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1 Introduction

The AdS/CFT correspondence [1] has been very successful and has led to remarkable
insights into the bulk gravity theory. Anti-de Sitter (AdS) spacetime effectively acts as
a box: bulk quantities allow for a boundary definition, and computations on both sides
match. Nevertheless, our universe rather resembles de Sitter (dS) spacetime. Despite the
significant success of the AdS/CFT, the situation becomes complicated when we simply
change the sign of the cosmological constant to obtain dS spacetime. In this case, no
natural notion of a timelike boundary exists where a conventional dual quantum theory
can be located. To circumvent the issue, many suggestions on where the dual observer
should live have been put forward. A possibility is to consider the spacelike future infinity
of dS spacetime [2–4]. A different approach makes instead use of the stretched horizon,
a timelike hypersurface close to the cosmological horizon in the dS static patch [5]. For
two-dimensional dS, the dual theory placed on the stretched horizon has been proposed
to be a high-temperature limit of the double-scaled Sachdev-Ye-Kitaev (SYK) model with
q ∼
√
N , where q specifies the size of the interaction terms in the Hamiltonian schematically

as H ∼ ψq and N is the number of flavours of fermions [6]. Some results on this model can
be found in [7–11].

On the other hand, two-dimensional Jackiw-Teitelboim (JT) gravity [12, 13] has been
actively studied in recent years. JT gravity in AdS background, which is an effective low-
energy theory for near-extremal Reissner-Nordström black holes in four dimensions, has
deep connections with the SYK [14, 15] and the random matrix theory [16]. The reason for
our interest in JT gravity arises from its simplicity and analytic tractability, as well as from
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the hope that it may be regarded as a solvable toy model for higher-dimensional quantum
gravity. Given this, it is quite natural to investigate JT gravity in the dS background too.

Before we proceed, we comment on the connection to quantum information. An inter-
esting question would be to understand how the bulk spacetime emerges from the boundary
degrees of freedom, to which purpose quantum information may play a central role. As
a remarkable example in the AdS/CFT framework, the Ryu-Takayanagi (RT) prescrip-
tion relates entanglement entropy in a CFT to the area of extremal codimension-two bulk
surfaces anchored at the AdS boundary [17–19].1 However, in terms of the dual theory
in AdS, entanglement entropy does not suffice [22] to capture the growth of the Einstein-
Rosen bridge inside a black hole, which continues even after the thermalization time. The
appropriate dual quantity to be considered is quantum complexity, which keeps growing for
an exponentially large time [23, 24]. In the context of computer science, where complex-
ity is identified with the minimum number of elementary gates required to build a target
state from a reference one, this property has been shown to hold for random quantum
circuits [25]. A geometric definition of complexity as the length of shortest geodesics on
the manifold of unitary operators has been introduced in [26] for quantum systems with
a finite number of degrees of freedom. Chaotic behaviour of complexity geometry, which
is expected to reflect the black hole interior evolution, has been found to be related to
negative curvature of the manifold of unitary operators [27–31]. Applications of the geo-
metric approach to free quantum field theories have been studied in [32–35]. Extensions
of complexity to CFTs have been addressed in [36–43]. See [23, 44, 45] for reviews on
complexity.

Three main conjectures have been put forward for the holographic dual of complexity:
complexity = volume (CV) [46], relating complexity to the volume of codimension-one
extremal surfaces, complexity = action (CA) [47, 48], invoking the full gravitational action
of the Wheeler-DeWitt (WDW) patch, and CV 2.0 [49], involving the spacetime volume
of the WDW patch. Recently, it has been pointed out that an infinite class of observables
defined on codimension-one [50] and codimension-zero [51] bulk regions exist which grow
linearly at late times in the classical regime and are subject to the switchback effect [44, 52].
Such arbitrariness in selecting the bulk counterpart of complexity may mirror the intrinsic
ambiguity in the choice of elementary gates in the complexity definition. Holographic
complexity for AdS in JT gravity and in other JT-like two-dimensional dilaton-gravities
has been investigated in [53–59]. Semi-classical corrections give a volume that saturate
at late times [60–62]. In recent years, holographic complexity calculations have also been
performed in hybrid spacetimes interpolating between AdS and dS [63, 64], for general-
dimensional dS spacetime in Einstein gravity [65], and for two-dimensional dS spacetime
in JT gravity [63].

In this paper, we focus on holographic complexity for two-dimensional dS spacetime
in JT gravity. As far as we are aware, complexity computations in JT dS2 have been
done only using the CV conjecture. One surprising fact in this regard is that holographic

1Generalization of the RT proposal to dS spacetime has been discussed in [6, 20, 21], where the RT
surface has been conjectured to be anchored at the dS stretched horizon.
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volume complexity in dS2 has been found to be upper-bounded by an O(1) value at early
times [63, 65], prior to a sudden infinite jump at a critical time [65]. However, at first sight,
this result might cause confusion from the following perspective. Contrary to the late time
linear growth of the wormhole volume behind the event horizon of an AdS black hole [23,
24], the dS space beyond the cosmological horizon of the static patch increases exponentially
in time [6]. This exponential expansion of dS is one of the reasons why Susskind originally
conjectured the growth of holographic complexity in dS to be “hyperfast” [6]. In light of
this, one might ask why holographic complexity for dS2 does not keep growing as for AdS
black holes.

One simple answer to this question is that in two dimensions there is only one spacelike
direction and no “volume”. For instance, in four-dimensional gravity, the black hole horizon
is a two-sphere S2, whereas in two dimensions it is just a point. The lack of spatial
dimensions prevents the metric from reading the characteristics of the expanding dS space.
Does this mean that the features of the expanding universe disappear in two dimensions?
No, because there is a dilaton.

To gain a better grasp on this point, recall that in the original CA papers [47, 48] for
AdS spacetime in Einstein gravity

S = 1
16πG

∫ √
−g (R− 2Λ) , (1.1)

it is pointed out that CA is related to CV as

C ∼ V

G`
∼ W

G`2
, (1.2)

where ` is the curvature radius of the background spacetime, G is Newton’s constant and
V,W is the space and spacetime volume of the WDW patch, respectively. Schematically,
these are related by

W ∼ ` V . (1.3)

In JT gravity, there is a crucial difference due to the dilaton. In this case, one can never
get the action in the so-called “Einstein-frame”, rather one always has the “string-frame”
form of the action:

S = 1
16πG

∫ √
−g φ (R− 2Λ) + · · · , (1.4)

where φ is the dilaton. Even after Weyl transformation-like field redefinition

gµν → Ω(φ)gµν , (1.5)

one can never get rid of φ in front of the Ricci scalar in the action. Therefore, in JT gravity
the relation between action complexity and volume complexity is not given by eq. (1.2),
but it is rather corrected by the presence of the dilaton as

C ∼ φbW

G`2
, (1.6)

where φb is the boundary value of the dilaton. This is reminiscent of the proposal in [53],
where the effective Newton’s constant is employed for volume complexity in AdS to manifest
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the expected late-time linear growth. The dilaton dependence is more significant in dS
spacetime. Indeed, since the dilaton diverges at the spacelike future infinity behind the
cosmological horizon, it renders action complexity divergent as well. On the other hand,
in AdS spacetime the dilaton remains finite but the volume grows linearly in time. The
point is that both φb and W matter in JT gravity.

This is consistent with dimensional reduction. In two-dimensional dS, volume com-
plexity is upper bounded at early times, but in higher dimensions, it diverges due to the
large expansion of the sphere in the transverse spatial directions. However, after compact-
ification, the growing radius of this transverse spatial sphere reduces to the dilaton in JT
gravity. The dilaton is crucial to properly capture the increase in holographic complexity.

Another subtle issue with volume complexity is that in two-dimensional gravity there
is no preferred “frame”, as we have discussed. We should emphasize that physics must be
invariant under the field-redefinition of eq. (1.5) because fields are not directly observable.
Despite the on-shell action being invariant under field-redefinition, the solution apparently
changes. Since in JT gravity, both the dilaton and the metric characterize the solution, it
is strange that complexity is defined by the volume, which picks up only the information
contained in the metric. In this regard, it is natural to take action complexity as a starting
point to understand the effect of the dilaton in JT gravity.

The organization of this paper is as follows. In section 2 we compute action complexity
in JT gravity for dS2. For this purpose, an appropriate action is obtained by dimensional
reduction starting from Einstein gravity in three dimensions. We show that indeed action
complexity correctly captures the effect of the dilaton and gives a result that agrees with
what one obtains in three dimensions. In section 3 we argue that volume complexity in JT
gravity has an ambiguity by showing that it changes under a field redefinition as in eq. (1.5),
even though physics should be invariant under this kind of transformation. Further, we
show that a specific field redefinition can be found which gives a volume complexity in
agreement with the higher-dimensional results. We end this paper with a discussion in
section 4.

2 CA in JT gravity

2.1 Setup

According to the CA conjecture, the complexity of a state with a holographic realization
is proportional to the full gravitational action of the Wheeler-DeWitt (WDW) patch:

CA = IWDW
π

. (2.1)

We compute action complexity in Jackiw-Teitelboim (JT) gravity, whose bulk action is

IJT = 1
8G

∫
W
d2x
√
−g

(
φR+ L−2 U (φ)

)
+ 1

4G

∫
∂W

dy
√
−hφbK , (2.2)

with φ the dilaton and φb its value at the boundary ∂W. The dilaton potential is U(φ) = 2φ
for anti-de Sitter (AdS) spacetime and U(φ) = −2φ for de Sitter (dS) spacetime. The
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boundary term represents the Gibbons-Hawking-York (GHY) action [66, 67], where K =
hµνKµν is the trace of the extrinsic curvature. The latter is defined as Kµν = hρµh

σ
ν∇ρnσ,

with nσ the outward-directed normal to ∂W.
The equations of motion for the dilaton and the metric are

R = −U
′(φ)
L2 , (2.3)

0 = ∇a∇bφ− gab∇2φ+ gab
2L2U(φ). (2.4)

In this paper, we work in dS spacetime, so we choose

U(φ) = −2φ . (2.5)

With this choice, the equations of motion are solved by the following metric and dilaton

ds2 = −f(r)dt2 + dr2

f(r) , φ = r

L
, (2.6)

where the blackening factor f(r) is

f(r) = 1− r2

L2 . (2.7)

In the following, we focus on the portion of spacetime with 0 ≤ r <∞ (for the reason we
shall explain at the beginning of subsection 2.2). Therefore, the position of the cosmological
horizon is rh = L. It is convenient to introduce the tortoise coordinate

r∗(r) =
∫ r dr̂

f(r̂) . (2.8)

Taking as a boundary condition r∗(0) = 0, we get

r∗(r) = L

2 log
∣∣∣∣r + L

r − L

∣∣∣∣ . (2.9)

The Eddington-Finkelstein (EF) coordinates are given by

v = t+ r∗(r) , u = t− r∗(r) . (2.10)

To describe the whole of spacetime, we need to consider two copies of EF coordinates, one
for the right (R) and one for the left (L) side of the Penrose diagram, see figure 1. Note
that uR is constant along null rays falling into the cosmological horizon, whereas vR is
constant along outgoing null rays. The reverse behaviour applies to the EF coordinates for
the left side of the Penrose diagram.

2.2 Action manual and dimensional reduction

Action complexity is obtained by evaluating the full gravitational action of the WDW patch
as in eq. (2.1). The question of which action should be considered is non-trivial since the
full JT gravity action of the relevant spacetime region is not just given by IJT in eq. (2.2).
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L r
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vR uR

uL vL

t

t

Figure 1. Penrose diagram for dS spacetime. The time coordinate t runs upwards on the right
and downwards on the left. Coordinate axes for the EF coordinates on the right and the left are
shown in red.

In fact, there are several additional boundary contributions. In order to determine the
right action, we exploit the fact that the dS JT gravity action in two dimensions can
be obtained by dimensional reduction from three-dimensional pure dS, starting from the
Einstein-Hilbert (EH) action plus boundary terms [68].2 We employ this procedure to
explicitly compute action complexity in dS2.

Before we proceed, we point out that there are two ways to obtain dS2 JT gravity
from dimensional reduction. One is half reduction from pure dS3 [68] and the other is full
reduction from Schwarzschild-dSd (d ≥ 4) in the near-Nariai limit [69, 70] (see [68, 71, 72]
as well). For our analysis, we use half reduction from pure dS3, which automatically
reduces to the r ≥ 0 range. The dS2 spacetime obtained from Schwarzschild-dSd (d ≥ 4)
in the near-Nariai limit also includes r < 0 and a horizon at negative r. In this limit,
we are zooming in on the very tiny region near the black hole and cosmological horizons,
and the r-negative horizon corresponds to the original black hole one. Since our main
interest is holographic complexity beyond the cosmological horizon, rather than black hole
complexity, we focus on r > 0. For this purpose, half reduction from three-dimensional
pure dS is enough. In three dimensions, the full gravitational action is [73]

Itot = IEHGHY + Inull + Ijoint + Ict ,

IEHGHY ≡
1

16πG(3)

∫
W̃
d3X

√
−g(3)

(
R(3) − 2Λ(3)

)
+ 1

8πG(3)

∫
∂W̃

d2Y
√
−h(3)K(3) ,

Inull ≡
1

8πG(3)

∫
B̃
dS dλ

√
γ k , Ijoint ≡

1
8πG(3)

∫
J̃
dθ
√
γ ã ,

Ict ≡
1

8πG(3)

∫
B̃
dS dλ

√
γΘ log

∣∣∣L̃Θ
∣∣∣ .

(2.11)
The term IEHGHY contains the EH and the GHY actions, the latter coming from space-
like and timelike codimension-one boundaries. Contributions from codimension-one null

2The dimensional reduction allows us to circumvent the study of the variational problem in JT gravity,
leading to the same result for the full gravitational action.
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surfaces B̃ are given by Inull [73, 74]. In Ijoint, we have the contributions from codimension-
two joints J̃ [73, 75] at the intersection between codimension-one surfaces. Finally, Ict is
a counterterm for null boundaries B̃ [73] which ensures invariance of the full action under
reparameterization of null normals. In what follows, we analyze each term separately and
we apply dimensional reduction to determine the right action for holographic complexity
in dS2 JT gravity.

The EH-GHY action in three dimensions with positive cosmological constant reads

IEHGHY = 1
16πG(3)

∫
W̃
d3X

√
−g(3)

(
R(3) − 2Λ(3)

)
+ 1

8πG(3)

∫
∂W̃

d2Y
√
−h(3)K(3) ,

(2.12)

where
Λ(3) = 1

L2
(3)

. (2.13)

This admits a three-dimensional dS spacetime solution

ds2
(3) = g(3)MNdX

MdXN = −f(r)dt2 + dr2

f(r) + r2dθ2 , f(r) = 1− r2

L2
(3)

. (2.14)

In the GHY boundary term in eq. (2.12), h(3) is the determinant of the induced metric on
∂W̃ and K(3) denotes the trace of the extrinsic curvature.

We now introduce the metric ansatz

ds2
(3) = g(2)µνdx

µdxν + L2
(3)φ

2(x)dθ2 , (2.15)

where we have expressed XM = (t, r, θ) = (xµ, θ) with M = 0, 1, 2 and µ = 0, 1. As in
eq. (2.6), we consider a solution for the dilaton φ(x) depending just on the radial coordinate:
φ = φ(r). From the metric ansatz (2.15), we get [68]

R(3) = R(2) −
2
φ
�(2)φ ,

K(3) = K(2) + 1
φ
nµ∇(2)µφ ,√

−g(3) = L(3) φ
√
−g(2) ,

(2.16)

with nµ the normal vector to the two-dimensional boundary ∂W̃. Plugging into eq. (2.12),
we obtain

IJT =
L(3)

8G(3)

∫
W
d2x

√
−g(2)

[
φ
(
R(2) − 2Λ(3)

)
− 2�(2)φ

]
+

L(3)
4G(3)

∫
∂W

dy
√
−h(2)

(
φK(2) + nµ∇(2)µφ

)
,

(2.17)

where W and ∂W are the manifolds endowed with metric g(2)µν and h(2)µν , respectively.
Defining G ≡ G(2) = G(3)/L(3) and L ≡ L(3), we recognize the JT gravity action IJT in
eq. (2.2) with some additional terms. Three comments regarding the EH-GHY contribu-
tions are in order:
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• According to the CA conjecture, we must evaluate the full gravitational action of the
WDW patch. Such a spacetime region, which we denote by W, is bounded by null
codimension-one surfaces. Since there are neither timelike nor spacelike boundaries,
the GHY term in eq. (2.17) vanishes.

• With the metric ansatz in eq. (2.15), the three-dimensional dS spacetime solution in
eq. (2.14) comes down to the two-dimensional dS solution with linear dilaton given
in eqs. (2.6) and (2.7). On-shell we have

R(2) = 2Λ(3) = 2
L2

(3)
, (2.18)

so the bulk contribution IJT in eq. (2.17) reduces to

Ibulk = − 1
4G(2)

∫
W
d2x

√
−g(2) �(2)φ . (2.19)

Even though we refer to this expression as two-dimensional “bulk” action, Ibulk is in
fact a boundary term since it comprises a total divergence.3

• We can integrate the term �(2)φ getting a codimension-one contribution for the null
boundaries of the WDW patch distinct from Inull in eq. (2.11):

Ibulk = − 1
4G(2)

∫
B̃
dλ kµ∇(2)µφ = − 1

4G(2)

∫
B̃
dλ ∂λφ , (2.20)

where kµ is the null normal to B̃, see [54] for an analog analysis in AdS2 JT gravity. As
we will see, this term yields nonzero contribution and is important to get consistency
with the three-dimensional CA result.

Besides the bulk term, the full gravitational action of the WDW patch contains boundary
terms for null codimension-one surfaces and joint terms for codimension-two surfaces at
the intersection of null bounding surfaces, which we consider next.

The contribution from null boundaries has been originally studied in [73, 74]. In three-
dimensional spacetime it is

Inull = 1
8πG(3)

∫
B̃
dS dλ

√
γ k , (2.21)

where λ is a parameter running along the null geodesics generating the surface B̃, S is the
transverse spatial direction to such generators, and γ is the determinant of the induced
metric in the S direction. The constant κ is defined by the geodesic equation

k̃M∇(3)M k̃
N = κ k̃N , (2.22)

3As it will be clear later, at late times all contributions to the full action have the same divergence
structure. Therefore, by neglecting Ibulk the qualitative behavior of action complexity at late times does
not change.
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with k̃M = dXM (λ)
dλ the null generator. In other words, κ measures the failure of λ to be

an affine parameter. Consequently, we can set κ = 0 by a wise parameterization choice,
getting rid of the Inull contribution.

At the intersection between bounding codimension-one surfaces, where the boundary is
non-smooth, the joint term comes into play. The joint contributions involving just timelike
and spacelike intersecting surfaces have been investigated in [75], while joints involving at
least one null boundary have been studied in [73]. In our computation we will meet only
joints involving two null boundaries, which in three-dimensional spacetime are given by

Ijoint = 1
8πG(3)

∫
J̃
dθ
√
γ ã ,

√
γ = √g(3)θθ , ã = sign(joint)× log

∣∣∣∣∣ k̃1 · k̃2
2

∣∣∣∣∣
J̃
,

(2.23)

where k̃1, k̃2 denote the one-forms normal to null boundaries, which are taken to be
outward-directed from the spacetime region of interest. The sign of the joint term is
fixed by the following rule. Choosing either of the two null boundaries intersecting at the
joint, the sign of the corresponding contribution (2.23) is positive if the bulk region W is
at the future (past) of the segment and the joint itself is located at the past (future) edge
of the selected segment. In the remaining configurations, the joint term has a negative
sign [73].

Applying the dimensional reduction, we obtain

Ijoint = 1
4G(2)

∑
J
φ(rJ ) aJ , aJ = sign(joint)× log

∣∣∣∣k1 · k2
2

∣∣∣∣
J
. (2.24)

Here r = rJ is the radial position of the joint, and we consider one-forms k1, k2 normal
to one-dimensional boundaries. By spherical symmetry of the dS3 geometry, we trivially
have k̃i = ki and k̃Mi = (kµi , 0), with i = 1, 2.

The joint contributions in eq. (2.24) are affected by the arbitrariness of choosing the
normalization of null normals k1,k2. Such ambiguity can be partially removed by requiring
that ki · ∂t = ±α at the spacetime boundary [76–78], with ∂t the timelike Killing vector
in the boundary theory and α a positive constant. Still, the constant α can be arbitrarily
chosen. For the gravitational action to be invariant under the reparameterization of null
generators, a counterterm must be added for each null boundary [73]. In three-dimensional
spacetime, the counterterm has the following form

Ict = 1
8πG(3)

∫
B̃
dS dλ

√
γΘ log

∣∣∣L̃Θ
∣∣∣ , (2.25)

where L̃ is an arbitrary length scale. In the above expression, Θ is the expansion of null
geodesics given by Θ = ∂λ log√γ. An explicit calculation with the metric ansatz (2.15)
leads to

Θ = ∂λ log√g(3)θθ = ∂λ log φ = ∂λφ

φ
. (2.26)
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Therefore, in JT gravity the counterterm reads

Ict = 1
4G(2)

∫
B
dλ ∂λφ log

∣∣∣L̃ ∂λ log φ
∣∣∣ . (2.27)

Summarizing, the full gravitational action for holographic complexity in dS2 JT is
given by

IJTdS2 = Ibulk + Ijoint + Ict

= − 1
4G(2)

∫
B̃
dλ ∂λφ+ 1

4G(2)

∑
J
φ(rJ ) aJ

+ 1
4G(2)

∫
B
dλ ∂λφ log

∣∣∣L̃ ∂λ log φ
∣∣∣ .

(2.28)

The lesson we learn from the dimensional reduction analysis is that the effects of the
dilaton, which explicitly appears in all terms of the full action (2.28), are important for
the evaluation of holographic complexity. This is consistent with the discussion in the
introduction. Note that in JT gravity the value of dilaton varies, and as a result, one has
an effective Newton “constant”

1
G(2) eff

≡ φ

G(2)
. (2.29)

We recall that in two dimensions there is no “area” for a black hole horizon, but instead,
there is a dilaton. The dilaton plays the role of area. In fact, in d(≥ 3)-dimensional dS
spacetime, the orthogonal Sd−2 area grows to infinity near the future spacelike infinity,
and by dimensional reduction the size factor of the Sd−2 area becomes the dilaton. Since
the divergence of complexity in higher-dimensional dS is associated with the growth of
the orthogonal Sd−2 area [65], without taking into account the dilaton one cannot see the
divergence of complexity in two-dimensional dS spacetime in JT gravity.

2.3 Action evaluation

We now move to the explicit computation of the full gravitational action, mainly follow-
ing [65]. To ease the notation, we set L(3) ≡ L. First, we introduce the stretched horizons
for both the left and the right sides of the Penrose diagram. These are r-constant surfaces
described by

rst = ρL , 0 < ρ < 1 , (2.30)

where the limit ρ ∼ 1 is intended. We then attach the WDW patch to the two stretched
horizons, and we define the anchoring times as tL and tR for the left and the right horizons,
respectively. It is not restrictive to focus on the symmetric case tR = −tL. For convenience,
we define a dimensionless time as tR = Lτ . We focus on the case where the tip of the
WDW patch does not meet the future spacelike infinity at r =∞.

For the right side of the geometry, the future boundary of the WDW patch is at
constant uR, whereas the past boundary is at constant vR. From eq. (2.10), the defining
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equations are

uFR = tR − r∗(rst) = Lτ − L

2 log
(1 + ρ

1− ρ

)
,

vPR = tR + r∗(rst) = Lτ + L

2 log
(1 + ρ

1− ρ

)
.

(2.31)

Let us denote by r = r± the position of the future and past tip of the WDW patch,
respectively. By symmetry, both tips are located on the vertical axis in the middle of the
Penrose diagram, which is described by t = 0. So, evaluating uFR defined in eq. (2.31) at
the future tip, from eq. (2.10) we get

Lτ − L

2 log
(1 + ρ

1− ρ

)
= −L2 log

(
r+ + L

r+ − L

)
, (2.32)

which leads to
r+
L

= cosh τ − ρ sinh τ
ρ cosh τ − sinh τ . (2.33)

Similarly, computing vPR defined in eq. (2.31) at the past tip we obtain

Lτ + L

2 log
(1 + ρ

1− ρ

)
= L

2 log r− + L

r− − L
, (2.34)

from which
r−
L

= cosh τ + ρ sinh τ
ρ cosh τ + sinh τ . (2.35)

The time τ = τ∞ at which the future tip meets the future spacelike infinity r →∞ can be
obtained by eq. (2.33) as

τ∞ = tanh−1 ρ . (2.36)

We can thus rewrite eqs. (2.32) and (2.34) as

τ∞ − τ = tanh−1
(
L

r+

)
, τ + τ∞ = tanh−1

(
L

r−

)
, (2.37)

or equivalently
r± = L coth (τ∞ ∓ τ) . (2.38)

Since we are interested in how complexity grows as τ approaches τ∞, we focus on τ ≤ τ∞.
We now evaluate the gravitational action in eq. (2.28) term by term.

Explicit computation of the boundary term in eq. (2.20) gives

Ibulk = φ

2G(2)

∣∣∣∣∣
r+

ρL

+ φ

2G(2)

∣∣∣∣∣
r−

ρL

= 1
G(2)

(
r+ + r− − 2ρL

2L

)

= 1
G(2)

ρ
(
1− ρ2) cosh2 τ

1− (1− ρ2) cosh2 τ
,

(2.39)

where in the last step eqs. (2.33) and (2.35) has been used.
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r
=

0
r

=
0

r =∞

r =∞

r+

r−

ττ

FL
FR

PL PR

III
II

I

Figure 2. Penrose diagram for dS spacetime showing the WDW patch (red region). The stretched
horizons at r = ρL are represented by red curves.

We now move to the boundary terms. The null normals k = kµdx
µ to the four

codimension-one boundaries of the WDW patch are

kFR = αduR = α

(
dt− dr

f(r)

)
,

kPR = −β dvR = β

(
−dt− dr

f(r)

)
,

kFL = −α′ dvL = α′
(
−dt− dr

f(r)

)
,

kPL = β′ duL = β′
(
dt− dr

f(r)

)
,

(2.40)

where α, β, α′, β′ are positive arbitrary constants and F (P ) stands for future (past), see
figure 2. This choice corresponds to an affine parameterization of null normals, thus
the boundary term (2.21) for null surfaces vanishes. To compute the four joint terms
in eq. (2.24) we need

a+ = + log
∣∣∣∣kFR · kFL2

∣∣∣∣
r=r+

= log
∣∣∣∣ αα′f(r+)

∣∣∣∣ ,
a− = + log

∣∣∣∣kPR · kPL2

∣∣∣∣
r=r−

= log
∣∣∣∣ ββ′f(r−)

∣∣∣∣ ,
ast,R = − log

∣∣∣∣kFR · kPR2

∣∣∣∣
r=rst

= − log
∣∣∣∣ αβ

f(ρL)

∣∣∣∣ ,
ast,L = − log

∣∣∣∣kFL · kPL2

∣∣∣∣
r=rst

= − log
∣∣∣∣ α′β′f(ρL)

∣∣∣∣ .

(2.41)

Then, the total joint contribution is

Ijoint = I+ + I− + Ist,R + Ist,L

= 1
4G(2)L

(
r+ log αα′L2

r2
+ − L2 + r− log ββ′L2

r2
− − L2 − ρL log αβα′β′

(1− ρ2)2

)
.

(2.42)
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Finally, we have to calculate the counterterm for null boundaries given by eq. (2.27).
We start from the FR boundary. The null vector orthogonal to this surface is

kµFR = gµνkFRν = −α
( 1
f(r) , 1

)
. (2.43)

By definition, the null vector is kµ = ∂λx
µ =

(
ṫ, ṙ
)
, where the dot denotes a derivative with

respect to the affine parameter λ. We thus conclude that ṙ = −α, implying that r = −αλ
is an affine parameter too which increases when λ decreases. Putting all together, we get

Ict,FR = 1
4G(2)L

∫ ρL

r+
dr log L̃ α

r

= 1
4G(2)L

(
ρL− r+ + ρL log

(
L̃ α

ρL

)
− r+ log

(
L̃ α

r+

))
.

(2.44)

By symmetry, the contribution on the future left boundary is simply Ict,F L = Ict,F R (α→ α′).
Similarly, the counterterm for the right past boundary is

Ict,PR = 1
4G(2)L

∫ ρL

r−
dr log L̃ β

r

= 1
4G(2)L

(
ρL− r− + ρL log

(
L̃ β

ρL

)
− r− log

(
L̃ β

r−

))
,

(2.45)

and the contribution from the past left boundary is Ict,PL = Ict,PR (β → β′). So, the total
counterterm reads

Ict = Ict,FR + Ict,FL + Ict,PR + Ict,PL

= 1
4G(2)L

(
4ρL− 2r+− 2r−+ ρL log

(
L̃4αβα′β′

ρ4L4

)
− r+ log

(
L̃2αα′

r2
+

)
− r− log

(
L̃2ββ′

r2
−

))
.

(2.46)
Note that the terms containing the arbitrary constants α, β, α′, β′ cancel the corresponding
terms in the joint contribution (2.42). In details,

Ijoint + Ict = 1
2G(2)L

2ρL− r+− r−+ r+ log r+L

L̃
√
r2

+−L2
+ r− log r−L

L̃
√
r2
−−L2

− ρL log ρ2L2

L̃2 (1− ρ2)


= 1

2G(2)L

(
L coth (τ∞− τ)

(
log

(
L cosh (τ∞− τ)

L̃

)
− 1
)

+ (τ → −τ)

−2L tanh (τ∞)
(

log
(
L sinh (τ∞)

L̃

)
− 1
))

,

(2.47)
where in the second equality eqs. (2.36) and (2.38) have been used.
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Summing up eqs. (2.39) and (2.47), we finally get the action complexity

CA = IJTdS2

π
= Ibulk + Ijoint + Ict

π

= 1
2πG(2)

(
2ρ
(
1− ρ2) cosh2 τ

1− (1− ρ2) cosh2 τ
− 2 tanh (τ∞)

(
log

(
L sinh (τ∞)

L̃

)
− 1

)

+ coth (τ∞ − τ)
(

log
(
L cosh (τ∞ − τ)

L̃

)
− 1

)
+ (τ → −τ)

)
,

(2.48)

which matches the dS3 result found in [65], with G(2) = G(3)/L.
Some comments are in order:

• The CA given by eq. (2.48) diverges at the critical time

cosh2 τ∞ = 1
1− ρ2 , (2.49)

which is exactly eq. (2.36). In the limit τ → τ∞, both r+ and CA diverge at the
leading order. In particular,

r+ = L

(τ∞ − τ) + (subleading) as τ → τ∞ , (2.50)

where we have used eq. (2.33), and

CA = 1
πG(2)

1√
2− ρ2

1
(τ − τ∞) ∝

r+
G(2)

+ (subleading) as τ → τ∞ . (2.51)

Therefore, the late-time behavior of CA is

CA ∼
φ

G(2)
≡ 1
G(2) eff

. (2.52)

As discussed in the introduction, this is exactly what we expect in JT gravity.

• As first pointed out in [6], in d ≥ 3 dimensions volume complexity diverges at the
critical time. This can be understood from the fact that maximal slices anchored at
the two stretched horizons bend upwards to the future spacelike infinity, where local
(d−2)-spheres exponentially expand. In JT gravity, the effect of such an exponential
expansion appears in the linear dilaton. Note that the static coordinate r behaves as
time beyond the cosmological horizon r ≥ L and it diverges at the future spacelike
infinity.

• Even though τ∞ diverges in the limit ρ→ 1, it does as

ρ ≡ 1− ε , τ∞ = 1
2 log 2

ε
+O(ε) . (2.53)

So, the τ∞ dependence on the stretched horizon parameter ε is very mild [6, 65].

• Without taking into account the dilaton, volume complexity in dS2 remains finite due
to the lack of a local exponentially expanding (d−2)-sphere in two dimensions [63, 65].
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3 Geodesics, volume and Weyl dependence

3.1 Weyl field redefinition

In this section, we discuss volume complexity and its subtleties. Before we proceed, we
review the basic point.

The most general two-dimensional dilaton gravity bulk action up to two derivatives
can be written in the form

S = 1
8G

∫
W
d2x

√
−g̃

(
U1(Φ)R̃+ U2(Φ)g̃µν∇̃µΦ∇̃νΦ + L−2U3(Φ)

)
. (3.1)

We can perform a Weyl field redefinition

g̃µν = e2ω gµν , ∇µω = − U2(Φ)
2U ′1(Φ)∇µΦ , (3.2)

to get rid of the kinetic term. Then, by doing a simple field redefinition φ = U1(Φ), we can
remove U1 as well. Note that this Weyl field redefinition does not change the coefficient
of the

√
−g̃R̃ terms and we are left with just one function of φ which is related to U3 as

U(φ) = U3(Φ). Therefore, a general dilation gravity system can be brought to the form

S = 1
8G

∫
d2x
√
−g

(
φR+ L−2U(φ)

)
, (3.3)

which admits the two-dimensional dS solution with linear dilaton in eq. (2.6).
Note that even though the intermediate Weyl transformation done above is just a field

redefinition, and hence should not affect physical quantities, it has significant influence in
the context of the CV conjecture, since the volume changes by Weyl transformation. In this
section, we study the effects of Weyl transformations on the CV conjecture. To evaluate
volume complexity, it is convenient to use the metric ansatz

ds2 = −f(r)dt2 + dr2

f(r) . (3.4)

In fact, by starting with the dS2 solution in eq. (2.6) and by applying the Weyl transfor-
mation-like field redefinition

gµν ≡ Ω(φ)ĝµν , (3.5)

one can always put the metric in the form of eq. (3.4) by a coordinate change, as we will
show soon. Here we always assume Ω(φ) is regular. In what follows, we set L = 1 for
convenience. The L scale can always be recovered by dimensional analysis.

Since φ = r, we have Ω(φ) = Ω(r). Starting from f(r) = 1− r2, the Weyl-transformed
metric is given by

ds2 = Ω(r)
(
−f(r)dt2 + dr2

f(r)

)
= −Ω(r)f(r)dt2 + Ω2(r)dr2

Ω(r)f(r) . (3.6)

Defining the coordinate r̃ in terms of r as

r̃(r) =
∫ r

Ω(r̂)dr̂ , (3.7)
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the line element can be written as

ds2 = −f̃(r̃)dt2 + dr̃2

f̃(r̃)
, f̃(r̃) = Ω(r(r̃))f(r(r̃)) . (3.8)

One can check that the temperature of the solution remains unchanged upon Weyl trans-
formation-like field redefinition because t is unmodified. In this way, we can always make
the metric in the form eq. (3.4). However, note that the dilaton is no more linear in terms
of the new radial coordinate r̃

φ = r(r̃) . (3.9)

In the end, this is just a field-redefinition, so physics should not be modified. Since the
vacuum of JT gravity is characterized by both the metric and the dilaton, reasonable
physical quantities should be determined by taking into account both. While the on-shell
action is invariant under such field-redefinitions, the volume is not, because it is determined
by the metric only. In other words, action complexity is invariant, but the volume (precisely,
geodesic length) changes, as we will see explicitly.

Given the metric ansatz in eq. (3.4), we now present the procedure to compute the
length of geodesic following the approach of [63, 65]. As in the action computation, we
focus on the portion of spacetime with 0 ≤ r <∞.

In EF coordinates (2.10), the line element on the right side of the Penrose diagram
covered by (vR, r) or (uR, r) coordinates is

ds2 = −f(r)dv2
R + 2dvRdr = −f(r)du2

R − 2duRdr . (3.10)

The length of geodesics in this geometry reads

V =
∫
ds
√
−fv̇2

R + 2v̇Rṙ =
∫
ds
√
−fu̇2

R − 2u̇Rṙ , (3.11)

where the dot denotes the derivative with respect to the geodesic parameter s. Since the
geodesic is spacelike, we can always choose a parameterization such that the integrand in
eq. (3.11) is unity:

−fv̇2
R + 2v̇Rṙ = 1 → ṙ = 1 + fv̇2

R

2v̇R
,

−fu̇2
R − 2u̇Rṙ = 1 → ṙ = −1 + fu̇2

R

2u̇R
.

(3.12)

The equations of motion obtained from eq. (3.11) by varying uR, vR lead to the conserved
quantity

P = δV

δv̇R
= −fv̇R + ṙ = 1− fv̇2

R

2v̇R
,

P = δV

δu̇R
= −fu̇R − ṙ = 1− fu̇2

R

2u̇R
.

(3.13)

We can thus express u̇R, v̇R, and ṙ in terms of the conserved quantity P as

ṙ± = ±
√
f + P 2 , u̇R± = −P − ṙ±

f
, v̇R± = −P + ṙ±

f
. (3.14)
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The sign ± in the above equation indicates whether the parameter s increases or decreases
along the direction of increasing r. There is a turning point where f(rt) + P 2 = 0. We
consider geodesics anchored at the left and right stretched horizons r = rst, defined in
eq. (2.30). We take by convention the parameter s to increase from the left stretched
horizon to the right one. In the chosen gauge, the volume is given by

V (P ) =
∫
ds = 2

∫ rt

rst

dr

ṙ+
= 2

∫ rt

rst

dr√
f(r) + P 2 , (3.15)

where by symmetry we integrate over the left half of the geodesic and we introduce a
multiplicative factor of 2. The dependence of volume on the stretched horizon time tR =
−tL = τ is encoded in the conserved quantity P . For P > 0, geodesics explore the region
beyond the future cosmological horizon [63, 65]. In this case, the right portion of geodesics
is fully covered by the EF coordinate uR, while the left portion is fully described by vL,
see figure 1. The time dependence of P can thus be computed by

uR(rst)− uR(rt) =
∫ rst

rt

u̇R−
ṙ−

dr =
∫ rt

rst
T (P, r) dr , (3.16)

vL(rt)− vL(rst) =
∫ rt

rst

v̇L+
ṙ+

dr =
∫ rt

rst
T (P, r) dr , (3.17)

where

T (P, r) ≡
√
f(r) + P 2 − P

f(r)
√
f(r) + P 2 . (3.18)

Summing up eqs. (3.16) and (3.17) and using the definition of the EF coordinates, we end
up with

τ(P ) = r∗(rst)− r∗t +
∫ rt

rst
T (P, r)dr = −

∫ rt

rst

P

f(r)
√
f(r) + P 2dr , (3.19)

where we have defined r∗t ≡ r∗(rt). Note that the case P < 0 corresponds to a time-
reflection τ → −τ .

As we have seen, the metric resulting from Weyl field-redefinition is given by eq. (3.6).
So, eqs. (3.15) and (3.19) still hold true, provided that we replace r, f(r) → r̃, f̃(r̃) given
by eqs. (3.7) and (3.8). Therefore, after the Weyl field-redefinition, the volume and the
stretched horizon time are given by

V (P ) = 2
∫ r̃t

r̃st

dr̃√
f̃(r̃) + P 2

= 2
∫ rt

rst

Ω(r)√
Ω(r)f(r) + P 2dr , (3.20)

τ(P ) = r̃∗(r̃st)− r̃∗t +
∫ r̃t

r̃st
T̃ (P, r̃)dr̃ = −

∫ rt

rst

P

f(r)
√

Ω(r)f(r) + P 2dr , (3.21)

where r̃t is the turning point obtained by

f̃(r̃t) + P 2 = 0 , (3.22)
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and r̃∗ is the tortoise coordinate defined by

r̃∗(r̃) =
∫ r̃ dr̂

f̃(r̂)
. (3.23)

To illustrate the Weyl dependence of the volume, we consider Ω(φ) = Ω(r) of the form

Ω(φ) = φw = rw , (3.24)

so that we get

r̃ = rw+1

w + 1 . (3.25)

By choosing a few specific values of w, we now show in detail how the volume in dS
spacetime changes as we change w.

3.1.1 w = 0

We consider the dS blackening factor given by eq. (2.7) with L = 1. Thus, the cosmological
horizon is at r = 1. The stretched horizon is specified by the location where the dilaton
takes the fixed value

φst = rst = ρ . (3.26)

The turning point of the geodesic elongating between the right and left stretched horizons is

rt =
√

1 + P 2 . (3.27)

The volume and the boundary time can be computed explicitly and are given by

V (P ) = 2
∫ √1+P 2

ρ

dr√
f(r) + P 2 = π − 2 arctan

[
ρ√

P 2 + 1− ρ2

]
,

τ(P ) = −
∫ √1+P 2

ρ

P

f(r)
√
f(r) + P 2dr = arctanh

[
Pρ√

P 2 + 1− ρ2

]
, (3.28)

as found in [65]. If we set ρ = 0, geodesics stretch between the poles of dS spacetime. In
this case, we get V (P ) = π and τ(P ) = 0, which is consistent with the result of [63].

3.1.2 w = 2

For the case w = 2, we have

r̃ = r3

3 , (3.29)

so the blackening factor becomes

f̃(r̃) = (3r̃)2/3(1− (3r̃)2/3) . (3.30)
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Figure 3. Plot of V (τ) for fixed values of w. As τ → τ∞, the refined volume behaves differently
depending on w. The w = 0 result is bounded by π. Instead, the refined volume for w = 2 diverges,
due to the additional Weyl (dilaton) contribution from the point near the future infinity. We set
ρ = 0.7 and τ∞ = arctanh(ρ) = 0.88.

The turning point in terms of the original coordinate r is given by

rt = 1√
2

√
1 +

√
1 + 4P 2 . (3.31)

Since the Weyl transformation only changes the metric, and not the dilaton, the lo-
cation of the stretched horizon is still given by eq. (2.30). The expressions for the volume
and the boundary time are given by

V (P ) = 2
∫ r̃t

r̃st

dr̃√
f̃(r̃) + P 2

= 2
∫ rt

ρ

r2√
r2(1− r2) + P 2dr ,

τ(P ) = −
∫ r̃t

r̃st

P

f̃(r̃)
√
f̃(r̃) + P 2

dr̃ = −
∫ rt

ρ

P

(1− r2)
√
r2(1− r2) + P 2dr . (3.32)

In order to compare the cases w = 0, 2 described above, in figure 3 we present some plots
of the volume as a function of time on the stretched horizon.

Remarkably, for w = 2 the volume diverges at the critical time, qualitatively matching
the behavior of action complexity. Below, we consider refined volume for complexity.

3.2 Refined volume for complexity

As we have seen, despite a field redefinition should not influence physics, volume complexity
is clearly modified by this kind of transformation. Moreover, there is a discrepancy between
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volume complexity and action complexity in JT gravity. In this subsection, we look for
a Weyl factor of the form in eq. (3.24) with an appropriate parameter w for which the
transformed volume complexity behaves qualitatively as action complexity. We refer to
the volume with this specific choice of w as refined volume.

This can be easily done as follows. We recall that the action complexity we computed
in section 2 is obtained by dimensional reduction from dS3. Therefore, action complexity
in dS2 JT gravity is essentially the same as in dS3 Einstein gravity. For Einstein gravity
in dSd+1, both CV and CA conjectures are studied in detail in [65], where the authors
have found

V ∼
∫ rt

ρ
dr

(r/L)2(d−1)√
P 2 + f(r) (r/L)2(d−1)

, τ ∼
∫ rt

ρ

dr

L

−P

f(r)
√
P 2 + f(r) (r/L)2(d−1)

,

(3.33)
see eq. (5.9) and (5.11) in [65]. In dSd+1 (d ≥ 2), both volume and action complexity grow
as rd−2

+ . Therefore, a direct comparison of the above result with our eqs. (3.20) and (3.21)
for dS3 determines

Ω(φ) = φ2 . (3.34)

With this choice, corresponding to w = 2 in eq. (3.24), the refined volume matches volume
complexity in Einstein gravity dS3, which reduces to JT gravity dS2. In this way, in
JT gravity one can define the Weyl transformed refined volume which behaves as action
complexity.4

We end this section by pointing out that, in a similar spirit as the refined volume we
have discussed, modifications of the CV conjecture in non-Einstein gravity theories with
higher derivative terms have been proposed in [79–82].

4 Summary and discussion

In this paper, we have confirmed that action complexity in dS2 JT gravity, with the effect
of the dilaton properly taken into account, diverges at the finite time τ = τ∞ given in
eq. (2.36). Instead, volume complexity reaches an O(1) critical value, although with a
diverging rate as the critical time τ = τ∞ is approached. We point out that for larger
times τ , when geodesics anchored at the stretched horizon meet the future infinity of dS2,
the definition of volume complexity requires particular care. An analysis has been done
in [65], where extremal curves are replaced by piecewise geodesics including a cutoff portion
nearby the future infinity. With this prescription, volume is divergent too, but at the edge
of the two regimes, there is an infinite jump. On the other hand, action complexity is
well-defined even after the critical time τ∞, when the WDW patch is cut off by the future
infinity. The crucial difference between volume and action complexity in two dimensions is
due to the dilaton. Since the solution of JT gravity is characterized by both the metric and
the dilaton, the effect of the latter is crucial. The dilaton naturally arises by dimensional
reduction of three-dimensional dS spacetime, which provides the “right action” in eq. (2.28).

4More generally, to get the volume complexity result of conventional JT gravity to match with the
corresponding result of Einstein gravity in dSd+1, the Weyl factor should be taken to be Ω(φ) = φ2(d−1).
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This is because the dimensional reduction of dS3 yields dS2 with a linear dilaton, which is
the solution of JT gravity. Consistently, by evaluating the on-shell action in eq. (2.28), we
obtain the same action complexity as for dS3 [65], see eq. (2.48). Note that all contributions
in eq. (2.28) are boundary terms. This is expected since the bulk JT gravity action vanishes
on-shell. We also stress that in dS spacetime the dilaton diverges at the future infinity.
This behaviour of the dilaton is crucial for action complexity in JT gravity to show the
hyperfast growth predicted in [6].

We have observed that the CV conjecture suffers a Weyl field-redefinition issue. A field-
redefinition should not affect the physics, but volume complexity is manifestly modified by
Weyl field-redefinition. In higher dimensions, there is a preferred frame, the Einstein frame.
However, in two dimensions, since √gR is invariant under Weyl transformation, there is no
such preferred frame and this leads to an ambiguity in the definition of the CV conjecture.
On the contrary, the CA conjecture is free from this problem, because the on-shell action
is invariant under field-redefinition. As a way out, we have proposed a particular gauge
choice in dS2 JT gravity under which the so-called refined volume behaves qualitatively as
action complexity. The full analysis of refined volume in JT gravity is an open issue on
which we hope to come back in the near future.

Quantum computational complexity quantifies how hard it is to build a target state
from a given reference one in terms of the minimum number of elementary gates required.
The hyperfast growth of action complexity, as well as its divergence at finite time, indicates
that the late time growth of dS spacetime is too difficult to capture, as conjectured in [6].
Susskind conjectured that the boundary dynamics of JT gravity in dS2 is related to the
double-scaled SYK model. It would be quite interesting to investigate this particular limit
of SYK and to evaluate complexity directly in such a setting.

Another interesting possible direction is to embed dS2 in asymptotic AdS2 [83, 84].
Previous studies of holographic complexity in this kind of geometries have been done using
the CV conjecture [63]. It would be interesting to investigate how the results are modified
by using the CA conjecture. It also remains to be seen how the refined volume conjecture
in these more general kinds of spacetimes works.
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