys

dΩ + Ω ? Ω = 0 , (3.1)

in charts U3 ⊆M′3, a non-compact manifold obtained from a closed three-manifoldM3 by

removing conformal infinities and other defects (such as conical singularities). Locally, the

flat one-form is given by

Ω = L−1 ? dL , L : U3 → G , (3.2)

where the gauge function L is defined modulo

L ∼ g0 ? L ? H , H : U3 → SO(1, 2) , g0 ∈ G , (3.3)

with chartwise defined constants g0. The gauge functions obey overlap conditions with

transition functions from SO(1, 2) and boundary conditions at conformal boundaries. The

resulting classical moduli spaces consist of boundary states [82–85], holonomies, and de-

fects [51, 86], coordinatized by

i) Asymptotic charges given by generators of large gauge transformations evaluated at

conformal infinites; and

ii) Holonomies HC(Ω) attached to closed curves C ∈M′3.

These quantities serve as classical observables in terms of which one may express the free

energy given by the on-shell Chern-Simons action.

Metric-like approach. Three-dimensional Einstein manifolds with non-trivial topology

can be obtained as quotients

Γ\(M(K)
3 , ds2) , Γ ∼= {γn}n∈Z , γ ∼= e2π

−→
K (3.4)
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of Lorentzian covering spaces (M(K)
3 , ds2) given by restrictions of G/SO(1, 2) adapted

to identification Killing vector fields
−→
K in conjugacy classed of g/G. The identification

procedure presents three problems:

a) Closed time-like curves arise upon identifying points in G/SO(1, 2) connected by

time-like curves;

b) Conical singularities in the Riemann curvature arise at fixed surfaces of Γ of co-

dimension two;

c) Causal singularities may arise at fixed surfaces of Γ of co-dimension one and two;

d) The induced topology of M′3 may turn out to be non-Hausdorff at fixed points of Γ.

The closed time-like curves in (a) can be excised by taking

M(K)
3 = {p ∈ G/SO(1, 2)|ξ(p) > 0} , ξ2 :=

−→
K2 , (3.5)

where thus M(K)
3 is obtained by first restricting G/SO(1, 2) to the submanifold where

−→
K2

is space-like, that is, ξ is real, and then restricting further to the subspace where ξ is in

addition positive. As a result, singularities of type (b)–(c) may arise at ξ = 0, depending

on the nature of
−→
K .

In the case of the spinless BTZ black hole, its Riemann tensor is bounded while it

exhibits singularities of type (c) and (d) at ξ = 0. However, as we shall see below, the latter

are artifacts of the metric-like formulation that are absent in the unfolded formulation.

Gauge function approach. The unfolded description of BHTZ-like geometries associ-

ated to the identification Killing vector
−→
K is obtained by taking

M′3 = S1
K ×M′2 , (3.6)

and consider a classical moduli space of gauge functions

L = exp?(iKφ) ? Ľ , Ľ :M′3 → G/SO(1, 3) , (3.7)

where K ∈ g/G corresponds to
−→
K ;

φ ∈ [0, 2π) , (3.8)

coordinatize S1
K ; and Ľ is strictly periodic on S1

K and subject to conditions at boundaries

or other defects of M′3. The resulting holonomy

HS1
K

(Ω) = exp?(2πiK) , (3.9)

is thus given by γ, the generator of Γ.

Whether the gauge function contains a conical singularity or a BTZ-like black hole

depends on the topology of M′3. The conical singularity arises on M′3
top∼= R3 \ C

top∼=
R× (R2 \ (0, 0)), where C ∼= R, which yields ddφ = δ[2](C) hence dΩ + Ω ? Ω = iKδ[2](C)

on R3, that is, Ω is source free on M′3. The BTZ-like black hole instead arises by taking

M′2
top∼= R2 , (3.10)

which yields ddφ ≡ 0 hence dΩ + Ω ? Ω = 0 on M′3 as well.
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Four-dimensional uplift. The classical moduli spaces of unfolded BHTZ-like geome-

tries can be lifted relatively uneventfully from three to four dimensions, that is, to locally

flat one-forms valued in the Lie algebra of the isometry group G of four-dimensional space-

time with a non-trivial cosmological constant and structure group SO(1, 3). The lifting of

the corresponding classical observables is problematic, however, as four-dimensional grav-

itational gauge fields are deformed on-shell by Weyl tensors which appear to obstruct any

intrinsically defined functional that reduces on-shell to a holonomy.

Vasiliev’s higher spin gravity, on the other hand, contains a flat one-form valued in

a higher spin algebra (even in the presence of a non-trivial Weyl zero-form). Thus, the

theory maps closed curves in spacetime to holonomies valued in the higher spin group; for a

recent review, see section 6 of [35]. Indeed, these holonomies reduce to those of the unfolded

BHTZ-like geometries upon embedding the latter into higher spin gravity as vacua.

3.2 3D spinless BTZ black hole

In what follows, we embed the Lorentzian eternal spinless BTZ black hole, obtained by

means of identifications, into a topologically extended unfolded geometry, described by a

gauge function.

Ambient metric-like approach. The eternal BTZ black hole geometry with negative

cosmological constant arises as Γ\AdS
(K)
3 , where

– Γ is the discrete subgroup of SO(2, 2) generated by γ = exp 2π
−→
K ;

– the identification Killing vector
−→
K is a boost in so(2, 2); and

– AdS
(K)
3 ⊂ AdS3 consists of all the points in AdS3 with ξ > 0 where ξ2 :=

−→
K2.

The identification Killing vector belongs to a specific conjugacy class of so(2, 2), referred

to in the literature [28] as Ib, spanned by
−→
P :=

−→
P 1 =

−→
M0′1 and

−→
B :=

−→
B 2 =

−→
M02 modulo

the large SO(2, 2) transformation that exchanges
−→
P and

−→
B . Thus,

−→
K = α1

−→
P + α2

−→
B , (3.11)

where αi ∈ R are defined modulo α1 ↔ α2. The group of Killing symmetries of the black

hole is given by StabG(
−→
K), that is, U(1)−→

P
×U(1)−→

B
. The parameters αi are related to the

mass M and spin J of the black hole. Taking α2 = 0 yields a non-rotating BTZ black hole

with mass M = (α1)2 and identification Killing vector

−→
K =

√
M
−→
P . (3.12)

To exhibit the orbispacetime geometry, one may use the embedding ı : AdS3 → R2,2 of

(proper) AdS3 into flat four-dimensional ambient space R2,2 with signature (−1,−1, 1, 1)

as the quadratic form

−
(
X0′

)2
−
(
X0
)2

+
(
X1
)2

+
(
X2
)2

= −1 , (3.13)
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whose isometries are generated by the Killing vectors
−→
MAB = XA

−→
∂ B − XB

−→
∂ A. From

ξ2 ≡
−→
K2 = M

(
(X0′)2 − (X1)2

)
, it follows that

(X0′ , X1) =
ξ√
M

(cosh
√
Mφ, sinh

√
Mφ) , ξ > 0 , (3.14)

on ı(AdS
(K)
3 ), such that

(X0′ , X1) =
ξ√
M

(cosh
√
Mφ, sinh

√
Mφ) , ξ > 0 , φ ∈ [0, 2π) , (3.15)

on ı(Γ\AdS
(K)
3 ).

The induced geometry is thus given by the warped product14

Γ\AdS
(K)
3 = CMink2 ×ξ S1

K , (3.16)

where

ds2
CMink2

:=
(
−dξ2/M − (dX0)2 + (dX2)2

)
|−ξ2/M−(X0)2+(X2)2=−1 , (3.17)

is the metric on one of the two stereographic coordinate charts of AdS2. Kruskal-Szekeres-

like coordinates can be introduced via the embedding (m = 0, 2)

Xm =
2xm

1− x2
, 1 > x2 > −1 , (3.18)

for which the two-dimensional line element and warp factor, respectively, take the form

ds2
CMink2

=
4dx2

(1− x2)2
, ξ =

√
M

1 + x2

1− x2
. (3.19)

In other words, the orbispacetime Γ\AdS
(K)
3 is a eternal spinless BTZ black hole with

metric

ds2
EBTZ =

4dx2

(1− x2)2
+ ξ2dφ2 , (3.20)

topology

Γ\AdS
(K)
3

top∼= R2 × S1 , (3.21)

two conformal infinities, no closed time-like curves, and past and future singularities of

R× S1 topology at ξ = 0 hidden behind future and past horizons at ξ =
√
M . Its Killing

vectors are given by the identification Killing vector
−→
K =

√
M
−→
P = −

−→
∂ φ, and

−→
B , that is,

the Killing vector of CMink2 that annihilates ξ.

The eternal black hole can be restricted further to a Schwarzschild BTZ black hole,

with line element

ds2
SBTZ = −

(
r2 −M

)
dt2 +

(
r2 −M

)−1
dr2 + r2dφ2 , ξ = r > 0 , t ∈ R , (3.22)

14We use a notation in which ds2
M×fN

= ds2
M + f2ds2

N where f : M → R.
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corresponding to the embedding

Outer region (r >
√
M): X0 =

√
r2

M
− 1 sinh

(√
Mt
)
, (3.23)

X2 =

√
r2

M
− 1 cosh

(√
Mt
)
, (3.24)

Inner region (
√
M > r > 0): X0 =

√
1− r2

M
cosh

(√
Mt
)
, (3.25)

X2 =

√
1− r2

M
sinh

(√
Mt
)
. (3.26)

The Killing vectors are now given by
−→
K ≡

√
M
−→
P = −~∂φ, and

−→
B = 1√

M
~∂t.

Intrinsic unfolded approach. We first observe that the two eternal spinless BTZ black

holes with ξ > 0 and ξ < 0, respectively, can be glued smoothly together across their causal

singularities into a single topologically extended eternal spinless BTZ black hole

(M′3, ds2)ExtEBTZ = AdS2 ×ξ S1
K , (3.27)

with topology15

M′3
top∼= R× T 2 , (3.28)

and singularities of R × S1 topology at ξ = 0 hidden behind future and past horizons at

ξ = ±
√
M .

The corresponding globally defined gauge function16

L = exp?(iKφ) ? exp?(iET ) ? exp?(iP2arcsinhρ) , (3.30)

where

K =
√
MP , P = P1 = M0′1 , P2 = M0′2 , (3.31)

are the so(2, 2) generators corresponding to the identification Killing vector and its dual,

and

φ ∈ [0, 2π) , T ∈ [0, 2π) , ρ ∈ R . (3.32)

The gauge function is 2π-periodic in T , as exp?(2πiE) is a central element in SO(2, 2).

The corresponding so(2, 2)-valued one-form Ω = L−1?dL consists of a quasi-frame field

ea and Lorentz connection ωab that are is bounded and constantly curved in the interior of

M′3, though ea fails to be non-degenerate at ξ = 0. The resulting quasi-Lorentzian metric

ds2
ExtEBTZ = ds2

AdS2
+ ξ2dφ2 , (3.33)

15The closed time-like curve can be removed by going to the covering space of proper AdS2 leading to a

three-dimensional geometry with topology R2 × S1.
16A gauge function adapted to the stereographic coordinate system on CMink2 is given by

L = exp?(iKφ) ? exp?(iPmξ
m) , (3.29)

where ξm = 4Υ(x2)xm with Υ given in appendix C.1 of [14].
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where

ds2
AdS2

= −(1 + ρ2)dT 2 +
dρ2

1 + ρ2
, ξ =

√
1 + ρ2 cosT , (3.34)

has two conformal infinities at ρ = ±∞ with conformal quasi-Lorentzian metric[
ds2

2

]
±∞ =

[
−dT 2 + cos2 Tdφ2

]
. (3.35)

This geometry is an extension of the eternal spinless BTZ black hole obtained by gluing

together two CMink2 into a (proper) AdS2 across the two surfaces where ξ vanishes, that

is, at T = π/2 and T = 3π/2, where thus the trapped warped circle shrinks to zero

size. Indeed, restricting T to (π/2, 3π/2) yields the eternal spinless BTZ black hole; as

this restriction respects the flow lines of the globally defined Killing vectors, the restricted

vector fields remain globally defined.

3.3 4D spinless BGM black hole

In what follows, we first describe the eternal spinless BTZ black hole obtained from the

ambient space metric using identifications. We then construct two topologically extended

versions using intrinsic gauge functions.

Ambient metric-like approach. Higher-dimensional orbispacetimes AdSn/Γ with

n > 3 are more complex than their three dimensional counterparts, as the identification

Killig vector leaves more than one ambient plane invariant, which may lead to non-abelian

(residual) Killing symmetries. An identification Killing vector in a conjugacy class of Type

I preserves the foliation defined by its norm, whose leaves are constantly curved manifolds

whose signature as well as radius may vary along the foliation.

Four-dimensional constantly curved orbispacetimes were studied in [29–31]. The direct

uplift of the three-dimensional eternal spinless BTZ black hole to four dimensions is the

eternal spinless BGM black hole [31]

Γ\AdS
(K)
4 = CMink3 ×ξ S1

K

top∼= R3 × S1 , (3.36)

where

AdS
(K)
4 = {p ∈ AdS4|ξ(p) > 0} , ξ2 :=

−→
K2 , (3.37)

and the identification Killing vector

−→
K =

√
M
−→
P ,

−→
P =

−→
P 1 =

−→
M0′1 . (3.38)

More precisely, expressing AdS4 as the quadratic form

−
(
X0′

)2
−
(
X0
)2

+
(
X1
)2

+
(
X2
)2

+
(
X3
)2

= −1 , (3.39)

one has ξ2 = M
(

(X0′)2 − (X1)2
)

, hence

(X0′ , X1) =
ξ√
M

(
cosh

(√
Mφ

)
, sinh

(√
Mφ

))
, ξ > 0 , φ ∈ [0, 2π) , (3.40)
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on Γ\AdS
(K)
4 . Kruskal-Szekeres-like coordinates can be introduced via the embedding

(m = 0, 2, 3)

Xm =
2xm

1− x2
, 1 > x2 > −1 , (3.41)

manifesting (3.36) with

ds2
CMink3

=
4dx2

(1− x2)2
, ξ =

√
M

1 + x2

1− x2
. (3.42)

Thus, the geometry has no closed time-like curves, past and future singularities of R2×S1

topology at ξ = 0 hidden behind future and past horizons at ξ =
√
M . Its Killing vectors

are given by
−→
K ≡

√
M
−→
P = −

−→
∂ φ, and the Killing vectors of CMink3 that annihilate ξ,

which form an sl(2) containing
−→
B .

A Schwarzschild-like patch with coordinates {r, t, φ, θ} can be obtained by taking

ξ = r , (3.43)

and

Outer coordinates (r >
√
M): X0 =

√
r2

M
− 1 sinh

(√
Mt
)
,

X2 =

√
r2

M
− 1 cosh

(√
Mt
)

sin θ ,

X3 =

√
r2

M
− 1 cosh

(√
Mt
)

cos θ , (3.44)

Inner coordinates (
√
M > r > 0): X0 =

√
1− r2

M
cosh

(√
Mt
)
,

X2 =

√
1− r2

M
sinh

(√
Mt
)

sin θ ,

X3 =

√
1− r2

M
sinh

(√
Mt
)

cos θ , (3.45)

which yield the Holst-Peldan (HP) line elements

Outer: ds2
HP =

(
r2

M
−1

)(
−Mdt2+cosh2

(√
Mt
)
dθ2
)

+
(
r2−M

)−1
dr2+r2dφ2 , (3.46)

Inner: ds2
HP =

(
1− r

2

M

)(
Mdt2+sinh2

(√
Mt
)
dθ2
)

+
(
r2−M

)−1
dr2+r2dφ2 (3.47)

Its Killing vectors are
−→
K = −~∂φ, and

−→
M02,

−→
M03 and

−→
M23, of which

−→
M23 ∝ ~∂θ is manifest

in the Schwarzschild-like coordinates. As stressed by BGM, the spinless HP black hole

– traps circles (instead of spheres as in the case of the Schwarzschild black hole), re-

sulting in a three-dimensional Penrose diagram;

– does not admit any globally defined time-like Killing vector fields (the globally time-

like vector field
−→
∂ t is not a symmetry of the geometry).
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From eqs. (3.13) and (3.46), it follows that at constant r >
√
M the submanifold Σ2 left

invariant by the identification has a line element

ds2
Σ2

=

(
r2

M
− 1

)(
−Mdt2 + cosh2

(√
Mt
)
dθ2
)
, (3.48)

which is that of two-dimensional de Sitter space of radius
√

r2

M − 1. At r2 = M , the

subspace left invariant by the identification is the two-dimensional light-like cone

− (X0)2 + (X2)2 + (X3)2 = 0. (3.49)

On the other hand, for 0 < r <
√
M the subspace left invariant is an Euclidean manifold of

negative curvature, i.e., H2 or H2/Γ2 with Γ2 ∈ SO(2, 1) a smooth identification without

fixed points [87, chapter 2, p. 69].

Returning to the Killing vectors, one observes that only
−→
P and

−→
B are globally defined

at conformal infinity, as the Killing vectors in sl(2;R)/u(1) contain cosT and sinT . Thus,

rather than assigning the spinless BGM black hole asymptotic charges, we assign it a

holonomy HS1
K

(Ω).

Intrinsic unfolded approach. Two eternal BGM black holes with ξ > 0 and ξ < 0,

respectively, can be glued together across their singularities into a single topologically ex-

tended eternal spinless BGM black hole17

(M(1)
4 , ds2

4)ExtEBGM = AdS3 ×ξ S1
top∼= R2 × T 2 , (3.50)

with singularities of R2 × S1 topology at ξ = 0 hidden behind future and past horizons

at ξ = ±
√
M , and a single conformal infinity. The corresponding globally defined gauge

function is given by (r = 2, 3)

L = exp? iKφ ? exp? iET ? exp? iPrn
rarcsinhf (1)(ρ) , (3.51)

where

φ ∈ [0, 2π) , T ∈ [0, 2π) , f (1)(ρ) = ρ > 0 , nrnr = 1 , (3.52)

and L is 2π-periodic in T as exp?(2πiE) is a central element in SO(2, 3). Indeed, this gauge

function yields the line-element for AdS3 ×ξ S1 with

ξ = cosT
√

1 + ρ2 . (3.53)

Taking instead

L = exp? iKφ ? exp? iET ? exp? iPrn
rarcsinhf (2)(ρ) , (3.54)

where

f (2)(ρ) =
√
a2 + ρ2 , ρ ∈ R , a > 0 , (3.55)

and a is a constant, yields a geometry with topology R × T 3 and two conformal infinities

given by quasi-Lorentzian T 3. This quasi-Lorentzian geometry provides a semi-classical

description of an entangled vacuum state [19] with a topology distinct from that of the

massless limit of the eternal Kruskal-Szekeres black hole in AdS4 in (2.23).

17The closed time-like curves can be removed by going to the covering space of AdS3 leading to four-

dimensional geometry with topology R3 × S1.
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4 Higher spin fluctuations around 4D spinless BGM black hole

In three dimensions, linearized higher spin fluctuations around the spinning BTZ black

hole have been constructed in [16] from gauge functions defined on Schwarzschild patches

and zero-form initial data for conformally coupled scalar and spinor fields.

In what follows, we shall consider various aspects of the construction of a linear space of

higher spin fluctuations around the four-dimensional topologically extended eternal spinless

BGM black hole that consists of states that

i) diagonalize the adjoint action of K;

ii) can be composed using the star product so as to form an associative operator algebra.

We would like to remark that

a) as the topologically extended AdS3 ×ξ S1 geometry has adapted gauge function,

condition (i) is required in order for the linearized master fields to be periodic on the

warped S1, whereas the periodicity on the time-like S1 inside AdS3 follows from the

ππ̄-projection of the master fields as explained below eq. (3.51);

b) condition (ii), which is imposed in order for the linearized fluctuations to give rise to

a well-defined non-linear extension, can be disregarded as far as a strictly linearized

analysis is concerned.

In the remainder of this section, we shall propose a scheme obeying (i) and (ii). However,

from section 5 and onwards, we shall forego condition (ii) and zoom in on particularly

simple building blocks for the algebra in a strictly linearized analysis in concordance with

remark (b).

Periodic boundary conditions on warped S1 and group algebra. The boundary

conditions on the warped circle require the Weyl zero-form integration constant Ψ to be

expanded over a basis of fiber functions Ψn[ν], n ∈ Z, where ν is a set of amplitudes, that

diagonalizes the adjoint star product action of the boost K ∈ so(2, 3) and forms a basis of

an amplitude dependent generalization of the group algebra C[Z], viz.18

ad?KΨn = nΨn , Ψn[ν] ?Ψn′ [ν
′] = Ψn+n′ [ν ◦n,n′ ν ′] , (4.1)

where ◦n,n′ a composition rule obeying the co-cycle condition

(ν ◦n,n′ ν ′) ◦n+n′,n′′ ν
′′ = ν ◦n,n′+n′′ (ν ′ ◦n′,n′′ ν ′′) . (4.2)

18As a simpler example, the free particle Hamiltonian H = p2, for which

Ψn[ν] =

∫
dpν(p)

∣∣∣√p2 + n
〉
〈p| ,

obeys ad?HΨn[ν] = nΨn[ν] and (ν ◦n,n′ ν′)(p) = ν(
√
p2 + n)ν′(p), where n ∈ Z+.
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Real and chiral group algebras. The boost K, which is a non-compact operator, is

realized in the fiber as the direct product of two inverted harmonic oscillators, also known

as Hubble Hamiltonians, viz.

K =
√
M(H1 −H2) , Hi :=

1

2
(p2
i − x2

i ) . (4.3)

The spectrum of a single (normalized) Hubble Hamiltonian H := p2 − x2 has been deter-

mined in [88]. The point spectrum of H, i.e. the eigenstates |λ〉 with complex eigenvalue

λ, belong to the Banach space Lp iff p > 2 and |Imλ| < 1/2− 1/p; one can show that the

Hölder dual (Lp)∗ ∼= Lp̃, where 1
p + 1

p̃ = 1, is also in the spectrum, i.e. it is not possible

to invert H − λ in Lp̃ for λ in the strip |Imλ| < 1/2 − 1/p. Taking the limit p = 2, it

follows that H −λ remains non-invertible in L2 for real λ, i.e. the Hubble Hamiltonian has

a continuous real spectrum, for which we can use the normalization

〈µ|λ〉 = δ(µ− λ) , µ, λ ∈ R . (4.4)

Thus, one has

ΨR
n [ν] :=

∑
m

∫
R4

dλ1dµ1dλ2dµ2 δ

(
λ1 − λ2 − µ1 + µ2 −

n√
M

)
δ (λ1 + λ2 + µ1 + µ2 − 2m)

× ν(λ1, λ2;µ1, µ2;m) fRλ1,λ2|µ1,µ2
, (4.5)

where fRλ1,λ2|µ1,µ2

∼=| λ1, λ2〉〈µ1, µ2 | via the Wigner-Ville map; the first delta function

quantizes ad?K ; and the second delta function imposes the ππ̄-projection.

However, the reality condition on Ψ requires κy ? κ̄ȳ to have a well-defined one-sided

action on Ψn. To this end, we shall assume the existence of complexified stargenfunctions

fCλ1,λ2|µ1,µ2
obeying

(Hi − λi) ? fCλ1,λ2|µ1,µ2
= 0 = fCλ1,λ2|µ1,µ2

? (Hi − µi) , (4.6)

where λi, µi ∈ C, and

κy ? κ̄ȳ ? f
C
λ,l−λ|µ,m−µ = (−1)lfCλ,l−λ|µ,m−µ , fCλ,l−λ|µ,m−µ ? κy ? κ̄ȳ = (−1)mfCλ,l−λ|µ,m−µ ,

(4.7)

for λ, µ ∈ C and l,m ∈ Z, and

fCλ,l−λ|µ,m−µ ? f
C
λ′,l′−λ′|µ′,m′−µ′ = δm,l′δ

2(µ− λ′)fCλ,l−λ|µ′,m′−µ . (4.8)

Thus, using such a chiral direct product of two Hubble Hamiltoniams, one has

ΨC
n [ν] =

∑
l,m

∫
C2

d2λ d2µ δ2

(
2λ− l − 2µ+m− n√

M

)
ν(λ, l;µ,m)fCλ,l−λ|µ,m−µ , (4.9)

and νn(λ, l;µ,m) ≡ 1
2(1 + (−1)l+m)νn(λ, l;µ,m) in order to impose the ππ̄-projection.
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Regular prescription. In what follows, we shall

a) write the group algebra elements, which are special functions in Y , as integral trans-

forms

Ψn(Y ) = R [Ψn(Y )] :=

∫
dSdTeY

αSαβY
β+TαY αΨ̃n(S, T ) , (4.10)

with contours in the S and T planes corresponding to Mellin and Laplace transforms;

b) take the unfolding point, where the zero-form initial data is defined, to be an in-

tersection point between a future and a past horizon of the topological black hole

background.

As we shall see, this yields a Weyl zero-form that is real-analytic in the fiber over generic

spacetime points (hence liftable to a master field configuration solving the linearized

Vasiliev system), provided that all star products (between the initial data and gauge func-

tions) are performed prior to reading off Lorentz tensorial component fields. In particular,

this procedure yields a Weyl zero-form that is real-analytic in the fiber above the original

unfolding point, whereas Ψ ? κy is a non-real-analytic function involving complex powers

of oscillators.19

The above prescription is part of a broader scheme [8, 10, 14] for perturbative compu-

tations in Vasiliev’s higher spin gravity according to which20

i) the perturbatively defined Vasiliev master fields are assigned regular presentations

in terms of Gaussian functions on the full noncommutative twistor space (including

Vasiliev’s Z-space); and

ii) star products (including twistor space derivatives) and traces are performed prior to

the parametric integrals used for regular presentations and representing twistor space

homotopy contractors;

iii) the parametric integrals arising at every intermediate stage of classical perturbation

theory must provide an unambiguous regular presentation of a function or distribution

in twistor space.

The scheme facilitates perturbative computations in Vasiliev’s theory using the gauge func-

tion method [8, 10, 14, 35], since the initial data (and other twistor space constructs aris-

ing in Vasiliev’s Z-space) indeed admit regular presentations and Gaussian kernels can be

star multiplied and traced straightforwardly. Thus, at every order of perturbation theory

condition (iii) serves as an arbitrator among otherwise potentially ambiguous choices of

(complex) contours for parametric integrals, thereby removing potential ambiguities from

the scheme, though the scheme may clearly break down (provided that there exists either

no or multiple consistent nestings of parametric integrals).

19A similar computational method, based on displacing the unfolding point away from the horizon, was

employed in [16].
20Assumption (a) follows (i), and the order of operations that we apply to evaluate the Weyl zero-form

at the original unfolding point is in accordance with (ii).
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In the case of particle and black hole states in AdS4, the scheme has been implemented

to all orders in [8, 10] albeit in a (holomorphic) gauge which does not respect ALAdS

boundary conditions, as stipulated by the central on mass-shell theorem, though ALAdS

configurations can be reached by perturbative modifications of the gauge function at least

at the linearized level [35].

In what follows, the scheme will only be used to extract the linearized Weyl zero-

form (which is the first object of the full set of Vasiliev fields to be encountered at every

order of perturbations), though this nonetheless constitutes a nontrivial application of the

formalism as it removes the aforementioned unphysical singularity at the unfolding point,

and, moreover, lifts an apparent ambiguity in the choice of regular presentation of the

initial data of the Weyl zero-form; for details, see appendix E.

Singularity structure. As we shall see, the fiber real-analyticity of the Weyl zero-form

only breaks down on two codimension-one submanifolds:

– at ξ = 0, i.e. at the singularity of the BGM background, where the Weyl zero-form

approaches a fiber distribution with a regular presentation given in section 6.1;

– at membrane-like singularities, where the Weyl zero-form approaches fiber delta func-

tions with regular presentations, as will be shown in appendix D in a special case,

namely when Ψ is an operator in a complexified Fock space, which will be the topic

of the next section.

In particular, this means the Weyl zero-form remains real-analytic in the fiber above the

entire horizons at ξ = ±
√
M including the unfolding point (except at possible intersections

between the horizons and the membrane-like singularity).

5 Construction of zero-form initial data using Fock spaces

In this section, we shall provide simple building blocks for the Weyl zero-form integration

constant Φ′ = Ψ?κy that diagonalize the twisted adjoint action of the oscillator realization

K of the identification Killing vector field
−→
K used to construct the four-dimensional BGM

black hole background, as discussed in section 4.

To this end, we shall start in section 5.1 by recalling the construction in [8, 10] of

linearized Weyl zero-forms on AdS4 by expanding Ψ over stargenfunctions obtained by

dressing Fock space projectors and twisted projectors by polynomials in corresponding

(complexified) creation and annihilation operators introduced so as to create integer left

and right eigenvalues for Cartan generators in so(2, 3) whose Sp(4) matrices square to −1,

namely, E, J , iP and iB.

To obtain linearized Weyl zero-forms on AdS4 on BGM backgrounds with identification

Killing vector ~K = α1
~P + α2

~B, we shall

i) create stargenfunctions with integer left and right eigenvalues for K by modifying the

dressings of the generalized projectors built from iP and iB by including complex

powers with quantized imaginary parts of creation and annihilation operators, as

spelled out in section 5.2;
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ii) provide Ψ with a regular presentation by Mellin transforming the complex powers of

oscillators and Laplace transforming the generalized projectors, as done in section 5.3;

iii) constrain the eigenvalues so as to implement the bosonic projection; the reality con-

ditions; and the BTZ-like identification, as discussed in sections 5.4 and 5.6.

iv) rewrite the stargenfunction on Sp(4,R)-covariant form, which will be particularly

useful in analysing the singularity structure of the Weyl zero-form, which is the topic

of section 5.5.

We stress that the above construction provides a particular type of building blocks for Ψ

that diagonalize ad?K . The fact that these elements do not span any associative algebra on

their own does not pose any problem as long as we limit ourselves to a strictly linearized

analysis.

5.1 Fock spaces associated to different Cartan subalgebras

The basic idea is thus to expand the initial datum Ψ (or, equivalently, Φ′ of (2.31)) in

operators that span specific representations of the complexified AdS4 isometry algebra

sp(4,C), and then subject them to the identification condition that characterizes the four-

dimensional BGM background. To this end, we shall modify and extend the method

developed in [8, 10, 11], which we shall briefly review in what follows for the reader’s

convenience.

Given a pair (K(+),K(−)) of mutually commuting and normalized generators of (the

complexified) sp(4,C) with oscillator realization

K(±) =
1

8
K

(±)
αβ Y

α ? Y β , (5.1)

where

[K(q),K(q′)]αβ = 0 , K(q)
α

γ K(q)
γ

β = −δαβ , (5.2)

they can be written in terms of two number operators

wi := a+
i a
−
i = a+

i ? a
−
i +

1

2
, (no sum over i) (5.3)

as

K(±) =
1

2
(w2 ± w1) , (5.4)

where the creation and annihilation operators a±i = (A±i )αY
α, i = 1, 2, using projectors

built from K
(q)
αβ . An extension of the Weyl algebra by delta functions contains operators

PnL,nR(Y ) obeying

PnL,nR = ππ̄(PnL,nR) , (5.5)

and

PnL,nR ? PmL,mR = δnR,mLPnL,mR , (5.6)
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with nL,R = (n1, n2)L,R ∈ (Z+ 1/2)× (Z+ 1/2), idem mL,R, being half-integer eigenvalues

under the left or right star-product action of number operators wi,

(wi − niL) ? PnL,nR = 0 = PnL,nR ? (wi − niR) . (5.7)

Clearly, the PnL,nR also diagonalize the adjoint as well as twisted-adjoint actions of K(±),

viz.

K(±) ? PnL,nR − PnL,nR ? K(±) =
1

2
(n2L ± n1L − (n2R ± n1R))PnL,nR , (5.8)

K(±) ? PnL,nR − PnL,nR ? π(K(±)) =
1

2

(
n2L ± n1L − (−1)σπ(K(±))(n2R ± n1R)

)
PnL,nR ,

(5.9)

where π(K(±)) = σπ(K(±))K(±).

The diagonal elements Pn,n ≡ Pn = Pn1,n2 are projectors and belong to the enveloping

algebra of the number operators, and hence factorize as Pn1,n2(w1, w2) = Pn1(w1)?Pn2(w2).

In particular, the projectors onto the lowest-weight state of the Fock space (+) and the

highest-weight of the anti-Fock space (−) correspond to

P ε1
2
,
ε2
2

= 4e−2(ε1w1+ε2w2) , ε1, ε2 = ± . (5.10)

In star-product form, the generic projector reads

Pn1,n2 =
(aε22 )?(|n2|−1/2)√

(|n2| − 1/2)!
?

(aε11 )?(|n1|−1/2)√
(|n1| − 1/2)!

? P ε1
2
,
ε2
2
?

(
a−ε11

)?(|n1|−1/2)√
(|n1| − 1/2)!

?

(
a−ε22

)?(|n2|−1/2)√
(|n2| − 1/2)!

,

(5.11)

where εi := sign(ni).

There are three distinct pairs of (K(+),K(−)) modulo Sp(4,R) rotations, given

by [10, 11]21

(E, J) , (J, iB) , (iB, iP ) , (5.12)

where E := P0 = M0′0 is the AdS energy, J := M12 is a spin, B := M03 is a boost and

P := P1 = M0′1 is a transvection; as E and J are compact it follows that exp(±4E)

are projectors, while as B and P are non-compact, the corresponding projectors are

given by exp(±4iB) and exp(±4iP ). Thus, starting from a pair of Cartan generators,

one may form four lowest-weight (ε = −) or highest-weight (ε = +) projectors, namely

exp(4εK(ε′)), where ε, ε′ = ±, and their twisted counterparts exp(4εK(ε′)) ? κy, which are

distinct elements iff K(ε′) = E or iP since exp(±4J) ? κy = exp(±4J) and idem iB.

The orbit of exp(4εK(ε′)) under the left and right actions of the extended Weyl algebra,

form an associative algebraMε(K(ε′);K(−ε′)) with principal Cartan generator K(ε′); letting

M(K(ε′);K(−ε′)) =M+(K(ε′);K(−ε′))⊕M−(K(ε′);K(−ε′)), we thus have22

M(E; J) , M(J ;E) ; M(J ; iB) , M(iB; J) ; M(iB; iP ) , M(iP ; iB) ,

(5.13)

21We refer the reader to the appendix A for our AdS4 and spinor conventions.
22The orbits M(K(ε′);K(−ε′))⊕Mε(K(−ε′);K(ε′)) do not account for all stargenfunctions PnL,nR intro-

duced above.
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Expanding Φ′ over M(K(ε′);K(−ε′)), we refer to the contributions from the Weyl algebra

orbits of exp(±4K(ε′)) and exp(±4K(ε′))?κy, respectively, as the regular and twisted sectors,

since the former gives rise to a Weyl zero-form that is real-analytic in Y at the unfolding

point.23 Thus, the twisted sector is nontrivial iff the principal Killing vector is taken to be

E or iP , in which case we expand24

M(E; J) , M(iP ; iB) : Ψ(Y ) =
∑

nL,nR

(νnL,nRPnL,nR(Y ) + µnL,nRPnL,nR(Y ) ? κy) ,

(5.14)

where νnL,nR and µnL,nR are independent deformation parameters, while in the remaining

families we set the µ-parameters to zero, viz.

M(J ;E) , M(J ; iB) , M(iB; J) , M(iB; iP ) : Ψ(Y ) =
∑

nL,nR

νnL,nRPnL,nR(Y ) .

(5.15)

In the latter case, once a regular presentation R [PnL,nR(Y )] has been chosen, there remains

an apparent ambiguity whether to expand Ψ in terms of R(PnL,nR(Y )) or R(PnL,nR(Y )) ?

κy, as both choices lead to Weyl zero-forms on-shell whose component fields obey the

same boundary conditions in spacetime. However, a closer inspection of how their regular

presentations vary over spacetime (see appendix E) reveals that only former choice is

compatible with condition (iii) in section 4.

Four different families of fluctuations around spinless BGM black holes. In

what follows, we shall consider linearized Weyl zero-forms on the U(1) × Sp(2) invariant

spinless BGM black hole. This black hole has two isomorphic realizations, depending on

whether one takes the identification Killing vector to be
−→
P or

−→
B . In each case, one may

consider initial data Ψ for the Weyl zero-form contained in extensions of M(iB; iP ) and

M(iP ; iB) obtained by acting on their ground states by not only the Weyl algebra but

also suitable complex powers of creation and annihilation operators;25 see table 1. This

results in four linearized moduli spaces with distinct characteristics, given by the unbroken

symmetry H and singularity structure of the physical scalar field C of the corresponding

ground states.

23The one-sided star multiplication by κy exchanges a symbol by a dual symbol obtained by chiral

Fourier transformation in y-space (but not ȳ-space) followed by replacing the Fourier dual variable by y.

This duality transformation, that need not be a symmetry of the symbols of a generic quantum mechanical

system, leaves the solution spaces found in [8] invariant; whether it is a symmetry of higher spin gravity,

possibly related to a GSO-like projection of an underlying topological open string, is an interesting open

problem.
24The (diagonal) projectors in the regular sector of M(E; J) gives rise to massless scalar particle modes

in AdS4, while the twisted counterpart yields spherically symmetric higher spin black holes [8].
25As discussed in section 4, we expect that additional states must be added to Ψ in order for the linearized

solutions to admit completions into perturbatively defined nonlinear solutions, as this requires Ψ to belong

to an associative algebra.
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(K; K̃) Ψ0 H C

(P ;B) e±4iP U(1)P × Sp(2)B
1√

1−ξ2

e±4iP ? κy Sp(2)B
X0′+X1

ξ2

e±4iB U(1)P ×U(1)B
1√

1−ξ̃2

(B;P ) e±4iP U(1)B ×U(1)P
1√

1−ξ̃2

e±4iP ? κy U(1)B
X0′+X1

ξ̃2

e±4iB U(1)B × Sp(2)P
1√

1−ξ2

Table 1. Ground states for fluctuations spaces on spinless BGM black holes.
−→
K and

−→
K̃ , respectively,

denote the identification Killing vector and its dual of a BGM black hole with mass M = 1 and

spin J = 0, i.e. AdS3 ×ξ ×S1. The black hole symmetry group is given by Stabso(2,3)(K), i.e.

Stabso(2,3)(P ) = U(1)P × Sp(2)B and Stabso(2,3)(B) = U(1)B × Sp(2)P , which is also the stabilizer

of the warp factor ξ :=
√−→
K2. H and C, respectively, denote the symmetry group and scalar field of

the ground state Ψ0 of a sector of fluctuations. There are four distinct moduli spaces, depending on

whether C blows up at 1) ξ = 0, i.e. at the BGM singularity; 2) ξ = ±1, i.e. at the BGM horizons;

3) ξ̃ :=

√−→
K̃2 = 0, i.e. at a membrane-like singularity outside the BGM horizons; and 4) ξ̃ = 1

(also denoted by ∆ = 0), i.e. at a membrane-like singularity passing through the BGM horizon and

singularity.

5.2 Diagonalizing the adjoint actions of P and B

In what follows, we shall oscillator realize stargenfunctions fλL,λR with general complex

left and right eigenvalues λL = (λ1L, λ2L) and λR = (λ1R, λ2R) of the number operators

w1 =
i

8

(
Bαβ − Pαβ

)
Y αY β , w2 =

i

8

(
Bαβ + Pαβ

)
Y αY β , (5.16)

related to the Cartan pair (iB, iP ). To this end, we choose

Bαβ = −(Γ03)αβ , Pαβ = −(Γ0′1)αβ , (5.17)

and use the realization of the Dirac matrices given in appendix A, to arrive at

a+
1 =

1

2

(
y1 + ȳ1̇

)
, a−1 =

i

2

(
y2 + ȳ2̇

)
, (5.18)

a+
2 =

i

2

(
y1 − ȳ1̇

)
, a−2 =

1

2

(
y2 − ȳ2̇

)
. (5.19)

These operators can be projected out from Yα using a spin-frame

(u+α, u−α) , u+αu−α = 1 , (5.20)

idem their complex conjugates, as

a±i =
(
A±i
)
α
Y α , (5.21)
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where

A+
1α =

1

2

(
u+
α , ū

+
α̇

)
, A−1α = − i

2

(
u−α , ū

−
α̇

)
, (5.22)

A+
2α =

i

2

(
u+
α , −ū+

α̇

)
, A−2α = −1

2

(
u−α , −ū−α̇

)
. (5.23)

To proceed, we use

Yα ? f (Y ) =

(
Yα + i

∂

∂Y α

)
f (Y ) , (5.24)

f (Y ) ? Yα =

(
Yα − i

∂

∂Y α

)
f (Y ) , (5.25)

to derive(
YαYβ

)
? f (Y ) =

(
YαYβ + iYα

∂

∂Y β
+ iYβ

∂

∂Y α
− ∂2

∂Y α∂Y β

)
f (Y ) , (5.26)

f (Y ) ?
(
YαYβ

)
=

(
YαYβ − iYα

∂

∂Y β
− iYβ

∂

∂Y α
− ∂2

∂Y α∂Y β

)
f (Y ) . (5.27)

Thus, if f(Y ) = f(a+, a−), it follows that

(
a+a−

)
? f
(
a+, a−

)
=

(
a+a− +

1

2
a+ ∂

∂a+
− 1

2
a−

∂

∂a−
− 1

4

∂2

∂a+∂a−

)
f
(
a+, a−

)
, (5.28)

f
(
a+, a−

)
?
(
a+a−

)
=

(
a+a− − 1

2
a+ ∂

∂a+
+

1

2
a−

∂

∂a−
− 1

4

∂2

∂a+∂a−

)
f
(
a+, a−

)
. (5.29)

Thus, the stargenvalue problem(
a+a−

)
? fλL,λR

(
a+, a−

)
= λLfλL,λR

(
a+, a−

)
, (5.30)

fλL,λR
(
a+, a−

)
?
(
a+a−

)
= λRfλL,λR

(
a+, a−

)
, (5.31)

is equivalent to(
a+a−+

1

2
a+ ∂

∂a+
− 1

2
a−

∂

∂a−
− 1

4

∂2

∂a+∂a−

)
fλL,λR

(
a+,a−

)
=λLfλL,λR

(
a+,a−

)
, (5.32)(

a+a−− 1

2
a+ ∂

∂a+
+

1

2
a−

∂

∂a−
− 1

4

∂2

∂a+∂a−

)
fλL,λR

(
a+,a−

)
=λRfλL,λR

(
a+,a−

)
. (5.33)

Adding and subtracting these equations, one finds(
a+ ∂

∂a+
− a− ∂

∂a−

)
fλL,λR

(
a+, a−

)
= (λL − λR) fλL,λR

(
a+, a−

)
, (5.34)(

2a+a− − 1

2

∂2

∂a+∂a−

)
fλL,λR

(
a+, a−

)
= (λL + λR) fλL,λR

(
a+, a−

)
. (5.35)

The solutions to (5.34) can be written equivalently as

fλL,λR
(
a+, a−

)
=
(
a+
)λL−λR g(+)

λL,λR

(
a+a−

)
=
(
a−
)λR−λL g(−)

λL,λR

(
a+a−

)
, (5.36)
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where

2wg
(+)
λL,λR

(w)− 1

2
(λL − λR + 1) g

(+)′
λL,λR

(w)− 1

2
wg

(+)′′
λL,λR

(w) = (λL + λR) g
(+)
λL,λR

(w) (5.37)

with w = a+a−; as each of eqs. (5.32) and (5.33) is left invariant under the exchanges

a+ ↔ a− , λL ↔ λR , (5.38)

the equation for g
(−)
λL,λR

can be obtained from (5.37) by exchanging λL ↔ λR.

For generic eigenvalues,26 the solution to (5.37) can be given as

g
(+)
λL,λR

(w) = C g
(+,1)
λL,λR

(w) + C̃ g
(+,2)
λL,λR

(w) , (5.39)

where C and C̃ are integration constants and

g
(+,1)
λL,λR

(w) = e−2w
1F1

(
1

2
− λR, λL − λR + 1, 4w

)
g

(+,2)
λL,λR

(w) = e−2w(4w)λR−λL1F1

(
1

2
− λL, λR − λL + 1, 4w

)
. (5.40)

The corresponding solution for g
(−)
λL,λR

is obtained from (5.40) by performing the aforemen-

tioned exchange, whose action on the above basis elements is given by

(a+)λL−λRg
(+,2)
λL,λR

= (a−)λR−λLg
(−,1)
λL,λR

. (5.41)

In what follows, we shall restrict the eigenvalues to

λL ∈ C , λR +
1

2
∈ Z+ , or λL −

1

2
∈ Z− , λR ∈ C , (5.42)

as this will lead to regular prescriptions that simplify the analysis of the spacetime de-

pendence of the Weyl zero-form. If λR + 1
2 ∈ Z+, then the first confluent hypergeometric

function in (5.40) reduces to a generalized Laguerre polynomial,

λR +
1

2
∈ Z+ : g

(+,1)
λL,λR

(w) = c e−2wLλL−λR
λR− 1

2

(4w) . (5.43)

These generalized polynomials capture g
(+,1)
λL,λR

(w) also when λL− 1
2 ∈ Z− and λR ∈ C, since

by virtue of Kummer’s transformation 1F1(a, b, z) = ez1F1(b− a, b,−z), it follows that

λL −
1

2
∈ Z− : g

(1)
λL,λR

(w) = c e−2wLλL−λR
λR− 1

2

(4w) = c
sin(λR − 1

2)π

sin(λL − 1
2)π

e2wLλL−λR−λL− 1
2

(−4w) .

(5.44)

26Substituting an Ansatz of the form g
(+)
λL,λR

(w) = e−2w g̃λL,λR(w) in (5.37), the latter is turned into

the standard Kummer equation zg̃′′λL,λR
(z) + (b − z)g̃′λL,λR

(z) − ag̃λL,λR = 0 with z = 4w, a = 1
2
− λR

and b = λL − λR + 1 for g̃λL,λR(w), so the usual criteria for the construction of the two independent

solutions apply. In particular, for λL = λR, the two terms in the solution (5.40) degenerate into one.

In this situation, the second term should be replaced with C̃e−2wU
(

1
2
− λR, 1 + λL − λR, 4w

)
, where U

is the Tricomi confluent hypergeometric function. The latter can be expressed as the linear combination

U(a, b, z) = π
sin(πb)

[
1

Γ(b)Γ(1+a−b) 1F1 (a, b, z)− z1−b 1
Γ(a)Γ(2−b) 1F1 (1 + a− b, 2− b, z)

]
when b is not an inte-

ger, but can be extended to any b ∈ Z [89]. Combinations of one the two solutions in (5.40) and U enable

one to write a complete solution to (5.37) also in the cases when λL − λR = ±1,±2, . . . in which one of the

two terms in (5.40) has simple poles. For the special case λL = λR = 1
2
, 1F1 (0, 1, 4w) = U (0, 1, 4w) = 1

and a second independent solution is given by the exponential integral g̃1/2,1/2(w) = −
∫∞
−4w

e−t

t
dt.
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Thus, for generic eigenvalues, we may take

fλL,λR
(
a+, a−

)
= c e−2w

(
a+
)λL−λR LλL−λR

λR− 1
2

(4w) , C̃ = 0 , (5.45)

and generate the other branch by the exchange (5.38).

Solving the eigenvalue equations without any assumption of real-analyticity in Y im-

plies in particular that the eigenvalues alone do not fully specify the function fλL,λR , nor

its algebraic properties. In fact, the total space of elements of the form (5.36), that satisfy

the eigenvalue equations, can be described as the overlap of different solution subspaces,

whose precise form goes beyond the scope of the present paper, and that we shall study

systematically in a future publication. Essentially, as we have seen eq. (5.37) admits two in-

dependent solutions that are functions of w (plus two more independent solutions if we also

admit distributions in w). The two independent functions f
(i)
λL,λR

= (a+)λL−λRg
(i)
λL,λR

(w),

i = 1, 2, account for this degeneracy, and are distinct by the fact that f (1) admits a closed

contour integral presentation while f (2) needs an open contour presentation27 [90].

In the following, we shall focus only on the simplest type of solutions that enable us to

satisfy the periodicity condition in a non-trivial way and to study the possible resolution of

singularities of the fluctuation fields in the higher-spin gravity setup. Such solutions admit

a closed contour integral presentation for their “diagonal” factor gλL,λR(w), corresponding

to a Laplace-like transform. We shall now turn to describing this integral transform,

specifying the eigenfunctions that it can encode.

5.3 Regular presentation of the stargenfunctions

The stargenvalue equations give rise to non-polynomial functions g(w) as well as complex

powers of the oscillators. It is therefore important to specify a functional presentation for

the eigenfunctions, both to make sense of the complex powers and because different presen-

tation of the same non-polynomial function may have different star-product properties. For

instance, it was shown in [10] that in order to ensure that both Fock-space and anti-Fock-

space elements (that are in general both required by reality conditions on the master fields)

form an associative algebra, it is crucial to work with an integral presentation, with the

prescription that all star products be worked out before evaluating the auxiliary integrals.

The specific regular presentation that was used in that paper and its follow-ups (see [8, 14]

for the use of this integral presentation for solutions of various physical interpretation),

involving an integral around a “small” contour, is technically the simplest one (see [91] for

27For instance, admitting inverse powers of the oscillators in the realization of fλL,λR implies that an

element like f1/2,1/2 can be realized both by the Fock space lowest-weight state projector f
(1)

1/2,1/2 and by

an element f
(2)

1/2,1/2 obtained by acting on the anti-Fock-space highest-weight state projector f
(1)

−1/2,−1/2

with inverse powers of the creation/annihilation operators, (a−)−1 ? f
(1)

−1/2,−1/2 ? (a+)−1. It is evident that

f
(1)

1/2,1/2 and f
(2)

1/2,1/2 do not coincide, as the latter is not annihilated from the left by a− and from the right

by a+. Indeed, as mentioned in Footnote 26, the eigenvalue equations (5.37) for λL = λR = 1
2

is solved by

f1/2,1/2 = c+e
−2w + c−e

−2wEi(4w), where Ei(x) = −
∫ +∞
−x

e−t

t
dt is the exponential integral: while the Fock

space lowest-weight projector corresponds to the exponential solution e−2w, the element f
(2)

1/2,1/2, generated

by means of non-analytic functions of the oscillators, can be shown to be equal to the second, independent

and non-elementary solution.
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more general ones), and for this reason will be employed in the present paper to represent

the factor gλL,λR(w). We shall moreover use a Mellin transform to account for the complex

powers. Fixing this presentation will resolve the degeneracy in fλL,λR that we commented

on above by limiting the choice of eigenfunction to a simple class. We postpone the study

of more general regular presentations to a future publication [90].

Let us now show how one can solve the eigenvalue equation (5.37) by means of a

closed-contour Laplace-like transform

gλL,λR (w) =

∮
C(ς0)

dς

2πi
e−2ςwg̃λL,λR (ς) , (5.46)

where the factor of 2 at the exponent has been inserted for future convenience and C(ς0)

is a closed contour encircling the point ς0 to be determined later, subject to the condition

that the integrand must be single-valued along the integration path. Eq. (5.37) is then

converted into∮
C(ς0)

dς

2πi
e−2ςw

[
2w + (λL − λR + 1) ς − 2wς2 − (λL + λR)

]
g̃λL,λR (ς) = 0 . (5.47)

Expressing w in the square brackets in terms of derivatives of e−2ςw w.r.t. ς and integrating

by parts one turns the condition (5.37) into a first-order differential condition on the

transform g̃λL,λR (ς),∮
C(ς0)

dς

2πi
e−2ςw

[(
1− ς2

) ∂
∂ς

+ (λL − λR − 1) ς − (λL + λR)

]
g̃λL,λR (ς) = 0 , (5.48)

which is solved by

g̃λL,λR (ς) = N (ς + 1)λL−
1
2

(ς − 1)λR+ 1
2

, (5.49)

where N is a constant. Thus we obtain

gλL,λR (w) = NλL,λR
∮
C(ς0)

dς

2πi

(ς + 1)λL−
1
2

(ς − 1)λR+ 1
2

e−2ςw , (5.50)

where NλL,λR is a normalization constant, to be fixed by requiring closure of the associative

algebra of fλL,λR elements.28 Imposing that the contour encircle the point ς0 = 1, (5.50)

gives an integral realization of the g(w) function for elements (5.36) with λL ∈ C and

28While for half-integer eigenvalues it is concretely possible to fix the normalization constants by requiring

that fλL,λR ? fλ′
L
,λ′

R
= δλR,λ

′
L
fλL,λ

′
R

, working with complex eigenvalues makes this issue subtler, and the

simple integral realization that we use in this paper, while good enough for a linearized analysis, is not a

satisfactory choice for such purpose. Indeed, such “small contour” integral presentation can only capture

discrete eigenvalues, according to (5.52), and these cover only a portion of the full spectrum, as discussed

in section 4. We expect in fact that the linearized solutions discussed in this paper can only be dressed into

full solutions by starting from an enlarged set of states, with left and right complex eigenvalues. For this

reason, we shall not fix the normalization constants in this paper, leaving this issue, as well as any other

question related to the non-linear completion of these solutions, to a future work [90] where we shall use a

different contour-integral presentation which evades such restriction.
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λR + 1
2 ∈ Z+, provided the contour is small enough as not to cross the branch cut from

−1 to −∞ that arises from the numerator of the integrand when λL− 1
2 /∈ Z. Analogously,

choosing a small contour that encircles the point ς0 = −1 and does not cross the branch

cut from 1 to +∞, (5.50) gives an integral realization of the g(w) function for elements

with λL − 1
2 ∈ Z− and λR ∈ C.29 We can therefore conclude that

gλL,λR (w) = NλL,λR
∮
C(±1)

dς

2πi

(ς + 1)λL−
1
2

(ς − 1)λR+ 1
2

e−2ςw (5.51)

gives an integral presentation of the function of w accounting for the w-dependent factor

of fλL,λR in (5.36), with the limitation that

λR +
1

2
∈ Z+ , for ς0 = 1 ,

λL −
1

2
∈ Z− , for ς0 = −1 . (5.52)

We choose standard phase conventions around the branching points, with Arg(ς) ∈ (−π, π]

for the integrand when λR+ 1
2 ∈ Z+ and λL ∈ C, and Arg(ς) ∈ [0, 2π) when λL− 1

2 ∈ Z−

and λR ∈ C. The integral presentation (5.51) with (5.52) indeed covers the cases (5.43)

with (5.42), as anticipated.

The factor (a+)
λL−λR of (5.36) also can be given an integral representation, which is

in fact crucial to encode complex left eigenvalues. One way of doing that is via a Mellin

transform, (
a+
)λL−λR =

∫ +∞

0
dτ

τλR−λL−1

Γ (λR − λL)
e−τa

+
, (5.53)

where Γ stands for the gamma function. The above integral only makes sense for

Re (λL − λR) < 0 and Re (a+) > 0. In order to extend it to the rest of the parameter

space of interest, we can analytically continue (5.53) with

(
a+
)λL−λR = Γ(1 + λL − λR)

∫
γ

dτ

2πi
τλR−λL−1 eτa

+
, (5.54)

where γ is a contour of Hankel type, represented in figure 1.

Such integral presentation is valid for any λL − λR 6= −1,−2, . . . and Re(a+) > 0.30

In practice, as we shall see, when evaluating the spacetime-dependent master field it will

be possible to formally use the simpler presentation (5.53) in the relevant computations,

29Actually, when taking the product of two elements fλL,λR and fλ′
L
,λ′

R
for half-integer eigenvalues, the

condition that they form an associative algebra in general requires that one can always deform one of the

two closed contour to be infinitesimally close to ς0 = 1 or ς0 = −1, in such a way that, even after the star-

product is evaluated, ς0 = ±1 is still the only pole encircled by the contour (for details, see [10, 14]). Thus,

in practice, we shall always assume the contour in (5.50) to be “sufficiently small” and to encircle ς0 = ±1.
30This analytic continuation can be obtained for instance starting from the usual integral representation

of the Gamma function via the Hankel contour, Γ(z) = 1
2i sin(πz)

∫
γ
dt tz−1 et, valid everywhere in the

complex plane except at z = 0,−1,−2, . . ., rescaling the integration variable as t = τx, with Re(x) > 0,

thus obtaining x−z = 1
2iΓ(z) sin(πz)

∫
γ
dτ τz−1 eτx, and then using Γ(z)Γ(1− z) = π

sin(πz)
.
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Im(τ)

Re(τ)

γ

Figure 1. The Hankel contour used in eq. (5.54).

and then analytically continue λL − λR beyond the region Re (λL − λR) < 0 after all

star-products have been evaluated.

Thus the solutions to the eigenvalue problem (5.45) that we shall focus on can be

rewritten as

fλL,λR (a+, a−) = NλL,λR
∫ +∞

0
dτ

τλR−λL−1

Γ (λR − λL)
e−τa

+

∮
C(±1)

dς

2πi

(ς + 1)λL−
1
2

(ς − 1)λR+ 1
2

e−2ςa+a− ,

(5.55)

with a (possibly redefined) normalization constant NλL,λR , λR + 1
2 ∈ Z+ or λL − 1

2 ∈ Z−

according to (5.52), and the proviso that for a proper analytic continuation one should

use the Hankel contour integral (5.54). See appendix C for further details on the elements

fλL,λR in the regular presentation.

As in this paper we are mainly concerned with the application of this formalism to the

study of fluctuations over a BTZ-like background, for simplicity we shall limit ourselves

to elucidating the main features of our construction by expanding the master fields on

eigenfunctions of the form (5.55) with λR + 1
2 ∈ Z+ accompanied by their hermitian conju-

gates, that the reality conditions will require (see sections 5.4 and 5.7). Elements admitting

this type of “small-contour” integral transform correspond to eigenfunctions fλL,λR belong-

ing to the subset of the f
(1)
λL,λR

that can be obtained as (a+)λL−
1
2 ? f

(1)
1/2,1/2 ? (a−)λR−

1
2 =

(a+)λL−λR ? f
(1)
λR,λR

∝ (a+)λL−λRe−2wLλL−λR
λR− 1

2

(4w). where λL is at this level unconstrained

and can have an imaginary part, while λR is a positive half-integer. Constraints on λL will

arise from algebraic conditions and from imposing periodicity along the direction of iden-

tification. From now on we shall restrict our consideration to this class of eigenfunctions,

and omit any of the superscripts used in this section to distinguish the various sectors of

solutions to (5.30)–(5.31).

Note that, as elements like fλL,λR are in general non-analytic in Y for λL ∈ C, expand-

ing the master-fields over such a basis seems incompatible with a physical interpretation

of the expansion coefficients in terms of fields of various spins. However, we shall show in
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section 6.1 that this effect is peculiar to having started the construction with the master

fields restricted at the unfolding point, and that reinstating the spacetime dependence via

the gauge function L in fact removes this problem, provided that the star products with L

are performed prior to taking the limit back to the unfolding point.

Finally, it is useful to note that in the limit λL−λR → 0, the integral presentation (5.55)

of fλL,λR smoothly reduces to that of a projector fλR,λR

fλL,λR
(
a+, a−

)
−−−−−−−→
λL−λR→0

∮
C(ε)

dς

2πi

(ς + 1)λR−
1
2

(ς − 1)λR+ 1
2

e−2ςw , (5.56)

where now ε = sign(λR), in the sense that the divergence of each Gamma function at the

denominator cancels exactly the one of the corresponding τ -integral in the limit. This

is of course in agreement with the result of the limit taken on the non-integral presenta-

tion (5.45).

The above results apply to each of the (commuting) (a+
1 , a

−
1 ) and (a+

2 , a
−
2 ) systems, so in

the following sections we can directly use the above results by adding the labels “1” and “2”.

5.4 Reality properties of the eigenfunctions

Later in this paper, we will discuss the reality condition imposed on fields. To prepare for

that discussion, we first investigate the reality properties of the eigenfunctions.

Using the convention (5.18) and (5.19), we have for both the “1” and the “2” system(
a±i
)†

= ±a±i , (5.57)

i.e. the creation and annihilation operators behave respectively like real and imaginary

numbers under hermitian conjugation.

The complex conjugate of (5.30) and (5.31) are:

f †
(
a+, a−

)
?
(
a+a−

)
= −λ∗Lf †

(
a+, a−

)
, (5.58)(

a+a−
)
? f †

(
a+, a−

)
= −λ∗Rf †

(
a+, a−

)
, (5.59)

which shows that, due to the fact that w† = −w, the right (left) eigenvalue of f † is the

opposite of the complex conjugate of the left (right) eigenvalue of f .

Thus, the Hermitian conjugate of fλL,λR , with λR + 1
2 ∈ Z+, is an element with left

eigenvalue λ′L = −λR ∈ Z− + 1
2 and complex right eigenvalue λ′R = −λ∗L, and as such

admits a regular presentation as (see eqs. (5.55) with (5.51)–(5.52))

f−λR,−λ∗L = N−λR,−λ∗L

∫ +∞

0
dτ

τλR−λ
∗
L−1

Γ
(
λR − λ∗L

)e−τa+

∮
C(−1)

dς

2πi
e−2ςw (ς − 1)λ

∗
L−

1
2

(ς + 1)λR+ 1
2

. (5.60)

Indeed, we can compare with the hermitian conjugate of fλL,λR from eq. (5.55) with

λR + 1
2 ∈ Z+, which reads

(fλL,λR)† = (NλL,λR)∗
∫ +∞

0
dτ

τλR−λ
∗
L−1

Γ
(
λR − λ∗L

)e−τa+

∮
C(1)

dς∗

2πi

(ς∗ + 1)λ
∗
L−

1
2

(ς∗ − 1)λR+ 1
2

e2ς∗w , (5.61)
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where a minus sign coming from the complex conjugation of the i in the integration measure

is compensated by an overall minus sign due to reversing the orientation of the contour.

Changing integration variable as ς∗ = −ς ′ and dropping the prime,

(fλL,λR)†= (NλL,λR)∗e−iπ(λ∗L−
1
2

)(−1)
1
2
−λR

∫ +∞

0

dτ τλR−λ
∗
L−1

Γ
(
λR−λ∗L

) e−τa+

∮
C(−1)

dς

2πi

(ς−1)λ
∗
L−

1
2

(ς+1)λR+ 1
2

e−2ςw ,

(5.62)

where the phase factor was extracted taking into account the phase conventions on (5.55)

when λL ∈ C. Indeed the expression obtained above coincides with (5.60) provided that31

N−λR,−λ∗L = (NλL,λR)∗e−iπ(λ∗L−
1
2

)(−1)
1
2
−λR . (5.63)

5.5 Sp(4;R)-covariant notation for the eigenfunctions

Introducing the notation

λ := {λ1L, λ1R, λ2L, λ2R} , λ1 := {λ1L, λ1R} , λ2 := {λ2L, λ2R} , (5.64)

we are now ready to expand the master field over the functions

fλ
(
a±1 , a

±
2

)
= fλ1

(
a±1
)
? fλ2

(
a±2
)

= fλ1

(
a±1
)
fλ2

(
a±2
)

= cλ1cλ2 e
−2(w1+w2)

(
a+

1

)λ1L−λ1R Lλ1L−λ1R

λ1R− 1
2

(4w1)
(
a+

2

)λ2L−λ2R Lλ2L−λ2R

λ2R− 1
2

(4w2)

(5.65)

with regular presentation

fλ
(
a±1 , a

±
2

)
= Nλ1Nλ2

∫ +∞

0
dτ1

τλ1R−λ1L−1
1

Γ (λ1R − λ1L)
e−τ1a

+
1

∫ +∞

0
dτ2

τλ2R−λ2L−1
2

Γ (λ2R − λ2L)
e−τ2a

+
2

∮
C(±1)

dς1
2πi

(ς1 + 1)λ1L− 1
2

(ς1 − 1)λ1R+ 1
2

e−2ς1w1

∮
C(±1)

dς2
2πi

(ς2 + 1)λ2L− 1
2

(ς2 − 1)λ2R+ 1
2

e−2ς2w2 . (5.66)

We recall that the second equality in (5.65) is due to the fact that the creation and annihi-

lation operators (5.18) and (5.19), commute under star-product. For λL = λR ∈ Z− 1
2 one

retrieves the projectors studied in [8, 10, 11] and recalled as a special case in section 5.1.

We can now rewrite the complete eigenfunctions fλ in an Sp(4;R)-covariant notation,

and break the latter into SL(2;C)-covariant blocks when convenient. This will be useful

to highlight the physical meaning of the various structures involved, and will facilitate the

evaluation of the star products with the gauge function. We shall do it in general for an ar-

bitrary family of solutions (5.13), and later specify to the case studied in the present paper.

31Note that the condition (5.63) is indeed compatible with ((fλL,λR)†)† = fλL,λR , as it can be shown

by repeating the reasoning that leads to (5.63) for the case when λR ∈ C, which results in N−λ∗
R
,−λL

=

(NλL,λR)∗eiπ(λ∗R+ 1
2

)(−1)
1
2

+λL , and nesting the two formulas to get

((NλL,λR)∗)∗ = (N−λR,−λ∗Le
iπ(λ∗L−

1
2

)(−1)λR− 1
2 )∗ = (N−λR,−λ∗L)∗e−iπ(λL− 1

2
)(−1)λR− 1

2

= NλL,λRe
−iπ(−λL+ 1

2
)e−iπ(λL− 1

2
)(−1)2λR−1 = NλL,λR .
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In order to shorten the expressions, let us also introduce the notation

Oςiλi :=

∮
C(±1)

dς1
2πi

(ς1 + 1)λ1L− 1
2

(ς1 − 1)λ1R+ 1
2

. (5.67)

Then, ignoring for now the normalization constants, we can write

fλ
(
a±1 ,a

±
2

)
≡ fλ1

(
a±1
)
fλ2

(
a±2
)

∝Oς1λ1
Oς2λ2

∫ +∞

0
dτ1

τλ1R−λ1L−1
1

Γ(λ1R−λ1L)

∫ +∞

0
dτ2

τλ2R−λ2L−1
2

Γ(λ2R−λ2L)
e−4Ǩ(ς1,ς2;Y )−Θ(τ1,τ2)Y ,

(5.68)

where, using matrix notation AαBα =: AB = ab+ āb̄ := aαbα + āα̇b̄α̇,

Ǩ(ς1, ς2;Y ) :=
1

2
(s1w1 + s2w2) =

ς1 + ς2
2

K(+) +
ς2 − ς1

2
K(−)

= −1

8
Y Ǩ(ς1, ς2)Y = −1

8
[yκ̌y + ȳ ˇ̄κȳ + 2yv̌ȳ] , (5.69)

with

κ̌αβ :=
ς1 + ς2

2
κ(+)αβ +

ς2 − ς1
2

κ(−)αβ (5.70)

v̌αβ̇ :=
ς1 + ς2

2
v(+)αβ +

ς2 − ς1
2

v(−)αβ , (5.71)

idem ˇ̄κ, and

ΘY = θy + θ̄ȳ ,

Θα =
(
θα , θ̄α̇

)
= −

(
τ1 + iτ2

2
u+α ,

τ1 − iτ2

2
ū+α̇

)
. (5.72)

As explained in section 5.1, each one of the matrices

K(q)αβ =

(
κ(q)αβ v(q)αβ̇

v̄(q)α̇β κ̄(q)α̇β̇

)
(5.73)

is an Sp(4,C) Gamma matrix, so it is either block-diagonal (v(q)αβ = 0 = v̄(q)α̇β), for

the π-even generators, or it is block-off-diagonal (with κ(q)αβ = 0 = κ̄(q)α̇β̇) for π-odd

generators. As we shall see later (see [10] for more details), the star-products with the

gauge function (2.31) will result in a conjugation of the K(q)αβ matrices by an x-dependent

Sp(4;R) matrix, giving rise to KL
(q)αβ matrices with all blocks non-vanishing: in particular,

the off-diagonal blocks vL(q) are the Killing vectors corresponding to the rigid isometry

generator K(q) and the diagonal blocks κ(q), κ̄(q) the selfdual and anti-selfdual part of the

corresponding Killing two-form. In the case that we are studying in this paper, K(+) = iB

and K(−) = iP , and in particular, as is clear from (A.21),

κ(iB)αβ = −i(σ03)αβ , v(iB)αβ = 0 , (5.74)

κ(iP )αβ = 0 , v(iP )αβ̇ = −i(σ1)αβ̇ . (5.75)

– 42 –



J
H
E
P
0
8
(
2
0
1
9
)
1
7
1

Note that choosing the integration contour to encircle the points ς1 = ±1, ς2 = ±1, with

signs correlated in such a way that ς1ς2 = 1, corresponds to choosing iB as principal Cartan

generator: that is, to fixing the lowest-weight state of the Fock space to be 4e−4iB (and

the corresponding anti-Fock space highest-weight state to be 4e4iB), with the commuting

generator iP only appearing in the excited states (see [10] for details). This also implies that

the lowest-weight state, as well as the corresponding anti-Fock highest-weight state, have

enhanced symmetry under an so(2)B ⊕ so(2, 1){M12,P1,P2} residual isometry algebra, any

other diagonal state fλiL=λiR in the module is biaxially symmetric, with isometry algebra

so(2)B ⊕ so(2)P [10, 11], special non-diagonal states (such as those with identical real parts

of the left and right eigenvalues and non-trivial momentum on S1, that we shall examine

in detail in section 6.2) have only axial symmetry, while completely generic states fλ do

not preserve any isometry. These rigid symmetries of the Y -dependent expansion elements

of Φ′(Y ) are generically promoted to spacetime isometries preserved by the corresponding

fluctuation modes of Φ(L)(x, Y ) via rotation with the gauge function L. However, due to

the identification, the four-dimensional BTZ-like isometry algebra is reduced, compared

to that of AdS4, to so(2)P ⊕ sp(2)B,M02,M03 . As a consequence, the spacetime isometries

preserved by the fluctuation modes actually reduce to the intersection of their “local”

isometry algebra with that of the BTZ-like background. For instance, the symmetries of the

spacetime fluctuation based on the lowest-weight state 4e−4iB will only be so(2)B ⊕ so(2)P .

Let us look at the generic element in the twisted sector in Φ′ in terms of these building

blocks. The star-product of (5.68) with κy can be written as

fλ
(
a±1 , a

±
2

)
? κy = Oς1λ1

Oς2λ2

∫ +∞

0
dτ1

τλ1R−λ1L−1
1

Γ (λ1R − λ1L)

∫ +∞

0
dτ2

τλ2R−λ2L−1
2

Γ (λ2R − λ2L)
×

× 1√
κ̌2

exp

[
−1

2
(ỹ − iθ)κ̌−1(ỹ − iθ) +

1

2
ȳ ˇ̄κȳ − θ̄ȳ

]
, (5.76)

where we have defined the modified oscillators ỹ := y − iv̌ȳ, and we recall that, κ(q)αβ

being a symmetric 2 × 2 matrix, κ2
(q) := detκ(q) = 1

2κ
αβ
(q)κ(q)αβ and κ−1

(q)αβ = −κ(q)αβ

κ2
(q)

. It

is clear from this expression that the elements of the twisted sector is, in fact, regular if

κ(q)αβ of the principal Cartan generator is non-singular, and otherwise non-real-analytic

— realizing, in fact, a delta-function in Y space, as we shall show in appendix D (see

also [10] for the diagonal case). Distributional master-fields in the twisted sector are then

smoothened into regular functions almost everywhere once the x-dependence is reinstated

via the gauge function L, but maintain the delta-function behaviour on the spacetime

surface where (κL(q))
2(x) = 0. This is the case for the twisted sector of the familyM(E; J),

investigated in [8, 10], where the singular behaviour occurs in r = 0 and results in a

spherically-symmetric black-hole-like behaviour in the tower of Weyl tensors encoded in

Φ(L). For the π-even principal Cartan generators J and iB, instead, κ2
(J) = κ2

(iB) = 1,

so regular and twisted sector are, in fact, degenerate, as anticipated. This, however, does

not imply that the L-rotated elements of the twisted sector are regular, as this depends

on whether (κL(q))
2(x) has a region where it vanishes or not (which ultimately depends

on whether the corresponding Killing vector has positive defined norm or not). While

solutions based on J as principal Cartan generator will always be regular, as we shall see
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in this paper the solutions based on iB possess a singular surface, and we shall study the

smoothening of the corresponding singularity in appendix D.

For the familyM(iB; iP ) regular and twisted sector are equivalent (the lowest/highest

weight elements e∓4iB are in fact eigenstates of κy). However, the integral presentation that

we use selects the twisted sector in Φ′, in the sense that, as we shall explain in appendix E,

the elements of the regular sector, once transformed by means of the gauge function L, will

give rise to integrands that are incompatible with the small-contour integral representation

employed in this paper, at least in some spacetime region.32 For this reason we shall discard

them in the following. Thus, we shall expand Φ′ on the regular sector, i.e.

Φ′ =
∑
λ

νλfλ(Y ) ? κy , (5.77)

and we shall now turn our attention to imposing constraints on the states allowed in such

expansion.

5.6 Identification conditions

Fluctuation fields over the four-dimensional BTZ-like background need to be left invariant

by a full spatial transvection along the S1 cycle. We shall now impose this condition on

the Weyl zero-form master field.

The Weyl zero-form (see section 1) transforms as

Φ(L) −→ (γ(L))−1 ? Φ(L) ? π(γ(L)) , (5.78)

where in L gauge

γ(L) = L−1 ? γ′ ? L , (5.79)

and γ′ induces the corresponding transformation on the rigid Y -space element Φ′,

Φ′ −→ γ′−1 ? Φ′ ? π
(
γ′
)
. (5.80)

A finite transvection generated by P := P0′1 is therefore implemented via

γ′ = e
− i

8

√
MϕPαβY

αY β

? = e
1
2

√
Mϕ(w1−w2)

? , (5.81)

as explained in appendix B, the Kαβ of which is here specified to iPαβ , and ϕ is rescaled for

convenience of later discussion. Thus the BTZ-like periodicity conditions are imposed by

Φ′ = γ′−1 ? Φ′ ? π
(
γ′
)
|ϕ=ϕ0 , (5.82)

where
√
Mϕ0 represents the circumference of the S1 cycle of the BGM background. We

can choose ϕ0 = 2π. Note that π (γ′) = γ′−1.

32This is to be contrasted with the situation for families of solutions based on π-odd principal Cartan

generators, where the regular and twisted sectors give rise to very different solution spaces (such as massless

particle and black-hole states, as studied in [8]) and no incompatibility arises.
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Imposing the identification condition on (5.77) amounts to imposing it on each factor

fλ. The transformation of fλ can be written as

fλ −→ γ′−1 ? fλ ? γ
′

= e
− 1

2

√
Mϕ(w1−w2)

? ? (fλ) ? e
1
2

√
Mϕ(w1−w2)

?

= e
1
2

√
Mϕ[−(λ1L−λ2L)+(λ1R−λ2R)]fλ , (5.83)

and requiring that the transformation is periodic in ϕ amounts to imposing the condition

[− (λ1L − λ2L) + (λ1R − λ2R)] ∈ iR . (5.84)

Since we assume that λ1,2 R + 1
2 ∈ Z+, this condition reduces to

Re (λ1L − λ2L) = (λ1R − λ2R) . (5.85)

Furthermore, if we require that the transformation for ϕ = 2π be an identity, we need to

further impose

Im

[√
M

2
(λ1L − λ2L)

]
∈ Z . (5.86)

We can therefore expand Φ′ over states fλ compatible with the BTZ-like identification

by restricting the eigenvalues to those satisfying (5.85)–(5.86), and we write

Φ′ = Φ′discrete =
∑

All valid
values of λ

[
νλfλ1

(
a±1
)
fλ2

(
a±2
)
? κy

]
+ conj , (5.87)

with the assumption that

λ1R +
1

2
∈ Z+ and λ2R +

1

2
∈ Z+ (5.88)

in the first term of the sum. The notation “conj” for the second term in the sum stands for

the conjugate terms required by the reality conditions, which we now turn to determining.

We recall that this expansion only captures one subsector of the full spectrum, the one

distinguished by discrete eigenvalues. Had we started from the more complicated setup

envisaged in section 4, even after imposing the identification condition we would still be

left with one unconstrained complex eigenvalue, and one of the sums in (5.87) would then

be substituted by an integral over the latter. The discrete spectrum contains simpler

states, and the linearized analysis that we undertake in this paper does not require the

introduction of the full spectrum of states. For this reason we shall limit our expansion to

the discrete spectrum, and this is the reason for the subscript on Φ′ used in (5.87).

5.7 The conjugate terms

There are more kinematic conditions to impose on the Weyl zero-form that further constrain

the eigenvalues: the bosonic projection and the reality conditions (2.26).

Satisfying the bosonic projection condition

Φ′ = ππ̄
(
Φ′
)

(5.89)
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amounts to imposing that

fλ1fλ2 = ππ̄ (fλ1fλ2) , (5.90)

which means that fλ is invariant when the sign of Y α is flipped. To this end, it is convenient

to represent the elements fλ with λiR ∈ Z+ − 1
2 as

fλ1fλ2 ∝
(
a+

1

)λ1L− 1
2 ?
(
a+

2

)λ2L− 1
2 ? e−

1
2
iBαβY

αY β ?
(
a−1
)λ1R− 1

2 ?
(
a−2
)λ2R− 1

2 , (5.91)

where we have written explicitly the lowest weight state f1/2,1/2 = 4e−
1
2
iBαβY

αY β . Then

ππ̄ (fλ1fλ2) ∝
(
−a+

1

)λ1L− 1
2 ?
(
−a+

2

)λ2L− 1
2 ? e−

1
2
iBαβY

αY β ?
(
−a−1

)λ1R− 1
2 ?
(
−a−2

)λ2R− 1
2 .

(5.92)

Therefore, (5.90) implies that33 (
eiπ
)λ1L+λ2L+λ1R+λ2R = 1 , (5.93)

i.e., under the assumption that λ1,2 R + 1
2 ∈ Z+,

Im (λ1L + λ2L) = 0 and
1

2
[Re (λ1L + λ2L) + λ1R + λ2R] ∈ Z . (5.94)

Now we consider the reality condition. Using π2 = 1, it is clear that any Φ′ written as

the combination Φ′ = C ′ + π
(
C ′†
)

satisfies

Φ′ = π
(

Φ′†
)
. (5.95)

Therefore, the “conj” terms in (5.87) are obtained by applying the π-automorphism to the

Hermitian conjugate of the first term, i.e.,

π
{[
νλfλ1

(
a±1
)
fλ2

(
a±2
)
? κy

]†}
= (νλ)∗

[
fλ1

(
a±1
)
fλ2

(
a±2
)
) ? κy ? κ̄ȳ

]†
? κy . (5.96)

Using that

fλ1

(
a±1
)
fλ2

(
a±2
)
∝
(
a+

1

)λ1L− 1
2 ?
(
a+

2

)λ2L− 1
2 ?e−

1
2
iBαβY

αY β ?
(
a−1
)λ1R− 1

2 ?
(
a−2
)λ2R− 1

2 , (5.97)(
a−1
)λ1R− 1

2 ?
(
a−2
)λ2R− 1

2 ?κy?κ̄ȳ = (−1)λ1R+λ2R−1κy?κ̄ȳ?
(
a−1
)λ1R− 1

2 ?
(
a−2
)λ2R− 1

2 , (5.98)

e−
1
2
iBαβY

αY β ?κy?κ̄ȳ = e−
1
2
iBαβY

αY β , (5.99)

and that λ1,2 R + 1
2 ∈ Z+, we derive that (5.96) is equal to

π
{[
νλfλ1

(
a±1
)
fλ2

(
a±2
)
? κy

]†}
= (νλ)∗

[
fλ1

(
a±1
)
fλ2

(
a±2
)]†

? κy

= (νλ)∗ f−λ1R,−λ∗1L
(
a±1
)
f−λ2R,−λ∗2L

(
a±2
)
? κy , (5.100)

33As usual, since λ1,2 L are complex, we obtain the overall phase (5.93) by extracting the −1 from the

first two factors in (5.92) within standard branch cut conventions, assigning phases in such a way that

Arg(−a+
i ) ∈ (−π, π], i = 1, 2 and taking into account the reality conditions (5.57) and the assumption

Re(a+
i ) > 0 used in defining (5.53) and (5.54).
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where in the last equality we have used the results of section 5.4. Note that the first

condition for the bosonic projection in eq. (5.94) also ensures that

κyκ̄ȳ ? fλ1

(
a±1
)
fλ2

(
a±2
)

= ±fλ1

(
a±1
)
fλ2

(
a±2
)
, (5.101)

which is a necessary condition for the element κyκ̄ȳ ? fλ1fλ2 , that appears in the reality

condition (5.96), to be an admissible element of an associative algebra, since κy and κ̄ȳ are

unimodular34 (see eqs. (2.6)–(2.7)).

We are finally ready to give the Weyl zero-form that we are going to focus on in the

remainder of the paper,

Φ′ = Φ′discrete =
∑

All valid
values of λ

[
νλfλ1L,λ1R,λ2L,λ2R

(
a±1 , a

±
2

)
+ (νλ)∗ f−λ1R,−λ∗1L,−λ2R,−λ∗2L

(
a±1 , a

±
2

)]
? κy , (5.102)

where the elements fλa,λb,λc,λd entering the expansion of the Weyl zero-form admit the

integral presentation

fλa,λb,λc,λd
(
a±1 , a

±
2

)
=

∫ +∞

0
dτ1

τλb−λa−1
1

Γ (λb − λa)
e−τ1a

+
1

∫ +∞

0
dτ2

τλd−λc−1
2

Γ (λd − λc)
e−τ2a

+
2

∮
C(±1)

dς1
2πi

(ς1 + 1)λa−
1
2

(ς1 − 1)λb+
1
2

e−2ς1a
+
1 a
−
1

∮
C(±1)

dς2
2πi

(ς2 + 1)λc−
1
2

(ς2 − 1)λd+ 1
2

e−2ς2a
+
2 a
−
2 .

(5.103)

and where we recall that:

• for simplicity of the integral presentation we set

λiR +
1

2
∈ Z+ , i = 1, 2 ; (5.104)

and, as a consequence of the identification constraints and of the bosonic projection

condition (see (5.85)–(5.86) and (5.94)), both the real and the imaginary part of the

left eigenvalues are quantized, and in particular

Re(λiL)− 1

2
∈ Z , with Re(λ1L)− λ1R = Re(λ2L)− λ2R (5.105)

and

Im(λ1L) = −Im(λ2L) ∈ Z√
M

, (5.106)

from which it follows that

λ1L + λ2L = (λ1R + λ2R)mod 2 ; (5.107)
34The analogous condition involving the star multiplication with κyκ̄ȳ from the right is trivially satisfied

with our choice of λiR + 1
2
∈ Z+. The condition (5.101) also constrains the real parts of the left eigenvalues

as Re(λ1L+λ2L) ∈ Z, which, again due to λiR+ 1
2
∈ Z+, is anyway implied by the second condition in (5.94).

Note however that imposing (5.101) together with its right analogue would restrict Re(λ1L + λ2L) ∈ Z and

Re(λ1R + λ2R) ∈ Z even without fixing λiR + 1
2
∈ Z+.
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• the contour encircles ±1 according to the pole of the integrand, i.e., it encircles +1

for the elements encoded in the first term in the sum (5.102) and −1 for those in the

second one;

• the previously used normalization constants Nλi have been absorbed into the defor-

mation parameters νλ.

6 Fluctuation fields in spacetime

Having determined the Weyl zero-form encoding fluctuation fields of all integer spins over

a 4D BTZ-like background at the unfolding point, we shall now spread this initial data

over a spacetime chart and reinstate the x-dependence via the star products with the

gauge function L (as in (2.31)). We shall examine the resulting behaviour of the individual

spacetime fields, and resolve their apparent singularities at the level of their embedding

into the master fields living on the full (x, Y )-space.

6.1 The Weyl zero-form in L-gauge

Gauge function. We choose L to be [92]

L (x; y, ȳ) =
2h

1 + h
exp

(
i

1 + h
xa(σa)

αα̇yαȳα̇

)
, (6.1)

where σa are the Van der Waerden symbol (see appendix A for explicit realizations), and

h =
√

1− ηabxaxb , ηab = diag(−1, 1, 1, 1) . (6.2)

With this choice the AdS4 background one-form connection is given by

Ωµ = L−1 ? dL = − i
2
eαα̇µ yαȳα̇ −

i

4

(
ωαβµ yαyβ + ω̄α̇β̇µ ȳα̇ȳβ̇

)
, (6.3)

where

eαα̇µ = −h−2δaµ (σa)
αα̇ , ωαβµ = −h−2δaµx

b (σab)
αβ and ω̄α̇β̇µ = −h−2δaµx

b (σ̄ab)
α̇β̇ , (6.4)

are the vierbeins and spin-connection and the xa are stereographic coordinates, which are

related to the embedding coordinates (3.39) by

xa =
Xa

1 + |X0′ |
. (6.5)

We refer to appendix A for more details on the relation of stereographic coordinates with

the other coordinate systems that we use in this paper.
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Spacetime-dependent Weyl zero-form. The evaluation of (2.31) is facilitated by

noting that the adjoint action of L on a Z-independent symbol f amounts to a rotation of

the Y oscillators, viz.

L−1 ? f
(
Yα
)
? L = f

(
Lα

βYβ

)
, (6.6)

where Lα
β(x) is the x-dependent Sp(4) matrix

Lα
β =

1

h

(
δα
β xα

β̇

x̄α̇
β δα̇

β̇

)
. (6.7)

In order to compute Φ(L), it is therefore useful to write the eigenfunctions fλ in the

Sp(4,R)-covariant notation of section 5.5. The L-rotation of the Y oscillators induces

a spacetime-dependent transformation of all the structures contracted with them, the po-

larization spinor Θα and the Kαβ matrix (with its καβ , κ̄α̇β̇ and vαβ̇ blocks) entering

eqs. (5.69)–(5.72). Ultimately, their transformations all descend from the L-rotation in-

duced on the spin-frame basis spinors u±α and ū±α̇ . We shall henceforth denote with a label

(L) the corresponding L-transformed quantities, and refer to the so-transformed master

fields as being in L-gauge.

Thus,

Φ(L) = Φ
(L)
discrete = L−1 ? Φ′discrete ? π (L) =

∑
All valid

values of λ

νλf
L
λ ? κy + conj(L) , (6.8)

where

fLλ = fLλ (x, Y ) = L−1 ? fλ
(
a±1 , a

±
2

)
? L

= Oς1λ1
Oς2λ2

∫ +∞

0
dτ1

τλ1R−λ1L−1
1

Γ (λ1R − λ1L)

∫ +∞

0
dτ2

τλ2R−λ2L−1
2

Γ (λ2R − λ2L)
e−4ǨL(ς1,ς2;x,Y )−ΘL(τ1,τ2;x)Y ,

(6.9)

where we have defined

ǨL(ς1, ς2;Y ) :=
ς1 + ς2

2
KL

(+) +
ς2 − ς1

2
KL

(−) = −1

8

[
yκ̌Ly + ȳ ˇ̄κLȳ + 2yv̌Lȳ

]
, (6.10)

with

KL
(q) = −1

8
Y αKL

(q)α
βYβ ,

KL
(q)α

β = −
(
LTK(q)L

)
α
β =

(
κL(q)αβ vL

(q)αβ̇

v̄L(q)α̇β κ̄L
(q)α̇β̇

)
, (6.11)

where the matrix L is given in (6.7), and

ΘLα(x; τ1, τ2) = (Θ(τ1, τ2)L(x))α . (6.12)

In our specific case K(+) = iB and K(−) = iP , so

κ̌Lαβ =
ς1 + ς2

2
κL(iB)αβ +

ς2 − ς1
2

κL(iP )αβ , (6.13)

v̌L
αβ̇

=
ς1 + ς2

2
vL

(iB)αβ̇
+
ς2 − ς1

2
vL

(iP )αβ̇
, (6.14)
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with vL
(M)αβ̇

being the Killing vector associated to the sp(4;C) (complexified) isometry

generator M and κL(M)αβ (κ̄L
(M)α̇β̇

) being the (anti-)selfdual part of the corresponding

Killing two-form. Using (5.74)–(5.75), their explicit expressions in global, embedding co-

ordinates are

κL(iB)αβ = −i(σ03)αβ +
2i

1−X0′
X[0X

a(σ3]a)αβ , (6.15)

vL
(iB)αβ̇

= 2iX[0(σ3])αβ̇ , (6.16)

κL(iP )αβ = iXa(σa1)αβ , (6.17)

vL
(iP )αβ̇

= −i(σ1)αβ̇ +
2i

1−X0′
X[1X

a(σa])αβ . (6.18)

It will be useful in the following to write all van der Waerden symbols in terms of a spin-

frame (u+α, u−α), u+αu−α = 1, idem their complex conjugates (see appendix A for details).

As a consequence, (6.15)–(6.18) can be rewritten as

κL(iB)αβ = −i
[
1 +

X2
3 −X2

0

1−X0′

]
(u+
αu
−
β + u−αu

+
β )

− i

1−X0′

[
(X0 +X3)(X1 − iX2)u+

αu
+
β + (X0 −X3)(X1 + iX2)u−αu

−
β

]
, (6.19)

vL
(iB)αβ̇

= i(X0 +X3)u+
α ū

+

β̇
− i(X0 −X3)u−α ū

−
β̇
, (6.20)

κL(iP )αβ = −X2(u+
αu
−
β + u−αu

+
β )− i(X0 +X3)u+

αu
+
β − i(X3 −X0)u−αu

−
β (6.21)

vL
(iP )αβ̇

= i

[
1 +

X2 −X2
1

1−X0′

]
(u+
α ū
−
β̇

+ u−α ū
+

β̇
)

+
iX1

1−X0′

[
(X0 +X3)u+

α ū
+

β̇
+ (X0 −X3)u−α ū

−
β̇

+ iX2(u+
α ū
−
β̇
− u−α ū+

β̇
)
]
. (6.22)

It is easy to show that

(κL(iB))
2 :=

1

2
κLαβ(iB)κ

L
(iB)αβ = detκL(iB) = 1−X2

0 +X2
3 =: ∆2 , (6.23)

(vL(iB))
2 :=

1

2
vLαβ̇(iB)v

L
(iB)αβ̇

= det vL(iB) = X2
0 −X2

3 , (6.24)

while

(κL(iP ))
2 = −XνXν = 1−X2

0′ +X2
1 , ν = 0, 2, 3 , (6.25)

(vL(iP ))
2 = 1 +XνXν = X2

0′ −X2
1 =:

ξ2

M
. (6.26)

Moreover,

θLα =
1

2
3
2
√

1−X0′

{
[(X1−iX2)(τ1−iτ2)−(1−X0′)(τ1+iτ2)]u+

α +(X3−X0)(τ1−iτ2)u−α
}
.

(6.27)
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We also note that, once all constraints (5.105)–(5.107) on the eigenvalue that we allow in

the expansion of the Weyl zero-form have been taken into account, eq. (6.9), in particular

the τ -integrals, can be rewritten in the more suggestive form

fLλ =
1

Γ (−Re(∆λ)− ip) Γ (−Re(∆λ) + ip)
Oς1λ1
Oς2λ2

×
∫ +∞

0
dτ1

∫ +∞

0
dτ2

1

(τ1τ2)Re(∆λ)+1

(
τ2

τ1

)ip
e−4ǨL(ς1,ς2;x,Y )−ΘL(τ1,τ2;x)Y , (6.28)

where we have defined p := Im(λ1L) = −Im(λ2L), ∆λ := λ1L − λ1R = λ2L − λ2R (the last

equality following from the identification condition (5.105)).

In terms of the L-rotated quantities above introduced, the star product of (6.9) with

κy reads

fLλ ? κy = Oς1λ1
Oς2λ2

∫ +∞

0
dτ1

τλ1R−λ1L−1
1

Γ (λ1R − λ1L)

∫ +∞

0
dτ2

τλ2R−λ2L−1
2

Γ (λ2R − λ2L)

× 1√
(κ̌L)2

exp

[
−1

2
(ỹL − iθL)(κ̌L)−1(ỹL − iθL) +

1

2
ȳ ˇ̄κLȳ − θ̄Lȳ

]
, (6.29)

with the modified oscillators ỹL := y − iv̌Lȳ and where we recall that (κL(q))
−1
αβ = −

κL
(q)αβ

(κL
(q)

)2 .

This is the expression of the generic term in the expansion of our Weyl zero-form Φ(L)

in (6.8). In particular, the generating function of the scalar and the (self-dual part of the)

generalized Weyl tensor fields is

C(x, y) = Φ(L)
∣∣
ȳ=0

=
∑

All valid
values of λ

(
νλf

L
λ ? κy + conj(L)

) ∣∣
ȳ=0

, (6.30)

where

fLλ ? κy
∣∣
ȳ=0

= Oς1λ1
Oς2λ2

∫ +∞

0
dτ1

τλ1R−λ1L−1
1

Γ (λ1R − λ1L)

∫ +∞

0
dτ2

τλ2R−λ2L−1
2

Γ (λ2R − λ2L)

× 1√
(κ̌L)2

exp

[
−1

2
(y − iθL)(κ̌L)−1(y − iθL)

]
. (6.31)

Real-analyticity at the horizon. While the expression for Φ(L) (6.29) obtained above

may seem, at a first glance, essentially identical to its x-independent counterpart at the

unfolding point on the horizon (5.76), a closer look reveals an important difference: the

Y -independent term at the exponent — bilinear in θLα , that is, blinear in the τi — is

here actually non-vanishing, whereas its counterpart in (5.76) is in fact trivial. Indeed,

as κ̌αβ reduces to κ(iB)αβ (see eqs. (5.70) and (5.74)–(5.75)) and θα is collinear with one

of the eigenspinors of κ(iB)αβ (see eqs. (5.72), (5.74) and (A.15)), clearly the quadratic

term in θ at the exponent of (5.76) vanishes. However, the situation changes once the star

products with the gauge function displace the Weyl zero-form from the unfolding point at

the horizon: κ̌Lαβ(x) and θLα(x) acquire extra, spacetime-dependent terms that complicate

their spinorial structure, giving rise to non-trivial, Y -independent terms bilinear in τi.
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This is crucial in order for the linearized Weyl zero-form to be considered a proper

generating function of fluctuation fields. Indeed, the scalar field (s = 0) and the (self-dual

part of the) spin-s linearized Weyl tensor Cα(2s) (s = 1, 2, 3, . . . ) are extracted from Φ(L) via

Cα(2s)(x) =
∂

∂yα1
· · · ∂

∂yα2s
Φ(L)

∣∣∣∣
Y=0

=
∂

∂yα1
· · · ∂

∂yα2s
C
∣∣∣∣
ȳ=0

(6.32)

(analogously, with the roles of y and ȳ interchanged for the anti-self-dual part of the Weyl

tensors). Therefore, in order for Φ(L) to contain the propagating degrees of freedom in the

coefficients of its Y expansion it is crucial that it be real-analytic in Y = 0. In this respect,

the expansion (5.102)–(5.103) that we start from at the unfolding point is problematic,

since, as we have seen, whenever complex eigenvalues are involved, as it is in this case nec-

essary in order to have non-trivial momentum on S1. This leads to complex powers of the

oscillators, which reflect themselves, in the integral presentation, into ill-defined τ -integrals

in the limit Y → 0 (5.103). However, as we have commented on above, displacing the Weyl

zero-form away from the unfolding point by means of the star products with the gauge

function leads to an integrand of schematic form

eO(τ2)+O(τy)+O(y2) , (6.33)

which, after taking the derivatives w.r.t. y-coordinates, gives

eO(τ2)+O(τy)+O(y2) Polynomial(τ, y) . (6.34)

It is the appearance of the non-trivial Y -independent terms bilinear in τi at the exponent

that helps the convergence of the Mellin transforms and restores analyticity in Y (at least

for generic spacetime points), as we shall show with examples in the next subsection.

Resolution of membrane-like singularities. On specific surfaces the Weyl zero-form

(as well as each spin-s component field) may have an analytic curvature singularity. As clear

from (6.29), this happens where the Killing two-form becomes degenerate, that is, where

(κ̌L)2 = 0, which, with our restriction on the eigenfunctions as in (5.105)–(5.107), reduces

to the surface ∆2 ≡ 1 +X2
3 −X2

0 = 0. Singularities of this type were already studied in the

context of spherically-symmetric higher-spin black holes in [8, 10, 11] and, as we shall see, it

is possible to generalize the conclusions of those papers to our present case of fluctuations of

type (6.29) over a BTZ-like background: what happens is that, as anticipated in section 2.6,

the embedding of such curvature singularities in a higher-spin covariant theory — where

higher-spin symmetries force the appearance of one such singular Weyl tensor field for every

component of an infinite-dimensional multiplet, all packed as coefficients of the expansion

of the Weyl zero-form onto an infinite-dimensional, non-commutative fibre algebra Y —

effectively trades the space-time singularities of the component fields for a delta-function-

like behaviour in Y of the corresponding master field. In practice, the quantity
√

∆2

enters the formula (6.29) as the vanishing parameter of a delta sequence: away from the

surface ∆2 = 0 the Weyl zero-form is a smooth Gaussian function of the oscillators, while

it approaches a Dirac delta function on Y -space in the ∆2 → 0 limit. However, unlike
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the delta function on a commutative space, the delta function in the non-commutative

Y -space, thought of as a symbol for an element of a star product algebra, is smooth. In

other words, the mapping of the spacetime curvature singularities to a distribution in the

fibre has the advantage that the latter type of singularity can be handled better, as the

resulting distributions have good star-product properties and can be considered elements

of an associative algebra,35 see [8, 10, 14].

We shall spell out the details of the limit in appendix D for the simplest non-trivial

choice of eigenvalues (all real parts of left and right eigenvalues take the lowest-weight value

1/2). Qualitatively, the result will be that

lim
∆2→0

Φ(L) ∝ f(X)Oλ1Oλ2δ
2(ŷ) . (6.35)

where f(X) is a function of the spacetime coordinates and ŷ := lim∆2→0 ỹ
L. We defer to

appendix D the precise result and more comments.

Thus, from the considerations above we expect that the Weyl zero-form can be ana-

lytically continued through the horizon (to which the unfolding point belongs), and that

the membrane-like curvature singularities in ∆ = 0 are resolved at the master-field level in

the sense specified above.

Limit to the singularity of the BGM background. Furthermore, one can observe

that ∆2|X2=0 = ξ2/M . The analysis of the membrane-like singularity therefore suggests

that also ξ = 0 is a regular point, in the sense that the master field is given here by a

well-defined regular prescription. Therefore, we expect that the master field configuration

can be continued through the singularity, thus exploring the full background manifold

AdS3 ×ξ S1.

In what remains, we shall turn our attention to extracting and studying the behaviour

of the Lorentz scalar fluctuation field.

6.2 The scalar field

Choice of quantum numbers. For simplicity, we shall begin by studying the scalar

field from the simplest non-trivial choice of eigenvalues that our kinematical conditions

allow: that is,

C(x) := fLλ ? κy|Y=0 + c.c. , (6.36)

with

λ1L =
1

2
+ i

n√
M

, λ2L =
1

2
− i n√

M
, λ1R = λ2R =

1

2
, (n ∈ Z) , (6.37)

35Furthermore, it is to some extent possible to consider a delta function of the oscillators as a bounded

function (which would give an even stronger meaning to the notion of resolution of curvature singularities)

in the sense that, on a non-commutative space, a change in the ordering prescription can turn a delta

function into a smooth symbol (e.g., an exponential [10]). Changes of ordering are formally part of the

gauge transformation that leave the classical observables of the Vasiliev system invariant (with important

subtleties that are currently being studied [35, 93]), so in this sense the above resolution of curvature

singularities would amount to saying that the latter are an artifact of the ordering choice for the infinite-

dimensional symmetry algebra governing the Vasiliev system.
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The complex conjugate, denoted with c.c. is extracted by means of the identical projection

on the conjugate term conj(L) of (6.8) (or, equivalently, (6.30)).

Recalling the realization of iP in terms of number operators (5.16), it is evident that,

operating on an element fλ with eigenvalues (6.37), the twisted adjoint action of iP (ac-

cording to (5.9)) on it extracts the eigenvalue λ2L−λ1L
2 − λ2R−λ1R

2 = −ip; that is, the

non-trivial imaginary part of the left eigenvalues gives rise to the oscillating dependence

from the coordinate on the S1, as we shall see in (6.47)–(6.48). On the other hand, having

chosen identical real parts for the left and right eigenvalues and recalling (5.16) and (5.9),

the eigenvalue of iB results λ2L+λ1L
2 − λ2R+λ1R

2 = 0, and as a consequence the fields obtained

from a Weyl zero-form with (6.37) do not break the U(1)B symmetry. This is also why

it makes sense to use the Schwarzschild-like coordinates, not adapted to the action of the

Killing vector corresponding to iB, to write the fluctuation fields for this choice of eigen-

values. Note that a left-right asymmetric choice of real parts of the eigenvalues would give

rise to exponentially growing/decreasing quasi-normal modes in the coordinate dual to B.

Performing parametric integrals in global coordinates. The contour integrals

in (6.29) can be evaluated immediately, and simply set ς1 = ς2 = 1. Projecting onto

Y = 0, (6.36) is reduced to

C(x) := fLλ ? κy|Y=0 + c.c.

=

∫ +∞

0
dτ1

τ−ip−1
1

Γ (−ip)

∫ +∞

0
dτ2

τ ip−1
2

Γ (ip)

1√
(κLiB)2

exp

[
− 1

2(κL(iB))
2
θLκL(iB)θ

L

]
+ c.c. ,

(6.38)

where we have defined p := n√
M

. The exponent is a quadratic form in the τi, which can be

computed by substituting (6.19) and (6.27) (alternatively, see appendix D for an “adapted”

spin-frame, in which the basis spinors are chosen as the eigenspinors of κL(iB)),

exp

[
− 1

2(κL(iB))
2
θLκL(iB)θ

L

]
= e−i(c1τ1

2+c2τ1τ2+c3τ22) (6.39)

where, in embedding coordinates,

c1 :=
(
X0′ −X1

)
A , c2 := 2X2A , c3 :=

(
X0′ +X1

)
A ,

A :=
X0 +X3

8∆2
, (6.40)

and where we recall that ∆2 ≡ (κL(iB))
2 = 1 + X2

3 − X2
0 = X2

0′ − X2
1 − X2

2 . Finally,

the remaining integrals over τ1 and τ2 can be computed using the following formula (see

appendix F for the details of the derivation, and appendix G for a succinct analysis of the

extraction of component fields on the seemingly problematic surface X0 +X3 = 0):∫ +∞

0
dτ1

τ−ip−1
1

Γ (−ip)

∫ +∞

0
dτ2

τ ip−1
2

Γ (ip)
e−i(c1τ1

2+c2τ1τ2+c3τ22)

=

(
c1

c3

) ip
2

cosh

p arcsin

√1− c2
2

4c1c3

 . (6.41)
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Thus, the scalar field profile can be written as

C(X) =

(
X0′ −X1

X0′ +X1

) in

2
√
M cosh

{
n√
M

arcsin
[√

M∆2

ξ2

]}
√

∆2
+ c.c. , (6.42)

where we recall ξ2 := M(vL(iP ))
2 = M((X0′)2−(X1)2). The first factor in (6.42) guarantees

periodicity along the direction of identification, as will become manifest in Schwarzschild-

like coordinates. As the norm of the identification Killing vector P ≡ M0′1 is everywhere

positive on the BTZ-like background, ξ2 ≡ M(vL(iP ))
2 = −Mvµ(iP )v(iP )µ > 0 everywhere,

too, and therefore the behaviour of the second factor in (6.42) is essentially determined by

the sign of ∆2:

C(X) =

(
X0′ −X1

X0′ +X1

) in

2
√
M cosh

{
n√
M

arcsin
[√

M∆
ξ

]}
∆

+ c.c. , ∆2 > 0 , (6.43)

C(X) = −i

(
X0′ −X1

X0′ +X1

) in

2
√
M cos

{
n√
M

arcsinh
[√

M |∆|
ξ

]}
|∆|

+ c.c. , ∆2 < 0 , (6.44)

where we are defining ∆ :=
√

∆2 and ξ :=
√
ξ2. As ∆2 = ξ2/M − (X2)2, for ∆2 > 0 the

argument of arcsin is real and bounded from above, 0 ≤
√

M∆2

ξ2 ≤ 1, and as a consequence,

according to (6.43) the scalar field diverges for ∆2 → 0+ and decays essentially as 1/∆

for large enough ∆. On the other hand, for ∆2 < 0, the argument of arcsinh is real and

unbounded, 0 ≤
√

M |∆2|
ξ2 < +∞, and consequently, as |∆2| increases, the scalar field in

the region ∆2 < 0 decreases towards zero from the divergence in ∆2 → 0− with fastly

suppressed oscillations.

Alternative expression in Schwarzschild coordinates. For c2√
c1c3

> 0, that is, for

X2 > 0 (sin θ > 0 in Schwarzschild-like coordinates), one can rewrite the result in (6.41) as∫ +∞

0
dτ1

τ−ip−1
1

Γ (−ip)

∫ +∞

0
dτ2

τ ip−1
2

Γ (ip)
e−i(c1τ1

2+c2τ1τ2+c3τ22)

=

(
c1

c3

) ip
2

cosh

[
p arccos

(
c2

2
√
c1c3

)]
, (6.45)

and therefore, in embedding coordinates,

C(X) =

(
X0′ −X1

X0′ +X1

) in

2
√
M cosh

{
n√
M

arccos

[√
MX2√
ξ2

]}
√

∆2
+ c.c. (6.46)

Then for r >
√
M it can be further converted into

C = e−inφ
cosh

{
n√
M

arccos
[√

1− M
r2 cosh

(√
Mt
)

sin (θ)
]}

√
r2

M −
(
r2

M − 1
)

cosh2
(√

Mt
)

sin2 (θ)

+ c.c. , (6.47)
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and for r <
√
M

C = e−inφ
cosh

{
n√
M

arccos
[√

M
r2 − 1 sinh

(√
Mt
)

sin (θ)
]}

√
r2

M −
(

1− r2

M

)
sinh2

(√
Mt
)

sin2 (θ)

+ c.c. . (6.48)

The scalar field is manifestly periodic in φ, as expected, and one can check that it indeed

satisfies the Klein-Gordon equation

(�+ 2)C = 0 . (6.49)

Horizon limit. We can check that the coefficients of the Y expansion of the master

field (6.29) with eigenvalues (6.37) in the scalar sector are all well-defined at the horizon

(i.e., in the limit r →
√
M), as anticipated. For instance, in this limit the scalar field

converges to

lim
r→
√
M
C = e−inφ cosh

(
n√
M

)
, (6.50)

where for notational simplicity we omit the c.c. term. This result can be actually obtained

on either of the patch of coordinates for r >
√
M or r <

√
M . The directional derivatives

also remain well-defined at the horizon. Let us first consider the limit on the outer patch.

In order to define the directional derivatives we can introduce the local frame

e0 =
(
r2 −M

) 1
2 dt, e2 =

(
r2 −M

) 1
2 cosh

(√
Mt
)
dθ

e1 =
(
r2 −M

)− 1
2 dr and e3 = rdφ,

where the direction along (1) can be identify with the radial direction. In this way,

lim
r→
√
M

(
∇(1)

)
C = −ne

−inφ

M
sinh

(
n

2
√
M

)
sin(θ) cosh(

√
Mt). (6.51)

Analogously,

lim
r→
√
M

(
∇(0)

)
C = −ne−inφ sinh

(
n√
M

)
sinh(

√
Mt). (6.52)

and

lim
r→
√
M

(
∇(2)

)
C = n

e−inφ

2
sinh

(
n√
M

)
cos(θ) cosh(

√
Mt). (6.53)

It is direct to check that the same limit can be obtained from the patch r <
√
M , with the

proviso that of course the coordinates are different and that sinh(
√
Mt) and cosh(

√
Mt)

are interchanged (compare eq. (3.44) and eq. (3.45)).

Singular limits. As can be seen directly from (6.44), the scalar field has a membrane-like

singularity as ∆→ 0. Approaching the singularity of the BGM background, i.e. in the limit

ξ → 0, the scalar field remains bounded but becomes indefinite, as it starts oscillating with

a diveregent frequency. However, as discussed in section 6.1, the linearized Weyl zero-form

master field remains well-defined in both of these limits in the sense that its limiting values
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are fiber space distributions with a regular presentation. More precisely, the resolution of

the membrane-like singularity of the scalar field is in terms of a fiber space delta function,

as shown in appendix D. The resolution of the scalar field singularity at ξ = 0, on the other

hand, is in terms of a more general distribution, as discussed at the end of section 6.1.

7 Conclusions and outlook

In this paper we have studied massless fluctuations of all integer spins over the four-

dimensional uplift of the eternal spinless BTZ black hole — i.e., over the eternal spinless

BGM black hole. The latter, like its 3D counterpart, can be represented as a flat connec-

tion, and as such it is also a vacuum solution of the full 4D Vasiliev equations of higher-spin

gravity. For this reason, we have constructed fluctuation fields as solutions to the Vasiliev

equations linearized around the BGM spacetime. In doing so, we have made use of the un-

folded formulation, thereby constructing both the background solution and the fluctuations

by means of spacetime-dependent gauge functions and fiber space elements containing the

local data that reconstruct the spacetime fields around any regular point.

In fact, as we showed in section 3, writing the background solution by means of a glob-

ally defined gauge function facilitates its extension to the full topologically extended eternal

spinless BGM black hole, consisting of two eternal BGM black holes glued together across

their singularities. The natural question, that we addressed next, is whether fluctuation

fields can be thought of as smooth at the BGM singularity (as well as on other submanifold,

such as the horizon), which seems impossible in the usual gravitational analysis.

We have showed that higher-spin gravity provides interesting mechanisms for resolving

classical singularities in gravity. These mechanisms rely on an interplay between differential

and operator algebras. The former can be used to treat fluctuations on manifolds with de-

generate metrics. Moreover, the unfolded machinery requires the introduction of infinitely

many form fields, which can be packaged into master fields taking their values in operator

algebras. In the presence of higher spin symmetry, these operators become density matrices

on non-commutative symplectic manifolds. As we have seen in this paper, the linearized

master fields can be continued across horizons and singularities (and other surfaces), where

individual Lorentz tensorial fields have fatal singularities: typically, the singular behaviour

of individual fields on such surfaces manifests itself in the fact that the master fields be-

come delta function in the fiber coordinates. As the latter are non-commutative variables,

however, the master fields remain well-defined as symbols of operator algebra elements,

and in that sense the limit to the horizon or the singularity is uneventful. In that sense,

the fluctuations do explore the full topologically extended eternal spinless BGM black hole.

In order for such mechanisms to survive at the fully non-linear level, one has to show

that the aforementioned operator algebras admit a well-defined quantum star product. We

shall address this important issue, which involves the composition of operators in the image

of the Wigner-Ville map applied to wave-functions that are not L2, in a future publica-

tion [90]. Preliminary results show that Holder duality [88] as well as the particle/black

hole duality (2.35) may play an important role in constructing these algebras.
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The formalism also leads to a natural twistor space regularization of the self-energy for

Coulomb-like solutions on AdS4, which clearly deserves further scrutiny. Another physically

interesting feature that emerges naturally from our construction is the appearance of quasi-

normal modes on the BGM black-hole background. They arise essentially as a result of the

fact that if the adjoint action of ad?K of the oscillator realization K of the identification

Killing vector
−→
K has an integer spectrum, then the spectrum of ad?

K̃
, where

−→
K̃ is a dual

Killing vector, contains imaginary parts. The latter are responsible for the appearance of

exponentially growing/decaying modes, which we interpret as quasi-normal modes. Our

construction based on the unfolded formulation provides a systematic way of obtaining

them analytically, and may therefore prove useful to study quasi-normal modes and the

properties of their dual thermal states in greater detail.

As a final remark, we would like to stress that, to our best understanding, it is possible

to consider gauge functions generated by identifications along general conjugacy classes as

formal solutions to Vasiliev’s equations including higher spin fluctuations. Moreover, the

issue of horizons is sidestepped simply due to the fact that the physical observables of

higher spin gravity theory are of a quite different type than those used in ordinary gravity.

In particular, one may label the BHTZ-like higher spin geometries using the holonomy of

the flat Vasiliev connection along the identification circle.
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A Spinor conventions and AdS4 background

We use conventions in which SO(3, 2) generators MAB with A,B = 0, 1, 2, 3, 0′ obey

[MAB,MCD] = 4iη[C|[BMA]|D] , (MAB)† = MAB , (A.1)

which can be decomposed using ηAB = (ηab;−1), with a, b = 0, 1, 2, 3 as

[Mab,Mcd]? = 4iη[c|[bMa]|d] , [Mab, Pc]? = 2iηc[bPa] , [Pa, Pb]? = iλ2Mab , (A.2)

where Mab generate the Lorentz subalgebra so(3, 1), and Pa = λM0′a with λ = l−1 being

the inverse AdS4 radius related to the cosmological constant via Λ = −3λ2. The Lorentz
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metric ηab is taken as diag(− + ++). Decomposing further under the maximal compact

subalgebra, the AdS4 energy generator E = P0 = λM0′0 and the spatial so(3) rotations

are generated by Mrs with r, s = 1, 2, 3. In terms of the oscillators Yα = (yα, ȳα̇), their

realization is taken to be

MAB = −1

8
(ΓAB)αβ Y

α ? Y β , (A.3)

Mab = −1

8

[
(σab)

αβyα ? yβ + (σ̄ab)
α̇β̇ ȳα̇ ? ȳβ̇

]
, Pa =

λ

4
(σa)

αβ̇yα ? ȳβ̇ , (A.4)

using Dirac matrices obeying (ΓA)α
β(ΓBC)βγ = ηABCαγ+(ΓABC)αγ , and van der Waerden

symbols obeying

(σa)α
α̇(σ̄b)α̇

β = ηabδβα + (σab)α
β , (σ̄a)α̇

α(σb)α
β̇ = ηabδβ̇α̇ + (σ̄ab)α̇

β̇ , (A.5)

1

2
εabcd(σ

cd)αβ = i(σab)αβ ,
1

2
εabcd(σ̄

cd)α̇β̇ = −i(σ̄ab)α̇β̇ , (A.6)

((σa)αβ̇)† = (σ̄a)α̇β = (σa)βα̇ , ((σab)αβ)† = (σ̄ab)α̇β̇ . (A.7)

and raising and lowering spinor indices according to the conventions Aα = εαβAβ and

Aα = Aβεβα where

εαβεγδ = 2δαβγδ , εαβεαγ = δβγ , (εαβ)† = εα̇β̇ . (A.8)

In order to avoid cluttering the expression with many spinor indices, in the paper we also

use the matrix notations

AαBα =: AB = ab+ āb̄ := aαbα + āα̇b̄α̇ , (A.9)

aMb := aαMα
βbβ , aNb̄ := aαNα

β̇ b̄β̇ . (A.10)

The van der Waerden symbols can be realized in a given spin-frame

U = (u±α , ū
±
α̇ ) , ū±α̇ = (u±α )† , u+αu−α = 1 = ū+α̇ū−α̇ , (A.11)

εαβ = (u−u+ − u+u−)αβ , ε0123 = 1 , (A.12)

as

σ0|U = −u+ū+ − u−ū− , σ1|U = −u+ū− − u−ū+ , (A.13)

σ2|U = i(u+ū− − u−ū+) , σ3|U = u+ū+ − u−ū− , (A.14)

σ01|U = u+u+ − u−u− , σ02|U = −i(u+u+ + u−u−) , σ03|U = u+u− + u−u+ (A.15)

σ12|U = −iσ03|U , σ23|U = −iσ01|U , σ31|U = iσ02|U , (A.16)

with σ̄ab|U given by complex conjugates. Realizing the spin-frame as u+
α =

(
1

0

)
,

u−α =

(
0

−1

)
, the van der Waerden symbols take the form

(
σ0
)
αα̇

=

(
1 0

0 1

)
,
(
σ1
)
αα̇

=

(
0 1

1 0

)
,
(
σ2
)
αα̇

=

(
0 −i
i 0

)
,
(
σ3
)
αα̇

=

(
1 0

0 −1

)
,

(A.17)
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with gamma matrices

(Γa)
β

α =

(
0 (σa) β̇

α

(σ̄a) β
α̇ 0

)
, (A.18)

and

(Γab)αβ =

(
(σab)αβ 0

0 (σ̄ab)α̇β̇

)
. (A.19)

In particular, the SO(3, 2) generators that define the families of solutions (5.13) are

realized as

Eαβ = − (Γ0)αβ =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , Jαβ = − (Γ12)αβ =


0 −i 0 0

−i 0 0 0

0 0 0 i

0 0 i 0

 , (A.20)

Bαβ = − (Γ03)αβ =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , Pαβ = − (Γ1)αβ =


0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

 . (A.21)

The so(3, 2)-valued connection

Ω :=−i
(

1

2
ωabMab+e

aPa

)
:=

1

2i

(
1

2
ωαβ yα?yβ+eαβ̇ yα?ȳβ̇+

1

2
ω̄α̇β̇ ȳα̇?ȳβ̇

)
, (A.22)

ωαβ =−1

4
(σab)

αβ ωab , ωab =
1

2

(
(σab)

αβωαβ+(σ̄ab)
α̇β̇ω̄α̇β̇

)
, (A.23)

eαα̇ =
λ

2
(σa)

αα̇ ea , ea =−λ−1(σa)
αα̇eαα̇ , (A.24)

and field strength

R := dΩ + Ω ? Ω := −i
(

1

2
RabMab +RaPa

)
(A.25)

:=
1

2i

(
1

2
Rαβ yα ? yβ +Rαβ̇ yα ? ȳβ̇ +

1

2
R̄α̇β̇ ȳα̇ ? ȳβ̇

)
, (A.26)

Rαβ = −1

4
(σab)

αβ Rab , Rab =
1

2

(
(σab)

αβRαβ + (σ̄ab)
α̇β̇R̄α̇β̇

)
, (A.27)

Rαα̇ =
λ

2
(σa)

αα̇ Ra , Ra = −λ−1(σa)
αα̇Rαα̇ . (A.28)

In these conventions, it follows that

Rαβ = dωαβ − ωαγ ∧ ωγβ − eαγ̇ ∧ ēγ̇β , Rαβ̇ = deαβ̇ + ωαγ ∧ eγβ̇ + ω̄β̇δ̇ ∧ eα
δ̇ , (A.29)

Rab = Rab + λ2ea ∧ eb , Rab := dωab + ωac ∧ ωcb , (A.30)

Ra = T a := dea + ωab ∧ eb , (A.31)

where Rab := 1
2e
cedRcd,ab and Ta := ebecT abc are the Riemann and torsion two-forms. The

metric gµν := eaµe
b
νηab. The AdS4 vacuum solution Ω(0) = e(0) + ω(0) obeying dΩ(0) +
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Ω(0) ? Ω(0) = 0, with Riemann tensor R(0)µν,ρσ = −λ2
(
g(0)µρg(0)νσ − g(0)νρg(0)µσ

)
and

vanishing torsion, can be expressed as Ω(0) = L−1 ? dL where the gauge function L ∈
SO(3, 2)/SO(3, 1). The stereographic coordinates xa are related to the coordinates XA of

the five-dimensional embedding space with metric ds2 = dXAdXBηAB, in which AdS4 is

embedded as the hyperboloid XAXBηAB = − 1
λ2 = −l2, as

xa =
Xa

1 +
√

1 + λ2XaXa

=
Xa

1 + l−1X0′
for X0′ > 0 , (A.32)

Xa =
2xa

1− λ2x2
, a = 0, 1, 2, 3 . (A.33)

The familiar global spherical coordinates (t, r, θ, φ) in which the metric reads

ds2 = −(1 + λ2r2)dt2 +
dr2

1 + λ2r2
+ r2(dθ2 + sin2 θdφ2) , (A.34)

are related locally to the embedding coordinates by

X0 =
√
λ−2 + r2 sin t , X0′ =

√
λ−2 + r2 cos t ,

X1 = r sin θ cosφ , X2 = r sin θ sinφ , X3 = r cos θ , (A.35)

providing a one-to-one map if t ∈ [0, 2π), r ∈ [0,∞), θ ∈ [0, π] and φ ∈ [0, 2π) defining

the single cover of AdS4. This manifold can be covered by two sets of stereographic co-

ordinates, xµ(i), i = N,S, related by the inversion xµN = −xµS/(λxS)2 in the overlap region

λ2(xN )2, λ2(xS)2 < 0, and the transition function TSN = (LN )−1 ? LS ∈ SO(3, 1). The map

xµ → −xµ/(λx)2 leaves the metric invariant, maps the future and past time-like cones into

themselves and exchanges the two space-like regions 0 < λ2x2 < 1 and λ2x2 > 1 while

leaving the boundary λ2x2 = 1 fixed. It follows that the single cover of AdS4 is formally

covered by taking xµ ∈ R3,1.

For simplicity, we set l = λ−1 = 1 in the body of the paper.

B Finite transformations of the Cartan generators

In this appendix, we use a simple calculation to illustrate in the star-product language the

finite transformations corresponding to the Cartan generators. We investigate the simple

example:

γ−1 ? Y α ? γ , (B.1)

where

γ (ϕK) = e
− 1

4
ϕKαβY

αY β

? = sech2
(ϕ

2

)
e−

1
2

tanh(ϕ2 )KαβY αY β , (B.2)

and its star-inverse

γ−1 (ϕK) = e
1
4
ϕKαβY

αY β

? = sech2
(ϕ

2

)
e

1
2

tanh(ϕ2 )KαβY αY β . (B.3)

ϕ is any real or imaginary number. Using the property KαβK
βγ = δα

γ , we can derive

γ−1 (ϕK) ? Y α ? γ (ϕK) =
[
cosh (ϕ) δβ

α − i sinh (ϕ)Kβ
α
]
Y β . (B.4)
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If we replace ϕ with iϕ, we obtain

γ−1 (iϕK) ? Y α ? γ (iϕK) =
[
cos (ϕ) δβ

α + sin (ϕ)Kβ
α
]
Y β . (B.5)

From the above formulas we can see that, for ϕ ∈ R, γ (iϕE) and γ (iϕJ) are periodic

transformations, and γ (iϕB) and γ (iϕP ) are non-periodic transformations, which well-

correspond to their (non-)compact nature that we expect from AdS4 isometries.

C Further comments on the eigenfunctions

In this appendix we shall show explicitly how the eigenfunctions (5.55) arise starting from

the integral presentation of the projectors (5.11). For the latter, i.e., for the case λL = λR
and λL,R + 1

2 ∈ Z+, it was established in [10] that different eigenfunctions are related

by creation and annihilation operators, with f 1
2
, 1
2

(a+, a−) being the ground state, i.e.

a+?f 1
2
, 1
2

(a+, a−) = f 1
2
, 1
2

(a+, a−)?a+ = 0. Moreover, diagonal elements with different half-

integer eigenvalues are orthogonal with respect to the star product, and form an associative

algebra (which can be extended by the corresponding twisted sector, see [8]).

Things are much more complicated, however, for general complex eigenvalues. In

this paper we have not yet constructed a well-defined quantum system, and in particular

we shall defer to a forthcoming paper the study of their algebraic properties under star

product [90]. Below we will only qualitatively show that different eigenfunctions can be

brought from one to another by using creation and annihilation operators with complex

powers, which can be in their turn realized by means of the integral transform (5.53).

We will first show that, starting from an eigenfunction with equal eigenvalues λL+ 1
2 =

λR + 1
2 ∈ Z+, and by acting the creation operator on the left, we obtain an eigenfunction

with a different left eigenvalue λL ∈ C, i.e.

fλL,λR
(
a+, a−

)
∝ (a+)λL−λR ? fλR,λR

(
a+, a−

)
. (C.1)

To show that the r.h.s. of (C.1) produces the eigenfunction with λL, we use the results

from section 5.2. We substitute (5.53) and

fλR,λR
(
a+, a−

)
∝
∮
C(1)

dς

2πi

(ς + 1)λR−
1
2

(ς − 1)λR+ 1
2

e−2ςa+a− (C.2)

into the r.h.s. and evaluate the star-product between the Y -dependent factors of the

integrands:

e−τa
+
? e−2ςa+a− = e−τ(1+ς)a+

e−2ςa+a− . (C.3)
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Using this result, we have(
a+
)λL−λR ? fλR,λR (a+, a−

)
∝
∮
C(1)

dς

2πi

(ς + 1)λR−
1
2

(ς − 1)λR+ 1
2

e−2ςa+a−
∫ +∞

0
dτ

τλR−λL−1

Γ (λR − λL)
e−τ(1+ς)a+

=

∮
C(1)

dς

2πi

(ς + 1)λR−
1
2

(ς − 1)λR+ 1
2

e2ςa+a−
[
(1 + ς) a+

]λL−λR
=
(
a+
)λL−λR ∮

C(1)

dς

2πi

(ς + 1)λL−
1
2

(ς − 1)λR+ 1
2

e−2ςa+a−

∝ fλL,λR
(
a+, a−

)
. (C.4)

On the other hand, following the discussion around (5.38), if we assume that λL + 1
2 ∈

Z+ always holds, we can similarly derive the relation between different complex right

eigenvalues:

fλL,λL
(
a+, a−

)
?
(
a−
)λR−λL

∝
(
a−
)λR−λL ∮

C(1)

dς

2πi

(ς + 1)λR−
1
2

(ς − 1)λL+ 1
2

e−2ςa+a−

∝ fλL,λR
(
a+, a−

)
. (C.5)

The above discussion is still far from a systematic study to build up a quantum system.

In particular, as stressed in section 5.3, allowing both left and right eigenvalues to take

complex values involves alternative choices of contour other than the small circle around ±1.

Moreover, such different contour-integral presentation has also the advantage of giving well-

defined star-product properties between eigenfunctions with arbitrary complex eigenvalues.

This goes beyond the scope of this paper, and we will continue our report on this issue in

a forthcoming work [90].

D Analysis of membrane-like curvature singularities

In this appendix we shall study the limit ∆2 → 0, corresponding to an analytic singularity

for every individual fluctuation fields extracted from the generating function (6.8), at the

level of Weyl zero-form master field — that is, in terms of the behaviour of the latter in

the full (x, Y )-space.

It is instructive to first study the limit in the diagonal case, i.e., for λiL = λiR = λ ∈
Z− 1/2, i = 1, 2, that is (see eq. (5.56)) for elements (6.29) of the form

fLλ,λ;λ,λ ? κy = Oς1λ,λO
ς2
λ,λ

1√
(κ̌L)2

exp

[
−1

2
ỹL(κ̌L)−1ỹL +

1

2
ȳ ˇ̄κLȳ

]
, (D.1)

where

Oςiλ,λ :=

∮
C(ε)

dςi
2πi

(ςi + 1)λ−
1
2

(ςi − 1)λ+ 1
2

, (D.2)
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with ε = sign(λ), and where the quantities in the integrand were defined in section 6.1.

We shall also restrict our discussion to the simplest non-trivial choice of eigenvalues (6.37),

that in the diagonal limit n = 0 reduces to studying the Weyl zero-form resulting from

the lowest-weight element λiL = λiR = λ = 1
2 only. In this case the contours encircle the

points ς1 = 1 = ς2, and as a consequence κ̌Lαβ and v̌L
αβ̇

(6.13)–(6.14) reduce to κL(iB)αβ and

vL
(iB)αβ̇

. As the dependence on iP disappears, modulo a redefinition of the normalization

factor (which we shall ignore here) we can simplify the notation by substituting the two

contour integrals with a single one [10],

fL1
2
, 1
2

; 1
2
, 1
2

? κy = Oς1;1

1

ς
√

(κL)2
exp

[
− 1

2ς
ỹL(κL)−1ỹL +

ς

2
ȳκ̄Lȳ

]
, (D.3)

where now ỹL := y − iςvLȳ,

Oς1;1 :=

∮
C(1)

dς

2πi

ς + 1

ς − 1
, (D.4)

and for notational simplicity we are now omitting the label (iB), which is henceforth un-

derstood everywhere unless specified otherwise. We recall that, as discussed in section 5.2,

keeping the contour integral is part of the regular presentation of our eigenfunctions: we

evaluated them in section 6.2 purely for the purpose of looking at the spacetime dependence

of the component fields, but whenever the behaviour on the non-commutative Y space is

of relevance, as will be in the interpretation of the ∆2 → 0 limit, we should keep them as

they are an integral part of the definition of the eigenfunctions from the point of view of

their algebraic behaviour.

In the ∆2 → 0 limit κLαβ and κ̄L
α̇β̇

become degenerate, and, as we shall now show, the

integrand takes the form of a delta-sequence

lim
ε→0

1

ε
e
i
2ε
ŷDŷ = 2πδ2(ŷ) , (D.5)

where ŷα := (y+Sȳ)α, with Sαβ̇ a van der Waerden symbol coming from the ∆2 → 0 limit

of −iςvL
αβ̇

, and Dαβ := b+α b
−
β + b−α b

+
β , in terms of an x-dependent spin-frame that we shall

now introduce.

To study the limit precisely, it is convenient to perform a local SL(2,C) transformation

to rewrite κLαβ and vL
αβ̇

on a common “adapted” spin-frame (b+α, b−α), b+αb−α = 1 on which

κLαβ takes the canonical form

κLαβ = i
√

1 +X2
3 −X2

0 (b+α b
−
β + b−α b

+
β ) =: i∆Dαβ . (D.6)

This condition determines the matrix of the Lorentz transformation only up to a free

complex parameter w as

b+α =
∆−Q
2∆w

u+
α +

(X3 −X0)(X1 + iX2)

2∆w(1−X0′)
u−α , (D.7)

b−α = −(X3 +X0)(X1 − iX2)

(∆−Q)(1−X0′)
w u+

α + w u−α , (D.8)

where Q := 1 +
X2

3−X2
0

1−X0′
.
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Performing this local Lorentz transformation corresponds to choosing a basis of the

tangent space in which all spin-s Weyl tensors extracted from (D.3) are manifestly of

Petrov-type D [10]. Retracing the analysis of the spherically-symmetric higher-spin black

holes of [8, 10], it is convenient to use the free parameter w in order to realize the Killing

vector vL
αβ̇

on the adapted spin-frame in a canonical form, i.e., in terms of a single van der

Waerden symbol. However, a novel feature arises here from the fact that both the norm of

the Killing vector field and the determinant of its Killing two-form are not positive-definite:

vL is spacelike for |X3| > |X0| and there detκL is also positive; while vL is timelike for

|X0| > |X3| and in this region detκL is positive as long as X2
3 < X2

0 < X2
3 +1 and negative

when X2
0 > X2

3 + 1. As a consequence, the specific canonical form for vL changes in these

three different spacetime regions: in particular, one can take

X2
3 > X2

0 : w = |w| =
√

∆−Q
2∆

(
X3 −X0

X3 +X0

)1/4

, (D.9)

vL
αβ̇

= i
√
X2

3 −X2
0 (b+α b̄

+

β̇
+ b−α b̄

−
β̇

) , (D.10)

X2
3 < X2

0 < X2
3 + 1 : w = |w| =

√
Q−∆

2∆

(
X0 −X3

X0 +X3

)1/4

, (D.11)

vL
αβ̇

= −
√
X2

3 −X2
0 (b+α b̄

+

β̇
− b−α b̄−β̇ ) , (D.12)

X2
0 > X2

3 + 1 : w = eiπ/4
(

∆−Q
∆ +Q

X1 + iX2

X1 − iX2

)1/4

, (D.13)

vL
αβ̇

= −
√
X2

3 −X2
0 (b+α b̄

−
β̇

+ b−α b̄
+

β̇
) . (D.14)

Of the above three regions, the relevant ones for the study of the singularity on (κL)2 =

0 are clearly X2
3 < X2

0 < X2
3 + 1 and X2

0 > X2
3 + 1. It is then easy to show that in the

limit 1 +X2
3 −X2

0 → 0 the integrand in (D.3) becomes

1

ς
√

(κL)2
exp

[
− 1

2ς
ỹL(κL)−1ỹL +

ς

2
ȳκ̄Lȳ

]
−−−→
∆→0

lim
ε→0

1

ε
e
i
2ε

(y+Sȳ)D(y+Sȳ) = 2πδ2(ŷ) ,

(D.15)

where

ŷ := lim
∆→0

ỹLα = (y + Sȳ)α , Sαβ̇ :=

{
−ς(σ3)αβ̇ for X2

3 < X2
0 < X2

3 + 1 ,

ς(σ1)αβ̇ for X2
0 > X2

3 + 1 .
(D.16)

where the realization of the van der Waerden symbols in terms of a spin-frame36 has been

given in appendix A. As a consequence,

lim
∆→0

fL1
2 ,

1
2 ;

1
2 ,

1
2

? κy ∝ Oς1;1 2πδ2(ŷ) , (D.17)

where ŷ = ŷ(ς) is given in (D.16).

36We note that while the entries of the SL(2,C) matrix (D.8) with w given by (D.12)–(D.14) separately

scale like ∆−1/2, its determinant remains finite and equal to 1 everywhere, including in the limit ∆ → 0.

This implies that b+αb−α = 1 also for ∆ = 0, i.e., that b±α give a good spin-frame everywhere, thus in

particular enabling to split ỹLα into ỹL± = b±αỹLα components which remain non-commuting, in such a way

that, in particular, [ŷ−, ŷ+]? = 2i(1 − s2), which is in turn crucial to defining a proper non-commutative

two-dimensional delta function.
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A number of observations are now in order. First, it is interesting to note that, differ-

ently from the spherically-symmetric black-hole-like solutions where this singular behaviour

was first observed, in this case the singular, delta-sequence limit is not obtained at the un-

folding point xa = 0 (a point on the horizon of the gravitational background, in this paper)

where the master-field (D.3) is, instead, regular. This is because, as evident from the dis-

cussion above, such distributional behaviour that characterizes the curvature singularities

at the master-field level is strictly connected to the points at which the Killing two-form

is degenerate. The latter was strictly vanishing at the unfolding point for the black-hole

solutions (and for all solutions based on a π-odd Cartan principal generator — that is, on

E and iP up to SO(3, 2) transformations) whereas the Killing two-form of the solutions

studied in the present paper is clearly non-degenerate for xa = 0, and the only reason that

it can have zeroes outside the horizon is due to the fact that the corresponding Killing

vector has indefinite norm.

As already concluded in [8–10] for the spherically-symmetric solutions, this delta-

function-like limit indicates that, even though at (κL)2 → 0 every Weyl tensor diverges,

the Weyl zero-form remains well-defined at X2
0 −X2

3 = 1 as an operator. Indeed, a delta

function of noncommutative variables has well-defined star product composition properties

(and, in fact, is part of the associative algebra to which the exact solutions studied in [8, 14]

belong). In this sense, thought of as a symbol for an element of a star product algebra,

such a master field remains smooth in the (κL)2 → 0 limit.

We stress that the integral presentation (D.17) is crucial to the interpretation of the

resulting distribution as an associative algebra element, and, therefore, to the above in-

terpretation of the Weyl zero-form in the ∆2 → 0 limit. In fact, using contour integrals

to represent Fock-space endomorphisms by means of so(2, 3) enveloping-algebra elements

(with the obvious prescription to take all star products before performing the contour

integrals) is the core of the regular presentation scheme that was essential to the solution-

building method presented in [8, 10, 14]). In the case at hand, performing the auxiliary

contour integrals first would lead to the delta function δ2(ŷ |ς=1 ) which has divergent star

product with itself as ŷ |ς=1 are abelian oscillators. On the other hand, using the regular

presentation ensures that the element (D.17) has good star product properties [8, 14]. In

this sense, the regular presentation can be thought of as way of regulating the star prod-

ucts of non-polynomial elements by introducing auxiliary, complex integration variables to

achieve a sort of point-splitting procedure in Y space, that gets rid of divergent terms and

keeps the finite part of the star products above in a way which is compatible with asso-

ciativity (at least within the Fock-space projectors with identical left and right eigenvalues

and its dual space, obtained via star-multiplication with κy) [8].

However, note that, differently from the cases treated in detail in [10], in this case the

Weyl zero-form admits a delta-function limit of modified oscillators ŷα that are specific to

each side of the surface of apparent singularity (κL)2 = 0, which would correspond to a

discontinuity in the component fields at (κL)2 = 0 if the component field description would

make any sense there. The Weyl zero-form stays anyway regular in the sense above as a

master field, which is the only suitable description in the strong coupling region.

This concludes the discussion of the diagonal limit.
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Such a resolution of the curvature singularity that arises in the limit (κL)2 → 0 can be

shown, in fact, to still take place when λiL − λiR is non-vanishing. For definiteness, let us

first focus in greater detail on the choice λ1L = 1
2 + ip, λ2L = 1

2 − ip, λ1R = 1
2 = λ2R, which

is the case treated in greater detail at the end of section 6.2. The master field in (6.29)

reads in this case

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

1

Γ(ip)Γ(−ip)

∫ ∞
0

dτ1

τ1

∫ ∞
0

dτ2

τ2

(
τ2

τ1

)ip
×

[
1

ς
√

(κL)2
e−

1
2ς

(ỹL−iθL)(κL)−1(ỹL−iθL)− ς
2
ȳκ̄Lȳ−θ̄Lȳ+O(ς2−ς1) +O(ς2 − ς1)

]
,

(D.18)

with θL given in (6.27), ς := ς1+ς2
2 , and where we denote with O(ς2 − ς1) all the terms

weighted by the combination ς2− ς1 (i.e., carrying the dependence on iP ), that vanish once

one evaluates the contour integrals. Indeed, such terms will have no effect on the result,

since with the choice λ1L = 1
2 + ip, λ2L = 1

2 − ip, λ1R = 1
2 = λ2R the basic effect of the

two contour integrations, featuring a simple pole, is just to set ς1 = ς2 = 1. All relevant

quantities are therefore projected onto the iB sector and therefore, for the sake of brevity,

we shall henceforth omit the evanescent terms altogether.

Now, away from the surface ∆2 = 0 we can use the SL(2,C) transformation (D.7)–

(D.8) to write all quantities on the adapted spin-frame b±α . Let us first approach the limit

from the region X2
3 < X2

0 < X2
3 +1. Inverting the transformation (D.7)–(D.8) with (D.12),

we get

θLα =
1√
∆

[
(F (X)τ1 +G(X)τ2)b+α + (L(X)τ1 +K(X)τ2)b−α

]
, (D.19)

where F,G,L,K are complex functions of the embedding coordinates given by

F =
1

4
√

1−X0′

(
X0 −X3

X0 +X3

)1/4{
(X1 − iX2)

[√
Q−∆ +

X2
0 −X2

3√
Q−∆(1−X0′)

]
−(1−X0′)

√
Q−∆

}
, (D.20)

G =
−i

4
√

1−X0′

(
X0 −X3

X0 +X3

)1/4{
(X1 − iX2)

[√
Q−∆ +

X2
0 −X2

3√
Q−∆(1−X0′)

]
+(1−X0′)

√
Q−∆

}
, (D.21)

L =
X0 −X3

4
√

1−X0′

(
X0 +X3

X0 −X3

)1/4{ X1 + iX2

(1−X0′)
√
Q−∆

[X1 − iX2 − 1 +X0′ ]

+
√
Q−∆

}
, (D.22)

K = −i X0 −X3

4
√

1−X0′

(
X0 +X3

X0 −X3

)1/4{ X1 + iX2

(1−X0′)
√
Q−∆

[X1 − iX2 + 1−X0′ ]

+
√
Q−∆

}
. (D.23)
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Substituting in (D.18), the master field takes the form

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

1

Γ(ip)Γ(−ip)

∫ ∞
0

dτ1

τ1

∫ ∞
0

dτ2

τ2

(
τ2

τ1

)ip
× 1

ς∆
exp

[
i

2ς∆
(ỹL − iθL)D(ỹL − iθL)− iς∆

2
ȳD̄ȳ − θ̄Lȳ

]
, (D.24)

and rescaling the integration variables of the Mellin transforms as τi → τ ′i := τi√
∆

, and then

omitting the primes on τi, we get

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

1

Γ(ip)Γ(−ip)

∫ ∞
0

dτ1

τ1

∫ ∞
0

dτ2

τ2(
τ2

τ1

)ip 1

ς∆
e

i
2ς∆

(ỹL−i
√

∆θL)D(ỹL−i
√

∆θL)− iς∆
2
ȳD̄ȳ−

√
∆θ̄Lȳ . (D.25)

Let us now take the limit ∆→ 0. Then

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2π

Γ(ip)Γ(−ip)

×
∫ ∞

0

dτ1

τ1

∫ ∞
0

dτ2

τ2

(
τ2

τ1

)ip
δ2(ŷ − iθ′L)e−θ̄

′Lȳ , (D.26)

where θ′Lα is defined by

θ′Lα :=
√

∆θLα

∣∣∣
∆=0
≡
[
(F (X)τ1 +G(X)τ2)b+α + (L(X)τ1 +K(X)τ2)b−α

]
∆=0

= (f(X)τ1 + g(X)τ2)b+α + (l(X)τ1 + k(X)τ2)b−α , (D.27)

with

l=−1

4

√
X3−X0

X0′
(X0′+X1+iX2) , k=

−i
4

√
X3−X0

X0′
(−X0′+X1+iX2) , (D.28)

f =−l∗ , g=−k∗ , (D.29)

that is,

θ′Lα = −(l∗(X)τ1 + k∗(X)τ2)b+α + (l(X)τ1 + k(X)τ2)b−α . (D.30)

Substituting in (D.26), splitting the two-dimensional delta as (ψ± := b±αψα)

δ2(ŷ − iθ′L) = δ(ŷ+ − iθ′L+)δ(ŷ− − iθ′L−) ,

θ′L+ = lτ1 + kτ2 , θ′L− = l∗τ1 + k∗τ2 = θ̄′L+ , (D.31)

the Weyl zero-form master field in the limit ∆ = 0 takes the form

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2π

Γ(ip)Γ(−ip)

∫ ∞
0

dτ1

τ1

∫ ∞
0

dτ2

τ2

×
(
τ2

τ1

)ip
δ(ŷ+ − iθ′L+)δ(ŷ− − iθ′L−) e(lȳ+−l∗ȳ−)τ1+(kȳ+−k∗ȳ−)τ2 . (D.32)
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Representing the delta functions in Fourier transform,

δ(ŷ± − iθ′L±) =

∫ +∞

−∞

dw

2π
ei(ŷ

±−iθ′L±)w , (D.33)

we have

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2π

Γ(ip)Γ(−ip)

∫ ∞
0

dτ1

τ1+ip
1

∫ ∞
0

dτ2 τ
ip−1
2

×
∫ +∞

−∞

dw

2π

∫ +∞

−∞

dw′

2π
ei(ŷ

+−i(lτ1+kτ2))w+i(ŷ−−i(l∗τ1+k∗τ2))w′ e(lȳ+−l∗ȳ−)τ1+(kȳ+−k∗ȳ−)τ2 , .

(D.34)

The two τi-integrals are now disentangled, and give∫ ∞
0

dτ1 τ
−ip−1
1 e[l(w+ȳ+)+l∗(w′−ȳ−)]τ1 = Γ(−ip)[l(w + ȳ+) + l∗(w′ − ȳ−)]ip , (D.35)∫ ∞

0
dτ2 τ

ip−1
2 e[k(w+ȳ+)+k∗(w′−ȳ−)]τ2 =

Γ(ip)

[k(w + ȳ+) + k∗(w′ − ȳ−)]ip
, (D.36)

provided that Re[l(w + ȳ+) + l∗(w′ − ȳ−)] < 0, Re[k(w + ȳ+) + k∗(w′ − ȳ−)] < 0. Then,

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

1

2π

×
∫ +∞

−∞
dw

∫ +∞

−∞
dw′ eiŷ

+w+iŷ−w′
[
l(w + ȳ+) + l∗(w′ − ȳ−)

k(w + ȳ+) + k∗(w′ − ȳ−)

]ip
, (D.37)

which indeed reduces to the limit of the diagonal case (D.17) for p = 0,

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy

∣∣∣∣
p=0

= Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

1

2π

∫ +∞

−∞
dw

∫ +∞

−∞
dw′eiŷ

+w+iŷ−w′

= O1
2 +ip,

1
2
O1

2−ip,
1
2

2π δ2(ŷ) . (D.38)

The w′-integral in (D.37) can be evaluated by first simplifying the integrand using the fact

that lk∗ − l∗k = 0 for ∆ = 0,∫ +∞

−∞
dw′eiŷ

−w′
[
l(w + ȳ+) + l∗(w′ − ȳ−)

k(w + ȳ+) + k∗(w′ − ȳ−)

]ip
=

∫ +∞

−∞
dw′eiŷ

−w′ 1

(k∗)ip

[
lk∗(w + ȳ+)− l∗k(w + ȳ+)

k(w + ȳ+) + k∗(w′ − ȳ−)
+ l∗

]ip
= 2π

(
l∗

k∗

)ip
δ(ŷ−) . (D.39)

Substituting in (D.37) and evaluating the w-integral, we finally get

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2π

(
l∗

k∗

)ip
δ2(ŷ)

= Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2π

[
−iX0′ +X1 − iX2

X0′ −X1 + iX2

]ip
δ2(ŷ) . (D.40)
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The same procedure can be repeated approaching the limit ∆2 → 0 “from below”,

i.e., from the region X2
0 > X2

3 + 1. In this case one uses the transformation (D.7)–(D.8)

with (D.14) to obtain

θLα =
1

∆

[
(F (X)τ1 +G(X)τ2)b+α + (L(X)τ1 +K(X)τ2)b−α

]
, (D.41)

with coefficients

F = eiπ/4∆

(
∆−Q
∆+Q

X1+iX2

X1−iX2

)1/4[
(X1−iX2)

(
1− X2

0−X2
3

(∆−Q)(1−X0′)

)
−(1−X0′)

]
, (D.42)

G=−ieiπ/4∆

(
∆−Q
∆+Q

X1+iX2

X1−iX2

)1/4[
(X1−iX2)

(
1− X2

0−X2
3

(∆−Q)(1−X0′)

)
−(1−X0′)

]
, (D.43)

L= e−iπ/4
(

∆+Q

∆−Q
X1−iX2

X1+iX2

)1/4 X0−X3

2

[
X2

1 +X2
2

1−X0′
−X1−iX2+Q−∆

]
, (D.44)

K =−ie−iπ/4
(

∆+Q

∆−Q
X1−iX2

X1+iX2

)1/4 X0−X3

2

[
X2

1 +X2
2

1−X0′
+X1+iX2+Q−∆

]
, (D.45)

to be substituted in

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

1

Γ(ip)Γ(−ip)

∫ ∞
0

dτ1

τ1

∫ ∞
0

dτ2

τ2

(
τ2

τ1

)ip
× 1

ς∆
e

i
2ς∆

(ỹL−iθL)D(ỹL−iθL)− iς∆
2
ȳD̄ȳ−θ̄Lȳ . (D.46)

Again, to take the limit it is useful to rescale the integration variables as τi → τ ′i = τi
∆ , in

terms of which (again omitting the primes after the change of variables)

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

1

Γ(ip)Γ(−ip)

∫ ∞
0

dτ1

τ1

∫ ∞
0

dτ2

τ2

(
τ2

τ1

)ip
× 1

ς∆
e

i
2ς∆

(ỹL−i∆θL)D(ỹL−i∆θL)− iς∆
2
ȳD̄ȳ−∆θ̄Lȳ . (D.47)

Let us now take the limit ∆→ 0. Then

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2π

Γ(ip)Γ(−ip)

×
∫ ∞

0

dτ1

τ1

∫ ∞
0

dτ2

τ2

(
τ2

τ1

)ip
δ2(ŷ − iθ′L)e−θ̄

′Lȳ , (D.48)

where θ′Lα

θ′Lα := ∆θLα
∣∣
∆=0
≡
[
(F (X)τ1 +G(X)τ2)b+α + (L(X)τ1 +K(X)τ2)b−α

]
∆=0

= [l(X)τ1 + k(X)τ2]b−α (D.49)
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loses completely one component, compared to the previous case, with

l := L|∆=0 =

(
X1 − iX2

X1 + iX2

)1/4 X3 −X0

2
(X0′ +X1 + iX2) , (D.50)

k := K|∆=0 = −i
(
X1 − iX2

X1 + iX2

)1/4 X3 −X0

2
(X0′ −X1 − iX2) . (D.51)

As a consequence,

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2πδ(ŷ−)

Γ(ip)Γ(−ip)

×
∫ ∞

0
dτ1 τ

−ip−1
1

∫ ∞
0

dτ2 τ
ip−1
2 δ(ŷ+ − iθ′L+)e−θ̄

′L+ȳL− . (D.52)

Representing the delta function in Fourier transform,

δ(ŷ+ − iU ′+) =

∫ +∞

−∞

dw

2π
ei(ŷ

+−i(lτ1+kτ2))w , (D.53)

one can rewrite

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2πδ(ŷ−)

Γ(ip)Γ(−ip)

∫ +∞

−∞

dw

2π
eiŷ

+w

×
∫ ∞

0
dτ1 e

(lw−l∗ȳ−)τ1τ−ip−1
1

∫ ∞
0

dτ2 τ
ip−1
2 e(kw−k∗ȳ−)τ2 . (D.54)

Again, under the condition that Re(lw − l∗ȳ−) < 0, Re(kw − k∗ȳ−) < 0, one can perform

the two τi integrals to get

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2π δ(ŷ−)

∫ +∞

−∞

dw

2π
eiŷ

+w

(
lw − l∗ȳ−

kw − k∗ȳ−

)ip
.

(D.55)

As before, one can show that the w dependence drops out entirely from the rational function

in the integrand, due to lk∗ − l∗k = 0, in such a way that

lim
∆→0

fL1
2 +ip,

1
2 ;

1
2−ip,

1
2

? κy = Oς11
2 +ip,

1
2

Oς21
2−ip,

1
2

2π

(
l

k

)ip
δ2(ŷ)

= O1
2 +ip,

1
2
O1

2−ip,
1
2

2π

(
i
X0′ +X1 + iX2

X0′ −X1 − iX2

)ip
δ2(ŷ) . (D.56)

Finally, let us comment on the apparent singularity at ∆2 = 0 for more general eigen-

values. The most general element in the twisted sector that satisfies the conditions (5.105)–

(5.107) is (see eq. (6.28))

fLλ ? κy =
1

Γ (−q − ip) Γ (−q + ip)
Oς1λ1
Oς2λ2

×
∫ +∞

0
dτ1

∫ +∞

0
dτ2

1

(τ1τ2)q+1

(
τ2

τ1

)ip
× 1√

(κ̌L)2
exp

[
−1

2
(ỹL − iθL)(κ̌L)−1(ỹL − iθL) +

1

2
ȳ ˇ̄κLȳ − θ̄Lȳ

]
, (D.57)
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with q := Re(∆λ) ∈ Z, and it may have a membrane-like curvature singularity at ∆2 = 0

for our choice of λiR + 1
2 ∈ Z+. Higher λiR will in general increase the order of the pole in

∆2 = 0, and we shall defer a full analysis of the general case to future work, focussing here

on elements with the lowest right eigenvalue λ1R = λ2R = 1
2 . In such case, again omitting

evanescent terms O(ς2 − ς1) and studying the ∆2 → 0 limit from above, one is reduced to

the expression

lim
∆→0

fLλ ? κy =
1

Γ(−q − ip)Γ(−q + ip)
Oς1λ1
Oς2λ2

lim
∆→0

∫ +∞

0
dτ1

∫ +∞

0
dτ2

1

(τ1τ2)q+1

(
τ2

τ1

)ip
1

ς∆
e

i
2ς∆

(ỹL−iθL)D(ỹL−iθL)− iς∆
2
ȳD̄ȳ−θ̄Lȳ , (D.58)

and again rescaling the integration variables of the Mellin transforms as τi → τ ′i := τi√
∆

,

and then omitting the primes on τi, we get

lim
∆→0

fL ? κy =
1

Γ(−q − ip)Γ(−q + ip)
Oς1λ1
Oς2λ2

lim
∆→0

∫ +∞

0
dτ1

∫ +∞

0
dτ2

1

(τ1τ2)q+1

(
τ2

τ1

)ip
1

ς∆1+q
e

i
2ς∆

(ỹL−iθL)D(ỹL−iθL)− iς∆
2
ȳD̄ȳ−

√
∆θ̄Lȳ . (D.59)

Clearly, in the case that q < 0 we end up with a master fields than is more regular that the

q = 0 case studied above. On the other hand, the higher powers of ∆ that appear at the

denominator for q > 0 can be interpreted as giving rise to derivatives of a delta function.

The latter can however still be considered part of an associative algebra, in the sense that

they admit a star-factorization in terms of delta functions, as Y -derivatives of δ2(ŷ) can be

rewritten as (linear combinations of) star products of the type yα ? δ
2(ŷ) and ȳα̇ ? δ

2(ŷ).

E Removing the ambiguity between regular and twisted sector

In this appendix we briefly explain in what way the choice of regular presentation we have

made resolves the ambiguity of the choice of regular and twisted sector in the expansion

of the Weyl zero-form. As mentioned in section 5.1, regular and twisted sector, for the

family M(iB; iP ) that we are working with, are completely equivalent. However, as we

shall see, the small-contour integral presentation (5.55) is only suitable for the twisted

sector in the expansion of Φ′ (i.e., regular sector in the expansion of Ψ), in the sense it

cannot provide an unambiguous realization of the fluctuation fields in the regular sector

everywhere in spacetime, thereby violating criterion iii) of our regular presentation scheme

given in section 4. This is why we discarded the regular sector (see sections 5.1 and 5.5)

in Φ′ from the analysis of the present paper.

L-rotating a generic element fλ in an expansion Φ′ =
∑

λ µλfλ over the regular sector

results in a Weyl zero-form master field Φ(L) expanded over

fLλ = L−1 ? fλ ? π(L) = L−1 ? fλ ? κy ? L ? κy = (fλ ? κy)
L ? κy . (E.1)

Let us for simplicity consider first the diagonal case, λiL− λiR = 0 and in particular let us

focus on the lowest-weight state λ1L = λ2L = 1
2 = λ1R = λ2R. Then,

fL1
2 ,

1
2 ;

1
2 ,

1
2

= Oς1;1 e
ς
2

(yκy+ȳκ̄ȳ) , (E.2)
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where Oς1;1 was defined in (D.2), and

fL1
2 ,

1
2 ;

1
2 ,

1
2

? κy = Oς1;1

1

ς
√
κ2

e−
1
2ς
yκ−1y+ ς

2
ȳκ̄ȳ . (E.3)

As κ2 = 1 and κ−1 = −κ, one can then write the exponent as 1
2Y K̆Y , with

K̆ =

(
κ̆ 0

0 ˘̄κ

)
:=

(
κ
ς 0

0 ςκ̄

)
, (E.4)

and repeat the steps above to obtain

Φ(L) = (fL1
2 ,

1
2 ;

1
2 ,

1
2

? κy)
L ? κy ∝

∮
C(1)

dς

2πiς

ς + 1

ς − 1

1√
(κ̆L)2

e
ς
2
ȳκ̄ȳ− 1

2
ỹL(κ̆L)−1ỹL , (E.5)

where this time ỹL := y − iv̆Lȳ. The different treatment of the holomorphic and anti-

holomorphic dependence induced by the star-multiplication with κy give rise to all the

difference with respect to the twisted sector, resulting in particular in a more complicated

form of the Killing two-form and Killing vector:

κ̆Lαβ = − i

2ς(1−X0′)

[
(1−X0′)

2 − ς2XaXa

]
(σ03)αβ +

2iς

1−X0′
X[0X

aσ3]a (E.6)

v̆L
αβ̇

= (ς − ς−1)X[1(σ2])αβ̇ + i(ς + ς−1)X[0(σ3])αβ̇ . (E.7)

Equivalently, in terms of a rigid spin-frame,

κ̆Lαβ = − i

2ς(1−X0′)

[
(1−X0′)

2 − ς2XaXa

]
(u+
αu
−
β + u−αu

+
β )

+
iς

1−X0′

[
(X0 +X3)(X1 − iX2)u+

αu
+
β + (X0 −X3)(X1 + iX2)u−αu

−
β

]
, (E.8)

v̆L
αβ̇

=
i

2
(ς−1 − ς)

[
(X1 − iX2)u+

α ū
−
β̇
− (X1 + iX2)u−α ū

+

β̇

]
+
i

2
(ς + ς−1)

[
(X3 −X0)u+

α ū
+

β̇
+ (X3 +X0)u+

α ū
+

β̇

]
. (E.9)

In particular, note that, while for ς = 1 the above expressions reduce to (6.15)–(6.16)

and (6.19)–(6.20), respectively, in this case the ς-dependence cannot be factored out of

each of the 2× 2 blocks of K̆L as it happened for the twisted sector. This means that, as

we shall see, the integrand of the contour integrals will differ from those so far examined,

and will in fact be incompatible with a small-contour integral presentation of type (5.103)

that we consider here. In particular, the study of the limit ∆2 → 0 elucidates the problem.

In fact, recalling that (κ̆L)−1
αβ = − κ̆Lαβ

(κ̆L)2 it is immediate to see that the ς dependence

is now nested with the spacetime dependence in the integrand, via

(κ̆L)2 =
1− ς2

4ς2
[1− ς −X0′(1 + ς)][1 + ς −X0′(1− ς)] + ∆2 . (E.10)

It is clear that, evaluating the contour integrals first, the Weyl zero-form (E.5) reduces to

the corresponding one in the twisted sector. This is expected, since the element 4e−4iB,
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which corresponds to fL1
2 ,

1
2 ;

1
2 ,

1
2

after the contour integral is evaluated, is an eigenstate of κy,

so there is no distinction between the x-independent elements fL1
2 ,

1
2 ;

1
2 ,

1
2

and fL1
2 ,

1
2 ;

1
2 ,

1
2

?κy on

which (E.5) and (6.8) are based. As a consequence, as long as the non-integral presentation

of such elements is concerned, the regular and the twisted sector are equivalent. However,

as mentioned above, this is not the case at the level of the integral presentation. Indeed,

the integrand in (E.5), coming from the regular sector, develops a branch cut due to (E.10),

and for ∆2 = 0 the latter inevitably crosses over the integration contour, making the small-

contour integral presentation ill-defined for the expansion of the Weyl zero-form over the

regular sector. This conclusion still holds when one considers non-diagonal element and

gives an imaginary part to the left eigenvalues, as the extra dependence on τi (contained in

θL) coming from the Mellin transform does not modify the poles in ς1 and ς2 of the contour

integrals. This is the reason that we discarded the regular sector in the expansion of the

Weyl zero-form in this paper. We defer the analysis of alternative, more general integral

presentations to a future publication [90].

F An integral formula using parabolic cylinder functions

In this appendix we shall prove the formulae (6.41) and (6.45), which are crucial to extract

the scalar field fluctuation (6.42). One way to do it is the following. First, one can compute

one of the two τi-integral, say the one in τ2, by regularizing it via multiplication by a factor

limε→0+ τ ε2e
−ετ2

2 . We will find in the end that the result can be analytically continued to

ε → 0+, so it will be possible to remove the regulator from the final expression. We can

then recognize that the τ2-integral corresponds to the integral realization of a parabolic

cylinder function

D−ν

(
γ√
2β

)
=

(2β)ν/2

Γ(ν)
e−γ

2/8β

∫ ∞
0

dxxν−1 e−βx
2−γx (F.1)

(for Re(β) > 0, Re(ν) > 0),∫ +∞

0
dτ2 τ

ip−1
2 e−i(c2τ1τ2+c3τ22) = lim

ε→0+

∫ +∞

0
dτ2 τ

ε+ip−1
2 e−ic2τ1τ2−(ε+ic3)τ22

= lim
ε→0+

Γ(ε+ ip)

[2(ε+ ic3)]
ε+ip

2

exp

[
− c2

2τ
2
1

8(ε+ ic3)

]
D−ε−ip

(
ic2τ1√

2(ε+ ic3)

)
. (F.2)

Inserting in (6.45) one is left with the integral

lim
ε→0+

Γ(ε+ip)

[2(ε+ic3)]
ε+ip

2

∫ +∞

0
dτ1 τ

−ip−1
1 exp

[
−
(
ic1+

c2
2

8(ε+ic3)

)
τ2

1

]
D−ε−ip

(
ic2τ1√

2(ε+ic3)

)
.

(F.3)

We can now change variable to t = τ2
1 and use the formula [94]∫ ∞

0
dt t

β
2
−1 e−ztD−ν(2

√
kt) =

√
π 21−β− ν

2

Γ(ν+β+1
2 )

Γ(β)(z + k)−β/22F1

(
ν

2
,
β

2
;
ν + β + 1

2
;
z − k
z + k

)
,

(F.4)
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(Re(z + k) > 0, Re( zk ) > 0) with β = −ip, ν = ε + ip, z = ic1 +
c22

8(ε+ic3) + ε′ (ε′ > 0),

k = − c22
8(ε+ic3) to compute the integral in (F.3) as

lim
ε′→0+

1

2

∫ +∞

0
dt t−

ip
2
−1 exp

[
−
(
ic1 +

c2
2

8(ε+ ic3)
+ ε′

)
t

]
D−ε−ip

(
ic2√

2(ε+ ic3)

√
t

)

=

√
π 2

ip−ε
2

Γ
(
ε+1

2

) Γ(−ip) (ic1)
ip
2 2F1

(
ε+ ip

2
,− ip

2
;
ε+ 1

2
; 1− c2

2

4c1c3

)
. (F.5)

One can now collect all terms and take the ε→ 0 limit to get the final result∫ +∞

0
dτ1

τ−ip−1
1

Γ (−ip)

∫ +∞

0
dτ2

τ ip−1
2

Γ (ip)
e−i(c1τ1

2+c2τ1τ2+c3τ22)

=
1

Γ (ip)
lim
ε→0+

Γ(ε+ ip)

[2(ε+ ic3)]
ε+ip

2

√
π 2

ip−ε
2

Γ
(
ε+1

2

) (ic1)
ip
2 2F1

(
ε+ ip

2
,− ip

2
;
ε+ 1

2
; 1− c2

2

4c1c3

)

=

(
c1

c3

) ip
2

cosh

p arcsin

√1− c2
2

4c1c3

 , (F.6)

and, for c2√
c1c3

> 0,∫ +∞

0
dτ1

τ−ip−1
1

Γ(−ip)

∫ +∞

0
dτ2

τ ip−1
2

Γ(ip)
e−i(c1τ1

2+c2τ1τ2+c3τ22) =

(
c1

c3

)ip
2

cosh

[
parccos

(
c2

2
√
c1c3

)]
,

(F.7)

which are the results that we wanted to prove.

G Apparent singularity at X0 +X3 = 0

In this appendix, we discuss a subtlety arising in the generalized Weyl tensor computation

for the particular choice of eigenvalues (6.37).

We first look at (6.45) and (6.40) for the scalar field computation. One can see that the

integral may not be well-defined at X0 +X3 = 0, in which case the exponent vanishes. In

this situation, we should first compute the integrals for X0 +X3 6= 0 and then analytically

continue the result to X0 +X3 = 0.

For the scalar field it is easy to see that X0 + X3 = 0 is not a real problem, because

the factor X0 + X3 does not appear at all in the result (6.42). Another way to see this

is that in (6.45) the factor X0 +X3 can be simply absorbed by redefining the integration

variables

τ1,2 =
1√

X0 +X3
τ ′1,2 , (G.1)

without creating any extra factors in the integrand.

However, for spin s > 0 we need a more careful discussion. In this case, due to

the derivatives of the Weyl zero-form master field with respect to the yα-coordinates, the

integrand has an extra factor in comparison to the spin-0 case, a polynomial in the τi:∫ +∞

0
dτ1

τ−ip−1
1

Γ (p1)

∫ +∞

0
dτ2

τ ip−1
2

Γ (p2)
Polynomial(τ1, τ2) e−i(c1τ1

2+c2τ1τ2+c3τ22) , (G.2)
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and thus the redefinition (G.1) may or may not give rise to vanishing denominators in the

limit X0 +X3 → 0, depending on the coefficients of the polynomial.

We have checked the integrands of the spin-1 Faraday tensor Cαβ and of the spin-2

Weyl tensor Cαβγδ, the “Polynomial(τ1, τ2)” factors of which respectively correspond to

(κL)−1
αβ −WαWβ , (G.3)

and

3(κL)−1
(αβ(κL)−1

γδ) − 6(κL)−1
(αβWγWδ) +WαWβWγWδ , (G.4)

where

Wα :=
[
(κL)−1θL

]
α

. (G.5)

After the redefinition (G.1) these polynomial factors do contain components that blow up

at X0 + X3 = 0, but the Lorentz-invariants CαβC
αβ , CαβγδC

αβγδ, CαβγδC
γδεζCεζ

αβ and

CαβγδC
αβγδ approach finite constant values in the limit X0 +X3 → 0.

This suggests that the generalized Weyl tensors can be made finite by a frame rotation

y̌α = yα
′ (

Λ−1
)
α′
α , (G.6)

i.e. the tensors are finite after the transformation Λα
α′Λβ

β′Cα′β′ , Λα
α′Λβ

β′Λγ
γ′Λδ

δ′Cα′β′γ′δ′ ,

etc. For example, we checked that by the rotation

Λα
α′ =

(√
X0 +X3 0√
X0 +X3 1√

X0+X3

)
,
(
Λ−1

)
α′
α =

(
1√

X0+X3
0

−
√
X0 +X3

√
X0 +X3

)
, (G.7)

all components in the polynomial factors for spin-1 and spin-2 remain finite after the

redefinition (G.1) in the limit37 X0 +X3 → 0.
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