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Abstract

We revisit earlier work by one of us which lead to a periodic table of Borcherds-Kac-Moody algebras that 
appeared in the context of the refined generating function of quarter-BPS states (dyons) in N = 4 super-
symmetric four-dimensional string theory. We make new additions to the periodic table by making use of 
connections with generalized Mathieu moonshine as well as umbral moonshine. We show the modularity of 
some Siegel modular forms that appear in umbral moonshine associated with Niemeier lattices constructed 
from A-type root systems and further show that the same Siegel modular forms appear for generalized 
Mathieu moonshine in some cases. We argue for the existence of a new kind of BKM Lie superalgebras 
that arise from the dyon generating functions for the Z5 and Z6 CHL orbifolds.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The counting of BPS states in N = 4 supersymmetric four-dimensional string theories has 
proved to be a playground that has lead to interesting and unexpected connections between au-
tomorphic forms, finite simple groups as well as Lie algebras. In these theories, the generating 
function of half-BPS states is a modular form while the one for quarter-BPS states is a Siegel 
modular form [1–3]. An unexpected connection to the largest sporadic Mathieu group M24 ap-
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peared in this counting problem [4,5]. This is referred to as Mathieu moonshine. Connections 
with Borcherds Kac-Moody (BKM) Lie superalgebras also emerged [6–8].

In [9] (referred to as Paper 1 in the sequel), one of us constructed a ‘periodic table of BKM Lie 
superalgebras’ by associating a BKM Lie algebra to a pair of commuting elements of M24. All 
the examples that arose in this paper appeared independently in the construction of ‘dd-modular’ 
forms by Cléry and Gritsenko [10]. This paper aims to extend the results of Paper 1 in several 
ways: (i) Extend the examples considered and (ii) make connections with developments such as 
umbral moonshine [11].

A summary of our results is as follows.

1. We provide new formulae for Siegel modular forms that arise as the additive lift for Jacobi 
forms of �0(q, Nq) – these are the S-transform of the additive lift of Cléry and Gritsenko. 
This directly provides the sum side of the Weyl-Kac-Borcherds (WKB) denominator formula 
for Chaudhuri-Hockney-Lykken (CHL) ZN orbifolds [12].

2. Using a Hecke operator given in [13] for generalized moonshine, we obtain product formu-
lae for Siegel modular forms. This provides a uniform description for the product side of 
the WKB denominator formula for all examples. In some cases, these are equivalent to the 
Borcherds product formula of Cléry and Gritsenko described in Theorem B.1.

3. We provide the modularity of Siegel modular forms that arise with umbral moonshine as-
sociated with A-type Niemeier root systems. The zeroth Fourier-Jacobi coefficient which is 
also the seed for the additive lift when it exists, is also determined. We also find two new 
examples that correspond to twining by order two and three elements of 2.M12 at lambency 
three. Some of these Siegel modular forms also arise in the context of generalized Mathieu 
moonshine.

4. Contrary to the claim in [14], we show that the additive lift for the Z5 orbifold explicitly 
agrees with the product formula. This provides Macdonald type identities for the Z5 and Z6
CHL orbifolds. We argue that these identities provide evidence for the existence of a new 
class of BKM Lie algebras associated with hyperbolic lattices with Weyl vector of hyperbolic 
type.

5. We add two new rows and two columns to the periodic table of BKM Lie superalgebras 
given in Paper 1.

The organisation of this paper is as follows. After the introduction section, section 2 reviews 
the connection between walls of marginal stability and rank three Lorentzian lattices. We also set 
up the notation to make connection with the data that is input in the construction of Lorentzian 
Kac-Moody Lie superalgebras of Gritsenko and Nikulin. In section 3, we provide direct con-
struction of various Siegel modular forms so that their modular properties are evident and their 
connection with generalized Mathieu moonshine is manifest. We also provide a uniform con-
struction of Siegel modular forms associated with umbral moonshine associated with Niemeier 
lattices constructed from A-type root lattices. This is summarised in Table 2. In section 4, we 
make the connection with BKM Lie superalgebras extending results of paper 1. Even for the 
cases that already appeared in paper 1, we provide a uniform description. We provide some ev-
idence for the existence of new BKM Lie superalgebras that extend Lorentzian Kac-Moody Lie 
superalgebras of Gritsenko and Nikulin to include Lorentzian root lattices with Weyl vector of 
hyperbolic type. This is done with three examples associated with the Cartan matrices A(5) and 
A(6). The results are summarised in an updated periodic table of BKM Lie superalgebras (see 
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Table 3). We conclude in section 5 with some remarks. Appendix A deals with the details of 
the paramodular group and its subgroups. Appendix B provides three different constructions of 
Siegel modular forms that we use in this paper. In Appendix C, we provide some details of a 
computation.

2. Root systems from walls of marginal stability

We shall focus on CHL models with N = 4 supersymmetry obtained as the ZN orbifolds 
of the heterotic string compactified on T 6 for N ∈ {1, . . . , 6}. We discuss the hyperbolic root 
systems of rank three that arise from the walls of marginal stability in these orbifolds.

2.1. Walls of marginal stability and hyperbolic polygons

The walls of marginal stability (where two-centred black holes decay) in these CHL models 
are determined by its intercepts on the real part of the upper half plane (which is the moduli 
space of the heterotic dilaton-axion fields) [15]. The precise curve (wall) however depends on 
other moduli fields. These walls determine a hyperbolic polygon in the upper half-plane. It is 
anticipated that there is a Lie algebra with a Weyl chamber whose intercepts are identical to 
those of the hyperbolic polygon [6,8,4]. Let us denote this polygon by M(N). The polygon for 
N = 1, 2, 3 is given by set of vertices VN :

V1 = ( 1
1 , i∞, 0

1 , 1
1

)
, V2 = ( 1

2 , 1
1 , i∞, 0

1 , 1
2

)
, V3 = ( 1

2 , 2
3 , 1

1 , i∞, 0
1 , 1

3 , 1
2

)
. (2.1)

When N > 3, the polygons have infinite edges. It is preferable to use an algebraic method to 
describe the polygon. For N ∈ {1, 2, . . . , 6}, let λN denote any root of the quadratic equation

λ2 − (N − 2)λ + 1 = 0 .

Define

A(N)
m =

⎧⎨⎩
λm

N−λ−m
N

λN−λ−1
N

, for N �= 4,

m , for N = 4,
B(N)

m =A(N)
m +A(N)

m+1 .

Form the ordered sequence

VN =
(

B(N)
m−1

NA(N)
m

,
A(N)

m

B(N)
m

, for m ∈ Z

)
.

Explicitly one has

V4 =
(

1
2 , . . . , 5

8 , 2
3 , 3

4 , 1
1 , i∞, 0

1 , 1
4 , 1

3 , 3
8 , . . . , 1

2

)
,

V5 =
(

1
2

(
1 + 1√

5

)
, . . . , 11

15 , 3
4 , 4

5 , 1
1 , i∞, 0

1 , 1
5 , 1

4 , 4
15 , . . . , 1

2

(
1 − 1√

5

))
, (2.2)

V6 =
(

1
2

(
1 + 1√

3

)
, . . . , 19

24 , 4
5 , 5

6 , 1
1 , i∞, 0

1 , 1
6 , 1

5 , 5
24 , . . . , 1

2

(
1 − 1√

3

))
.

We indicate the limit points of the sequence at the start and end of the sequences. For N = 4, 
since the two end-points are equal to 1

2 , we obtain a closed polygon. For N = 5, 6, the polygons 
are open. We need to add a second set of vertices and edges to get a closed polygon.
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Ã (N)
m = λm

N − λ−m
N − λm−1

N + λ1−m
N

λN − λ−1
N

, B̃(N)
m = λm

N + λ−m
N ,

Form the ordered sequence

ṼN =
(
Ã (N)

m

B̃ (N)
m−1

,
B̃ (N)

m

NÃ(N)
m

, for m ∈Z

)
.

Explicitly, one obtains

Ṽ5 =
(

1
2

(
1 − 1√

5

)
, . . . , 2

7 , 3
10 , 1

3 , 2
5 , 1

2 , 3
5 , 2

3 , 7
10 , 5

7 , . . . , 1
2

(
1 + 1√

5

))
Ṽ6 =

(
1
2

(
1 − 1√

3

)
, . . . , 3

14 , 2
9 , 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 7
9 , 11

14 , . . . , 1
2

(
1 + 1√

3

))
We define the polygon M(N), for N = 5, 6, from the vertices VN ∪ ṼN with edges formed by 
connecting adjacent points in the sequence of vertices.

2.2. Roots and Lorentzian lattices

A vector X ∈R2,1 can be represented by a 2 × 2 symmetric matrix

X =
(

t + y x

x t − y

)
, x, y, t ∈R

with norm (X, X) := −2 detX = 2(−t2 + x2 + y2). The inner product of two vectors X and Y
is given by

(X,Y ) = −det(Y ) Tr(XY−1) .

Define the positive (future) light-cone by the set of time-like vectors

V + =
(
X ∈R2,1|det(X) > 0,Tr(X) > 0

)
. (2.3)

Further imposing det(X) = +1 gives a hyperboloid which can be mapped to the upper-half plane. 
Figs. 1 and 2 are the hyperbolic polygons drawn in the upper-half plane model for the hyper-
boloid. Let Hα denote the hyperplane (X, α) = 0 for some space-like α ∈R2,1. The hyperboloid 
given by detX = 1 always intersects the hyperplane Hα . The edge of the hyperbolic polygon 
appear in this fashion.

2.2.1. Roots from polygons
Following the observation of Cheng and Verlinde [6], we associate a simple root to each wall 

of the hyperbolic polygons M(N). To each edge of the polygon with vertices ( b
a
, d

c
) we associate 

a root (represented as a vector in R2,1) using the mapping(
b
a
, d

c

)←→ α =
(

2bd ad + bc

ad + bc 2ac

)
, (2.4)

with norm (α, α) = 2(ad −bc)2 = 2. For example, the following two edges appear for all M(N):

(−1
0 , 0

1 ) ←→ α0 =
(

0 −1
−1 0

)
, ( 1

1 , 1
0 ) ←→ β0 =

(
2 1
1 0

)
, (2.5)

where we have represented i∞ by −1 for the first case and by 1 for the second case. Let
0 0
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Fig. 1. The Weyl chamber with some of the (infinite) roots of the hyperbolic polygon M(5) . The two dark circles indicate 
the limit points of the infinite sets of roots.

Fig. 2. The Weyl chamber with some of the (infinite) roots of the hyperbolic polygon M(6) . The two dark circles indicate 
the limit points.

( 0
1 , 1

N
) ←→ β−1 =

(
0 1
1 2N

)
, (N−1

N
, 1

1 ) ←→ α−1 =
(

2(N − 1) 2N − 1
2N − 1 2N

)
(2.6)

denote the edges adjacent to the ones given above. The other roots are obtained recursively as 
follows:

αm+1 = γ (N) · αm ·
(
γ (N)

)T

, βm−1 = γ (N) · βm ·
(
γ (N)

)T

, (2.7)

where γ (N) =
(

1 −1
N 1 − N

)
. Combining all the edges that appear from the vertices in VN , we 

define

XN = (. . . , x−1, x0, x1, x2, . . .) := (. . . , β−1, α0, β0, α−1, . . .) , (2.8)

i.e., x2m = α−m and x2m+1 = βm for m ∈ Z. The Cartan matrix for the real simple roots is given 
by

A(N) := (anm) where anm = (xn, xm) = 2 − 4
N−4 (λn−m

N + λm−n
N − 2) . (2.9)

Remarks. (i) For N < 4, the matrices are finite dimensional and the values n and m are de-
fined modulo 3, 4, 6 (respectively) for N = 1, 2, 3 (respectively). (ii) When N = 4, the matrix 
is determined by a limiting procedure leading to anm = 2 − 4(n − m)2 where n, m ∈ Z. (iii) For 
N = 5, 6, again n, m ∈Z but these correspond to only half of the real simple roots.
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For N = 5, 6 the other sets of roots can be generated by defining [15,14]

X̃N = (. . . , x̃−1, x̃0, x̃1, x̃2, . . .) = (. . . , β̃−1, α̃0, β̃0, α̃−1, . . .) , (2.10)

where ̃x−m = σ (N) · xm · (σ (N))T for all m ∈Z and

σ (5) =
(

2 −1
5 −2

)
, σ (6) = 1√

2

(
2 −1
6 −2

)
.

Note that σ (5) ∈ �0(5) while σ (6) ∈ PSL(2, R). For N = 5, for instance, one finds( 2
5 , 1

2

)←→ α̃0 =
(

4 9
9 20

)
,

( 1
2 , 3

5

)←→ β̃0 =
(

6 11
11 20

)
.

Similarly, for N = 6, one finds

( 2
3 , 1

2

)←→ α̃0 =
(

2 5
5 12

)
,

( 1
2 , 2

3

)←→ β̃0 =
(

4 7
7 12

)
.

The following inner products hold

(xn, xm) = (̃xm, x̃n) = (̃xm, xn) + cN , (2.11)

with c5 = 20 and c6 = 12.
Let sxm denote the elementary (Weyl) reflection generated by the root xm ∈ XN .

sxm : α → α − 2
(α, xm)

(xm,xm)
xm ,

for α ∈ R2,1 and let W+ be the group generated by these Weyl reflections. Similarly, let sx̃m

denote the elementary (Weyl) reflection generated by the root x̃m ∈ X̃N . Let W be the group 
generated by all elementary reflections generated by sxm and sx̃m

for all m ∈Z.

2.2.2. Symmetries of the hyperbolic polygon
There is a dihedral symmetry with generators a and b satisfying

a2 = b2 = 1 and (ab)m(N) = 1 , (2.12)

with m(N) = 3, 2, 3 for N = 1, 2, 3 respectively and m(N) = ∞ for N > 3. The generator a = δ

acts on the roots as follows:

δ · α · δT with δ =
(−1 1

0 1

)
, (2.13)

and α is any root. Note that δ2 = −1 which has trivial action on the roots. Similarly, b = γ (N) · δ, 
where the action of γ (N) on the roots is given in Eq. (2.7). Again the matrix b2 = −1 which has 
trivial action on the roots.

Let Dih(M(N)) := 〈a, b〉. For N ≤ 4, this dihedral group is the symmetry group of the hyper-
bolic polygon, M(N) which we denote by Sym(M(N)). For N = 5 and 6, there is an additional 
generator, σ (N), that has the following action on the generators of the dihedral group:

σ (N) · a · (σ (N))−1 = b , σ (N) · b · (σ (N))−1 = a . (2.14)
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On the roots, the generators of the dihedral group act as:

a : αm ↔ βm , α̃m ↔ β̃m (2.15)

b : αm ↔ βm−1 , α̃m ↔ β̃m−1 (2.16)

The generator σ (N) is such that it acts as an order two element on the roots even though its matrix 
realisation is such that (σ (N))4 = 1. Thus, for N = 5 and 6 we have

Sym(M(N)) = 〈a, b,σ (N)〉 , (2.17)

where we assume (σ (N))2 = 1. Note that for N ≤ 4, Sym(M(N)) = Dih(M(N)). Following, 
Cheng and Dabholkar [8], we call the group (W+ �Dih(MN)) as the extended S-duality group.

2.2.3. Root lattices with Weyl vector
We have seen that the hyperbolic polygons M(N) are determined by the vertices VN and edges 

(represented by the SL(2, Z) matrices) XN for N ≤ 4. For N = 5, 6, the vertices are VN ∪ ṼN

and the edges are given by XN ∪ X̃N .
Define the lattice in R2,1 for N ≤ 4

L(N) = ⊕xm∈XN
Zxm (2.18)

and for N = 5, 6

L(N) =
(

⊕xm∈XN
Zxm

)
⊕
(
⊕x̃m∈X̃N

Z x̃m

)
. (2.19)

This is a rank-three Lorentzian lattice with a Weyl vector

	(N) =
(

1/N 1/2
1/2 1

)
with

(
	(N), 	(N)

)= 1

2
− 2

N
. (2.20)

The Weyl vector has the following properties:

1. The norm of 	(N) is 
(

N−4
2N

)
. Thus, the norm is time-like for N < 4, light-like for N = 4 and 

space-like for N = 5, 6.
2. The inner product of the Weyl vector with real simple roots are:

(	(N), xm) = −1 ∀ xm ∈ XN

and for N = 5, 6, additionally one has

(	(N), x̃m) = +1 ∀ x̃m ∈ X̃N .

3. The generators of Sym(MN) act on the Weyl vector as follows:

a : 	(N) → 	(N) , b : 	(N) → 	(N), and σ (N) : 	(N) → −	(N) .

Thus Dih(MN) preserves the Weyl vector.

The rank-three hyperbolic root lattices L(N) with a Weyl vector 	(N) and hyperbolic poly-
gons M(N) that we obtain fit in with Nikulin’s classification of hyperbolic root systems of rank 
three [16]. In particular, the lattices for N < 4 are with Weyl vector of elliptic type, the lattice for 
N = 4 is with Weyl vector of parabolic type and the lattices for N = 5, 6 are with Weyl vector 
of hyperbolic type.
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3. Siegel modular forms

In the previous section, we constructed a special family of root lattices that arose from the 
study of walls of marginal stability in CHL ZN orbifolds. In this section, we will consider multi-
plicative eta products and Siegel modular forms that arise as the generating function of half and 
quarter BPS states in the same CHL ZN orbifolds. Let g denote the discrete symmetry of order 
N that leads to the CHL orbifold.

3.1. Mathieu moonshine

Mathieu moonshine refers to the connection between the sporadic simple group M24 and 
a variety of modular forms. The first such moonshine mapped conjugacy classes of M24 and 
multiplicative eta products [17,18]. Conjugacy classes of M24 can be represented by cycle shapes 
as it is a sub-group of the symmetric group on 24 letters, S24. Let ρ = 1a1 · · ·NaN be a conjugacy 
class of an element, g, of order N in M24. Then, the eta product associated with this conjugacy 
class is given by the product

ηρ(τ ) :=
N∏

j=1

η(jτ)aj , (3.1)

is a multiplicative eta product. In [4], it was shown that the inverse of this eta product naturally 
appeared as a refined generating function of 1

2 -BPS states in type II string theory compactified 
on K3 × T 2. These generating functions arise as four-dimensional indices given by a helicity 
trace B4 which receive contributions from states that break half the spacetime supersymmetry 
[19]. In [20], Sen introduced a refined index, Bg

4 , by the insertion of a discrete symmetry g in the 
helicity trace – we shall call this twining by the symmetry g. The observation of [4] is that when 
g is a symplectic automorphism of K3, then the inverse of the multiplicative eta product is the 
g-twined helicity trace.

Another helicity trace, B6 and its refinement Bg

6 similarly receives contributions from 1
4 -BPS 

states and is the inverse of a genus-two Siegel modular form [20]. In [4], it was shown that this 
genus-two Siegel modular form (associated with the symplectic automorphism g) is given by the 
additive lift of a Jacobi form constructed from multiplicative eta product for the same element g. 
The Jacobi form is given by

φρ(τ, z) = ϑ1(τ, z)
2

η(τ)6
× ηρ(τ ) . (3.2)

These Siegel modular forms, �ρ(Z), have a second construction that leads to a product for-
mula generated by a weight zero, index one Jacobi form that is given by the g-twined elliptic 
genus of K3. This generalizes the observation of Eguchi, Ooguri and Tachikawa that the dimen-
sions of irreps of M24 appeared in the coefficients of the expansion of elliptic genus of K3 in 
terms of characters of the two-dimensional N = 4 superconformal algebra [5]. The construction 
of the Jacobi forms for all conjugacy classes of M24 was completed in [21,22]. We denote them 
by ψρ(τ, z). The product formulae for all these Siegel modular forms were obtained in [13,23]. 
The proof of modularity of the product formula for all conjugacy classes was only completely 
recently by one of us in [24] (see also [25,26]). The additive lift does not exist for all conjugacy 
classes. However, the Jacobi form constructed out of the multiplicative eta product i.e., φρ(τ, z), 
appears as the “zeroth Fourier-Jacobi coefficient”.
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3.2. Generalized Mathieu moonshine

In the context of Monstrous moonshine, Norton introduced the notion of generalized moon-
shine [27, see appendix by Norton]. In our context, this implies that given two commuting 
elements of (g, h) ∈ M24, one associates a modular form that generalizes the eta product, Ja-
cobi forms and Siegel modular forms that appear for each conjugacy class of M24. We refer to 
this as generalized Mathieu moonshine. In ref. [28], to a subset of such commuting pairs (g, h)

that he calls rational, Mason constructs eta products by associating a Frame shape to each pair. 
We represent these eta products by η[g,h](τ ) – this is the eta product corresponding to twining
by the element g and twisting by the element h (see appendix B.1 for notation). In particular, 
note that Mason has a different notation from ours. The same eta product is written as η[h,g](τ ).). 
The formula for the general case is complicated and hence we give them for the cases of interest. 
First, we consider g has order N and let ρ = 1a1 · · ·NaN be the cycle shape associated with it. 
Then, for (a, b) = 1, and γ = ( ∗ ∗

b a

) ∈ SL(2, Z),

η[ga,gb](τ ) = (constant) ηρ(τ )|kγ , (3.3)

where the constant is determined on a case by case basis. In this notation, η[g,1](τ ) is the mul-
tiplicative eta product ηρ(τ ) associated with the M24 conjugacy class, ρ of g as defined in Eq. 
(3.1). In the examples involving umbral moonshine that we consider,

η[g,h](τ ) := ηρ( τ
N

) . (3.4)

The explicit eta product multiplied by ϑ1(τ, z)2/η(τ)6 appears in the entries with lambency ≤ 5
in column three of Table 2. The cycle shape, ρ, is also given as column two of Table 3.

Similarly, we represent the elliptic genus of K3 given by twining by the element g and twisted 
by the element h by ψ [g,h]

0,1 (τ, z) [29]. For instance, ψ [g,1]
0,1 (τ, z) corresponds to the Mathieu 

moonshine Jacobi form, ψρ(τ, z), for the M24 conjugacy class of g. For some pairs, the el-
liptic genus vanishes. In some of those cases, one finds a Jacobi form of higher index associated 
with this pair as originally claimed in [9]. These higher index Jacobi forms turn out to be related 
to umbral moonshine, a generalization of Mathieu moonshine [11]. To each commuting pair, one 
naturally obtains a potential Siegel modular form that we denote by �[g,h]

k (Z) given by a prod-
uct formula given in Eq. (B.6). When possible, we combine this with two other constructions to 
prove modularity of the product formula for three families of examples.

3.3. The ZN CHL orbifolds

We have seen that ZN CHL orbifolds of the heterotic string compactified on a six-torus are 
associated to rank three hyperbolic lattices for N ≤ 6. The generating function of quarter BPS 
states in these theories which we will denote by �[1,g](Z) is a Siegel modular form of a level 
N subgroup of �1 := Sp(2, Z).1 The generator of the ZN orbifold g is identified with a sym-
plectic automorphism of K3 in the dual type IIA picture as a symmetric orbifold of type IIA 
compactified on K3 × T 2. Thus g can be identified with an element of M23 ⊂ M24 and the or-

1 Z =
(

τ z
′
)

is a point in the Siegel upper half space. We also set q = exp(2πiτ), r = exp(2πiz) and s = exp(2πiτ ′).

z τ
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Table 1
Table of cycle shapes.

N 1 2 3 4 5 6

[g] ∈ M23 124 1828 1636 142244 1454 12223262

[h] ∈ L2(11)B 112 1424 1333 – 1252 11213161

der of g uniquely fixes its conjugacy class or equivalently its cycle shape. In all these cases, the 
square-root of the �[1,g](Z) makes sense and we will write

�[1,g](Z) =
(
�[1,h](Z)

)2
, (3.5)

where h is identified with an element of L2(11)B ⊂ M12 for N �= 4 (see Table 1). There are two 
L2(11) sub-groups of M12 which are inequivalent under conjugation in M12 [30]. In the notation 
introduced in [26], the subgroup L2(11)B is L2(11)B ⊂ M11 ⊂ M12. L2(11)A, on the other hand, 
is a maximal subgroup of M12.

These modular forms are constructed in two different ways:

1. As a product formula that follows from moonshine: M24 for �[1,g](Z) and L2(11)B for 
�[1,g](Z).

2. Directly as a lift that is implied by the S-transform of an additive lift.

The equality of the two constructions proves modularity of the product formula given by moon-
shine.

Product formulae
Define the index one Jacobi form

φ
[gb,gd ]
k,1 (τ, z) = θ1(τ, z)

2

η(τ)6
η[gb,gd ](τ ) , (3.6)

and let ψ [gb,gd ]
0,1 (τ, z) be the gd -twisted elliptic genus of K3 twined by the element gb defined in 

Eq. (B.2). Consider the Fourier expansion

ψ
[gb,gd ]
0,1 (τ, z) =

∑
n∈Z,n≥0

∑
�∈Z

c[b,d](n, �) q
n
N r� , (3.7)

where g is of order N . Note that both b and d are only defined modulo N and that when the 
order of (gd) < N , several coefficients might be zero. This enables us to write simpler formulae. 
Explicit formulae for these are available for N ∈ {1, . . . , 5} in the literature [31–33] and we 
give the formulae for N = 6 in section 3.4. The discrete Fourier-transform of the coefficient 
c[b,d](n, �) is given by

c[b,d](n, �) =
N−1∑
α=0

ĉ[α,d](n, �) exp

(
2πiαb

N

)
. (3.8)
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The product formula for �[1,g]
k (Z) is then given by setting x = 0 and y = 1 in Eq. (B.6), we 

obtain

�
[1,g]
k (Z) = sφ

[1,g]
k,1 (τ, z) ×

∞∏
m=1

N−1∏
α=0

∏
n∈Z− α

N
n≥0

∏
�∈Z

(1 − qnr�sm)ĉ
[α,m](nmN,�) . (3.9)

The above formula follows from a computation starting from the twisted Hecke operator defined 
in Eq. (B.3) and the formula for the Siegel modular form given in Eq. (B.5) applied to the specific 
case at hand. For the square root to make sense, one needs (i) c[α,m](nm, �) to be even and (ii) 
the multiplicative eta products appear with even powers. This is true in all the six cases and one 
obtains the following product formula.

�
[1,h]
k/2 (Z) = s1/2

√
φ

[1,g]
k,1 (τ, z) ×

∞∏
m=1

N−1∏
α=0

∏
n∈Z− α

N
n≥0

∏
�∈Z

(1 − qnr�sm)
1
2 ĉ[α,m](nmN,�)

. (3.10)

Additive lift
The additive lift of Cléry and Gritsenko [10] begins with a Jacobi form of weight k and index 

t ∈ 1
2Z for the sub-group �0(Nq, q) ∈ PSL(2, Z). For each m > 0 such that (m, q) = 1, they 

define a Hecke-like operator T−(m) defined by

T−(m) :=
∑

ad=m
(a,N)=1

a>0

�1(Nq,q) σa

(
a bq

0 d

)
, (3.11)

where σa =
(

a−1 0
0 a

)
mod Nq . The Hecke-like operator maps the given Jacobi form to another 

Jacobi form of weight k and index mt . The additive lift of a Jacobi form φk,t (τ, z) is then given 
by

�
[g,1]
k (Z) =

∑
m=1 mod q

smt φ

∣∣∣
k,t

T−(m)(τ, z)

For all our examples, the index of the Jacobi form t = 1/2 and q = 2. The �[g,1]
k (Z) are modular 

forms with character of the level N subgroup �1(N, 1, N, 1) of �1 = Sp(2, Z) as defined in 
appendix A.

Recall that S · �0(Nq, q) · S−1 = �0(q, Nq). So the additive lift for �0(q, Nq) is equivalent 
to the S-transform of the above lift for �0(q, Nq). Thus, one has the additive lift leading to a 
Siegel modular form.

�
[1,g]
k (Z) =

∑
m=1 mod q

smt φ̃k,mt (τ, z)

:=
√

Cρ

(−i)2k+2

∑
m=1 mod q

smt
(
φk,t

∣∣∣
k
T−(m) · S

)
(τ, z) . (3.12)

The �
[1,g]
k (Z) are Siegel modular forms, with character, of the level N subgroup (S̃ ·

�1(N, 1, 1, 1) · S̃−1) of �1, where
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S̃ =
(

0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

)
,

is the S-transform embedded into �1. Explicitly the group consists of Sp(2, Z) matrices of the 
form ( ∗ ∗ N∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ N∗ N∗ 1

)
, where ∗ ∈ Z . (3.13)

One needs to rewrite this transformed Hecke operator T−(m) · S in terms of S · T−(m) and 
possibly other terms. This is done by constructing new representations for the coset elements 
similar to the one described, for instance, in [3, appendix C]. We illustrate with a few explicit 
formulae focusing on the ones relevant for N = 5, 6.

1. The Hecke-like operator takes the simple form when (m, N) = 1. Note that one also has 
(m, q) = 1.

T−(m) · S =
∑

ad=m
a>0

(a,N)=1
c mod a

S · σa−1 ·
(

d cNq

0 a

)
when (m,N) = 1 (3.14)

When (m, N) > 1, then extra terms appear for a|N as illustrated by the next two examples.
2. When N = m = 5 and q = 2, we get

T−(5) · S = S ·
(

5 0
0 1

)
+ γ2/5 ·

(
1 2
0 5

)
+ γ2/5 ·

(
1 −2
0 5

)
+ γ4/5 ·

(
1 1
0 5

)
+ γ4/5 ·

(
1 −1
0 5

)
(3.15)

where γr/p =
(

r ∗
p ∗

)
∈ PSL(2, Z) maps i∞ to r/p. One has γ2/5 = ST −2ST 2S and γ4/5 =

ST −1ST 4S. The detailed implementation of this Hecke operator for the Z5 CHL orbifold is 
described in appendix C.

3. When N = 6 and m = 3,

T−(3) · S = S ·
(

3 0
0 1

)
+ γ2/3 ·

(
1 1
0 3

)
+ γ4/3 ·

(
1 −1
0 3

)
(3.16)

with γ2/3 = ST −1ST 2ST and γ4/3 = ST −1ST −4ST −1. The detailed implementation of this 
Hecke operator for the Z6 CHL orbifold is described in appendix C.

Such formulae are important in obtaining the Fourier coefficients of the Siegel modular forms 
and thereby providing information on the sum side of the denominator formula.

3.4. Expansions of Siegel modular forms about other cusps

Let g be an element of M23 of order N . The S-transform of the Siegel modular form �[g,1](Z)

is the Siegel modular form associated with ZN CHL orbfifold, i.e., �[1,g](Z). These have already 
been considered earlier. When the order of g is prime, there are only two inequivalent cusps and 
so we are done. However, for composite order, there are other cusps. We focus on the case of 
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N = 6 where there are two other cusps. For the rest of the section, g has order 6 and is in the 
conjugacy class 12223262. As we will show, these lead to two Siegel modular forms that we 

denote by �[g2,g3]
2 (Z) and �[g3,g2]

2 (Z).

3.4.1. Product formula from Mathieu moonshine
The EOT Jacobi forms that correspond to twining by powers of g are

ψ [g,1](τ, z) = 1
6φ0,1(τ, z) −

(
1
6E

(2)
2 (τ ) + 1

2E
(3)
2 (τ ) − 5

2E
(6)
2 (τ )

)
φ−2,1(τ, z),

ψ [g2,1](τ, z) = 1
2φ0,1(τ, z) + 3

2E
(3)
2 (τ ) φ−2,1(τ, z),

ψ [g3,1](τ, z) = 2
3φ0,1(τ, z) + 4

3E
(2)
2 (τ ) φ−2,1(τ, z) .

The Jacobi forms associated with generalized moonshine corresponding to twining and twisting 
by various powers of g are then

ψ [1,g](τ, z) = 1
6φ0,1(τ, z) +

(
1
12E

(2)
2 ( τ

2 ) + 1
6E

(3)
2 ( τ

3 ) − 5
12E

(6)
2 ( τ

6 )
)

φ−2,1(τ, z),

ψ [g2k,g2](τ, z) = 1
2φ0,1(τ, z) − 1

2E
(3)
2 ( τ+k

3 ) φ−2,1(τ, z),

ψ [g2k−1,g2](τ, z)
= 1

6φ0,1(τ, z) − 1
12

(
E∗

2 (τ ) + 4E∗
2 (2τ) + E∗

2 ( τ+k+1
3 ) − 4E∗

2

( 2τ+2k−1
3

))
φ−2,1(τ, z),

ψ [g3k±1,g3]

= 1
6φ0,1(τ, z) − 1

12

(
E∗

2 (τ ) + E∗
2

(
τ+k+1

2

)+ 9E∗
2 (3τ) − 9E∗

2

( 3τ+k+1
2

))
φ−2,1(τ, z),

ψ [g3k,g3](τ, z) = 2
3φ0,1(τ, z) − 2

3E
(2)
2 ( τ+k

2 ) φ−2,1(τ, z).

The product formula for the two Siegel modular forms are given by

�
[gx,gy ]
k (Z) = sφ

[gx,gy ]
k,1 ×

∞∏
m=1

N−1∏
α=0

∏
n∈Z− αy

N
n>0

∏
�∈Z

(1 − e
2πiαx

N qnr�sm)ĉ
[α,my](nm,�) , (3.17)

where ĉ[α,my](nm, �) is the discrete Fourier transform of the Fourier coefficients of the Jacobi 
forms ψ [gx,gy ](τ, z). The zeroth Fourier-Jacobi coefficient is given in terms of the multiplicative 
eta product associated with the cycle shape for g, i.e., ρ = 12223262.

φ
[g3,g2]
2,1 (τ, z) := ϑ1(τ, z)

2

η(τ)6
ηρ(τ/3) = eπi/6

4
φ[g,1]

∣∣∣
2,1

γ1/2 · T (τ, z) ,

φ
[g2,g3]
2,1 (τ, z) := ϑ1(τ, z)

2

η(τ)6
ηρ(τ/2) = eπi/6

9
φ[g,1]

∣∣∣
2,1

γ1/3 · T (τ, z) ,

(3.18)

with γ1/p = −ST −pS.

3.4.2. The additive lift and the square-root
The additive lift is given by carrying out the (γ1/p · T )-transform of the Hecke operator of 

Cléry-Gritsenko given in Eq. (3.11). We do not provide explicit formulae for the transformed 
operator as we did for the S-transform. The square-root continues to make sense as all the Jacobi 
forms that appear in the product formula have integral coefficients. Further, the zeroth Fourier-
Jacobi coefficient has a square-root involving only integral powers of the Dedekind eta function.
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Define the Siegel modular forms P ′
1(Z) and P̃ ′

1(Z) via the relations:

�
[g2,g3]
2 (Z) =

(
P ′

1(Z)
)2

, �
[g3,g2]
2 (Z) = (

P̃ ′
1(Z)

)2
. (3.19)

3.4.3. A second additive lift2

The additive lift of Cléry as given by Theorem B.2 using the additive seeds given in Eq. (3.18)
leads to Siegel modular forms for subgroups of the paramodular group at level t > 1 which is 
clearly distinct from the ones we obtain as expansion about other cusps. We will discuss the lift 
of the square-roots of the additive seeds.

1. We first consider the lift of the following Jacobi form.

ϑ1(τ, z)

η(τ )3

√
ηρ(τ/3) ∈ J

1,
1
2
(�0(2,3),χ × vH ) .

This leads to a weight one Siegel modular form for the group �+
3 (6, 3, 2, 1).

2. Next, we consider the lift of the following Jacobi form.

ϑ1(τ, z)

η(τ )3

√
ηρ(τ/2) ∈ J

1,
1
2
(�0(3,2)) .

This leads to a weight one Siegel modular form for the paramodular group �+
2 (6, 2, 3, 1).

These two Siegel modular forms are clearly distinct from P ′
1(Z) and P̃ ′

1(Z). We have not deter-
mined the relationship, if any, between these two modular forms.

3.5. Umbral moonshine

Cheng, Duncan and Harvey proposed a generalisation of Mathieu moonshine that associated a 
variety of objects (finite groups, mock modular forms, Jacobi forms) to each of the 23 Niemeier 
lattices [11,34]. For instance, they conjectured (proved in [35,36]) the existence of an infinite 
dimensional module for each of the Niemeier lattice such that graded traces correspond to mock 
modular forms of a particular type. In this section, we will construct Siegel modular forms of the 
paramodular groups for the subset of Niemeier lattices constructed out of root lattices of A-type. 
In some cases, as we show these also appear in the context of generalised Mathieu moonshine. In 
all cases that we consider, there is a product formula for the Siegel modular form and for some 
there is an additive lift as well. We look for cases where the square root makes sense and these 
turn out to be related to BKM Lie superalgebras as we will show in the next section.

Let t |24. t = 1, 2, 3, 4, 6, 8, 12, 24. Let m = 24/t . There exists a Siegel modular form of the 
full paramodular group �t that can be obtained in two ways:

• As a Borcherd’s product formula with multiplicative seed, ϕ(�)
1 , which is a Jacobi form of 

weight zero and index (� − 1) defined in [11]. � is referred to as the lambency.

• As an additive lift with seed θ1(τ,z)
2

η(τ)6 × η(τ)m for t ≤ 4. Two other cycle shapes 2444 and 

1363 correspond to twining by elements 2B and 3A of the umbral group at lambency three, 
2.M12.

2 This section is based on a computation due to Cléry.
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3.5.1. Product formulae for umbral moonshine
Theorem B.1 of Cleŕy and Gritsenko (see appendix B.2) leads to a Borcherds product formula 

for a Siegel modular form with the input being a Jacobi form. We refer to the Jacobi form as a 
multiplicative seed. The Jacobi forms associated with umbral moonshine with lambency � are 
Jacobi forms of weight zero and index (� − 1). Column 4 of Table 2 lists umbral Jacobi forms 
associated with root lattices with A-type components. At lambency 3, we include two more ex-
amples that correspond to twining by elements 3A and 2B of the finite group, 2.M12, associated 
with the root lattice A12

2 . The umbral Jacobi forms were constructed using the McKay-Thompson 
series for these conjugacy classes of 2.M12 given in Appendix C of [11]. In appendix C, we give 
explicit formulae for these Jacobi forms. We obtain Siegel modular forms for the paramodular 
group at level (� − 1) i.e., ��−1, (or its sub-group for the two twining examples) whose zeroth 
Fourier-Jacobi (FJ) coefficient is listed in Column 3 of Table 2. This zeroth FJ coefficient de-
termines the modular properties of Siegel modular form. For instance, the weight of the Siegel 
modular form is the same as the weight of the zeroth Fourier-Jacobi form.

3.5.2. Additive lift for umbral moonshine
If the Siegel modular form admits an additive lift, the zeroth Fourier-Jacobi coefficient given 

by product formula discussed above in section 3.5.1 must be the additive seed for the addi-
tive/arithmetic lift given by Theorem B.2. For all the examples that we discuss with weight k > 0, 
this turns out to be true. Let φk,1(τ, z) be the zeroth Fourier-Jacobi coefficient listed in Table 2. 
Let T�φk,1 be a short form for φ|k,1T−(�)(τ, z) where T−(�) is the Hecke operator defined in 
Theorem B.2. Then, the equivalence of the additive lift and the multiplicative lift requires

ϕ�(τ, z) = T�φk,1(τ, z)

φk,1(τ, z)
, (3.20)

where ϕ(�)(τ, z) is the weight zero Jacobi form that appears at lambency �. All examples with 
k > 0 also appear as Siegel modular forms for generalized Mathieu moonshine associated with a 
pair of commuting elements of M24. We indicate the corresponding cycle shape as it appears in 
Mason’s list of eta products associated with generalized Mathieu moonshine given in [28]. The 
cycle shapes 83 and 241 appear in list of multiplicative eta products given in Dummit et al. [17]
but are not associated with M24.

3.6. Taking the square-root

In Table 2, we indicate that the coefficients of the umbral Jacobi form are even integers 
by writing the umbral Jacobi form as 2 ϕ. Further, if the square-root of the zeroth Fourier-
Jacobi coefficient also does not involve square-roots of the Dedekind eta function, there ex-
ists a Siegel modular form that is the square-root of the Siegel modular form. This Siegel 
modular form can be constructed directly using the additive lift with the additive seed given 
by the square-root of the zeroth FJ coefficient. The multiplicative lift is the same as before 
with the seed being one half of the umbral Jacobi form which has integral coefficients. For 
(�, k) = (2, 5), (3, 2), (4, 1), (5, 1/2), (7, 0), in Table 3, we denote the modular forms given by 
the square-root by �k(Z).

3.6.1. Properties of the square-root
Let �[g,h](Z) denote the Siegel modular forms that we have constructed in this section with 

h having order N and g having order M . When the square-root makes sense, let �(Z) denote 
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Table 2
Siegel modular forms for umbral Moonshine: � is the lambency, ρ is a cycle shape that we associate with it and the label, 
when given, indicates the pair of M24 elements that appear in Table 3 of [28]. The last column gives the weight zero 
umbral Jacobi form that is also the multiplicative seed.

� ρ, label Zeroth FJ coefficient Umbral Jacobi form

2 124 φ10,1 = θ1(τ,z)2

η(τ)6 × η(τ)24 2ϕ
(2)
1 = T2φ10,1

φ10,1

212, Z2 ×Z2A φ4,1 = θ1(τ,z)2

η(τ)6 × η(τ)12 2ϕ
(3)
1 = T3φ4,1

φ4,1

3 6323, Z2 ×Z6A φ′
1,1 = θ1(τ,z)2

η(τ)6 × η(3τ)3η(τ)3 ϕ
(3,3A)
1 = T3φ′

1,1
φ′

1,1

2444, Z2 ×Z4E φ′
2,1 = θ1(τ,z)2

η(τ)6 × η(2τ)4η(τ)4 2ϕ
(3,2B)
1 = T3φ′

2,1
φ′

2,1

4 38, Z3 ×Z3A φ2,1 = θ1(τ,z)2

η(τ)6 × η(τ)8 2ϕ
(4)
1 = T4φ2,1

φ2,1

5 46, Z4 ×Z4C φ1,1 = θ1(τ,z)2

η(τ)6 × η(τ)6 2ϕ
(5)
1 = T5φ1,1

φ1,1

7 64 φ0,1 = θ1(τ,z)2

η(τ)6 × η(τ)4 2ϕ
(7)
1 = T7φ0,1

φ0,1
− 1

7 (φ(0,1))
6

9 83 φ−1/2,1 = θ1(τ,z)2

η(τ)6 × η(τ)3 ϕ
(9)
1

13 122 φ−1,1 = θ1(τ,z)2

η(τ)6 × η(τ)2 2ϕ
(13)
1

25 241 φ−3/2,1 = θ1(τ,z)2

η(τ)6 × η(τ) ϕ
(25)
1

the square-root of �[g,h](Z). For all N ∈ {1, . . . , 6}, the Siegel modular forms �(Z) transform 
suitably under the extended S-duality group W � Dih(MN) that was defined in Section 2. In 
these cases, the following properties hold:

1. For γ (N) and δ which generate Dih(M(N)), one has

�(γ (N) · Z) = �(Z) , �(δ · Z) = �(Z) .

γ (N) · Z := (γ (N) −1)T Z (γ (N))−1 and δ · Z := (δ−1)T Z δ−1.
2. For w ∈ W ,

�(w · Z) = det(w) �(Z) .

For N = 5, 6, W is replaced by W+ – this is the group generated by elementary reflections 
from simple roots that belong to XN .

3. Further,

�(Z) =
∑
w∈W

det(w) e−w(	(N)) + · · ·

Again, for N = 5, 6, W is replaced by W+.
4. There is also a product formula

�(Z) = e−	(N) ∏
α∈L+

(1 − e−α)mult(α) ,

with mult(α) = +1 for all α ∈ XN for N ≤ 4 and α ∈ (XN ∪ X̃N) for N = 5, 6. The product 
formula defines the set L+ which we interpret as the set of positive roots. This does not hold 
for �0(Z) for which the mult(α) = −1 for all roots in X̃6.
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Table 3
The new periodic table of BKM Lie superalgebras. The modular forms P ′

1, P̃1 and P̃ ′
1 (shaded in blue) can be thought of 

as expansions of P1 about inequivalent cusps. All entries except for �0 are associated with pairs of commuting elements 
of M24 with N being the order of orbifolding element and M being the order the twining element. The entries in grey are 
related to umbral moonshine. (For interpretation of the colours in the table(s), the reader is referred to the web version of 
this article.)

N M

1 2 3 4 5 6 Cartan matrix

1
124

�5
1828

∇3
1636

∇2
142244

∇3/2
1454

∇1
12223362

P1 A(1)

2
1828

∇̃3
212

�2

12223362

P ′
1

2444

Q1 ���� ���� A(2)

3
1636

∇̃2

12223362

P̃ ′
1

38

�1 ���� ���� ���� A(3)

4
142244

∇̃3/2

2444

Q̃1 ����
46

�1/2 ���� ���� A(4)

5
1454

∇̃1 ���� ���� ���� ���� ���� A(5)

6
12223262

P̃1 ���� ���� ���� ����
64

�0 A(6)

Proof. The properties follow from the following observations.

(a) Let s0 refer to the elementary Weyl reflection due to the root α0. This takes z → −z under 
which the additive seed changes sign. It follows from the additive lift, that the Siegel modular 
form given by the additive lift also changes sign. A similar conclusion follows from the 
product formula of Cléry-Gritsenko. Next, the combination δ · s0 is the element [1, 0, 0] of 
the Heisenberg sub-group of SL(2, Z) defined in Eq. (A.8). Under this, the additive seed 
changes sign. It follows that the Siegel modular form is invariant under δ.

(b) For the CHL ZN orbifolds, the element γ (N) belongs to the level N sub-group of Sp(2, Z)

(defined in Eq. (3.13)) under which the Siegel modular form is invariant. For the examples 
of umbral moonshine where the Siegel modular forms are invariant under the paramodular 
group of level t = N , again γ (N) belongs to the group defined in Appendix A

(c) Since the action of the dihedral group on w0 generates all elementary reflections generated 
by real simple roots that appear in XN , property 2 follows. It is important to emphasise that 
the Siegel modular form is not invariant under σ (N) which is defined for N = 5, 6.

(d) Property 3 follows from property 2 when combined with the presence of the term e−	(N)
.

(e) In all the examples that we consider, the Cléry-Gritsenko multiplicative lift holds and hence 
property 4 holds provided we establish the multiplicities of a subset of the roots. We do this 
on a case by case basis. �

4. BKM Lie algebras

In this section, we construct BKM Lie superalgebras whose lattice of real roots are those 
considered in section 2 and the Siegel modular forms �(Z) (of section 3) are their Weyl-Kac-
Borcherds denominator formulae.
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4.1. Lie algebras from Cartan matrices

Let A(N) be the Cartan matrices defined in Eq. (2.9). For fixed N , let g(A(N)) represent the 
following Kac-Moody (KM) Lie algebra in the Chevalley basis. The Lie algebra in the Chevalley 
basis is

[hαi
, hαj

] = 0 , [hαi
, eαj

] = aji eαi
, [eαi

, e−αi
] = hαi

,

where A(N) = (aij ) is the Cartan matrix of the Lie algebra. The elements of R+ are generated 
by multiple commutators of the simple roots subject to the Serre relations:

(1−aij ) times︷ ︸︸ ︷
[eαi

, [eαi
, · · · , [eαi

, eαj
] · · · ]] = 0 for all i �= j .

For N > 1, the Cartan matrices are degenerate and one needs to extend them by adding additional 
roots [37, Chap. 1]. This is similar to what is done in the case of the affine sl(2) algebra. For 
example, the addition of a single root to A(2) would lead to the following non-degenerate Cartan 
matrix. This corresponds to adding a row and column to A(2).

C =

⎛⎜⎜⎜⎜⎝
2 −2 −6 −2 0

−2 2 −2 −6 0
−6 −2 2 −2 0
−2 −6 −2 2 1

0 0 0 1 0

⎞⎟⎟⎟⎟⎠ (4.1)

As is well known, determining the multiplicities of roots for a give KM Lie algebra is not easy. 
For the affine case, the problem was solved by Macdonald by relating the Weyl character and 
denominator formulae to Jacobi forms [38].

4.2. The Weyl denominator formula

The Weyl vector 	 has the property that (	, αi) = − 1
2 (αi, αi) for all real simple roots. It is 

easy to see that (si(	) −	) = αi ∈ L+. More generally, for any w ∈ W , one has (w(	) −	) ∈ L+. 
The Weyl-Kac denominator formula is given by∑

w∈W

det(w) e−w(	) = e−	
∏

α∈L+
(1 − e−α)mult(α) ,

where L+ is augmented by the addition of imaginary roots for affine KM algebras. The LHS 
knows about the real simple roots as they generate the Weyl group. The RHS provides details 
of the space of all roots. However, in general, it is hard to determine the multiplicities of roots. 
For affine KM algebras, the answer is known by connecting the denominator formula to modular 
forms [38,39].

Borcherds addressed this multiplicity problem by adding imaginary simple roots to KM al-
gebras. Imaginary roots have norm ≤ 0. The diagonal elements in the (extended) Cartan matrix 
now have non-positive entries. The denominator formula gets modified leading to the Weyl-Kac-
Borcherds denominator formula

� =
∑

det(w) w
(∑

ε(a)e−	−a
)

= e−	
∏

(1 − e−α)mult(α) ,
w∈W a∪0 α∈L+
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where a is the sum of imaginary simple roots and ε(a) = (−1)n if a is the sum of n pairwise 
independent orthogonal roots and zero otherwise. Borcherds adds imaginary simple roots such 
that the above sum/product becomes a suitable modular form, � that is referred to as the au-
tomorphic correction by Gritsenko and Nikulin. Such modular forms admit product formulae 
(“Borcherd products”) leading to an explicit determination of root multiplicities. Gritsenko and 
Nikulin extended Borcherds idea to the case of superalgebras.

4.3. Automorphic corrections and a no-go theorem

In [40, Sec. 1.4], Gritsenko and Nikulin develop the theory of Lorentzian Kac-Moody Lie su-
peralgebras, a class of BKM Lie superalgebras. This is based on their seminal work [41,42]. They 
provide the modifications necessary to include fermionic imaginary simple roots to Borcherds’ 
denominator formula. The data that they associate with Lorentzian Kac-Moody Lie superalge-
bras are: (i) A hyperbolic lattice L, (ii) a reflection group, W ⊂ O(L), (iii) A set of simple roots 
X, with a Weyl vector 	, that bound a fundamental chamber and (iv) a holomorphic automor-
phic form on a symmetric domain that provides the automorphic correction to the Lie algebra 
constructed from the Cartan matrix associated with data (i)-(iii). In particular, the ones that ap-
pear in section 2 with Cartan matrix A(N) for N = 1, 2, 3 appear in their classification. These 
considerations extend to the N = 4 case, where the Weyl vector is of parabolic type. Let 	(N), 
M(N) and L(N) denote respectively, the Weyl vector, the hyperbolic polygon and lattice defined 
in section 2. The Weyl denominator formula for Lorentzian Kac-Moody Lie superalgebras takes 
the form [40]

�(Z) = e−πi(	(N),Z′) ∏
α∈L+

(
1 − e−πi(α,Z′)

)mult(α)

=
∑
w∈W

det(w)
(
(e−πi(w(	(N)),Z′) −

∑
a∈L(N)∩R++M(N)

m(a) e−πi(w(	(N)+a),Z′)
)
, (4.2)

where Z′ =
(

τ ′ −z
−z τ

)
= det(Z) Z−1 and W is the Weyl group generated by the real simple roots 

that correspond to the edges of the hyperbolic polygon M(N). The Siegel modular form �(Z)

determines the multiplicity of positive roots mult(α) as well as the correction due to imaginary 
simple roots. In paper I, we showed the existence of several inequivalent automorphic corrections 
to g(A(N)) for N ≤ 4. Some of the modular forms that appeared as the denominator formulae 
were constructed by Cléry and Gritsenko [10]. Others appeared in the papers [7,4]. These results 
were summarised in a periodic table of BKM Lie superalgebras in Paper 1. This table has been 
updated with several entries as we will discuss next.

The case when the lattices have generalised Weyl vector of hyperbolic type are interesting. 
There are no known examples of BKM Lie superalgebras associated with these lattices. In fact, 
there is a no-go theorem due to Gritsenko and Nikulin that implies that there are no Lorentzian 
Kac-Moody Lie superalgebras that satisfy the Weyl denominator formula as given in Eq. (4.2). 
Needless to say, it is anticipated that there might be new class of BKM Lie superalgebras that 
circumvent the no-go theorem. We provide evidence in the following sub-section that there exist 
Macdonald-type identities that are associated with the Cartan matrices A(5) and A(6). We inter-
pret them as Weyl denominator identities for the new class of BKM Lie superalgebras. These 
appear as rows 5 and 6 of Table 3. Based on these two examples, we expect to see modifications 
in the sum side of Eq. (4.2). First, we observe that the modular form transforms covariantly un-
der the Weyl group generated by the simple real roots α whose inner product with Weyl vector 
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is such that 〈	(N), α〉 = −1. Second, even though the other set of real simple roots which sat-
isfy 〈	(N), α〉 = +1 appear on the product side with multiplicity +1, we expect that they should 
provide additional terms that are similar in spirit to how Borcherds modified the sum side when 
imaginary simple roots appeared. We do not have a precise characterisation of this modification. 
Thus, we expect to find a new version of Eq. (4.2) that works when one has a rank three lattice 
with Weyl vector of hyperbolic type.

4.3.1. BKM Lie superalgebras for A(1)

It was shown by us in [26] that there exist inequivalent automorphic corrections to g(A(1))

(associated with all conjugacy classes of two distinct L2(11) sub-groups of M12 that we denote 
by L2(11)A and L2(11)B . In this paper, we focus only on the L2(11)B cases and these appear 
in row 1 of Table 3. There is also one cycle shape, 122142 that does not belong to L2(11)B . The 
only new entry (as compared to paper 1) corresponds to the modular form P1 in the table.

4.3.2. BKM Lie superalgebras for CHL ZN orbifolds
These make up the entries for column 1 of Table 3. For N ≤ 4, these have already appeared 

in paper 1. The new results in this paper are (i) the use of moonshine to obtain product formulae 
for Siegel modular forms and (ii) direct formulae for their additive lift.

For N = 5, 6, we have explicitly verified that the additive lift and the multiplicative lift for 
the modular forms, ∇̃1 and P̃1, agree to fairly high order. It was incorrectly argued in [14] that 
the sum side did not agree with the product formula for N = 5 orbifold. This was based on 
taking the square-root of the generating function of 1

4 -BPS states as given by [3] and looking 
for some terms. However, our explicit construction of the additive lift has proven the match of 
the two constructions. The modularity of the additive lift follows from the modularity of the 
additive lift of Cléry and Gritsenko. However, the modularity of the product formula that follows 
from moonshine is not obvious. One needs show that this formula is equivalent the analog of the 
S-transform of Borcherds product formula of Cléry-Gritsenko. An all-orders proof of our claim 
that goes beyond our checks needs us to prove modularity for the product formula. We have 
implicitly assumed that this is true.3 These are the Macdonald type identities for the new kind of 
BKM Lie superalgebras.

4.3.3. BKM Lie superalgebras for umbral moonshine
The diagonal entries in Table 3 correspond to Siegel modular forms that arise as multiplicative 

lifts with seeds given by some of the Jacobi forms that appear in umbral moonshine. The diagonal 
entry, �0 is a Siegel modular form that provides the automorphic correction to g(A(6)). The entry 
corresponding to Q1 also corresponds to twining by an order 2 element in the conjugacy class 
2B of the umbral group 2.M12 at lambency 3.

4.4. Studying the Macdonald identities for A(5) and A(6)

The square-roots of the modular forms that are the generating function of ZN CHL orbifolds 
for N = 5, 6 provide the first candidates that one can study in order to come up with a mod-
ification to the Gritsenko-Nikulin theory of Lorentzian Kac-Moody superalgebras. Once such 
a modification is developed, one could, in principle, come up with many more examples that 

3 We thank the anonymous referee for raising this issue.
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potentially arise from Nikulin’s examples of rank three hyperbolic lattices with Weyl vector of 
hyperbolic type.

For all roots α ∈ XN , one has (	(N), α) = −1 while for roots α̃ ∈ X̃N , one has (	(N), α̃) = +1. 
Due to this difference, one has [sα(	(N)) −	(N)] = α ∈ XN and [sα̃(	(N)) −	(N)] = −α̃ ∈ −X̃N . 
The modular forms transform as expected under only the group generated by all simple roots that 
appear in XN . Let us denote this group by W+. One has

�(w · Z) = det(w) �(Z), ∀w ∈ W+ .

4.4.1. Parsing the product formula for ZN CHL orbifolds
We first focus on the following four simple real roots for N = 5

α0 =
(

0 −1
−1 0

)
, β−1 =

(
0 1
1 10

)
, α̃0 =

(
4 9
9 20

)
, β̃−1 =

(
6 11
11 20

)
.

Similarly, for N = 6, we focus on the four simple roots

α0 =
(

0 −1
−1 0

)
, β−1 =

(
0 1
1 12

)
, α̃0 =

(
2 5
5 12

)
, β̃−1 =

(
4 7
7 12

)
. (4.3)

Under Weyl reflections due to the four simple roots on each other, one can generate the fol-
lowing twelve real roots (with c5 = 20 for N = 5 and c6 = 12 for N = 6)

α0 + 2β−1,2α0 + β−1, α0 + (−2 + cN) α̃0 , (−2 + cN)α0 + α̃0, α0 + (2 + cN)β̃−1,

(2 + cN)α0 + β̃−1, β−1 + (2 + cN)α̃0, (2 + cN)β−1 + α̃0, β−1 + 2β̃−1, 2β−1 + β̃−1,

α̃0 + 2β̃−1 and 2α̃0 + β̃−1 .

We have checked that all these roots appear on the product side with multiplicity +1. For the 
CHL Z6 orbifold, the terms in bold below determine the multiplicity of the simple roots α0, α̃0
and β̃−1.

ψ̂ [g,1] =
(

1
r + r

)
+ · · · +

(
1
r5 + 132

r4 − 1951
r3 + 9736

r2 − 23592
r

+ 31348 + · · · + r5
)

q6

+ · · · + ( 1
r7 + 660

r6 − 23592
r5 + 256724

r4 − 1344230
r3 + 4047528

r2 − 7633817
r

+ 9393452 + · · · + r7)q12 ,

(4.4)

where ψ̂ [g,1](τ, z) := 1
12

∑5
a=0 ψ [g,ga](τ, z) is the relevant combination as follows from Eq. 

(B.6). Hence, all roots that arise from the action of Dih(M(N)), i.e., in particular those in XN

and X̃N , appear with the same multiplicity.

4.4.2. The sum side for ZN CHL orbifolds
The formula for the additive lift enables us to study the sum side of the formula. Let α[n, �, m]

denote the matrix 
(

2n �
� 2m

)
and make the formal identification e−α[n,�,m] with qnr�sm. We make 

the following observations.

1. All simple roots α ∈ XN appear as sα(e−	(N)
) = e−	(N)

e−α with coefficient −1.
2. There is no term corresponding e	(N)

. This is consistent with σ (N) not being a symmetry of 
the Siegel modular form.
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3. Further, there are no terms of the form e−	(N)
e−α̃ for any α̃ ∈ X̃N . This suggests that there 

are amazing cancellations occurring on expanding the product side of the formula.
4. The α̃ roots appear as sα̃(e	(N)

) = e−	(N)
e2	(N)−α̃ with a coefficient of +1.

5. The additive seed generates some of the terms involving imaginary simple roots. For N = 5, 
let m(a) be defined as follows.

∞∏
n=1

(1 − qn)−1(1 − q
n
5 )2 = 1 +

∞∑
a=1

m(a) q
a
5 = 1 − 2q1/5 − q2/5 + 2q3/5 + · · · .

Then, for all a ≥ 1, m(a) denotes the multiplicity of the imaginary simple root (given by 
α[ a

5 , 0, 0]) as it appears in the sum side of the denominator formula Eq. (4.2). Further, all 
other imaginary simple roots are given by the action of the Weyl group on this root.

6. Under the action of symmetries one has:

· · · γ (5)

−→ q16/5r8s5 γ (5)

−→ q1/5 γ (5)

−→ q1/5r2s5 γ (5)

−→ · · ·
All these roots appear with multiplicity −2 on the sum side. The generator σ acts as follows 
on a imaginary root

q1/5 σ (5)←→ q4/5r2s5

and the root on the right appears on the sum side with multiplicity +4 and not −2. This is 
consistent with the fact that σ is not a symmetry of the modular form.

7. Similar considerations apply for the N = 6 orbifold but we do not present the details.

These are consistent with the following terms on the sum side:

� =
∑

w∈W+
det(w) w

⎛⎝e−	(N) −
∑
η∈I

m(η) e−	(N)−η +
∑

α̃∈X̃N

e	(N)−α̃ + · · ·
⎞⎠

where sum over I represents the correction terms that appear from imaginary simple roots. The 
ellipsis indicate that we do not, as yet, have a complete characterization of the sum side.

4.4.3. The case of �0(Z)

This is the square-root of the Siegel modular form for umbral moonshine at lambency 7. We 
only have a product formula with multiplicative seed given by the weight zero Jacobi form ϕ(7)

1
defined in Appendix A.2. The first few terms in its expansion are:

ϕ
(7)
1 =

(
1
r + r

)
+
(
− 1

r5 + 1
r

+ r − r5
)

q +
(
− 1

r7 − 1
r5 + 2

r
+ 2r − r5 − r7

)
q2 + · · ·

On the product side, we find that the roots α0 and β−1 appearing with multiplicity +1 while the 
simple roots α̃0 and β̃−1 appear with multiplicity −1. This is in contrast to what we observe for 
the Z6 CHL orbifold (see Eq. (4.4)). These terms are indicated in bold in the above equation. 
Similarly, (α̃0 + 2β̃−1) and (2α̃0 + β̃−1) also appears with multiplicity −1. Since the Siegel 
modular form transforms properly under W+, it follows that all terms that lie in the W+ orbit also 
have multiplicity −1. This is different from what we saw for the case of the Z6 CHL orbifold. 
This suggests that simple roots that appear in X̃6 must be treated as fermionic simple roots. Since, 
we do not have an additive lift, we do not have an independent formula for the sum side. That 
does not preclude the existence of a BKM Lie superalgebra as was the case in some examples 
studied in [26].



S. Govindarajan, S. Samanta / Nuclear Physics B 948 (2019) 114770 23
5. Conclusion

We have seen how the physics of the walls of marginal stability when combined with gen-
eralized moonshine leads to Siegel modular forms that are potential candidates for the Weyl-
Kac-Borcherds denominator formulae for a class of Lorentzian Kac-Moody Lie superalgebras 
in some cases for which the mathematical theory is well developed and a new class of BKM 
Lie superalgebras for which such a theory doesn’t exist. While we do not provide the theory, we 
have provided some evidence that there might be such a theory associated with hyperbolic root 
lattices with Weyl vector of hyperbolic type. In [40], Gritsenko and Nikulin express a similar 
sentiment: “... it seems, there is a more general class of Lie algebras (analogous to Lorentzian 
Kac–Moody algebras which we consider here) such that for this class it is necessary to consider 
reflective hyperbolic lattices and identities similar to (1.4.14) with a generalized Weyl vector ρ
having square with any sign.” The three examples that we have obtained here might lead to such 
a theory. This is something we hope to report on in the future [43].

In [26], we have constructed several Lorentzian Kac-Moody Lie superalgebras – one for every 
conjugacy class of two inequivalent L2(11) subgroups of M12. The real simple roots for all of 
them have the same Cartan matrix, i.e., A(1). Our extended periodic table of BKM Lie superalge-
bras has two examples with Cartan matrix A(2) that are related to umbral moonshine at lambency 
3. Are there more?

We have not considered examples of generalized Mathieu moonshine that reduces to elements 
of L2(11)A. We anticipate that the more general product formula given in [44] that takes into 
account phases that arise due to the non-trivial third homology class of M24 i.e., H3(M24, Z) =
Z12, will be applicable in these cases.
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Appendix A. The paramodular group

We follow the exposition given in the doctoral thesis of Cléry [45] that lead to the definition 
of paramodular groups with level structures.

Sub-groups of SL(2, Z):

�0(N,M) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣∣c = 0 mod N and b = 0 mod M
}

For the group �1(N, M), one imposes the additional condition a = 1 mod N . Note that �0(N) =
�0(N, 1) and �0(M) = �0(1, M).
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The paramodular group and its subgroups

For t a positive integer, the classical paramodular group of level t , �t , is defined as follows:

�t =
⎧⎨⎩
⎛⎝ ∗ ∗t ∗ ∗

∗ ∗ ∗ ∗t−1

∗ ∗t ∗ ∗
∗t ∗t ∗t ∗

⎞⎠ ∈ Sp(2,Q)

∣∣∣∣ all ∗ ∈Z

⎫⎬⎭ . (A.1)

When t = 1, then �1 = Sp(2, Z) ≡ �(2) is the usual symplectic group. For positive integers, 
N, N1, L and K , define the following subset of �t

�t (N,N1,L,K) =
⎧⎨⎩
⎛⎝ a1 a2Lt b1N1 b2K

a3L a4 b3K b4N1t
−1

c1N c2NLt d1 d2L

c3NLt c4Nt d3Lt d4

⎞⎠∣∣∣∣ a1, a4, d1, d4 ∈ (Z/NZ)∗
⎫⎬⎭ . (A.2)

If N1|LKt , L|KN , K|LN1 and N |Lt , then �t (N, N1, L, K) is a subgroup of �t . This subgroup 
is called the paramodular group at level t and level structure (N, N1, L, K).

Let N1|N . We denote by �+
t (N, N1, L, K) = �t (N, N1, L, K) ∪�t (N, N1, L, K)Vt a normal 

double extension of �t (N, N1, L, K) in Sp(2, R) with

Vt = 1√
t

(
0 t 0 0
1 0 0 0
0 0 0 1
0 0 t 0

)
, (A.3)

with det(CZ + D) = −1. This acts on H2 as

(τ, z, σ ) −→ (tσ, z, τ/t) . (A.4)

The group �+
t (N, N1, L, K) is generated by Vt and its parabolic subgroup

�∞
t (N,N1,L,K) =

⎧⎨⎩
⎛⎝ a1 0 b1N1 b2K

a3L 1 b3K b4N1t
−1

c1N 0 d1 d2L

0 0 0 1

⎞⎠∣∣∣∣ a1, d1 ∈ (Z/NZ)∗
⎫⎬⎭ . (A.5)

Note that �+
t (N, 1, 1, 1) was called �+

t (N) in Paper 1.

The embedding of 
(

a b
c d

)
∈ �0(N, N1) in �t (N, N1, L, K) is given by

˜(a b

c d

)
≡

⎛⎜⎜⎝
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞⎟⎟⎠ . (A.6)

The above matrix acts on H2 as

(τ, z, σ ) −→
(

aτ + b

cτ + d
,

z

cτ + d
, σ − cz2

cτ + d

)
, (A.7)

with det(CZ + D) = (cτ + d). The Heisenberg group, H(Z), is generated by Sp(2, Z) matrices 
of the form

[λ,μ,κ] ≡

⎛⎜⎜⎝
1 0 0 μ

λ 1 μ κ

0 0 1 −λ

0 0 0 1

⎞⎟⎟⎠ with λ,μ,κ ∈Z (A.8)
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The above matrix acts on H2 as

(τ, z, σ ) −→
(
τ, z + λτ + μ, σ + λ2τ + 2λz + λμ + κ

)
, (A.9)

with det(CZ + D) = 1.
Let φk,m(τ, z) be a Jacobi form of weight k and index m. We define the slash operation as 

follows:

φ
∣∣
k,m

γ (τ, z) = det(γ )k−1(cτ + d)−ke
−2πicmz2

cτ+d φk,m

(
aτ+b
cτ+d

, z
cτ+d

)
(A.10)

A.1. Jacobi forms

Theta functions
The genus-one theta functions are defined by

θ
[a

b

]
(τ, z) =

∑
�∈Z

q
1
2 (�+ a

2 )2
r(�+ a

2 ) eiπ�b , (A.11)

where a, b ∈ (0, 1) mod 2. We define ϑ1 (τ, z) ≡ θ
[

1
1

]
(τ, z), ϑ2 (τ, z) ≡ θ

[
1
0

]
(z1, z),

ϑ3 (τ, z) ≡ θ
[

0
0

]
(τ, z) and ϑ4 (τ, z) ≡ θ

[
0
1

]
(τ, z).

A.2. Jacobi forms corresponding to umbral moonshine

The Niemeier root systems containing only A-type components and the corresponding weight 
zero Jacobi forms are as follows [34]:

Root system A24
1 A12

2 A8
3 A6

4 A4
6 A3

8 A2
12 A24

Jacobi form ϕ
(2)
1 ϕ

(3)
1 ϕ

(4)
1 ϕ

(5)
1 ϕ

(7)
1 ϕ

(9)
1 ϕ

(13)
1 ϕ

(25)
1

where

ϕ
(2)
1 = 4(f 2

2 + f 2
3 + f 2

4 ) = ( 1
r

+ 10 + r
)+ · · · ,

ϕ
(3)
1 = 2(f 2

2 f 2
3 + f 2

3 f 2
4 + f 2

4 f 2
2 ) = ( 1

r
+ 4 + r

)+ · · · ,

ϕ
(4)
1 = 4f 2

2 f 2
3 f 2

4 = ( 1
r

+ 2 + r
)+ · · · ,

and fi = ϑi(τ, z)/ϑi(τ, 0) for i ∈ {2, 3, 4}.

ϕ
(5)
1 = 1

4

(
ϕ

(4)
1 ϕ

(2)
1 − (ϕ

(3)
1 )2

)
= ( 1

r
+ 1 + r

)+ · · · ,

ϕ
(7)
1 = ϕ

(3)
1 ϕ

(5)
1 − (ϕ

(4)
1 )2 = ( 1

r
+ r

)+ · · · ,

ϕ
(9)
1 = ϕ

(3)
1 ϕ

(7)
1 − (ϕ

(5)
1 )2 = ( 2

r
− 1 + 2r

)+ · · · ,

ϕ
(13)
1 = ϕ

(5)
1 ϕ

(9)
1 − 2(ϕ

(7)
1 )2 = ( 1

r
− 1 + r

)+ · · · ,

ϕ
(25)
1 = 1

2
ϕ

(5)
1 ϕ

(21)
1 − ϕ

(7)
1 ϕ

(19)
1 + 1

2
(ϕ

(13)
1 )2 = ( 2

r
− 3 + 2r

)+ · · · ,

where
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ϕ
(21)
1 = ϕ

(17)
1 ϕ

(5)
1 − 2ϕ

(19)
1 ϕ

(13)
1 ,

ϕ
(19)
1 = ϕ

(16)
1 ϕ

(4)
1 + 2ϕ

(13)
1 ϕ

(7)
1 − ϕ

(15)
1 ϕ

(5)
1 ,

ϕ
(17)
1 = 4ϕ

(13)
1 ϕ

(5)
1 − (ϕ

(9)
1 )2,

ϕ
(16)
1 = 2ϕ

(13)
1 ϕ

(4)
1 + ϕ

(10)
1 ϕ

(7)
1 − ϕ

(12)
1 ϕ

(5)
1 ,

ϕ
(15)
1 = ϕ

(11)
1 ϕ

(5)
1 + 6ϕ

(13)
1 ϕ

(3)
1 − ϕ

(12)
1 ϕ

(4)
1 ,

ϕ
(12)
1 = ϕ

(8)
1 ϕ

(5)
1 + 3ϕ

(10)
1 ϕ

(3)
1 − 8ϕ

(9)
1 ϕ

(4)
1 ,

ϕ
(11)
1 = 3ϕ

(7)
1 ϕ

(5)
1 + 2ϕ

(9)
1 ϕ

(3)
1 − ϕ

(8)
1 ϕ

(4)
1 ,

ϕ
(10)
1 = 1

2

(
ϕ

(6)
1 ϕ

(5)
1 + ϕ

(8)
1 ϕ

(3)
1 − 12ϕ

(7)
1 ϕ

(4)
1

)
,

ϕ
(8)
1 = ϕ

(6)
1 ϕ

(3)
1 − 5ϕ

(4)
1 ϕ

(5)
1 ,

ϕ
(6)
1 = ϕ

(2)
1 ϕ

(5)
1 − ϕ

(3)
1 ϕ

(4)
1 .

The weight zero Jacobi forms for cycle shape 2444 and 2363 associated with twining with ele-
ments in conjugacy classes 2B and 3A, respectively, of the umbral group at lambency three are 
given by

ϕ(3,2B) = 2
ϑ2(τ,2z)

ϑ2(τ,0)
,

ϕ(3,3A) = 1
48φ0,1(τ, z)

2 + 1
8E

(3)
2 (τ )φ−2,1(τ, z)φ0,1(τ, z) −

(
19
48E

(3)
2 (τ )2 + 25

12E
(6)
2 (τ )2

− 1
24E

(2)
2 (τ )E

(3)
2 (τ ) + 5

12E
(2)
2 (τ )E

(6)
2 (τ ) − 65

24E
(3)
2 (τ )E

(6)
2 (τ )

)
φ−2,1(τ, z)

2 .

Appendix B. Three constructions of Siegel modular forms

B.1. Product formulae from generalized moonshine

In CFT’s on a torus on considers the following traces

g

h

= TrHh

(
g · · · ) , (B.1)

where g and h are (commuting) symmetries of the CFT and Hh is a module h twisted sector. 
We will also denote the same object by [g, h] in a more compact notation. Let g and h denote, 
for simplicity, discrete symplectic automorphisms of K3 that are commute with each other. For 
instance, consider the elliptic genus in a twisted sector Kh of an orbifold of the K3 CFT by the 
element h twined by the element g.

ψ
[g,h]
0,1 (τ, z) := TrKh

(
g qL0−1rJL(−1)F

)
. (B.2)

Following [13] (see also [44]), define the following twisted Hecke operator

ψ
[g,h]
0,1

∣∣∣Vm (τ, z) ≡ 1

m

∑ d−1∑
ψ

[gah−b,hd ]
0,1

(
aτ+b

d
, az

)
. (B.3)
ad=m b=0
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The second-quantized elliptic h-twisted genus twined by the element g is defined to be

E [g,h](Z) := exp

[
−

∞∑
m=1

sm ψ
[g,h]
0,1

∣∣∣Vm (τ, z)

]
. (B.4)

The Siegel modular form is obtained by

�
[g,h]
k (Z) := s φ

[g,h]
k,1 (τ, z) E [g,h](Z) , (B.5)

where

φ
[g,h]
k,1 (τ, z) = θ1(τ, z)

2

η(τ)6
× η[g,h](τ ) .

Specialising to the case when both when we consider a twisting by gy and twining by gx

where g is an element of order N , we obtain the following product formula starting from Eq. 
(B.3).

�
[gx, gy ]
k (Z) = sφ

[gx, gy ]
k,1 ×

∞∏
m=1

N−1∏
α=0

∏
n∈Z− αy

N

∏
�∈Z

(1 − e
2πiαx

N qnr�sm)c
[α,my](nmN,�) . (B.6)

B.2. Borcherds product formula of Cléry-Gritsenko

Theorem B.1 (Cléry-Gritsenko [10]). Let ψ be a nearly holomorphic Jacobi form of weight 0
and index t of �0(N). Assume that for all cusps, e/f ∈P , of �0(N) one has he

Ne
cf/e(n, �) ∈ Z if 

4nt − �2 ≤ 0. Then the product

Bψ(Z) = qArBsC
∏

f/e∈P

∏
n,�,m∈Z
(n,�,m)>0

(
1 − (qnr�stm)Ne

) he
Ne

cf/e(nm,�)

,

where (n, l, m) > 0 implies: if m > 0, then n ∈ Z and � ∈ Z; if m = 0 and n > 0, then � ∈ Z; if 
m = n = 0, then � < 0 and

A = 1

24

∑
f/e∈P
�∈Z

he cf/e(0, �), B = 1

2

∑
f/e∈P
�∈Z>0

�he cf/e(0, �), C = 1

4

∑
f/e∈P
�∈Z

�2he cf/e(0, �) ,

defines a meromorphic Siegel modular form of weight

k = 1

2

∑
f/e∈P
�∈Z

he

Ne

cf/e(0,0)

with respect to �t (N)+ possibly with character. The character is determined by the zeroth 
Fourier-Jacobi coefficient of Bψ(Z) which is a Jacobi form of weight k and index C of the Jacobi 
subgroup of �t (N)+.

Remark. As discussed by Cléry and Gritsenko, the poles and zeros of Bψ lie on rational 
quadratic divisors defined by the Fourier coefficients cf/e(n, �) for 4n − �2 ≤ 0. The condition 
he

Ne
cf/e(n, �) ∈ Z ensures that one has only poles or zeros at these divisors.
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B.3. Additive/arithmetic lift of Cléry-Gritsenko

We state below a theorem of Cléry that is a generalization of the additive lift of Cléry and 
Gritsenko.

Theorem B.2 (Special case of Theorem 3.5 of Cléry [45]). Let φ ∈ Jk,t (�0(N, N1), χ ×v2t
H ) and 

k ∈ N , t ∈ N/2, N1|N and χ : �0(N) → C∗ is a character of finite order such that Ker(χ) ⊃
�1(Nq1, q1) and N1|q1. Assume that q1 is a divisor of 24 and χ

((
1 1
0 1

))
= e2πi/q1 . If q1t ∈ N

or q1 = 1 and c(0, 0) = 0 where c(0, 0) is the constant coefficient in the Fourier expansion of φ
at the cusp at infinity. Then the function

Fφ(Z) =
∑

m≡1 mod q1
m>0

φ̃|kT (N)
− (m)(Z),

is a modular form of weight k for the group �+
q1t

(N, N1, L, 1) with character χt and L is a 
positive integer such that N |Lq1t and L|N .

The character χt , is induced by the character χμ × v2t
H of the Jacobi group and the relations

χt (Vq1t ) = (−1)k, χt,μ([(0,0); κN1
q1t

]) = e
2πi

κN1
q1 (κ ∈ Z) .

Appendix C. Simplifying the Hecke operators for the additive lift

C.1. N = 5

For N = 5, the additive seed is given by

φ1,1/2(τ, z) = θ1(τ, z)

η(τ )3 η(τ)2η(5τ)2 .

We compute this Jacobi form at different cusps and they are given by

φ
∣∣
1,1/2S (τ, z) = −1

5

θ1(τ, z)
2

η(τ)3 η(τ)2η(τ/5)2 =: φ̃
1,

1
2
(τ, z) ,

φ
∣∣
1,1/2γ2/5 (τ, z) = −φ1,1/2(τ, z) ,

φ
∣∣
1,1/2γ4/5 (τ, z) = φ1,1/2(τ, z).

Then we have

φ
∣∣
1,1/2T−(5) · S(τ, z) =φ̃

∣∣
1,1/2

(
5 0
0 1

)
(τ, z) + φ

∣∣
1,1/2

(
1 2
0 5

)
(τ, z) + φ

∣∣
1,1/2

(
1 −2
0 5

)
(τ, z)

− φ
∣∣
1,1/2

(
1 1
0 5

)
(τ, z) − φ

∣∣
1,1/2

(
1 −1
0 5

)
(τ, z)

=φ̃1,1/2(5τ,5z) + 1

5

4∑
b=1

φ1,1/2
(

τ+b
5 , z

)
.

For the last four terms in the first line, the phases inside the arguments of φ1,1/2(τ, z) and the 
signs outside combines to give the second term in the second line. Using the identity
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4∑
b=0

φ̃1,1/2
(

τ+b
5 , z

)= −1

5
φ1,1/2

(
τ
5 , z

)
,

we obtain

φ
∣∣
1,1/2T−(5) · S(τ, z) = φ̃1,1/2(5τ,5z) +

4∑
b=0

φ̃1,1/2
(

τ+b
5 , z

)+ 1

5

4∑
b=0

φ1,1/2
(

τ+b
5 , z

)
(C.1)

which is a formula that is easier to implement in software as it corresponds to picking a particular 
subset of coefficients in the Fourier expansion.

C.2. N = 6

For N = 6, the additive seed is given by

φ1,1/2(τ, z) = θ1(τ, z)
2

η(τ)3 η(τ)η(2τ)η(3τ)η(6τ) .

We compute this Jacobi form at different cusps and they are given by

φ
∣∣
1,1/2S (τ, z) = −1

6

θ1(τ, z)
2

η(τ)3 η(τ)η(τ/2)η(τ/3)η(τ/6) =: φ̃1,1/2(τ, z)

φ
∣∣
1,1/2γ2/3 (τ, z) = 1

2

θ1(τ, z)
2

η(τ)3 η(3τ)η(τ )η(3τ/2)η(τ/2) =: 1

2
φ′

1,1/2(τ, z)

φ
∣∣
1,1/2γ4/3 (τ, z) = 1

2

θ1(τ, z)
2

η(τ)3 η(3τ)η(τ )η(3τ/2)η(τ/2) =: 1

2
φ′

1,1/2(τ, z)

Then we have

φ
∣∣
1,1/2T−(3).S (τ, z)

= φ̃
∣∣
1,1/2

(
3 0
0 1

)
(τ, z) + 1

2
φ′∣∣

1,1/2

(
1 1
0 3

)
(τ, z) + 1

2
φ′∣∣

1,1/2

(
1 −1
0 3

)
(τ, z)

= φ̃1,1/2(3τ,3z) + 1

3

∑
b=1,2

1

2
φ′

1,1/2

(
τ+b

3 , z
)

= φ̃1,1/2(3τ,3z) +
2∑

b=0

φ̃1,1/2
(

τ+b
3 , z

)+ 1

6

2∑
b=0

φ′
1,1/2

(
τ+b

3 , z
)

.

Using the identity 
∑2

b=0 φ̃1,1/2
(

τ+b
3 , z

)= − 1
6φ′

1,1/2

(
τ
3 , z

)
, we can simplify the formula to

φ
∣∣
1,1/2T−(3).S (τ, z) = φ̃1,1/2(3τ,3z) +

2∑
b=0

φ̃1,1/2
(

τ+b
3 , z

)+ 1

6

2∑
b=0

φ′
1,1/2

(
τ+b

3 , z
)

.

(C.2)
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