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Abstract Many analyses are performed by the LHC exper-
iments to search for heavy gauge bosons, which appear in
several new physics models. The invariant mass reconstruc-
tion of heavy gauge bosons is difficult when they decay to τ

leptons due to missing neutrinos in the final state. Machine
learning techniques are widely utilized in experimental high-
energy physics, in particular in analyzing the large amount
of data produced at the LHC. In this paper, we study vari-
ous machine learning techniques to reconstruct the invariant
mass of Z ′ → ττ and W ′ → τν decays, which can
improve the sensitivity of these searches.

1 Introduction

After the discovery of a standard model (SM) like Higgs
boson by the ATLAS and CMS experiments at the CERN-
LHC [1,2], a major focus of the current physics program at
the LHC is to search for beyond standard model (BSM) sig-
natures. Many analyses are performed at the LHC to search
for the production of heavy gauge bosons, Z ′ and W ′, which
are predicted by several BSM models. In certain BSM sce-
narios, the Z ′ and W ′ bosons can preferentially decay to
third-generation fermions, which motivates the search for
Z ′ → ττ and W ′ → τν decays. Both ATLAS and CMS
experiments have performed searches for Z ′ and W ′ bosons
in the final states with τ leptons [3–5]. The τ lepton, being the
heaviest among the three leptons, decays after a short time
to electron, muon, or hadrons, accompanied by neutrinos.
The charged leptons, charged hadrons, and neutral hadrons
(mostly π0s, which further decay to a pair of photons) can be
observed in the detector and are referred to as visible decay
products. Neutrinos, being very weakly interacting parti-
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cles, escape the detector undetected. However, at the ATLAS
and CMS experiment, the sum of the transverse momen-
tum of neutrinos is indirectly inferred from the momentum
imbalance in the transverse plane. So, the missing transverse
momentum ( �pmiss

T ) is defined as the negative vector sum of all
visible particles in the transverse plane. But, the z-component
of the neutrino momentum can not be measured since the
momentum of the colliding partons is not known. Therefore,
it is difficult to reconstruct the invariant mass of the Z ′ → ττ

and W ′ → �ν (� = e, μ, or τ ) decays. The ATLAS and
CMS experiments have used visible di-τ mass (mvis

ττ , recon-
structed from the visible component of the τ lepton momen-
tum) or m(τ1, τ2, �pmiss

T ) [4] in searches for Z ′ → ττ and
mT (�, �pmiss

T ) in searches for W ′ → �ν, respectively [3–
5]. Recently, machine learning (ML) techniques have been
widely applied in high energy physics data analyses, espe-
cially at the LHC, providing remarkable improvements in
particle identification, jet classification, event classification,
energy regression, etc. In this article, we study the application
of ML in the context of reconstructing the full invariant mass
of the Z ′ → ττ and W ′ → τν decays, which can help in
improving the sensitivity of these searches at the LHC due
to better separation of signal from the SM backgrounds. We
study the reconstruction of Z ′ → ττ invariant mass using
an artificial neural network (NN), which is implemented with
the Python deep learning library Keras [6]. We compare the
performance of our results to that of mvis

ττ and the invariant
mass computed using SVfit [7], which is based on the likeli-
hood method and used by the CMS collaboration to compute
the invariant mass of Z → ττ and H → ττ decays. To
reconstruct the invariant mass of W ′ → τν we study a mod-
ified adversarial network. The method can also be applicable
for W ′ → eν and W ′ → μν searches. The rest of the
paper is structured as follows. The details of BSM and SM
simulated samples and the control regions are described in
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Sect. 2. Sections 3 and 4 provide the details about the ML
techniques used for the reconstruction of the invariant mass
of Z ′ → ττ and W ′ → τντ final states. The results are pre-
sented in terms of improvement in mass resolution. No effort
is made to provide any signal significance since a full search
analysis is beyond the scope of this paper.

2 Event generation

Monte Carlo simulation is used to generate event samples
with single τ and di-τ in the final states and originating
from W ′, and Z ′ decays, respectively, as well as Z/γ ∗ →
ττ and W → τντ background processes. The parton
level events are generated using the MadGraph_aMC@NLO
2.9.9 [8] and Pythia8 [9] is used for fragmentation and
hadronization. The detector simulation and object recon-
struction are performed using the fast simulation package
Delphes 3.5 [10], with the CMS detector configuration, tak-
ing into account the acceptance and expected performance
of the detector. The heavy gauge bosons are generated by
following a simplified model, which extends the SM field
content by introducing the massive vector fields W ′± and
Z ′ [11]. The sensitivity to searches of new heavy bosons is
usually explored using a reference model, in which Z ′(W ′)
interacts with the leptons with the same left-handed cou-
plings as the counterpart Z(W) bosons in the SM. The sig-
nal samples are produced for the various resonant masses in
the 1–6 TeV range with the 250 GeV interval. The decay
width and the cross section of some of the signal samples
are given in the Table 1. The main backgrounds considered
for the Z ′ → ττ and W ′ → τντ are the Z/γ ∗ → ττ

and W → τντ , respectively. The final states with τ -leptons
decaying to hadrons are considered. The sum of the visible
components of the tau lepton is required to have the pτ

T > 80
GeV and −2.3 < η < 2.3. The identification efficiencies of
the τ leptons are considered according to [12]. Figure 1 shows
the visible invariant mass and transverse mass distributions of
Z ′ and W ′, respectively, comparing with their own generated
invariant mass. In the heavy gauge boson search, the invari-
ant mass can provide a better separation between the signal
and the background compared to the visible mass distribution
[13]. For the di-τ final states, we study a supervised learning
technique, which is a regression method using a deep neural
network (DNN) [14]. To evaluate the expected improvement
in the performance, the ML reconstructed invariant mass is
compared to the invariant mass reconstructed using the SVfit
algorithm [7]. The single τ final states have enriched pmiss

T
contribution, where there are two types of neutrino contribu-
tions originating from W ′ and the hadronic τ decays, respec-
tively. In this case, we study the invariant mass reconstruction
by proposing a new network architecture which has similar
network architecture as that of generative adversarial net-

Table 1 The cross section and mass decay width of the signal samples

Mass (TeV) Cross section (10−4 pb) Decay width (GeV)

Z ′ → ττ

3 11.9 89.54

4 1.348 119.47

5 0.158 149.4

6 0.0162 179.32

W ′ → τν

3 11.9 101.2

4 1.348 135.1

5 0.158 168.9

6 0.0162 202.7

work called modified adversarial network (mAN), discussed
in Sect. 4.2.

3 Invariant mass of Z′ → ττ

In this section, we study the reconstruction of the invariant
mass of Z ′ → ττ using a deep neural network architecture
and compare its performance to that of the SVfit algorithm.

3.1 DNN regression

High-level keras API gives the architecture for constructing
the DNN. The NN used in this study comprises four hid-
den layers and 110 fully connected neurons. The network
architectural details are shown in the Table 2. Each layer
is re-weighted according to the gradient value of the mean
squared loss function. The commonly employed “rectified
linear unit (ReLU)” activation function is used.

The DNN model is trained using thirteen input variables:
Four components of the visible momenta and visible τ lep-
ton mass from each τ leptons, the pmiss

T components, and the
visible invariant mass of the di-τ system. Figure 2 shows the
training performance of the DNN regression in terms of the
loss vs the epoch. The model is trained with the batch size
of 128 over an epoch until the loss is saturated. The training
samples consist of events with double τ final states which
includes Drell–Yan events and Z ′ → ττ events with mass
ranging from 1 to 6 TeV with 250 GeV interval. For train-
ing and validation we have produced 10 thousands events for
each sample. The 1000 events are used for testing the model.
Once the regression model is well trained, the performance
of the model is tested by obtaining the invariant mass distri-
bution from the test samples that consists of Z ′ → ττ events
at 3, 4, 5 and 6 TeV and the Z → ττ events.
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Fig. 1 The visible (Mvis ) and generated invariant mass (M) of ττ final
states (Top). The transverse (MT ) and generated mass (M) of τντ final
states (Bottom)

3.2 Mass reconstruction using SVfit

To evaluate the performance of the neural network, the NN
reconstructed mass is compared to that of other methods, such
as SVfit [7]. SVfit reconstructs the mass of the di-τ system
using a dynamical likelihood technique. The term dynamical
likelihood techniques refer to likelihood-based methods used
for the reconstruction of kinematic quantities on an event-by-
event basis. The inputs to SVfit are the visible decay products
of the τ -leptons, x , and y components of pmiss

T as well as its
covariance matrix. The pmiss

T covariance matrix represents

Table 2 The DNN architecture for Z ′ → ττ mass regression

Layer No. of neurons Activation function

Input layer 13 –

1. Hidden layer 16 ReLU

2. Hidden layer 32 ReLU

3. Hidden layer 32 ReLU

4. Hidden layer 16 ReLU

Output layer 1 Linear

Fig. 2 The training of DNN for Z ′ samples. The validation and training
loss values are close for higher epochs, which ensures the training is
not over or under-fitted

the expected resolution of the pmiss
T reconstruction in the

detector.

3.3 Results

The reconstructed invariant mass for the mZ = 90 GeV and
for different mZ ′ are shown in Figs. 3 and 4, respectively.
The distribution of the relative difference of the reconstructed
mass and the true mass, (Mreco − Mgen)/Mgen distributions
obtained from the SVfit and DNN algorithm for different
mZ ′ are shown in Fig. 5. It is observed that the resolution
of the Z ′ → ττ invariant mass improves significantly by
DNN regression. The DNN regression is also able to inter-
polate for in-between mass points, which are not used in the
training. Figure 6 shows that the DNN regression is able to
predict the mass distribution for the samples generated at 4.1
and 4.9 TeV, which are not used in the training. Furthermore,
it is to be noted that the reconstruction using DNN regres-
sion is faster than the SVfit algorithm. The training of neural
networks depends on the CPU and GPU performance of the
computational system. In the current training, with 210,000
events, we have used an 8 core CPU with 3.2 GHz clock
speed which computed each epoch in 0.3 s, for 4000 epochs
it is around 20 min. After training, to evaluate 10,000 events
it takes less than a minute. On the other hand, the SVfit algo-
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Fig. 3 The invariant mass distributions of Z boson obtained from the
DNN regression and SVfit method

Fig. 4 The distribution of Z ′ → ττ invariant mass obtained from the
DNN regression and SVfit method

rithm in the same architecture takes approximately 1.22 s for
one event. Therefore the total time taken for a sample with
10,000 events is approximately 3 h 23 min.

4 Invariant mass of W ′ → τντ

Unlike the Z ′ → ττ process where we have thirteen vari-
ables, such as the 4-momenta and visible mass of each tau,
the components of missing transverse energy and the invari-
ant mass of visible di-τ system to fit the DNN regression
model, there are lesser variables available for single tau final
state. Therefore, DNN may not be an optimal model for such
a regression problem. So in this case we also studied a neural
network architecture like adversarial network model, since it
can learn the invariant mass distribution from the given data
and help to reproduce the same distribution. As discussed in
Sect. 4.2 we modify the adversarial network into a regres-
sion network by learning from the simulated mass, which

helps to improve the reconstructed invariant mass resolution.
Note that mAN was also studied for Z ′ → ττ mass regres-
sion, however, it doesn’t show significant improvement with
respect to the DNN model. Therefore, it is not reported in
this article.

4.1 DNN regression

To compare the results of the adversarial networks, we per-
form regression using a deep neural network as discussed
in the Sect. 3.1. The best-optimized model for W ′ is shown
in Table 3. The DNN model is trained using seven input
variables: Four components of the visible momenta of the τ

lepton, the pmiss
T components, and the transverse mass. Fig-

ure 7 shows the training performance of the DNN regression
in terms of the loss vs the epoch. After 4000 epochs, the loss
is saturated by obtaining the optimized NN model. Once the
DNN regression model is trained, the invariant mass distri-
bution is obtained from the test samples which consists of
W ′ → τντ events at 3, 4, 5 and 6 TeV and the W → τν

events.

4.2 Adversarial network regression

The modified adversarial network consists of two neural net-
work components, generator (G) and discriminator (D), as
shown in Fig. 8. A generator neural network component,
which is the same as the DNN model used in the previous
section, has the input layer with the components of the vis-
ible momentum of the τ lepton, pmiss

T components, and the
transverse mass as input variables and one output node. The
discriminator is a classification network, having the input as
the simulated mass of W ′ and the output value of the gen-
erator network. The architectures of these two networks are
described in Table 4. Unlike the DNN regression, the gener-
ator learns from the output value of the discriminator. How-
ever, the output of the generator and the true simulated mass
of the W ′ boson are fed to the discriminator, which learns to
discriminate the true simulated mass of the W ′ boson from
that of the mass obtained by the generator. After a certain
iteration of training, both the generator and the discriminator
find Nash’s equilibrium [15] when the output of the generator
matches that of the true simulated value and the discriminator
output is approximately 0.5. The discriminator has the input
of simulated mass distribution (μM ) and the generated mass
distribution from generator network (μG). The value D(x) is
the discriminator’s estimate of the probability that real data
(μM ) instance x is real and G(xinput ) is the generator’s out-
put with the training feature (xinput ). The loss function of
the adversarial network is defined similar to the generative
adversarial network (GAN) [16,17], except we modify the
network by adding mean square error loss term which is the
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Fig. 5 The comparison of the
distributions of
(Mreco − Mgen)/Mgen for
Z ′ → ττ decays obtained from
DNN and SVfit methods

third term in Eq. 1. This helps to train the generator with the
input variables.

L(D,G) = E
x∼μM

log D(x)+ E
xinput∼μG

log
(
1−D(G(xinput ))

)

+ λ
(G(xinput ) − x)2

2
(1)

All the hyper-parameter such as the number of neurons, learn-
ing rate and λ are tuned using the GridsearchCV method.
The training performance of adversarial neural network is
obtained from the generator and discriminator loss functions.
Figure 9 shows the values of the loss over iterations for both
generator and discriminator, which are saturated and coin-
ciding with each other after sufficient number of iterations.
This ensures that the model is fitted properly. Once the mAN
model is trained well, the invariant mass distribution obtained
from the test sample which consists of W ′ → τντ events at
3, 4, 5 and 6 TeV and the W → τν events.

4.3 Results

The reconstructed invariant mass for the mW = 80 GeV
and for different mW ′ are shown in Figs. 10 and 11, respec-
tively. The comparisons of resolutions are presented for dif-

Fig. 6 The distribution of Z ′ → ττ invariant mass obtained from the
DNN regression. The mass points 4.1 and 4.9 TeV are not used in the
training but tested to verify whether the NN model interpolates well for
in-between mass points

ferent mW ′ values in Fig. 12. From the Figs. 11 and 12, it is
observed that the mass regression using the mAN model not
only reconstructs the full invariant mass of W ′ → τν system,
where a part of the energy is missing due to neutrinos, but
also improves its resolution significantly in comparison to
that of the regression using a DNN model. The mAN regres-
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Table 3 DNN architecture for W ′ → τντ mass regression

Layer No. of nurons Activation function

Input layer 7 –

1. Hidden layer 32 ReLU

2. Hidden layer 16 ReLU

3. Hidden layer 16 ReLU

4. Hidden layer 32 ReLU

Output layer 1 Linear

Fig. 7 The training of DNN for W ′ samples. The validation and train-
ing loss values are close for higher epochs, which ensures the training
is not over or under-fitted

Fig. 8 A schematic diagram of the adversarial neural network used for
performing mass regression of W ′ → τν

sion is also able to interpolate for in-between mass points,
which are not used in the training. Figure 13 shows that the
mAN regression is able to predict the mass distribution for
the samples generated at 4.1 and 5.6 TeV, which are not used
in the training.

Table 4 The detailed architecture of the modified adversarial network
model

Layers No. of nurons Activation function

Generator

Input layer 7 ReLU

Hidden layer 1 16 ReLU

Hidden layer 2 32 ReLU

Hidden layer 3 32 ReLU

Hidden layer 3 16 ReLU

Output layer 1 Linear

λ = 1, learning rate

0.001

Discriminator

Input layer 1 ReLU

Hidden layer1 256 LeakyReLU (α = 0.5)

Hidden layer2 128 LeakyReLU (α = 0.5)

Output layer 1 Sigmoid

Fig. 9 The training performances of mAN for different W ′ mass are
shown. The plots show the loss values for discriminator and generator

Fig. 10 The invariant mass distributions of W boson obtained from
the DNN regression and modified adversarial network
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Fig. 11 The invariant mass distributions of W ′ obtained from the DNN
regression and modified adversarial network

5 Summary

We studied different ML-based algorithms to reconstruct
invariant mass of high mass resonances decaying to τ -lepton
final states. It is found that a DNN-based mass regression
provides better performance, in terms of mass resolution, in
reconstructing the invariant mass of the Z ′ → ττ system in

Fig. 13 The distribution of W ′ → τν invariant mass obtained from
the mAN regression. The mass points 4.1 and 5.6 TeV are not used in
the training but tested to verify whether the mAN model interpolates
well for in-between mass points

comparison to traditional likelihood-based algorithms, such
as SVfit. It is also relatively faster in terms of computing
time. We also studied a modified adversarial network model,
to reconstruct the full invariant mass of the W ′ → τν decays,
where the τ decays to hadrons and neutrino. The perfor-
mance of the adversarial model is compared to that of the

Fig. 12 The comparison of the
distributions of
(Mreco − Mgen)/Mgen for
W ′ → τν decays obtained from
DNN and mAN methods
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mass regression obtained using a DNN model with the same
set of input variables. The invariant mass obtained with the
adversarial model not only restores the mass peak but also
significantly improves its resolution in comparison to that
of the DNN model. We expect that such a reconstruction
of the invariant mass will provide well-separated distribu-
tions against the standard model backgrounds and will sig-
nificantly improve the search capacity of the W ′ → τν pro-
cesses. Furthermore, this technique can also be applicable for
reconstructing the invariant mass of W ′ → eν, μν processes
as well as that of the charged Higgs boson (H+ → τν),
significantly enhancing their search capabilities.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The datasets
generated during the current study are available from the corresponding
author on reasonable request.]
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