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Abstract We study the dynamical properties of dark energy
based on a large family of Padé parameterizations for which
the dark energy density evolves as the ratio between two poly-
nomials in the scale factor of the universe. Using the latest
cosmological data we perform a standard likelihood analysis
in order to place constraints on the main cosmological param-
eters of different Padé models. We find that the basic cosmo-
logical parameters, namely (Ωm0, h, σ8) are practically the
same for all Padé parametrizations explored here. Concern-
ing the free parameters which are related to dark energy we
show that the best-fit values indicate that the equation of
state parameter at the present time is in the phantom regime
(w < −1); however, we cannot exclude the possibility of
w > −1 at 1σ level. Finally, for the current family of Padé
parametrizations we test their ability, via AIC, BIC and Jef-
freys’ scale, to deviate from ΛCDM cosmology. Among the
current Padé parametrizations, the model which contains two
dark energy parameters is the one for which a small but non-
zero deviation from ΛCDM cosmology is slightly allowed
by the AIC test. Moreover, based on Jeffreys’ scale we show
that a deviation from ΛCDM cosmology is also allowed and
thus the possibility of having a dynamical dark energy in the
form of Padé parametrization cannot be excluded.

1 Introduction

It is well known that the concept of dark energy (DE) was
introduced in order to describe the accelerated expansion of
the universe. Therefore, understanding the nature of DE is
considered one of the most difficult and fundamental prob-
lems in cosmology. The introduction of a cosmological con-
stant, Λ (ρΛ = const.), is perhaps the simplest form of DE
which can be considered [1]. The outcome of this consid-
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eration is the concordance ΛCDM model, for which the Λ

constant coexists with cold dark matter (CDM) and bary-
onic matter. In general, this model is a good description of
the observed universe, since it is consistent with the cosmo-
logical data, namely Cosmic Microwave Background (CMB)
[2–5], Baryon Acoustic Oscillation (BAO) [6–11] and Super-
novae Type-Ia (SnIa)[12–15]. Despite the latter achieve-
ment ΛCDM suffers from the cosmological constant and
the coincidence problems [16–20]. A third possible problem
is related with the fact that the determination of the Hubble
constant and the mass variance at 8h−1Mpc have indicated a
tension between the values resulting by the analysis of Planck
data and the results obtained by the late time observational
data [21–23].

An alternative avenue to overcoming the above problems
is to introduce a dynamical DE, wherein the density of DE is
allowed to evolve with cosmic time [24–30]. The first choice
is to consider a DE fluid where the equation of state parameter
varies with redshift, w(z). Usually, in these kinds of studies
the EoS parameter can be written either as a first-order Taylor
expansion around a(z) = 1 [31,32] or as a Padé parametriza-
tion [33–36], where the corresponding free parameters are fit-
ted by the cosmological data [37–44]. Notice that for w > −1
we are in the quintessence regime [20,45], namely the cor-
responding scalar field has a canonical Lagrangian form. In
the case of w < −1 we are in the phantom region where the
Lagrangian of the scalar field has a non-canonical form (K-
essence) [45–49]. On the other hand, it is possible to recon-
struct a DE model directly from observations. This approach
is an excellent platform to study DE and indeed one may find
several attempts in the literature. Specifically, one may use
parametric criteria toward reconstructing directly the evo-
lution of DE density ρde(z) [50–52] and the potential of the
scalar field [53]. 1 Comparing the two methods, namely w(z)

1 For non-parametric criteria we refer the reader to Refs. [54–57].
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and ρde(z) for the same observational data sets, it has been
found that the latter method leads to tighter constraints on
the free parameters than the former [50–52].

In this work we have decided to reconstruct the evolution
of the DE density, using the well-known Padé approximation
for which an unknown function [58,59] is well approximated
by the ratio of two polynomials. In contrast to the case where
the Padé approximation is used to describe the DE EoS, our
approach leads to an interesting parameterization which can
be regarded as an expansion around the ΛCDM. In Sect. 2
we introduce the concept of a Padé approximation in DE cos-
mologies. In Sect. 3 we briefly discuss the main features of
the Bayesian analysis used in this work and we briefly present
the observational data. In Sect. 4 we discuss the main results
of our work; namely, we present the observational constraints
on the fitted model parameters and we test whether a dynam-
ical DE is allowed by the current data. Finally, in Sect. 5 we
present our conclusions.

2 Reconstruction of dark energy using Padé
approximation

2.1 Background evolution

Considering an isotropic and homogeneous universe, driven
by radiation, non-relativistic matter and dark energy with
equation of state, PQ = w(a)ρQ < 0, the first Friedman
equation is given by

H2 =
(
ȧ

a

)2

= 8πG

3
(ρr + ρm + ρQ) − k

a2 (1)

with k = −1, 0 or 1 for an open, a flat and a closed universe,
respectively. For the rest of the analysis we have set k =
0. Notice that a(t) is the scale factor, ρr = ρr0a−4 is the
radiation density, ρm = ρm0a−3 is the matter density and
ρQ = ρQ0X (a) is the dark energy density, with

X (a) = exp

[
3
∫ 1

a

(
1 + w(u)

u

)
du

]
(2)

or

w(a) = −1 + 1

3
a
X ′

X
, (3)

where the prime denotes the derivative with respect to the
scale factor. Combining the above equations we easily obtain
the normalized Hubble parameter, E(a) = H(a)/H0,

E(a) =
[
Ωr0a

−4 + Ωm0a
−3 + ΩQ0X (a)

]1/2
, (4)

where Ωr0 = 8πGρr0/3H2
0 (radiation density parameter),

Ωm0 = 8πGρm0/3H2
0 (matter density parameter), ΩQ0 =

8πGρQ0/3H2
0 (DE density parameter) at the present time

with Ωr0 + Ωm0 + ΩQ0 = 1. Since the physics of DE is
still an open issue the function X (a) encodes our ignorance
concerning the underlying mechanism powering the late time
cosmic acceleration. Of course, for X (a) = 1 we recover the
concordance ΛCDM model, namely w = −1.

In order to investigate possible deviations from the concor-
danceΛ cosmology, we consider an expansion of the function
X (a) using the so-called Padé approximation. In general, for
an arbitrary function f (x) the Padé approximation of order
(n,m) is given by [58,59]

f (x) = b0 + b1x + b2x2 + b3x3 + · · · + bnxn

c0 + c1x + c2x2 + c3x3 + · · · + cmxm
, (5)

where the exponents are positive and the corresponding coef-
ficients (bi , ci ) are constants. Obviously, in the case of ci = 0
(i > 0) the above expansion reduces to the usual Taylor
expansion. One of the main advantages of such an approxi-
mation is that by considering the same order, for m = n, the
Padé approximation tends to finite values at both x → ∞
and x → 0.

Based on the above formulation the unknown X (a) func-
tion is approximated by

X (a) = b0 + b1(1 − a) + b2(1 − a)2 + · · · + bn(1 − a)n

b0 + c1(1 − a) + c2(1 − a)2 + · · · + cm(1 − a)m
, (6)

where we have set x = 1−a and c0 = b0 as a result of X (a =
1) = 1. In order to simplify further the calculation, we may
cancel b0 from both the numerator and the denominator and
rename the corresponding constants. Therefore, we have

X (a) = 1 + b1(1 − a) + b2(1 − a)2 + · · · + bn(1 − a)n

1 + c1(1 − a) + c2(1 − a)2 + · · · + cm(1 − a)m
.

(7)

Using Eq. (7) and differentiating X (a) with respect to the
scale factor, the EoS parameter (3) takes the following form:

w = −1− 1

3
a

[ ∑n
i=1 ibi (1 − a)i−1

1 + ∑n
i=1 bi (1 − a)i

−
∑m

i=1 ici (1 − a)i−1

1 + ∑m
i=1 ci (1 − a)i

]
.

(8)

Here we use the Padé approximation to model the energy
density of DE rather than the EoS [36]. Our approach leads to
a new and interesting parameterization which can be regarded
as an expansion around the ΛCDM.

Inserting a = 1 into the latter equation we obtain the EoS
parameter at the present time, namely

w0 ≡ w(a = 1) = −1 + 1

3
(c1 − b1) . (9)
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Fig. 1 The relative difference of the Hubble parameter using some
typical values of the model parameters. ΔE becomes positive (negative)
when b1 > c1 (b1 < c1)

Interestingly, in the case of b1 > c1 the current value of w0

can cross the phantom line w0 < −1, while for b1 < c1 it
remains in the quintessence regime w0 > −1. Moreover,
for bi = ci = 0 we recover the ΛCDM model, while
for bi+1 < bi and ci+1 < ci the current family of Padé
models can be seen as an expansion around the ΛCDM
where the extra terms indicate a dynamical DE. Unlike most
DE parametrizations (CPL and the like), here it is easy to
show that the EoS parameter avoids the divergence in the far
future, hence it is a well-behaved function in the range of
a ∈ (0,+∞). Keeping the leading terms (b1, c1) in Eq. (8)
we arrive at

w(a) = −1 + a
1

3

c1 − b1

(1 + c1(1 − a))(1 + b1(1 − a))
. (10)

To visualize the differences of various Padé models with
respect to the expectations of the usual ΛCDM model we
plot in Fig. 1 the corresponding relative differences

ΔE(%) = E(z) − EΛ(z)

EΛ(z)
× 100. (11)

For simplicity the matter density parameter is fixed to Ωm0 =
0.3. Using Eq. (11) and in the case of b1 > c1 we have
ΔE > 0 and the present value of the EoS parameter is in the
phantom regime (w < −1). Notice that the opposite holds
for b1 < c1. Moreover, prior to z ∼ 1 we find ± 6% Hubble
function differences, whileΔE tends to zero at high redshifts.

Lastly, we would like to illustrate how extra terms of X (a)

affect the Hubble parameter. As an example, we introduce
the quantity (1 − a)2 in Eq. (6), where the corresponding
constants have been set either to (b2, c2) = (0.1,−0.1) or
(b2, c2) = (−0.1, 0.1). In Fig. 1 we present for the above
set of (b2, c2) parameters the evolution of ΔE . It is obvious

from the figure that the extra term (1 − a)2 in the function
X (a) does not really affect the cosmic expansion.

Consequently, our model can be considered as an expan-
sion around the ΛCDM in the sense that adding extra terms
changes the Hubble parameter slightly.

2.2 Growth of perturbations

It is well known that DE not only affects the expansion rate
of the universe but also has an impact on the growth rate of
matter perturbations. In order to realize how different forms
of Padé parametrizations affect the growth rate of fluctu-
ations, we solve the perturbed equations and compare the
solution with that of ΛCDM model. Assuming a homoge-
neous DE fluid, the evolution of matter perturbations in the
linear regime is given by [60]

˙δm + θm

a
= 0, (12)

˙θm + Hθm − k2φ

a
= 0, (13)

where the dot denotes the derivative with respect to cosmic
time, δm is the overdensity contrast and θm is the velocity
divergence. Combining the above set of equations with the
Poisson equation,

−k2φ

a2 = 3

2
H2Ωmδm, (14)

we find after some calculations

δ′′
m + 1

a

(
3 + Ḣ

H2

)
δ′
m = 3

2
Ωmδm, (15)

where Ωm = Ωm0a−3

E2(a)
. Notice that the latter differential equa-

tion is written in terms of the scale factor; hence

Ḣ

H2 = 1

2
a

(E2)′

E2 . (16)

Therefore, for those cosmological models which are within
GR the linear matter perturbations are only affected by E(a),
while in the case of extended gravity models we need to
modify the Poisson equation.

An important quantity as regards testing the performance
of the DE models at the perturbation level is f σ8(a), where

f = a δ′
m

δm
is the growth rate of clustering and σ8(a) is the mass

variance inside a sphere of radius 8h−1Mpc. The mass vari-
ance is written as σ8(a) = σ8

δm (a)
δm (a=1)

, where σ8 ≡ σ8(a = 1)

is the corresponding value at the present time. Notice that in
our work we treat σ8 as a free parameter and thus it will be
constrained by the available growth data.

In order to understand the differences between the ΛCDM
and Padé models at the perturbation level in Fig. 2 we plot
the relative fractional difference, namely
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Fig. 2 The relative difference of growth rate as a function of redshift.
The free parameters are the same as those of Fig. 1

Δ f σ8(%) = f σ8 − ( f σ8)Λ

( f σ8)Λ
× 100. (17)

For better comparison, the free parameters used in this
figure are the same as those of Fig. 1, where we have set
Ωm0 = 0.3, h = 0.7 and σ8 = 0.8. Overall, for phantom
Padé cosmologies (b1 > c1; see the red line) we find that
the expected differences are small at low redshifts, but they
become larger for z � 0.5, reaching variations of up to ∼
−3%, while they turn positive at high redshifts. Notice that
the opposite behavior holds in the case of quintessence Padé
cosmologies (b1 < c1; see the blue line).

3 Bayesian evidence and data processing

Using Bayes’ theorem, it is possible to find the probability
of a model in the light of given observational data. Given a
data set (D) the probability of having a model (M) is

P(M |D) = P(M |D)P(M)

P(D)
. (18)

The posterior probability of the free parameters (θ ) of the
model is given by

P(θ |D, M) = P(D|θ, M)P(θ |M)

P(D|M)
, (19)

where P(D|θ, M) is the likelihood function of the model
with its parameters and P(θ |M) is the prior information on
the free parameters. For parameter estimations, we only need
the likelihood function and the prior, hence the denominator,
which is a normalization constant that has no impact on the
value of the free parameters. Practically, the denominator

Table 1 New f σ8 data points which we use along with the Gold sample

z f σ8 Survey and references

0.64 0.486 ± 0.070 BOSS DR12 [73]

1.52 0.42 ± 0.076 SDSS-IV [74]

0.978 0.379 ± 0.176 SDSS-IV [75]

1.23 0.385 ± 0.099 SDSS-IV [75]

1.94 0.364 ± 0.106 SDSS-IV [75]

is the integral of the likelihood and prior product over the
parameter space

E = P(D|M) =
∫

dθ P(D|θ, M)P(θ |M). (20)

The latter quantity has been widely used in the literature [61–
64], as regards selecting the best model from a given family
of models.

With the aid of the Padé parametrization which can be seen
as an expansion around ΛCDM (w = −1) our aim is to check
whether the current observational data prefer a dynamical
DE. First we consider a large body of Padé parametrizations
(7) and then we test the statistical performance of each Padé
model against the data.

Now, let us briefly present the observational data that we
utilize in our analysis.

– We use the JLA SnIa data of (full likelihood version)
[15].

– The Baryon Acoustic Oscillations (BAO) data from 6dF
[65], SDSS [66] and WiggleZ [67] surveys. Notice that
details of the data concerned with processing and likeli-
hoods can be found in [44,68].

– The Hubble parameter measurements as a function of
redshift. We utilize the H(z) data set as provided by [69].

– The CMB shift parameters as measured by the Planck
team [70]. Notice that we use the covariance matrix which
is introduced in Table 4 of [70].

– The Hubble constant from [22].
– For the growth rate data, in addition to the “Gold” growth

data set f σ8(z) provided by [71], we also use five new
data points as collected by [72]. These new data points
provide a growth rate at relatively higher redshifts and
there is no overlap between these data and the gold sam-
ple. These new data points and their references are pre-
sented in Table 1.

Concerning the estimation of the sound horizon, needed
when we compute the CMB and BAO likelihoods, we follow
the procedure of [76]. Using the aforementioned data sets, we
first perform a MCMC analysis to find the best value of the
parameters and their uncertainties and then we quantify the
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statistical ability of each model to fit the observational data.
To do this we use the MULTINEST sampling algorithm [77]
and the python implementation pymultinest [78]. The latter
technique was initially proposed in order to select the best
model of AGN X-ray spectra via a Bayesian approach.

4 Results and discussion

As we have already mentioned nowadays, testing the evolu-
tion of the DE EoS parameter is considered as one of the most
fundamental problems in cosmology. We attempt to check
such a possibility in the context of Padé parametrizations.
Specifically, the family of Padé models and the correspond-
ing free parameters used here are shown in Tables 2 and 3
respectively. Since, unlike the parameter estimation, the evi-
dence strongly depends on the prior, we consider two differ-
ent priors to show how the evidence changes due to different
prior ranges. Here we select flat priors, which are often a stan-
dard choice. The upper panel in Table 3 shows a narrow range
of priors while the lower panel presents a wider prior. The
priors on the cosmological parameters (Ωdm,Ωba, h, σ8) are
physically reasonable due to our understanding from obser-
vational data including SN Ia, CMB, BAO and growth rate
of large scale structures. On the other hand, the range of
priors in (α, β, M,ΔM) comes from an analysis of the SN
Ia data in [15,79]. In contrast, we have no prior informa-
tion regarding our free parameters in the Padé expansion
(b1, c1, b2, c2, b3, c3, b4, c4). Therefore, we select priors on
these parameters from the intuition that they should construct
an expansion around the ΛCDM model. In this sense, we
consider smaller prior ranges for parameters which are of
higher order in the expansion. According to [61], one possi-
bility in such a case is to consider a prior which maximizes
the probability of the new model, given the data. In this case,
if the evidence is not significantly larger than the simpler
model, then we can say that the data does not support addi-
tional parameters. In addition to these two prior ranges, we
have examined other prior ranges and our results did not
change significantly.

In Table 3, α, β and M are nuisance parameters which are
used to model the empirical distance modulus of each SN
and ΔM is used to correct for the dependency of the abso-
lute magnitude in the rest-frame B band on the host stellar
mass. For more information regarding the definitions of these
parameters we refer to [15]. Therefore, using the cosmolog-
ical data we place constraints on the model parameters but
also we present a visual way to discriminate cosmological
models.

First, the best-fit parameters and their uncertainties for all
of the models utilized in this analysis were obtained with the
aid of the MCMC method and the results are listed in Table
4. For comparison we also present the results of the ΛCDM

Table 2 Various models used in our analysis

M1 ΛCDM

M2 b1, c1 	= 0 and all others equal to zero

M3 b1, c1, b2, c2 	= 0 and all others equal to zero

M4 b1, c1, b2, c2, b3, c3 	= 0 and all others equal to zero

M5 b1, c1, b2, c2, b3, c3, b4, c4 	= 0 and all others equal to zero

Table 3 Two ranges of the model parameters which we consider in this
work. The upper panel (lower panel) indicates a narrow(broad) prior

Parameters Prior (uniform) Parameters Prior (uniform)

Ωdm [0.15, 0.30] α [0.10, 0.16]

Ωba [0.02, 0.07] β [2.85, 3.25]

h [0.55,0.80] M [−19.6,−19.2]

σ8 [0.50, 1.20] ΔM [−0.15, 0.15]

b1 [−0.3, 0.3] c1 [−0.3, 0.3]

b2 [−0.2, 0.2] c2 [−0.2, 0.2]

b3 [−0.1, 0.1] c3 [−0.1, 0.1]

b4 [−0.05, 0.05] c4 [−0.05, 0.05]

Ωdm [0.0, 0.60] α [−0.3, 0.3]

Ωba [0.0, 0.2] β [1.0, 4.0]

h [0.4, 1.] M [−21.,−18.]

σ8 [0.3, 1.5] ΔM [−0.25, 0.25]

b1 [−0.5, 0.5] c1 [−0.5, 0.5]

b2 [−0.3, 0.3] c2 [−0.3, 0.3]

b3 [−0.2, 0.2] c3 [−0.2, 0.2]

b4 [−0.1, 0.1] c4 [−0.1, 0.1]

cosmological model, namely the Padé M1 parametrization.
Notice that we use the getdist python package2 for the analy-
sis of the MCMC samples. We find that the main cosmologi-
cal parameters, namely (Ωm0, h, σ8), are practically the same
for all models. Concerning the DE parameters it seems that,
although the best-fit values indicate w < −1 at the present
time, we cannot exclude the possibility of w > −1 at 1σ

level. Moreover, for all Padé parametrizations we find that
the best-fit values obey the inequalities b1 > c1 and b2 > c2.

Second we run the pymultinest code in order to check the
statistical performance of the current Padé models in fitting
the data and we compare them with that of ΛCDM. The min-
imum χ2

min, Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC) and the bayesian evidence (for
two ranges of priors) of our models are summarized in Table
5. We remind the reader that the AIC [80] and BIC [81] esti-
mators are given by

AIC = χ2
min + 2nfit, BIC = χ2

min + nfit ln N , (21)

2 https://github.com/cmbant/getdist.
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Table 4 The best-fit values and the corresponding 1σ uncertainties for the current Padé parametrizations. Notice that the ΛCDM model can be
seen as a Padé M1 parametrization, namely bi = ci = 0

Models/parameters M1 M2 M3 M4 M5

Ωm 0.2886 ± 0.0052 0.2836+0.0052
−0.0059 0.2830+0.0051

−0.0058 0.2846+0.0048
−0.0054 0.2843 ± 0.0056

h 0.6933 ± 0.0042 0.7026+0.0065
−0.0050 0.7042+0.0066

−0.0059 0.7023 ± 0.0058 0.7030 ± 0.0063

σ8 0.769 ± 0.023 0.766 ± 0.023 0.765 ± 0.023 0.765 ± 0.023 0.765 ± 0.022

α 0.1413 ± 0.0050 0.1417 ± 0.0051 0.1417 ± 0.0050 0.1416 ± 0.0051 0.1417 ± 0.0051

β 3.104 ± 0.057 3.116 ± 0.058 3.117 ± 0.059 3.116 ± 0.058 3.114 ± 0.058

M −19.074 ± 0.016 −19.060 ± 0.018 −19.057 ± 0.018 −19.060 ± 0.017 −19.059 ± 0.017

ΔM −0.071 ± 0.017 −0.068+0.014
−0.018 −0.067 ± 0.014 −0.067+0.014

−0.016 −0.067+0.014
−0.016

b1 – 0.03+0.30
−0.17 0.02+0.30

−0.27 0.00 ± 0.23 0.01 ± 0.22

c1 – −0.19+0.039
−0.093 −0.14+0.13

−0.21 −0.14+0.12
−0.22 −0.14+0.11

−0.20

b2 – – 0.03+0.18
−0.13 0.01 ± 0.16 0.01 ± 0.16

c2 – – −0.126+0.056
−0.16 −0.095+0.067

−0.19 −0.092+0.088
−0.18

b3 – – – 0.039+0.15
−0.061 0.017+0.14

−0.092

c3 – – – −0.04+0.19
−0.15 −0.03 ± 0.11

b4 – – – – 0.092+0.11
−0.075

c4 – – – – 0.005 ± 0.056

Table 5 The goodness-of-fit
statistics χ2

min , ΔAIC, ΔBIC,
ΔlnE for the narrow and broad
ranges of priors (N (B) stands
for narrow(broad) prior ranges)
and the Bayesian complexity for
our models

Model χ2
min ΔAIC ΔBIC ΔlnEN ΔlnEB Cb(θ̂b) Cb(θ̂m)

M1 733.20 0.0 0.0 0.00 0.00 9.09 8.89

M2 730.33 1.13 10.51 0.22 0.55 9.92 9.33

M3 729.99 4.79 23.55 0.65 0.82 9.85 9.62

M4 729.95 8.75 36.89 0.97 0.68 9.71 9.32

M5 729.85 12.65 50.17 1.02 0.95 9.77 9.6

where nfit (N) is the number of fitted parameters (number
of data points). Clearly, AIC identifies the statistical signifi-
cance of our results, namely a smaller value of AIC implies
a better model–data fit. On the other hand, the model pair
difference ΔAIC = AICmodel −AICmin is the statistical per-
formance of the different models in reproducing the obser-
vational data. Specifically, the condition 4 < ΔAIC < 7
indicates a positive evidence against the model with higher
value of AIC [82,83], while the inequality ΔAIC ≥ 10 points
to strong evidence thereof. Lastly, the restriction ΔAIC ≤ 2
leads to an indication of the consistency between the two
comparison models.

Another way of testing the ability of the models to fit the
data is via the Bayesian evidence E ; namely, a model with
the higher evidence is favored. In this context, in order to
measure the significant difference between two models Mi

and Mj we can use the Jeffreys scale [84], which is given by
Δln E = ln E Mi − ln E Mj . This model pair difference leads

to the following situations: (1) 0 < Δln E < 1.1 suggests
weak evidence against Mj model when compared with Mi ,
(2) the restriction 1.1 < Δ ln E < 3 means that there is
definite evidence against Mj , while in the case of Δ ln E ≥ 3
such evidence becomes strong [85].

In order to realize that extra parameters in a given model
can be constrained by the data in hand, one can compute the
so-called Bayesian complexity which was introduced in [86].
The quantity measures the number of parameters that the
data can support. Following [61], the Bayesian complexity
is given by

Cb ≡ χ2(θ) − χ2(θ̂) (22)

where a bar indicates a mean taken over the posterior distri-
bution and θ̂ can be either the best or the mean value of the
parameters. The Bayesian complexity is a quantity to mea-
sure the power of data to constrain the parameters comparing
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with the predictivity of the model which is given by the prior.
Generally, the Bayesian complexity depends on both data and
prior. But in our case, the sample of the free parameters is
almost the same for the two prior ranges; the Bayesian com-
plexity does not depend on the prior.

Our estimations of the Bayesian complexities are given
in Table 5. Here we consider both cases for θ̂ , so θ̂b ( ˆθm)
indicates the best value (mean value) of the parameters.

Clearly, after considering the above statistical tests we find
that the best model is the ΛCDM model, hence AICmin ≡
AICM1 , EMj ≡ EM1 . Using the model pair difference ΔAIC
we find strong evidence against models M4 and M5, namely
ΔAIC � 10. Also, in the case of the M3 model we have
ΔAIC � 4.79, which indicates positive evidence against
that model, while for M2 model we obtain ΔAIC � 1.13
and thus we cannot reject this model. In contrast to the AIC,
BICs of our models indicate a “decisive” evidence against
the M2, M3 M4 and M5 models. The main reason is that
the BIC penalizes models with a high number of parameters
more than AIC, specifically when there are large numbers of
data points.

From the viewpoint ofΔln E 3 we argue that there is a weak
evidence in favor of all dynamical models when compared
with M1 (ΛCDM). Note that we consider two different prior
ranges to check the possible dependency of the evidence on
the prior (see Table 3). In fact, the evidence of each model
is different considering different priors4 but Δln E (in our
case) does not change significantly. In Table 5 the results are
presented for both narrow (Δln E N ) and broad (Δln E B)
priors.

Of course, such results disagree with Occam’s razor,
which simply penalizes models with a large number of free
parameters. Models M5, M4 and M3 have eight, six and four
free parameters more than the ΛCDM, but the Bayesian evi-
dence does not show any significant difference between them.
Similar conclusions can be found in the work of [85] in which
one proved that a linear model Ma with 14 free parameters
provides the same value of Bayesian evidence as another
model, Mb, which contains four free parameters. According
to these authors, the latter can be explained if the extra 10
parameters of Mb do not really improve the statistical perfor-
mance of the model in fitting the data. In our case we confirm
the results of [85] for Padé cosmologies; namely, the extra
parameters of the M3, M4 and M5 parametrizations do not
improve the corresponding DE models.

Moreover, the Bayesian complexity is a diagnostic tool
to break the degeneracy when two competing models have
almost the same evidence. Since, from the evidence alone,
it is not clear that the extra parameters are unmeasured or

3 The relative uncertainties in log-evidence are of order of 0.1%.
4 The evidence for the ΛCDM with narrow prior is −383.546 ± 0.24
but with broad prior is −393.782 ± 0.31.

improve the quality of the fit just enough to offset the Occam’s
razor penalty term, the Bayesian complexity can be used to
break this degeneracy (for more information see [61]). Our
results indicate a slightly larger Bayesian complexity when
the two competing models are M1 and M2, which is con-
sistent with our conclusion that current data slightly prefer
a dynamical dark energy model. The Bayesian complexities
for other models are more and less the same, which indi-
cates that current data are not good enough to measure the
additional parameters and extra parameters are not needed.

Combining the aforementioned results we argue that,
although the ΛCDM model reproduces very well the cosmo-
logical data, the possibility of a dynamical DE in the form of
the M2 Padé model cannot be excluded by the data.

5 Conclusion

In this article we attempt to check whether a dynamical dark
energy is allowed by the current cosmological data. The evo-
lution of dark energy is treated within the context of a Padé
parameterization, which can be seen as an expansion around
the usual ΛCDM cosmology. Unlike most DE parameteriza-
tions (CPL and the like), in the case of the Padé parametriza-
tion the equation of state parameter does not diverge in the
far future (a � 1) and thus its evolution is smooth in the
range of a ∈ (0,+∞).

Using the latest cosmological data we place observational
constraints on the viable Padé dark energy models, by imple-
menting a joint statistical analysis involving the latest obser-
vational data, SNIa (JLA), BAOs, direct measurements of
H(z), and CMB shift parameters from Planck and growth
rate data. In particular, we consider four Padé parametriza-
tions, each with several independent parameters and we find
that practically the examined Padé models are in very good
agreement with observations. In all of them the main cos-
mological parameters, namely (Ωm0, h, σ8), are practically
the same. Regarding the free parameters of Padé parametr-
tization we show that, although the best-fit values indicate
w < −1 at the present time, we cannot exclude the possibil-
ity of w > −1 at 1σ level.

Finally, for all Padé models we quantify their deviation
from ΛCDM cosmology through the AIC and Jeffreys scale.
We find that the corresponding χ2

min values are very close to
that of ΛCDM, which implies that the chi-square estimator
cannot distinguish Padé models from ΛCDM. Among the
family of current Padé parametrizations, the model which
contains two dark energy parameters is the one for which
a small but non-zero deviation from ΛCDM cosmology is
slightly allowed by the AIC test. On the other hand, based on
Jeffreys’ scale we show that a deviation from ΛCDM cos-
mology is also allowed, hence the possibility of a dynamical
DE in the form of Padé parametrization cannot be excluded.
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Furthermore, we estimate the so-called Bayesian com-
plexity to realize whether the current data can constrain the
extra parameters in our models or not. The Bayesian com-
plexity is a measure of the effective number of parameters,
which can be measured, given the data, and our results show a
slightly larger Bayesian complexity for the M2 model, which
is consistent with our conclusion as regards possible dynam-
ical DE models. In contrast, the Bayesian complexity does
not change significantly by adding extra parameters in our
other models, which indicates that the current data is not good
enough to measure the extra parameters.
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