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1 Introduction

Understanding the physics of strong interactions (QCD) through the study of scattering

processes in different kinematical regimes is still a challenging task. Particularly interesting

is the kinematic region of very high energies and finite momentum transfers (Regge limit):

in contrast to those high energy limits where collinear factorization holds and provides

a clean separation between perturbative and nonperturbative QCD, the Regge limit has

no such strict separation. It is therefore tempting to investigate, in the Regge limit, the

transition from the perturbative QCD regime (controlled by small distances) to the region
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of large distances, for which still very little can be derived from a fundamental QCD

description. Also, with the start of LHC elastic and multiparticle processes in the Regge

limit have become an important issue; a deeper theoretical understanding therefore is not

a simple academic question.

Some time ago [1, 2] we have started a program which aims at finding an interpolation

between the perturbative QCD Pomeron (BFKL Pomeron) and the nonperturbative soft

Pomeron which describes elastic proton-proton scattering at high energies. Such a study

must also include the Odderon. In transverse space, the BFKL Pomeron and the soft

Pomeron, are probing different regions: the BFKL Pomeron describes scattering processes

which are dominated by small transverse distances (large transverse momenta), whereas

the soft Pomeron is sensitive to transverse distances of the order of or larger than the proton

radius. As a theoretical framework, which can be used both on the perturbative (UV) region

and in the nonperturbative (IR) region, we employ the Wilsonian exact renormalization

group techniques. In particular we have found it convenient to study the flow of an effective

average action (IR regulated generator of the one particle irreducible (1PI) vertices) whose

RG-flow is described by the Wetterich equation [3, 4].

In two recent papers [1, 2] we have started with the long distance region. We have

studied the flow of the so called Reggeon Field Theory (RFT) for a single Pomeron field and

for a Pomeron coupled to an Odderon field, in particular the critical universal properties

of these two QFTs and some features of the flow associated to the scale change. These

theories were designed and formulated before the QCD era, expecting that they could be

relevant for the description of the non perturbative large distance behavior of the strong

interations. Pioneering work in RFT has been done already more that 40 years ago [5–

8]. In particular, a critical solution has been found, and scalings laws for the asymptotic

scattering amplitude have been derived. We also find this as one possible solution, but in

our recent analysis, we went beyond this analysis. New results include:

(i) we have performed a more general search for (IR) fixed points (i.e. in the presence of

all possible Pomeron self couplings)

(ii) we have studied the behavior also in the vicinity of the fixed points, i.e. the high

energy behavior of scattering processes at large but finite energies, and we made a

preliminary analysis of global flows within a RFT description

(iii) we have included the Odderon.

We mention that this formalism is also well suited to pose questions about more general

multi-particle interactions in the Regge limit [9, 10]: in the context of LHC experiments

this has become an important issue.

The present paper addresses the UV region: we start from high energy QCD, as for-

mulated in Lipatov’s effective action [11], generically describing the BFKL Physics regime.

Here the most important degree of freedom is the reggeized gluon, built from gluon ex-

changes at high energies. The perturbative BFKL Pomeron [12–15] then appears as a

composite state of two reggeized gluons in color singlet. In leading order it has a con-

tinuous spectrum for the variable angular momentum which is dual to the rapidity. The
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presence of vertices, local in rapidity, but nonlocal in the transverse space, maps QCD in

the Regge limit into an effective 2 + 1 dimensional QFT of reggeized gluons. Considering

their composite states which couple directly to external asymptotic states (i.e. hadrons)

through impact factors, it is tempting to switch, starting from the reggeized gluons, to an-

other effective description in terms of colorless composite states of reggeized gluons. As an

example, with such a ‘switch’, the 2 → 4 reggeized gluon vertex [16–20] induces a pertur-

bative triple Pomeron vertex, so that the BFKL Pomeron interacts with itself. Similarly,

other self-interaction vertices will appear, including vertices which describe the interactions

of the BFKL Pomeron with the perturbative Odderon [21, 22].

It is known that in NLO [27], when the QCD coupling becomes momentum dependent,

some infrared cutoff has to be introduced which, strictly speaking, already goes beyond per-

turbation theory. The BFKL Pomeron spectrum then becomes discrete, even at relatively

short distances. This corresponds to the appearance of bound state Regge poles (Pomeron

states), and it needs to be investigated which of them and in what way they will contribute

to the scattering processes at large distances and large rapidities. In order to study the

interactions of these Regge poles and in order to be able to move to larger distances it

will be convenient to switch to bound state fields, to consider the local approximation and

to make use of the well-known formalism of RFT. This step will make it much easier to

include pomeron interactions which in the full QCD description are described by non local

vertex functions. In the field theory based upon reggeized gluons these vertex functions

would lead to an extremely hard problem to solve, including many details which we expect

to be irrelevant and washed out at large distances.

We stress that both frameworks, BFKL physics and RFT, live in 2 + 1-dimensions,

transverse momenta (transverse distances) and rapidity (angular momentum). In order to

study the transition from the UV to the IR region it is necessary to have a description which

allows to trace the transmutation of the degrees of freedom at the different relevant scales.

This can be controlled by introducing an infrared cutoff for the transverse momentum:

initially (in the UV region) the momentum cutoff has to be large to justify the applicability

of perturbation theory for QCD in the Regge limit. Lowering this cutoff brings us into the

infrared, nonperturbative region: first still for the QCD description, then for the local RFT

(with an IR cutoff). The main task then is to bring these two last pictures together: the

bound states of the BFKL Pomeron define Pomeron fields which serve as an input into RFT.

As a theoretical framework, we choose the IR regulated effective action, satisfying exact

renormalization group equations, as the way to encode the different dynamical regimes.

In this paper we perform a careful analysis of the BFKL Pomeron and its spectrum

which, in the next (future) step, will be used to define the input to the exact RG (ERG)

flow equations. To this end it is necessary to find a formulation of the BFKL Pomeron

which is compatible with the ERG flow equations. We begin with the BFKL equation

and introduce an infrared regulator as suggested by the RG equations. This regulator is

different from all others that have been used before (e.g. Higgs mechanism [23–26], infrared

boundary values [27–30]). With this regulator we derive a differential equation for the

BFKL Pomeron Green’s function with respect to the IR cutoff parameter k. This equation

is nonlinear and characterized by a two loop structure, i.e. has the form of the infrared

evolution equations in QED and QCD, derived earlier by Lipatov and Kirschner [31–33].
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In the next step we find an effective field theory which can be used to derive the BFKL

Pomeron. We start from Lipatov’s effective action and formulate an effective field theory

for the 1PI vertices associated to composite states of two reggeized gluons. This field theory

contains separate fields for the reggeized gluon and for elementary gluons. We also show

how impact factors to external asymptotic particle states permit to construct, at the level

of the effective action, a link to another description based upon Pomeron bound state fields

derived from the BFKL equation.

Introducing the infrared regulator we derive, for the effective field theory of the

reggeized gluon fields, exact functional RG flow equations. The flow equation for the

1PI 4-point function of the process: two reggeized gluons → two reggeized (i.e. the BFKL

Green’s function) appears as part of an infinite set of coupled flow equations which also

contain higher order processes, e. g. two reggeized gluons plus elementary gluon → two

reggeized plus elementary gluon. Making use of special features of this field theory, in

particular constraints derived from the MRK and features of Lipatov’s effective action,

we then construct explicitly the truncation needed to derive, from the functional RG flow

equations, the same nonlinear differential equation for the BFKL Pomeron Green’s func-

tion which was obtained before. In other words, we show, for the BFKL Green’s function

of two incoming and two outgoing reggeized gluons, that the infinite set of functional RG

flow equations set is equivalent to a single nonlinear differential equation. By construction

the solution of the flow equation can be obtained from the knowledge of the IR regulated

BFKL kernel and Green’s function.

In the second part of our paper we perform a numerical analysis of the BFKL Pomeron

with our infrared regulator. In this part of our analysis we will not yet make use of the

functional RG equations derived before, but, instead, find explicit solutions of the BFKL

equation for a few fixed values of the infrared cutoff. To make contact with a previous anal-

ysis [24–26] of the BFKL spectrum we begin with a numerical study of the BFKL Pomeron

with a gluon mass regulator.1 We then compute the BFKL spectrum using our infrared

regulator which, in a future part of our analysis, will allow to use the BFKL Pomeron as an

input to the RG flow. We compute energy eigenvalues (i.e. poles in the angular momentum

plane), in particular intercepts and q2 slopes of the trajectory functions and eigenfunctions

of the BFKL kernel: these parameters define a set of Pomeron states. Their numerical val-

ues exhibit important features which will play a crucial role in the next step of our analysis:

(i) the intercepts and the q2 slopes of the bound state poles decrease and go to zero,

once we move from the leading eigenvalues down towards the accumulation point at

ω = 0.

(ii) Only the eigenfunction of the leading trajectory is typically ‘soft’, i.e. it has support

in the small-momentum region. The other nonleading eigenfunctions extend more

and more into the UV region, i.e. they become ‘hard’.

1In our paper we will refer to this mass regulator as “Higg’s” mass which should not be confused with

the physical Higgs boson.
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Figure 1. The BFKL ladder.

As we have already said, these results, in the next step of our program, can be used to

define the (local) Pomeron fields which serve as input to the RFT. Its infrared behavior

will have to be matched to the results of our previous papers devoted to the IR behavior.

The paper is organized as follows. We begin with the leading order BFKL equation

(section 2), introduce an infrared regulator (section 3) and derive a nonlinear differential

equation for the dependence upon the infrared regulator. In section 4 we define an effective

field theory of reggeized gluons which describes the leading order BFKL Green’s function

and discuss how to make a transition to bound state Pomeron fields. In section 5 we formu-

late the flow equations for this field theory: we obtain an infinite set of coupled equations.

We then make use of a special feature of this field theory and derive, for the BFKL Green’s

function, a nonlinear equation which coincides with the equation derived in section 3. In

sections 7 and 8 we perform our numerical studies. In the concluding section we summarize

and give an outlook on the following steps of our program. An appendix follows with a

prescription of how to deal with the gluon fields which do not propagate in rapidity.

2 The setup: the LO BFKL equation

We begin by recalling the massless color singlet BFKL equation [12–15] in the leading

approximation (MRK). Let us start with the amputated BFKL Green’s function G(q′,q−
q′; q′′,q − q′′|ω). It is obtained as an infinite sum of ladder diagrams and satisfies the

integral (Bethe-Salpeter like) equation:

GBFKL(q′,q− q′; q′′,q− q′′|ω) = KBFKL(q,q− q′; q′′,q− q′′) (2.1)

+

∫
d2kKBFKL(q,q− q′; k,q− k)

1

q′2(q− q′)2

1

ω − ωg(k)− ωg(q− k)

×GBFKL(k,q− k; q′′,q− q′′|ω),

where ω is the angular momentum variable dual to the rapidity in the scattering process

and the qs are two dimensional transverse momentum variables. The same equation can

be illustrated as in figure 1.
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Figure 2. Structure of the BFKL kernel with (a) real momenta and with (b) complex momenta.

The dots remind of the momentum factors of the vertices which are specified in (2.6).

The analytic expression of the LO BFKL kernel (the so called real part, induced by

rapidity separated real gluon emissions) has the form:

KBFKL(q′,q− q′; q′′,q− q′′) =
ᾱs
2π

(
−q2 +

q′′2(q− q′)2

(q′ − q′′)2
+

q′2(q− q′′)2

(q′ − q′′)2

)
, (2.2)

where

ᾱs =
Ncαs
π

. (2.3)

This kernel is illustrated in figure 2a: The gluon trajectory function has the form:

αg(q
2) = 1 + ωg(q

2) (2.4)

with

ωg(q
2) = −q2 ᾱs

4π

∫
d2k

1

k2(q− k)2
. (2.5)

It is this form of the BFKL equation which is best suited for implementing the ERG

equations.

It is well known that the BFKL equation can be reformulated to arrive at an IR safe

version. After modifying the kernel by including gluon propagators and symmetrizing

K(q,q− q′; q′′,q− q′′)

=
1√

q′2(q− q′)2
KBFKL(q′,q− q′; q′′,q− q′′)

1√
q′′2(q− q′′)2

(2.6)

=
ᾱs
2π

1√
q′2(q− q′)2

(
−q2 +

q′′2(q− q′)2

(q′ − q′′)2
+

q′2(q− q′′)2

(q′ − q′′)2

)
1√

q′′2(q− q′′)2

we introduce another Green’s function G̃ which satisfies the equation

G̃(q′,q− q′; q′′,q− q′′|ω) =
1

ω
K(q,q− q′; q′′,q− q′′) (2.7)

+
1

ω

∫
d2kK̃(q,q− q′; k,q− k) G̃(k,q− k; q′′,q− q′′|ω),

– 6 –
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where K̃ now contains a real part (gluon emission) and a virtual part (gluon trajectory):

K̃(q,q−q′′,q−q′′) = K(q,q−q′; q′′,q−q′′) + δ(2)(q′−q′′)
(
ωg(q

′) + ωg(q − q′)
)
. (2.8)

In this form, the IR singularities of the BFKL kernel can explicitly be seen to cancel.

The connection between the two Green’s function is given by:

G̃(q′,q− q′; q′′,q− q′′|ω) (2.9)

=
1

Ω(q′)

1√
q′2(q− q′)2

GBFKL(q′,q− q′; q′′,q− q′′|ω)
1√

q′′2(q− q′′)2
,

where we have put

Ω(q′) = ω − ωg(q′)− ωg(q− q′). (2.10)

So far we have limited ourselves to the leading order (LL) BFKL equation with a fixed

coupling αs. To get closer to realistic physics we need to include the momentum dependent

coupling, αs(q
2) which appears in NLO. In this paper, as a first step, we will adopt the

approximation of using, for the BFKL kernel, the leading terms only and introduce the

running coupling (with some prescription to be discussed later). For the fixed coupling

αs we simply substitute the leading order running coupling αs(q
2), which at a fixed low

momentum scale will be approximated by a constant value. The infrared cutoff which will

be introduced in the following section has to lie above this ‘freezing’ scale.

One can express the BFKL Green’s function in terms of eigenfunctions of the kernel K̃.

In the functional RG approach we shall work with coarse-grained quantities controlled by

an IR cutoff k which will be specified below. We shall therefore add this k dependence in

the kernel, the trajectory function Ω and Greens’s functions. In the presence of this cutoff

the eigenvalue spectrum of the BFKL kernel then consists of a discrete and a continuum

part (in the Regge limit we expect that the continuous part gives a small correction to the

high energy behavior). We write:

Gk =
1

ω − K̃

=
∑
n

ψn,k(q
′,q− q′)ψ∗n,k(q

′′,q− q′′)

ω − ωn.k
+ continuous part, (2.11)

where the ψn are the eigenfuctions of the (symmetrized) BFKL kernel K̃ which we will

compute numerically in the second part of this paper. The sum of the discrete set and the

continuous part of eigenfunctions defines a complete set. This Green’s function Gk satisfies

the equation

Gk =
1

ω
+

1

ω
K̃kGk, (2.12)

where the inhomogeneous term contains the delta functions δ(2)(q′ − q′′). We also can

write:

Gk =
1

Ωk(q′)
+

1

Ωk(q′)
Kk

1

Ωk(q′′)
+ . . . . (2.13)
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This Green’s function Gk can be named as the (nonamputed) Green’s function of four

reggeized gluons.

It is easy to see the connection of Gk with our previous Green’s function G̃k:

G̃k = GkKk, (2.14)

which equivalently can be written as

G̃k + 1 = Gk × Ωk(q
′′). (2.15)

In the flow equations, we will deal with amputated 1PI vertex functions generator Γk.

The most interesting one, Γ
(4)
k , is obtained from GBFKL by subtracting the BFKL kernel:

Γ
(4)
k (ω; q′,q− q′; q′′,q− q′′)

= Gk(q
′,q− q′; q′′,q− q′′|ω)−KBFKL;k(q

′,q− q′; q′′ − q− q′′). (2.16)

It can also be written in the following form:

Γ
(4)
k (q′,q− q′; q′′,q− q′′|ω) =

∫
d2lKBFKL;k(q

′,q− q′; l,q− l) (2.17)

× 1

Ωk(l)

1

l2(q− l)2
GBFKL;k(l,q− l; q′′,q− q′′;ω)

or, alternatively,

Γ
(4)
k (ω; q′,q− q′; q′′,q− q′′)

=

∫
d2l d2l′KBFKL;k(q

′,q− q′; l,q− l)
1√

l2(q− l)2

·Gk(l,q− l; l′,q− l′|ω)

· 1√
l′

2
(q− l′)2

KBFKL;k(l
′,q− l′; q′′,q− q′′). (2.18)

In short,

Γ
(4)
k = KBFKL;k ⊗ Gk ⊗KBFKL;k, (2.19)

where the symbol ⊗ includes the square roots of the propagators.

Finally, in an elastic scattering process (e.g. γ∗γ∗ scattering) the BFKL Green’s func-

tion couples to impact factors Φ(q′,q− q′) (which go to zero when q′ → 0 or q− q′ → 0)

and leads to an infrared finite scattering amplitude:

Tel(s, t) = is

∫
dω d2q′d2q′′

2πi
(−s)ωΦ(q′,q− q′)

1√
q′2(q− q′)2

×Gk
1√

q′′2(q− q′′)2
Φ(q′′,q− q′′)

= is

∫
dω

2πi
(−s)ωΦ⊗ Gk ⊗ Φ. (2.20)

– 8 –
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With (2.11) one easily derives expressions for the coupling of a single BFKL pole to the

external particle.

Eq. (2.20) can also be expressed in terms of the 1PI vertex function Γ
(4)
k . Starting

from (2.13) we write

Gk =
1

Ωk
+

1

Ωk
Kk

1

Ωk
+

1

Ωk
KkGkKk

1

Ωk

=
1

Ωk
+

1

Ωk
Kk

1

Ωk
+

1

Ωk
⊗ Γ

(4)
k ⊗

1

Ωk
. (2.21)

The last line of (2.20 then becomes:

Tel(s, t) = is

∫
dω

2πi
(−s)ωΦ⊗

[
1

Ωk
+

1

Ωk
⊗KBFKLk ⊗

1

Ωk
+

1

Ωk
⊗ Γ(4) ⊗ 1

Ωk

]
⊗ Φ. (2.22)

Here the symbols ⊗ are written in order take care of the momentum propagators.

3 Regulators and the τ -derivative of the BFKL Geen’s function

In order to investigate the implementation in a Functional RG setup of the perturbative

BFKL Pomeron it will be necessary to introduce an infrared cutoff. An obvious candidate

is the Higgs mass for the gluon propagator. This has been used to study the energy spec-

trum of the Higgs mass regulated BFKL Pomeron [24–26]: for positive ω values there is

a discrete set of infinitely many Regge poles (with accumulation point at ω = 0), accom-

panied by a cut along the negative ω axis. This spectrum has been studied numerically,

both for fixed and for running coupling αs. An earlier attempt [23] has started from the

assumption of the bootstrap equation for gluon reggeizzation: in this model the discrete

spectrum was analysed, both for intercept and slope. The model represents a deformation

of the BFKL Pomeron equation, including most of NLO corrections and, in particular, the

running coupling with an IR-regulator. In the UV region it matches the DGLAP results in

the double logarithmic limit (large Q2 and 1/x, using standard Deep Inelastic Scattering

variables). Most recently another approach has been pursued in [28–30]: using the massless

BFKL equation in the forward direction, infrared boundary conditions have been imposed

at a fixed momentum scale k2
0. The resulting BFKL equation has then been used to fit the

small-x and low-Q2 HERA data, which allows to fix the infrared boundary values.

All these approaches only use the BFKL Pomeron, and so far no attempt has been

made to introduce the triple Pomeron vertex and to study the Regge cut corrections.

In our approach we aim at embedding the BFKL Pomeron into a reggeon field the-

ory which includes corrections to the BFKL Pomeron based upon interaction vertices, in

particular the triple Pomeron vertex. A necessary first step is the introduction of an in-

frared regulator which later on will allow to make use of the exact renormalization group

equations. In the following we describe this regulator for the BFKL Pomeron and derive

an equation for the derivative of the BFKL Pomeron Green’s function with respect to

the IR cutoff parameter k. We obtain a nonlinear equation which is of the same form as

the infrared evolution equations introduced by Lipatov and Kirschner [31–33]. Later on

– 9 –
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we will show that, with this regulator, the BFKL Pomeron can be formulated within the

exact renormalization group approach using a truncation for the effective average action

compatible with the MRK.

To implement the coarse-graining characterizing the Wilsonian RG approach we in-

troduce the following momentum regulator for the elementary gluon propagator inside the

BFKL kernel and the gluon trajectory function:

1

q2
→ 1

q2 +Rk(q2)
(3.1)

with the optimized form [34]

Rk(q
2) = (k2 − q2)θ(k2 − q2). (3.2)

Alternative choices can be taken, e.g. such as

Rk(q
2) =

q2

e
q2

k2 − 1
. (3.3)

These regulators are such that the propagation of quantum fluctuations is inhibited

for q2 � k2, but is unaltered in the UV region. This fact is implemented in the functional

integral which defines the IR-regulated effective action. In this paper we will use the

regulator (3.2). For the reggeized gluon with the bare propagator

1

q2

1

ω − ωg(q2)
(3.4)

we will use
1

q2 +Rk(q2)

1

ω − q2

q2+Rk(q2)
ωg,k(q2)

, (3.5)

where the regulated trajectory function is given by

ωg,k(q
2) = −q2 ᾱs

4π

∫
d2l

1[
l2 +Rk(l

2)
][

(q− l)2 +Rk((q− l)2)
] . (3.6)

For the kernel KBFKL we find:

KBFKL;k(q
′,q− q′; q′′,q− q′′) (3.7)

=
ᾱs
2π

(
−q2 (q′ − q′′)2

(q′ − q′′)2 +Rk((q′ − q′′)2)
+

q′′2(q− q′)2 + q′2(q− q′′)2

(q′ − q′′)2 +Rk((q′ − q′′)2)

)

with the corresponding Green’s function GBFKL;k:

GBFKL;k(q
′,q− q′; q′′,q− q′′|ω) = KBFKL;k(q,q− q′; q′′,q− q′′) (3.8)

+

∫
d2kKBFKL;k(q,q− q′; k,q− k)

1

(q′2 +Rk(q′
2)((q− q′)2 +Rk((q− q′)2))

· 1

Ωk(q,k)
GBFKL;k(k,q− k; q′′,q− q′′|ω) .

– 10 –
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Figure 3. k-derivative of the BFKL ladder.

with

Ωk(q,k) = ω − k2

k2 +Rk(k
2)
ωg,k(k

2)− (q− k)2

(q− k)2 +Rk((q− k)2)
ωg,k((q− k)2) . (3.9)

With these regulators we take the derivative of the BFKL Green’s function with respect

to τ = ln k/k0. We start from the integral equation in figure 1 and obtain the result

illustrated in figure 3, where the internal elementary gluon (straight line) has the propagator

given in (3.1) whereas the reggeized gluon (wavy line) has the form described in (3.5).

The crosses on internal lines denote the derivatives with respect to τ = ln k/k0. For the

elementary gluon inside the kernel we find:

− 1

q2 +Rk(q2)
Ṙk(q

2)
1

q2 +Rk(q2)
(3.10)

with

Ṙk(q
2) = k

d

dk
Rk(q

2) =
d

dτ
Rk(q

2) = 2k2θ(k2 − q2), (3.11)

whereas for the reggeized gluon propagator this derivative consists of two contributions,

marked by a double cross:

d

dτ
Gregge(q

2) = −Gregge(q
2)ωṘk(q

2)Gregge(q
2) +Gregge(q

2)q2dωg,k(q
2)

dτ
Gregge(q

2) (3.12)

with

dωg,k(q
2)

dτ
= 2q2 ᾱs

4π

∫
d2l

(
1

l2 +Rk(l
2)
Ṙk(l

2)
1

l2 +Rk(l
2)

)
1

(q− l)2 +Rk((q− l)2)
.

(3.13)

These two terms are illustrated in figure 4:

As already mentioned, the nonlinear structure of this equation is the same as in the

infrared evolution equation of Lipatov and Kirschner [31–33], derived for summing double

logs. A more detailed analysis of this equation will be performed in a future paper.
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Figure 5. The propagator of a reggeized gluon (see text).

4 An effective field theory for deriving the BFKL Green’s function

Before we perform a numerical analysis of the BFKL equation with this infrared regulator

in order to be able to select the leading contributions, we would like to demonstrate that the

same equation for the τ -derivative can be obtained from the RG flow equations for a suit-

able truncation of the associated effective average action in the MRK. To this end we will

not start from the full QCD Lagrangian but from the effective field theory derived by L. Li-

patov [11]: this effective action has been designed to describe the Regge limit of QCD, and

in contrast to the QCD Lagrangian it introduces a new degree of freedom, the field of the

reggeized gluon. We therefore start from this effective action and formulate an effective field

theory for which we shall then derive the consistent flow equations. In order to switch later

on to the RFT description at larger distances one needs to rewrite the flowing dynamics

of reggeized gluons in terms of Pomeron fields (associated to composite states of reggeized

gluons at the same rapidity). This will be illustrated in the second part of this section.

4.1 Elements of the field theory

There are a few basic ingredients of the effective action which we summarize as follows.

First, when calculating in perturbative QCD the high energy behavior of, say, a 2 by 2

scattering process, the t-channel is divided into intervals with small and large rapidity

separations. Those with small rapidities are described by the normal QCD degrees of

freedom (gluons, quarks) whereas the large rapidity intervals are described by the exchange

of reggeized glouns. As described in detail in [35] the propagator of a reggeized gluon (given

in eq. (3.4)) is built up successively. We illustrate this in figure 5, where the wavy line

stands for the (bare) reggeized gluon propagator,

1

ω

1

q2
(4.1)

and the bubbles on the r.h.s. denote the expression

q2ωg(q
2) . (4.2)

The sum of all diagrams equals the (dressed) reggeized gluon propagator in (3.4). In terms

of rapidity, in figure 5 each wavy lines belongs to a rapidity gap and generates one power

of ln s (being s the squared center of mass energy in the scattering process), whereas the

bubble has no propagation in rapidity. Formally we therefore introduce a gluon propagator

– 12 –
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which propagates in transverse momentum but not in rapidity (for details see appendix

A). The (real) kernel of the BFKL equation in (2.6) belongs to small rapidity interval: in

LO the extension can be taken to zero. Therefore, the kernel also has to be described by

fields which to not propagate in rapidity. It is well known, the kernel simplifies if we use

complex momenta q = q1 + iq2, q∗ = q1 − iq2, ∂ = ∂1 + i∂2, ∂∗ = ∂1 − i∂2 (cf. figure 2b).

With the identity

q′(q − q′)∗q′′∗(q − q′′) + cc = −q2(q′ − q′′)2 + q′
2
(q− q′′)2 + (q− q′)2q′′

2
(4.3)

we obtain

KBFKL =
ᾱs
2π

[
q′(q′′)∗

1

(q′ − q”)2
(q − q′)∗(q − q′′) + cc

]
. (4.4)

This suggests to introduce, for the exchanged gluon with momentum (q−q′), another gluon

field which has no evolution in rapidity. We therefore introduce the following (color octet)

fields (the subscript ‘a’ denotes the color):

(1) Aa, A
†
a for the (bare) reggeized gluon with the propagator 1

ω
1
q2 . In order stay with

the planar BFKL ladders we distinguish (in a horizontal ladder) between the upper

and lower reggeized gluons and introduce two different fields: A1a, A
†
1a and A2a, A

†
2a.

(2) To generate the trajectory functions we need, for each reggeized gluon, a scalar

gluon: a1a, a
†
1a and a2a, a

†
2a which has no propagation in rapidity. Their propagators

are simply 1/q2.

(3) For the produced gluon inside the BFKL kernel we need another field, χa, χ
†
a without

propagation in rapidity.

The interaction vertices are illustrated in figure 6. In the Lagrangian they correspond

to:

gfabc

(
(∂2A†ia)aibaic + a†iaa

†
ib(∂

2Aic)
)

(i = 1, 2), (4.5)

gfabc

[
(∂A†ia)(∂

∗Aib)χc + (∂∗A†ia)(∂Aib)χ
†
c

]
(i = 1, 2), (4.6)

for figure 6a and figure 6b respectively.

It is not difficult to construct, using these ingredients, all-order amputated vertex

functions. In particular, after summation over the self-energies the bare propagator of the
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reggeized gluon becomes:

1

ωq2

[
1 + q2ωg(q

2)
1

ωq2
+

(
q2ωg(q

2)
1

ωq2

)2

+ . . .

]
=

1

q2

1

ω − ωg(q2)
. (4.7)

A few observations maybe useful. By construction we implement the interactions in

the MRK and therefore:

(i) for any vertex function, in the strict MRK, the number of reggeized gluons is con-

served;

(ii) there is no renormalization of vertices. In particular, there are no vertex corrections

to the local vertex AA†χ, since the χ field does not propagate in rapidity (see

appendix A).

With these remarks it is easy to see that the all order four point vertex function non local

in rapidity and transverse space for the elastic process (reggeized gluon 1 + reggeized gluon

2 → reggeized gluon 1 + reggeized gluon 2) as in figure 7a coincides with (2.1).

Eventually one may think of relaxing the condition (i) by working in the generalized

leading log approximation MRK where n→ m reggeized gluon vertices (with n−m even by

signature conservation) are allowed. In such a case the vertices with reggeized gluons will

be renormalized by loops. Since the related truncation will be very difficult to deal with

at the level of reggeized gluon fields, we shall study effects related to nonconservation of

the number of reggeized gluons only after switching to composite fields and using the local

approximation. Moreover, we expect that several details of the reggeized gluon dynamics

will be mostly washed out by interactions of the composite fields, and the main global

features will be captured by the much more simple local RFT description.

In addition to the BFKL Green’s function, this field theory describes an infinite number

of other inelastic non local vertex functions. As we will see below, the flow equation for the

BFKL 4-point function includes non local vertex functions with 4 reggeized gluons plus ele-

mentary gluons. There can be additional χ-fields or a-fields, produced at the same rapidites.

Examples are shown in figure 7b (right) and c. Although in some of these vertex functions

the two reggeized gluons can no longer be in color singlet states, it is important to stress

that, in the context of the flow equations for the BFKL Green’s function, color nonsinglet

states never appear: in all cases of interest pairs of external a or χ fields will be contracted.

As a result, states of two reggeized gluons will always remain in color singlet states.

All these inelastic vertex functions in (b) and (c), however, can be expressed in terms

of the elastic vertex function and 3-point vertices. For the cases illustrated in figure 7b

we find a structure illustrated in figure 8 and figure 9: For this second example it is

important to note the order in rapidity: the left and right gluons are emitted (or absorbed)

at rapidities y1, y2, resp., and the ordering means that y1 ≤ y2. Similarly, for figure 7c we

find: As we will see later, with these identities it will be possible to derive, from the flow

equations, the same nonlinear equation as in section 3.
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Figure 7. Vertex functions. (a) elastic process (b) emission of one or two χ fields (c) emission of

a1 or a2).

=

Figure 8. 5-point vertex function.

= +
4 4 4 4 4

Figure 9. A 6-point-vertex function.

=

Figure 10. Another 6-point-vertex function.

4.2 From reggeized gluons to Pomeron fields

At large distances the interactions in the high energy limit are naturally described in terms

of colorless objects, such as Pomeron or Odderon Green’s functions and their interacting

vertices. In particular, for the BFKL Pomeron it is natural to shift from the description in

terms of reggeized gluons to bound state fields, Pomeron fields. As we have already said

before, in the Regge limit one has high energy factorization, that is a scattering amplitude

is decomposed in impact factors (depending on the external particles such has hadrons)

which couple to Pomeron states evolving with Green’s functions. In the following we will

give a short description of how this transition to bound state fields is carried out, keeping

in mind that we work with the generator of 1PI proper vertices. In addition to the BFKL

Pomeron Green’s function which we discussed in some detail we shall be a bit more general

by allowing also higher order reggeized gluon transition vertices, in particular the 2 → 4

gluon vertex which leads to the triple Pomeron vertex.
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To begin with, it is useful to introduce the impact factors Φ and Φ†, which depend on

one rapidity variable and on two transverse momenta. This is done by introducing in the

bare Wilsonian action source terms which couple to the composite state of two reggeized

gluons in color singlet states at the same rapidity. We write a standard local term in the

path integral:

e
∫
(Φ†AA+A†A†Φ). (4.8)

As we outlined above, the solution to the BFKL equation is encoded in the Green’s function

G which, by means of (2.11), can be expressed in terms of eigenfunctions and eigenvalues

of the kernel K̃. This Green’s function is related to the 1PI vertex functions involving

reggeized gluons ( the explicit relation to Γ
(4)
k is given in (2.21)) of the effective action Γk

and is one element which appears in the dependence of the latter on the “sources” Φ and

Φ†, which were not undergoing the Legendre transform. Let us consider a truncation which

contains the 1PI vertices Γ
(4)

A†A†AA
. Once we allow for the 2→ 4 reggeized gluon transitions

we also have Γ
(6)

A†A†A†A†AA
and Γ

(6)

A†A†AAAA
. Writing the effective action as

Γ[A,A†, · · · ; Φ,Φ†] =
∑
i

Γi, (4.9)

where in Γi the subscript i− denotes the power of the sources Φ and Φ†, the lowest non

trivial order terms are:

Γ2 = Φ†GΦ + · · ·
Γ3 =

(
Φ†GV2→4GΦGΦ + h.c.

)
+ · · · , (4.10)

where the dots stand for more complicated terms with may include also external reggeized

gluon fields, e.g.

Γ1 =

∫ (
Φ†GAA+ h.c.

)
+ · · · . (4.11)

These examples show why it is useful to introduce sources for the composite states of

reggeized gluons at fixed rapidity. As we have shown in section 2, it is not straightforward

to relate in a 1PI effective action the proper vertices Γ(4) or Γ(6) to the IR safe BFKL

Green’s function associated to the Pomeron. Using sources gives us access to the IR safe

dynamics of the reggeized gluons, in particular to the composite states of 2, 4, and 6

reggeized gluons in the MRK and to the effective vertex V2→4 (related to Γ(6)), which is

local in rapidity and represents the key ingredient to the triple Pomeron vertex [16–20].

In order to find an alternative formulation in terms of bound state (Pomeron) fields, Ψ

and Ψ†, we start from another field theory which must lead to the same Green’s function

G. Again we start from the source terms:∫ (
Φ†Ψ + Ψ†Φ

)
(4.12)

and introduce the kinetic term: ∫
Ψ†G−1Ψ. (4.13)
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For higher order interactions we include terms like∫ (
Ψ†V2→4ΨΨ + h.c.

)
. (4.14)

To show the equivalence with the previous formulation in terms of reggeized giuon fields

A,A† one can use standard perturbation theory. For example in a functional approach we

replace in the interaction terms the fields by the derivatives:

ψ → δ

δΦ†
, ψ† → δ

δΦ
, (4.15)

and then integrate the quadratic form over the fields Ψ and Ψ†, by completing the square.

Then expanding the exponential of the interactions in powers and acting with the deriva-

tives one can reproduce the previous results. For example∫ (
Ψ†V2→4ΨΨ + h.c.

)
→
∫ (

Φ†GV2→4GΦGΦ + h.c.
)

(4.16)

in agreement with Γ3 in (4.10).

We conclude with a few remarks on this bound state effective action. First, the prop-

agator of the Ψ field, G, can be written as a spectral decomposition. Namely, by inserting

the complete set of eigenstates (cf. (2.11))

G−1 = ω − K̃ =
∑
n

|ψn〉(ω − ωn)〈ψn| (4.17)

the kinetic term (4.13) turns into a sum of different Pomeron fields∫ ∑
n

Ψ†n (ω − ωn) Ψn (4.18)

with

Ψn = 〈ψn|Ψ, Ψ†n = Ψ†|ψn〉. (4.19)

Including the q2 dependence of the eigenvalues ωn we decompose into intercept and slope

ωn(q2) = ωn(0)− α′nq2 (4.20)

and arrive at the standard form of the Pomeron propagator of a local Pomeron field.

Inserting this spectral decomposition into the triple interaction term (4.14) we obtain a set

of triple Pomeron couplings.

We emphasize that the study of the RG evolution at large transverse distances and

large rapidities of QCD in terms of 1PI reggeized gluon vertices, which are non local in

rapidity and transverse space variables, is a very difficult task. Our approach seeks to

overcome this difficulty by shifting the problem to the RG study of a local RFT with non

trivial interactions: this RFT uses the leading Pomeron states selected by with the spectral

analysis. In our previous paper [1] we have shown that the investigation of such a local

RFT is a tractable problem.
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Next we note that, in this bound state theory, the A,A† are no longer dynamical fields

which propagate in rapidity, since only composite states of two reggeized gluons in color

singlet are effectively considered. Nevertheless, we could indeed introduce states given by

a pair of two reggeized gluons at fixed rapidity:∫ (
Ψ†AA+ h.c.

)
. (4.21)

From this we can re-derive the Green’s function, G, of four reggeized gluons with the

rapidity evolution given by the propagator of the Ψ field. Finally, the triple Pomeron

vertex should contain a factor i, since the two Pomeron cut contribution to the Pomeron

self energy comes with a negative sign.

It would be interesting to derive this field theory of bound state Pomeron fields directly

from our effective field theory, in analogy to the familiar Hubbard-Stratonovich transfor-

mation. For the rest of this paper we make use only of the effective field theory of reggeized

gluons,

5 RG flow equations

Let us now discuss the form of the IR regulated effective action, satisfying the Wetterich

equation [3, 4]

k
∂

∂k
Γk =

1

2
Tr

[(
Γ

(2)
k +Rk

)−1
k
∂

∂k
Rk

]
(5.1)

for this field theory which is strongly constrained in the MRK for its expansion in the 1PI

non local vertices. We are interested in the scattering of two reggeized gluon in the color

singlet state, i.e. the BFKL Pomeron channel. To this end we find it convenient to examine

the flow of each vertex. The self-energies of the basic fields such as the elementary real

gluons as well as the reggeized ones have already been described. We shall first discuss a

bit more the reggeized gluon case. For the 3-point vertices in the MRK, as already said,

there is no renormalization and it is sufficient to have the elementary ones. Then we shall

consider the family of vertices with 4 reggeized gluons and an arbitrary number of real

(inelastic) gluon emissions.

Turning now to the effective average action, we shall deal with a truncation which, in

the pure MRK, is consistent and can be schematically written as

Γk[A,A
†, a, a†, χ, χ†] =

1

2

(∫
A†Γ

(2)

k,A†A
A+ a†Γ

(2)

k,a†a
a+ χ†Γ

(2)

k,χ†χ
χ

)
+

1

2

∫ (
A†Γ

(3)

k,A†aa
aa+ a†a†Γ

(3)

k,a†a†A
A
)

+

∫
A†Γ

(3)

k,A†Aχ
Aχ+

∫
A†χ†Γ

(3)

k,A†χ†A
A

+
∑
I

∫
A†A†a† · · · a†χ† · · ·χ†Γ(4+|I|)

k,A†A†a†···a†χ†···χ†AAa···aχ···χAAa · · · aχ · · ·χ. (5.2)

In the first line, the k-dependent 2-point function of the A field can be inferred from (4.7);

those of the a and χ fields contain the IR regulators. In the second line the vertices are

not k dependent, and in the last line all 1PI vertices with 4 reggeized gluons have to be
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Figure 11. Flow equation for the selfenergy of the reggeized gluon.

included. The 4-point vertex with no external gluons ai or χ, Γ
(4)

k,A†A†AA
, is associated to

elastic processes, while all the others vertices with an arbitrary number of a or χ lines, i.e.

for |I| > 0, are associated to inelastic amplitudes and, thanks to the MRK, are built from

Γ
(2)
k , Γ

(3)
k and Γ

(4)
k . This means that the system of flow equations for the infinite set of 1PI

vertices closes in the MRK.

The transition to the Pomeron bound state field description can be done along the

lines presented in the previous section.

5.1 Two-point function

We begin with the propagator for the reggeized gluon. For the kinetic term we make the

ansatz

A†Γ
(2)

k,A†A
A = A†a∂τAb −A†aΣkab(∂

2
x)Ab (5.3)

with the flow equation illustrated in figure 11.

Comparison with (3.6) shows that the τ -derivative of the selfenergy, Σk(q
2), satisfies

the same equation as τ -derivative of the regularized trajectory function. In the following

we therefore simply write ωg,k(q
2) instead of Σk(q

2).

5.2 Vertex functions

Let us first define 1PI vertex functions with two incoming and two outgoing reggeized

gluons and an arbitrary number of elementary gluons, Γ
(4)m,n

m′,n′ . Here m(m′) refers to

the number of χ fields, n(n′) to the number of a fields.

The upper (lower) numbers refer to the emission from the upper (lower) reggeized

gluons in a horizontal ladder diagram. For the four point function of reggeized gluons

without any elementary gluons, we define the one particle irreducible function Γ
(4)0,0

0,0 =

Γ(4) by subtracting, from the sum of the BFKL ladder diagrams, the lowest order gluon

exchange diagram (figure 12a). For the higher order vertex functions Γ
(4)m,n

m′,n′ one easily

derives from figures 8 and 9 that these vertex functions are generically already one-particle

irreducible. Diagrammatically, we will denote 1PI vertex functions by boxes in the figures.

5.3 Flow equation for the 4-point function

Let us now write the flow equation for the 1PI 4-point function, Γ(4). Its flow equation

can be obtained taking 4 functional derivatives in the reggeized gluon fields of the flow of

the 1PI vertex generator given in eq. (5.1). We expand the trace on the r.h.s. of the flow

equations as depicted in figure 13, where the crosses mark the derivative of the momentum

regulator with respect to the RG “time”:

Ṙk = k
d

dk
Rk. (5.4)
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Figure 12. Definition of one-particle irreducible vertex functions.

t r = ...+ + + + + ...

(1) (2) (3) (4)

XX X X X

Figure 13. Expansion of the trace.

As to the circle on the r.h.s. of figure 13, we have to sum over elementary gluons with the

regulated propagators
1

q2 +Rk(q2)
(5.5)

and the reggeized gluon with the regulated propagator (3.5):

1

ω (q2 +Rk(q2))− q2ωg,k(q2)
. (5.6)

Next we evaluate the r.h.s. of figure 13 for the 4-point vertex function. It is understood

that the pairs of incoming and outgoing reggeized gluons are in color singlet states. The

result is symbolically depicted in figure 14 which contains, in the last line, two independent

6-point functions with four reggeized gluons and two elementary gluons. We therefore need

to consider also the flow equation for these 6 point functions.

5.4 Flow equation for the 5-point and 6-point functions

For simplicity, we start with the 5-point function Γ
(4)1,0

0,0. We proceed in the same way as

for 4-point function, and start from the trace illustrated in figure 13. The flow is given in
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Figure 14. Flow equation for the 1PI 4-point function.
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=
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Figure 15. Flow equation for the 5-point function.

figure 15 where in the last line we have, once more, disregarded several terms which after

a closer inspection are zero and kept only the non vanishing configurations.

It is not difficult to generalize to the 6-point function and we do not present here the

long expression. From these examples we recognize the general pattern. In the MRK the

flow equation of the 4-point function contains the 6-point function, the 6-point function

needs the 5-point, 7-point and 8-point functions, and so on. In general, the n-point function

encounters the (n+2) function, and these flow equations form an infinite tower of coupled

differential equations. We shall show that these correspond to the coupled equations ob-

tained by substituting the truncation given in eq. (5.2) into the exact RG flow equation of

eq. (5.1).

5.5 Introducing the running coupling

Before we derive, from the flow equations, a new nonlinear form of the equations in the

MRK, let us come back to our discussion of the running coupling which we have started

– 21 –



J
H
E
P
0
1
(
2
0
1
9
)
0
0
4

at the end of section 2. The inclusion of the QCD running coupling effects in the Regge

limit is a delicate issue when considering a full resummation. Strictly speaking this effect

goes beyond the Leading Log contribution in the MRK, since one has to take into account

emissions of at least two real gluons close in rapidity, which start from the region called quasi

multi regge kinematics. It is also well known that the BFKL Pomeron in NLL accuracy

has a spectrum which must be cured in the collinear regions with subleading term, and

several approaches have been proposed (cf. our discussion in the beginning of section 3).

There is a consensus that a good understanding of the pure running coupling effects

can be nevertheless obtained by directly improving the picture obtained from the leading

logarithmic approximation, that is by simply replacing the fixed coupling by a running

coupling, even if this approach is not unique. We shall take this attitude and consider

in our field theory, for any cubic vertex involving reggeized and real gluons, the following

prescription:

(i) in a vertex with just one reggeized gluon A or A† with momentum q we make the

replacement gs → gs(q
2)

(ii) in a vertex with two reggeized gluons A and A† with momentum q and q′ we make

the replacement gs →
√
gs(q2)gs(q′2).

This means that in the trajectory function ωg(q
2) we simply put

αs → α(q2) . (5.7)

The real kernel KBFKL(q,q′) in the forward direction is modified by the substitution

αs →
√
α(q2)α(q′2). (5.8)

In the nonforward direction the kernel KBFKL(q1,q2; q′1,q
′
2) will be multiplied by

αs →
(
α(q2

1)α(q2
2)α(q′1

2)α(q′2
2)
)1/4

. (5.9)

We consider this as a first approximate attempt to include the running coupling. When

going to the color octet channel, the choice (5.9) does not satisfy the bootstrap condition.

A way to implement this important self consistency condition has been decribed in [23].

In a later step we will implement this method into our investigation.

In our truncation for the effective average action the running coupling is chosen to be

strictly independent of the IR regulator. As mentioned before, in our effective field theory

at this level there is no renormalization of the vertices: the running coupling, therefore,

can be considered as an ‘external’ momentum dependent function which does not change

in course of the flow. As a consequence, all the results of our analysis performed at fixed

coupling can easily be modified by the replacement: fixed coupling → running coupling.

6 A nonlinear equation for the τ -derivative of 4-point function

Starting from this tower of flow equations we now make use of the special features of the

higher order vertex functions, illustrated in figures 8–10, and show that, starting from the
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=
(4)1,0

0 0

Figure 16. Identity for the 5-point function.

= +
(4)1,0

1 ,0

Figure 17. Identity for the 6-point function.

flow equations, we can derive the differential equation for the τ derivative of the 4-point

function, presented in section 3. This means that the truncation relevant for the multi-

regge kinematics convert the one loop structure of the flow for the effective average action

encoding an infinite set of 1PI vertices into a two loop structure for the flow of the 4-point

vertex, whose knowledge is sufficient to define also the higher order vertex functions.

Let us begin wih the 5-point function. Returning to figure 8 we note that our 1PI

5-point function can be expressed in terms of the 4-point function. For simplicity we use

the full 4-point function rather than the 1PI 4-point function, see figure 16.

Similarly from figure 9 for the 6-point vertex we derive the expression depicted in

figure 17.

It is straightforward to generalize these identities to other higher order vertex functions

Γ
(4)m,n

0,0.

With these identities we can rewrite the infinite set of the flow equations. We begin with

the 4-point function in figure 14, and rewrite the last line. As we have said before, the two

reggeon states are in color singlet. For the first term we use figure 17 and arrive at figure 18a

The second term in the last line of figure 14 is derived from figure 10 and illustrated

in figure 18b. Here we have made use of the fact that the scalar lines do not propagate

in rapidity: therefore, the emission and absorption of the scalar gluon from the upper and

lower reggeized gluons happen at the same rapidity and the second term in figure 17 does

not contribute. Next we combine in figure 14 the four terms in the first line, similarly the

four terms of the second line. In this way we arrive at:

We note that the r.h.s. agrees with figure 3: using the double cross notation of figure 3,

the terms on the r.h.s. of figure 19 in the first and second lines can be combined to double

crosses.

It is straightforward (although somewhat tedious) to show that also for the higher order

vertex functions the flow equations lead to simpler equations. As the simplest example, let

us consider the 1PI 5-point vertex with its flow equation in figure 15. First we combine
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a

b

= X

=

X

X

(4)0,2

0 ,0

=
X

(4)1,0

1 ,0

Figure 18. Closing the 6-point function.

q’ q’’

q−q’ q−q’’

= +

X X++

X

X

++

x

x

(4)

X+

Figure 19. Modification of flow equation in figure 14.

the first and the third lines on the r.h.s. of figure 15 by expressing the 1PI 4-point vertex

by the full 4-point function. This leads to the first line of figure 20.

Similarly we combine the terms in the second line and a part of the last two terms in the

last line (we shall comment more on it later on) of figure 15 to arrive at the second line of

figure 20. For the third line of figure 15 we use the identity of figure 16 and obtain the third

line of figure 20. In the same way, line 4 together with the other part coming from the last

two terms in the last line of figure 15 can be written as shown in the fourth line of figure 20.

In the last line of figure 15 the first two terms, by means of the first identity of figure 21, lead

to the last two lines of figure 20. Finally let us comment on the last two terms in the last

line of figure 15. Using the second identity of figure 21 (and a few more terms obtained by

symmetry arguments) it is evident that they have to be combined with the second and forth

lines of figure 15; they lead to the double crosses in the second and fourth lines of figure 20.

Let us compare this equation with the defining identity in figure 16: we take the

derivative with respect to τ , and for the derivatives of the 4-point functions we insert

figure 19 (or figure 3). The result coincides with figure 20. With this we conclude that,

similarly to the 4-point function, the τ -derivative of the 5-point function again can be

expressed in terms of the four point function, this time at third order. We expect that an

– 24 –



J
H
E
P
0
1
(
2
0
1
9
)
0
0
4

= +

+

+

X X

X X+

+ +

++

X X

X X

+ +

XX

X XX X

(4)1,0

0 ,0

Figure 20. Modification of the flow equation in figure 15. For the terms in the second and fourth

lines it is understood that, for the derivative marked by cross we have to sum over all locations on

the inner loop (upper and lower reggeon lines, left and right hand side of the production vertex).

= + X

X

=

x x

+

X

XX (4)2,0

1 ,0

(4)1,2

0 ,0

Figure 21. Closing the 7-point function.

analogous result holds also for higher order vertex functions, with increasing powers of the

four point function. This implies that, instead of the infinite coupled set or flow equations,

we have an infinite set of decoupled equations. For our analysis of the BFKL Pomeron we

only need the lowest nonlinear equation which is exact without any further truncations.
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7 Numerical studies (1): Higgs-mass regulator

In this and the next sections we shall perform a numerical analysis of the IR modified BFKL

kernel (first introducing a simple mass regulator, then a Wilsonian optimized regulator).

We return to the notations introduced in section 2, in particular to the non-amputated

BFKL kernel. We begin with the fixed QCD coupling, and in a second step we also

consider a running gauge coupling. Our main focus is on the spectrum of the integral kernel:

eigenvalues, eigenfunctions, and q2 slopes of the Regge poles. It is for a discrete spectrum

that one can find new effective degrees of freedom and make a link at large distances with

the local Pomeron fields of a RFT. Therefore we shall look for evidence of such a case.

The numerical analysis proceeds in two steps. For comparison we first study the BFKL

Pomeron with the Higg’s mass regulator.2 This problem has been addressed before [24–

26], and partly we follow this paper. What is new in our analysis are the q2-slopes of

the discrete Pomeron states. After this we turn to the Wilsonian IR regulator and, again,

compute eigenvalues, eigenfunctions, and q2 slopes.

7.1 Eigenvalues and eigenfunctions in the forward direction

We begin with the Higgs’mass regulated BFKL Pomeron with fixed coupling. First we

define:

q1 =
q

2
+ k, q2 =

q

2
− k, q′1 =

q

2
+ k,′ q′2 =

q

2
− k′ . (7.1)

The symmetrized kernels are

2π

ᾱs
K(q,k,k′) =

√
q2

1 +m2

q2
2 +m2

1

(k− k′)2 +m2

√
q′2

2 +m2

q′1
2 +m2

+

√
q2

2 +m2

q2
1 +m2

1

(k− k′)2 +m2

√
q′1

2 +m2

q′2
2 +m2

−
q2 + N2

c +1
N2

c
m2√

(q2
1 +m2)(q2

2 +m2)(q′1
2 +m2)(q′2

2 +m2)
(7.2)

and

K̃(q,k,k′) = K(q,k,k′) + δ(2)(k− k′)
(
ωg(q

2
1) + ωg(q

2
2)
)
, (7.3)

whereas the trajectory function has the form:

ωg(k
2) = − ᾱs

4π

∫
d2k′

k2 +m2

(k′
2

+m2)((k− k′)2 +m2)

= − ᾱs
2π

∫
d2k′

k2 +m2

(k′
2

+m2)(k′
2

+ (k− k′)2 + 2m2)
. (7.4)

We first consider the forward direction q2 = 0 where the kernel simplifies:

2π

ᾱs
K(0)(k,k′) =

2

(k− k′)2 +m2
−

N2
c +1
N2

c
m2

(k2 +m2)(k′
2

+m2)
(7.5)

2We use the notion ‘Higgs mass’ for the mass parameter of the spontaneously broken SU(3). It should

not be confused with the mass of the physical Higgs particle.
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and

K̃(0)(k,k′) = K(0)(k,k′) + 2δ(2)(k− k′)ωg(k
2) . (7.6)

For the numerical calculation we combine terms which contain the potentially singular

denominator 1/(k− k′)2 and rewrite the eigenvalue equation

K̃(0)fω = ωfω (7.7)

in the following form [36]:

ωf(k) =
ᾱs
2π

∫
d2k′

[
2f(k′)(k′

2
+m2)− 2f(k)(k2 +m2)

(k′
2

+m2)((k− k′)2 +m2)
−

N2
c +1
N2

c
m2

(k2 +m2)(k′
2

+m2)
f(k′)

]
+
ᾱs
2π

∫
d2k′

f(k)(k2 +m2)

(k′
2

+m2)(k′
2

+ (k− k′)2 + 2m2)
. (7.8)

By restricting ourselves to spherically symmetric eigenfunction, the angular integrations

can be done by using the formula

1

2π

∫ 2π

0
dϕ

1

a+ b cosϕ
=

1√
a2 − b2

. (7.9)

For the remaining integration in k′
2

we change to logarithmic variables t′ = ln k′2

m2 with

dk′
2

= dt′k′
2

and introduce a lattice in the new variables t′. Introducing the limits k2
min =

10−40, tmin = ln
k2min
m2 and k2

max = 1080, tmax = ln k2max
m2 and dividing the interval

[
tmin, tmax

]
into Nstep equal steps, we define the lattice points

ti = tmin + i
tmax − tmin

Nstep
, k2

i = m2eti , i = 0, . . . , Nstep (7.10)

and arrive at the discrete vector fi = f(ki) and matrix Kij = K(ki, kj):∫
dk′

2
K(k,k′)f(k′) =

∫
dt′K(t, t′)k′

2
f(k′)→

∑
j

Kijk
′
j
2
fj . (7.11)

For the eigenfunctions we symmetrize, in the eigenvalue equation, the kernel and write

instead ∫
dt′
(
kK(t, t′)k′

) (
k′f(k′)

)
→
∑
j

(
kiKijk

′
j

)
(kjfj) (7.12)

with the new eigenvectors (kifi), orthogonal among each other. For Nstep = 600, when

results numerically stabilize the first eigenvalues are listed in table 1. As expected, the

spectrum of eigenvalues starts near EBFKL = −ωBFKL = −4 ln 2ᾱs = −0.5295, with ᾱs
given in eq. (2.3) for αs = 0.2, and the slopes are very small. The discreteness of the

eigenvalues as well as the nonvanishing slopes consequence of the lattization: from analytic

calculations it is known that the characteristic function leads to a continuous cut in the

energy plane beginning at −4 ln 2ᾱs = −0.5295 and extending to +∞.
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n energy slope

1 -0.5295 0.00000

2 -0.5268 0.00001

3 -0.5224 0.00003

4 -0.5162 0.00005

5 -0.5085 0.00007

6 -0.4992 0.00010

7 -0.4885 0.00014

8 -0.4765 0.00017

9 -0.4633 0.00021

10 -0.4491 0.00025

11 -0.4339 0.00029

Table 1. Numerical results for the eigenvalues and slope with fixed coupling constant and Higgs-

mass regulator.

7.2 q2 slopes of the eigenvalues

Next we leave the forward direction and consider the q2 dependence of the eigenvalues.

The q2 slopes of the eigenvalues are obtained from

ωn(q2) = ω(0)
n + q2

∫
d2k

∫
d2k′fn(k′

2
)
[
K(1)(k,k′) + 2δ(2)(k− k′)ω

(1)
g (k2)

]
fn(k2)∫

d2k|fn(k2)|2
, (7.13)

where ω
(0)
n are the eigenvalues of the forward kernel K(0), fn(k2) the corresponding (ro-

tationally invariant) eigenfunctions, and K(1), ω(1) the corrections of the order q2 to the

forward BFKL kernel and the gluon trajectory, resp. We find it convenient to introduce

En = −ωn . (7.14)

In order to find K(1)(k,k′) we expand the kernel in the small q2 region to first order

in q2:

K(q,k,k
′) = K(0)(k,k′) + q2K(1)(k,k′). (7.15)

With the shorthand notations

D = k2 +m2, D′ = k′
2

+m2, D0 = (k− k′)2 +m2 (7.16)

we find:

K(q,k,k′) =
ᾱs
2π

[
2

D0

(
1− (2qk)(2qk′)

4DD′
+

(2qk)2

8D2
+

(2qk′)2

8D′2

)
(7.17)

−
m2N

2
c +1
N2

c

DD′

(
1 +

1

2

(
qk

D

)2

+
1

2

(
qk′

D′

)2

− q2

4

(
1

D
+

1

D′

))
− q2 1

DD′

]
.
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Since in (7.14) the eigenfunctions are rotational invariant, we can average over the angles of

k and k′ (keeping the angle ψ between k and k′ fixed); this eliminates terms proportional

to the scalar products qk or qk′ (which in (7.17) have already been dismissed), Moreover,

we use

1

2π

∫ 2π

0
dφ

∫ 2π

0
dφ′4(qk)2 =

∫ 2π

0
dψ 2q2k2

1

2π

∫ 2π

0
dφ

∫ 2π

0
dφ′4(qk′)2 =

∫ 2π

0
dψ 2q2k2

1

2π

∫ 2π

0
dφ

∫ 2π

0
dφ′4(qk)(qk′) =

∫ 2π

0
dψ 2q2

√
k2k′2 cosψ

=

∫ 2π

0
dψ q2

(
−(k− k′)2 + k2 + k′

2
)
, (7.18)

With these identities the bracket in the first line in (7.17) can be written as

1 +
q2

4

[
(k− k′)2

DD′
−m2

(
1

D
− 1

D′

)2 ]
(7.19)

and

K(1)(k,k′) (7.20)

=
ᾱs
2π

∫ 2π

0
dψ

[
1

2D0

(
(k− k′)2

DD′
−m2

(
1

D
− 1

D′

)2
)

+
m4N

2
c +1
N2

c

4DD′

(
1

D2
+

1

D′2

)
− 1

DD′

]
.

We do the remaining angular integral over ψ and obtain:

K(1)(k, k′) = (7.21)

= ᾱs

[
1

2DD′

(
1− m2

S0

)
− m2

2S0

(
1

D
− 1

D′

)2

+
m4N

2
c +1
N2

c

4DD′

(
1

D2
+

1

D′2

)
− 1

DD′

]
,

where

S0 =

√
(k2 − k′

2
)2 + 2m2(k2 + k′

2
) +m4. (7.22)

For the trajectory function we put:

ωg

((q

2
+ k

)2
)

= ωg(k
2) + ω(1/2) + q2ω(1)(k2) , (7.23)

where ω(1/2) is of the order O(q). From the q2 expansion of the trajectory function

ωg

((q

2
+ k

)2
)

= ωg(k
2)− ᾱs

2π

∫
d2k′′

(
2qk

2D′′D1

(
1− D

D1

)
+

2qk′′D

2D′′D1
(7.24)

+
q2

4

1

D′′D1

(
1− D

D1

)
+ (2q(k− k′′))2 D

4D′′D3
1

− (2qk)(2q(k− k′′))
1

4D′′D2
1

)
we derive

ω(1/2) = − ᾱs
2π

∫
d2k′′

(
2qk

2D′′D1

(
1− D

D1

)
+

2qk′′D

2D′′D1

)
. (7.25)
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After angular integration this contribution vanishes. For the second term we find (after

angular integrations):

q2ω(1)
g (k2) = −q2

4

ᾱs
2π

∫
d2k′′

[
2

(
1

D2
1

− D

D3
1

)
+
m2

D′′

(
1

D2
1

− 2
D

D3
1

)]
.

= −q2 ᾱs
8

∫
dk′′

2
[
a

S3
1

(
2 +

m2

D′′

)
− D(2a2 + b2)

S5
1

(
1 +

m2

D′′

)]
, (7.26)

where we have used the short hand notation

D′′ = k′′
2

+m2, D1 = k′′
2

+ (k− k′′)2 + 2m2 (7.27)

and

a = k2 + 2(k′′
2

+m2), b = −2
√

k2k′′2,

S1 =

√
(k2 − k′′

2
)2 + 2(k′′

2
+ 2m2)(k2 + k′′

2
) + (k′′

2
+ 2m2)2 . (7.28)

With these results we rewrite (7.14):

En(q2) = E(0)
n −

q2

2

∫
dk2

∫
dk′

2
fn(k′

2
)
[
K(1)(k,k′) + 4δ(k2 − k′

2
)ω

(1)
g (k2)

]
fn(k2)∫

dk2|fn(k2)|2
(7.29)

and insert the expressions derived above.

Numerical results for the slopes are also listed in table 1.

7.3 Running coupling

Let us now turn to the physical case of the running coupling. As a first step we simply

replace the fixed coupling αs by

αs(q
2) =

3.41

β0 ln(q2 +R2
0)

(7.30)

and

ᾱs(q
2) = αs(q

2)
Nc

π
(7.31)

with β0 = (11Nc− 2Nf)/12, Nf = 3. Its normalization is chosen to match the measured

value at the Z mass scale. R0 defines the scale below which the running coupling is ‘frozen’.

Both q2 and R2
0 are in units of Λ2

QCD, and R0 has to be well above Λ2
QCD = 0.152 GeV2.

In our calculations we use R0 = 0.54 Gev. More accurate models allowing for different

number of flavors can be easily considered.

In our numerical computations with the Higgs regulator we actually find it convenient

to follow the conventions used in [24, 26]: we define momenta and R0 in units of the

regulator mass m = mh = 0.54 GeV. This leads to the modification of (7.30):

αs(q
2) =

3.41

β0

[
ln(q2 +R2

0) + ln
m2

h

Λ2
QCD

] (7.32)
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with R0 = 1. With this convention in all our previous expressions the mass m = mh will

be replaced by unity.

As discussed before, for the forward direction the eigenvalue equations will be modified

in the following way:

αs(k
′2)K(k′,k′′)→

√
αs(k

′2)K(k′,k′′)

√
αs(k

′′2), (7.33)

and the trajectory functions will be simply multiplied by αs(k
2).

For the slopes we have to leave the forward direction. In addition to the q2 expansions

of the kernel and of the trajectory function described in section 7.2, we also need the

expansion of the running couplings in (5.7) and (5.9). With the parametrization (7.1) and

the short-hand notation

L = k2 +R2
0, L

′ = k′
2

+R2
0, s =

m2
h

Λ2
QCD

(7.34)

(7.32) can be written as:

αs(k
2) =

A

ln(sL)
, A =

3.41

β0
. (7.35)

We put

αs

((q

2
+ k

)2
)

= αs(k
2)
[
1 + α(1/2) + q2α(1)(k2)

]
, (7.36)

where α(1/2) is of the order O(q). From the expansion

αs

((q

2
+ k

)2
)

= αs(k
2)

[
1− kq

L ln(sL)
− q2 1

4L ln(sL)
+

(kq)2

L2

(
1

ln2(sL)
+

1

2 ln(sL)

)]
(7.37)

we deduce

α(1/2) = − kq

L ln(sL)
(7.38)

and

q2α(1)(k2) = −q2 1

4L ln(sL)
+

(kq)2

L2

(
1

ln2(sL)
+

1

2 ln(sL)

)
= q2

[
− 1

4L ln(sL)
+

k2

2L2

(
1

ln2(sL)
+

1

2 ln(sL)

)]
. (7.39)

For the coupling in front of the kernel (cf. (5.9)) we encounter the product

αs(q
2
1)αs(q

2
2) = αs(k

2)2
[
1 + 2q2α(1)(k2)− (α(1/2))2

]
= αs(k

2)2
[
1 + 2q2α̃(k2)

]
, (7.40)

where

α̃(k2) = − 1

4L ln(sL)
+

k2

4L2

(
1

ln2(sL)
+

1

ln(sL)

)
(7.41)
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This leads to the following factor in front of the kernel:(
αs(q

2
1)αs(q

2
2)αs(q

′
1

2
)αs(q

′
2

2
)
) 1

4
=

√
α(k2)α(k′

2
)

[
1 + q2 α̃( k

¯
2) + α̃(k′

2
)

2

]
. (7.42)

Note that in this product the terms proportional to qk have cancelled, and we can simply

use the expansion (7.17), without considering such terms.

For the trajectory the situation is a bit more complicated, and both in the expan-

sion (7.23) and (7.37) terms linear in q have to be kept. In the product of the two expan-

sions we find: [
1 + α(1/2) + q2α(1)(k2)

][
ωg(k

2) + ω(1/2) + q2ω(1)(k2)
]

= ωg(k
2) + α(1/2)ω(1/2) + q2α(1)(k2)ωg(k

2) + q2ω(1)(k2) . (7.43)

In the second term we average of the azimuthal directions and obtain:

〈α(1/2)ω(1/2)〉 =

∫ 2π

0

dφ

2π

(
α(1/2)ω(1/2)

)
= q2 α(k2)

8πL ln(sL)

∫
d2k′′

1

D′′D1

[
D

(
1− D

D1
+ 2

D′′

D1

)
−m2

(
2− D

D1

)]
= q2 α(k2)

8L ln(sL)

∫
dk′′

2
[
D − 2m2

D′′S1
+
D(4D′′2 − (k2)2)

D′′S3
1

]
. (7.44)

Putting these expressions together we obtain for the terms proportional to q2:√
α(k2)α(k′

2
)K(1)(k, k’

¯
) + 2δ(2)(k− k′)ω(1)(k2) + 2δ(2)(k− k′)〈α(1/2)ω(1/2)〉

+
[√

α(k2)α(k′
2
)K(0)(k,k′) + 2δ(2)(k− k′)ωg(k

2)
] α̃(k2) + α̃(k′

2
)

2
. (7.45)

The first two terms are analogous to those of the fixed coupling case, the remaining ones

are due to the running coupling.

We are now ready to present numerical results for the eigenvalues and for the slopes.

Table 2 contains our results for the leading states (up to n = 8): The wavefunctions for

n = 1, 2, 5 are shown in figure22:

Describing the results of our numerical analysis in more detail, we begin with the

Regge poles in the negative energy region (we remind that we are using ‘reggeon energy’

E = −ω = −(j − 1): the most negative (n = 1) one has the leading intercept). Moving

to larger n, the distance between neighbouring eigenvalues decreases. At some point the

eigenvalues become positive and increase further up to some maximal values. Because of

our lattization the spectrum is completely discrete.

In order to analyse these results, it may be useful to first summarize the general feature

of the spectrum of the continuum BFKL equation with running coupling and an infrared

cutoff, as discussed, for example, in [24, 29]. The spectrum consists of a discrete part,

located at E < 0, and a continuum part extending from zero to infinity 0 < E < ∞. The

discrete part starts with the most negative (leading) eigenvalue and has an infinite number
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n energy slope radius [GeV]

1 -0.4384 0.0464 3.92

2 -0.2253 0.0144 9.07×101

3 -0.1508 0.0070 2.32×103

4 -0.1131 0.0041 6.18×104

5 -0.0904 0.0027 1.68×106

6 -0.0753 0.0019 4.59×107

7 -0.0644 0.0014 1.26×109

8 -0.0563 0.0011 3.48×1010

Table 2. Numerical results for the eigenvalues, slopes and radii with running coupling constant

and Higgs-mass regulator.

2 0 4 0 6 0

-0 .2

-0 .1

0 .1

0 .2

Figure 22. Three leading wavefunctions (No 1,2,5) as a function of ln q2.

of eigenvalues (Pomeron poles) which accumulate at zero. In our lattice analysis, also

the continuos part becomes discrete, and ends at some maximal value. Both the spacing

and the maximal value depend upon the lattice size. On the negative side, the leading

eigenvalues should come out correctly, since — at least for the lattice being large enough

— the spacing between the discrete eigenvalues is much larger than the discretization due

to lattice effects. In fact, in the spectrum of our eigenvalues we recognize two different

scales of spacing: whereas the leading eigenvalues show a spacing of the order 0.1, the

very subleading ones have a much smaller spacing (order 10−3 or smaller). Near the

accumulation point at E = 0 it is difficult so distinguish between discretization due to

lattice effects and genuine discrete eigenvalues, and we have to decide up to which value n

we can believe our results for the discrete part of the BFKL spectrum.

We use several criteria. First we look at the n-dependence of the energy eigenvalues:

up to n ≈ 20 the inverse eigenvalues, 1/En, lie on a straight line. A linear fit leads to:

En ≈
1

0.0878− 2.235n
. (7.46)
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Above n = 20 the values of 1/En start to show a clear deviation from the straight line. We

mention that such a n-dependence of the energy eigenvalues has already been predicted

in [27] and confirmed in [28].

Similarly, the inverse of the slopes, when plotted as function of n2, lie on a straight

line. This holds up to n = 18:

α′n ≈
1

24.54 + 13.91n2
. (7.47)

In order to have a measure for the extension of the wave functions into the region of large

momenta we define a logarithmic radius:

rn = 〈ln q2〉 =

∫
dk2|fn(k)|2 ln k2∫
dk2|fn(k)|2

, (7.48)

where momenta are in units of mh = 0.45 GeV. Our analysis shows that, again for n < 18,

rn grows linearly with n:

rn ≈ −2.7 + 6.6n. (7.49)

By exponentiating this logarithmic radius we translate to the linear scale (in units of GeV)

and we find the values listed in the third column of table 2. Clearly, with increasing n the

support of the wave functions quickly becomes dominated by the UV region, only n = 1

is concentrated in the ‘soft’ region. The radii are related to the oscillatory structure of

the wave functions. As an example, the first maximum of the n = 1 wave function lies at

|q| = 2.7 GeV, whereas the radius in table 2 is 3.9 GeV. For n = 8 the largest maximum

lies at 6.8× 1012 GeV, whereas the radius was found to be 3.5× 1010 GeV. For comparison

we just mention that these features of the wave functions are very different from the fixed

coupling case: here the radii are almost constant with n (rn ≈ 92) , i.e. even for small n

oscillations are in the UV region, i.e. all states are much ‘harder’.

Summarizing these observation, we use as a first estimate n = 18 as the critical value

up to which we interpret our eigenvalues and eigenfunctions as being genuine parts of the

discrete BFKL spectrum.

8 Numerical studies (2): Wilsonian optimized IR regulator

We now turn to the regulator introduced in section 3 and repeat the analysis described

above. We put

D(q) = q2 +Rk(q
2)

= k2Θ(k2 − q2) + q2Θ(q2 − k2). (8.1)

After symmetrization the kernel becomes:

KBFKL(q,k′,k′′) =
ᾱs
2π

[
− q2 1√

D(q1)D(q2)

(k′ − k′′)2

D(k′ − k′′)

1√
D(q′1)D(q′2)

+
q2

1√
D(q1)D(q2)

1

D(k′ − k′′)

q′22√
D(q′1)D(q′2)

+
q2

2√
D(q1)D(q2)

1

D(k′ − k′′)

q′21√
D(q′1)D(q′2)

]
. (8.2)
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We begin with forward direction. The kernel simplifies and takes the form:

KBFKL(0,k′,k′′) =
ᾱs
2π

k′
2

D(k′)

2

D(k′ − k′′)

k′′
2

D(k′′)
. (8.3)

For the numerical integration over the angle ϕ between the vectors k′ and k′′ we need some

care. Because of the Θ functions in D(k′ − k′′) (cf. (8.1)) the limits of the ϕ integral will

depend upon |k′| and |k′′|. With (k′ − k′′)2 = (|k′| − |k′′|)2 + 4|k′||k′′| sin2 ϕ
2 we define the

function Rcrit:

Rcrit(k
′,k′′) =

k2 − (|k′| − |k′′|)2

4|k′||k′′|
(8.4)

and the angle

ϕcrit = 2 arcsin
√
Rcrit, if 0 < Rcrit < 1. (8.5)

There are several different regions:

Rcrit< 0 k2−(k′−k′′)2< 0 D(k′−k′′) = (k′−k′′)2

Rcrit> 1 k2−(k′−k′′)2> 0 D(k′−k′′) = k2

0<Rcrit< 1 0<ϕ<ϕcrit k2−(k′−k′′)2> 0 D(k′−k′′) = k2

2π−ϕcrit<ϕ< 2π k2−(k′−k′′)2> 0 D(k′−k′′) = k2

ϕcrit<ϕ<π k2−(k′−k′′)2< 0 D(k′−k′′) = (k′−k′′)2

π <ϕ< 2π−ϕcriti k2−(k′−k′′)2< 0 D(k′−k′′) = (k′−k′′)2.

For the q2-slope we need the expansion in powers of q2. Expanding first the denomi-

nator D(q + k′) we find:

D(q + k′) = D(k′) + 2(qk′)Θ(k′
2 − k2) + q2(k′

2 − k2)δ(k′
2 − k2) (8.6)

+2(qk′)2(k′
2 − k2)δ′(k′

2 − k2) + 4(qk′)2δ(k′
2 − k2) + q2Θ(k′

2 − k2).

Anticipating the integration over k′
2
, the last time in the first line vanishes, and the first

term in the second line (after partial integration) can be replaced by −2(qk′)2δ(k′
2 − k2).

We thus arrive at:

D
(q

2
+ k′

)
= D(k′) + 2

(q

2
k′
)

Θ(k′
2− k2) + 2

(q

2
k′
)2
δ(k′

2− k2) +
q2

4
Θ(k′

2− k2). (8.7)

With this result we expand the kernel in (8.2) and do the angular integrals, observing

that the wave functions only depend upon the absolute values k′
2

and k′′
2
. For the term

proportional to q2 we find:

K
(1)
BFKL = −q2 ᾱs

4π

1

D(k′)D(k′′)D(k′ − k′′)

·
[
k′

4
k′′

2

D(k′)
δ(k′

2 − k2) +
k′′

4
k′

2

D(k′′)
δ(k′′

2 − k2) + (k′ − k′′)2

]
. (8.8)

Next we expand the trajectory function. As written in (3.5) and (3.9), we need to

consider the product
(q2 + k′)2

D(q2 + k′)
ωg,k

((q

2
+ k′

)2
)
. (8.9)
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We begin with the prefactor. After angular averaging (the part of order q2) we find:

(q2 + k′)2

D(q2 + k′)
= P (0) + P (1/2) + q2P (1)

=
k′

2

D(k′)
+

qk′

k2
Θ(k2 − k′

2
) +

q2

4k2
Θ(k2 − k′

2
)− q2

4
δ(k2 − k′

2
) (8.10)

The second factor ωg,k((
q
2 + k′)2), given in eq. (3.6), is also expanded as

ωg,k

((q

2
+ k′

)2
)

= ωg,k(k
′2) + ω(1/2) + q2ω(1)(k′

2
). (8.11)

We start from

ωg,k

((q

2
+ k′

)2
)

= − ᾱs
2π

∫
d2k′′

(q2 + k′)2

D(k′′)
[
D(q2 + k′ − k′′) +D(k′′)

] (8.12)

and expand:

ωg,k

((q

2
+ k′

)2
)

= ωg,k(k
′2) (8.13)

− ᾱs
2π

∫
d2k′′

D2D′′

[
qk′ − k′

2
q(k′ − k′′)

D2
Θ +

q2

4

+

(
−(qk′)(q(k′ − k′′))

D2
+ k′

2
(
− q2

4D2
+

(q(k′ − k′′))2

D2
2

))
Θ− k′

2
(q(k′ − k′′))2

2D2
δ

]
.

Here we have used

D′′ = D(k′′), D2 = D(k′ − k′′) +D(k′′), Θ = Θ
[
(k′ − k′′)2 − k2

]
, δ = δ

[
(k′ − k′′)2 − k2

]
.

(8.14)

From this expansion we derive

ω(1/2) = − ᾱs
2π

∫
d2k′′

D2D′′

[
qk′ − k′

2
q(k′ − k′′)

D2
Θ

]
(8.15)

and (after angular integration)

q2ω(1)(k′
2
) = −q2 ᾱs

2π

∫
d2k′′

4D2
2D
′′

[
D′′ + k2 +

(
k′′

2 − k2 − 2k′
2
D′′

D2

)
Θ− k2k′

2
δ

]
. (8.16)

Combination of these two expansions leads to:

(q2 + k′)2

D(q2 + k′)
ωg,k

((q

2
+ k′

)2
)

=
k′

2

D(k′)
ωg,k(k

′2) + (8.17)

+
k′

2

D(k′)
ω(1/2) + P (1/2) ωg,k(k

′2) +

+〈P (1/2)ω(1/2)〉+ q2
(
P (0)ω(1) + P (1)ωg,k(k

′2)
)
,
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n energy slope

1 -0.5295 0.00002

2 -0.5269 0.00090

3 -0.5225 0.00019

4 -0.5165 0.00033

5 -0.5088 0.00050

6 -0.4997 0.00068

7 -0.4892 0.00088

8 -0.4774 0.0011

9 -0.4644 0.0013

10 -0.4503 0.0015

11 -0.4354 0.0017

Table 3. Numerical values for eigenvalues and slopes, with fixed coupling, using the Wilsonian IR

regulator.

where

〈P (1/2)ω(1/2)〉 = − ᾱs
2π

q2k′
2

2k2

∫
d2k′′

D2D′′

[
1− 1

2

(
k′

2 − k′′
2 −D(k′′)

D2
+ 1

)
Θ

]
Θ(k2 − k′

2
).

(8.18)

After these remarks we perform a numerical analysis for the fixed coupling case: Com-

parison with the results for the Higgs mass regulator listed in table 1 shows very small

differences in the spectrum. Slopes are still small, but differ from those of the Higgs mass

regulator.

For the running case we use the same form of the coupling as described in (7.30), and

the infrared cutoff will be given in units of mh. In particular, for k = mh we expect the

results to be close to the results obtained for the Higgs mass regulator. We use our results

in (8.8) and (8.16) and insert them into (7.45). For 〈α(1/2)ω(1/2)〉 we find:

〈ω1/2α1/2〉 = q2αs(k
′2)

k′
2

8πL′ ln(sL′)

∫
d2k′′

D2D′′

[
2−Θ− k′

2 − k′′
2 −D′′

D2
Θ

]
. (8.19)

and

〈P (1/2)α1/2〉ωg,k = −q2 k′
2

k2

ωg,k
2L′ ln(sL′)

Θ(k2 − k′
2
). (8.20)

With these results we now compute eigenvalues, eigenfunctions, slopes, and radii. We

consider different values of the infrared cutoff (in GeV): (1) k = 0.54 GeV; (2) k = 1 GeV;

(3) k = 5 GeV. We collect the results for the energy eigenvalues, for q2-slopes and for the

radii in table 4, up to n = 8: For illustration we also represent of our results of table 4

graphically. In figure 23 we show the energy eigenvalues for the first 18 eigenvalues (first
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energy slope radius

n k=0.54 k=1 k=5 k=0.54 k=1 k=5 k=0.54 k=1 k=5

1 -0.53 -0.43 -0.29 0.17 0.034 0.00065 2.2 4.7 3.4×101

2 -0.25 -0.22 -0.17 0.040 0.0091 0.00022 5.2×101 1.2×102 1.0×103

3 -0.16 -0.15 -0.12 0.017 0.0042 0.00012 1.4×103 3.3×103 2.8×104

4 -0.12 -0.11 -0.097 0.0097 0.0024 0.000070 3.7×104 8.9×104 7.8×105

5 -0.094 -0.089 -0.079 0.0061 0.0016 0.000048 1.0×106 2.5×106 2.2×107

6 -0.077 -0.074 -0.067 0.0042 0.0011 0.000035 2.8×107 6.7×107 6.0×108

7 -0.066 -0.064 -0.058 0.0040 0.00083 0.000026 7.8×108 1.9×109 1.7×1010

8 -0.058 -0.056 -0.052 0.0023 0.00064 0.000021 2.2×1010 5.2×1010 4.6×1011

Table 4. Numerical values for eigenvalues, slopes and radii, with running coupling and for different

values of the IR cutoff k.

row), slopes (second row) and radii (third row); note that in table 4 we have listed the

linear radii obtained by exponentiating the logarithmic radii rn, whereas in figure 23 we

plot the logarithmic radii rn.

Our discussion given above for the results of the Higgs mass regulator qualitatively

also applies to table 4. New is the dependence on the cutoff parameter k: with increasing

cutoff parameter k the intercepts as well as the slopes become smaller, whereas the radii

grow. For the energy eigenvalues we again observe that, up to n = 20, the inverse values

1/En lie on straight lines. Similarly, the inverse of the slope increase proportional to n2.

Numerical fits yield:

k = 0.54 GeV : En ≈
1

0.452− 2.24n
α′n ≈

1

−2.183 + 6.731n2
(8.21)

k = 1.00 GeV : En ≈
1

−0.052− 2.24n
α′n ≈

1

153.11 + 23.342n2
(8.22)

k = 5.00 GeV : En ≈
1

−1.308− 2.25n
α′n ≈

1

4733.15 + 647.164n2
(8.23)

It is interesting to note that the coefficient of n is fairly independent of k, and it is nearly

the same for the two definitions of the infrared regulator. Interesting enough, it is also not

far from the value given in [28]: 1/0.52223 ≈ 1.91.

In figures 24–26 we show the shape of the wavefunctions (at q2 = 0). For large values q2

the eigenfunction go to zero as 1/
√

q2; we therefore plot the products: eigenfunction×
√

q2.

For each scale we observe that the nonleading eigenfunctions No 2 and 5 have their support

at larger momenta, in agreement with he behavior of the radii listed in table 4: for example,

in the first case the leading eigenfunction (zero node) has its maximum at log q2 ≈ 3,

whereas the fifth eigenfunction (4 nodes) has its largest extremum near log q2 ≈ 34. For the

third case the leading eigenfunction peaks near log q2 ≈ 8 whereas the fifth eigenfunction

reaches out to log q2 ≈ 42. This illustrates that the nonleading eigenfunctions are more

– 38 –



J
H
E
P
0
1
(
2
0
1
9
)
0
0
4

5 1 0 1 5
n

0 .1

0 .2

0 .3

0 .4

0 .5

Ωn

k=0 .5 4 GeV

5 1 0 1 5
n

0 .1

0 .2

0 .3

0 .4

Ωn

k=1 GeV

5 1 0 1 5
n

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

Ωn

k=5 GeV

5 1 0 1 5
n

0 .0 5

0 .1 0

0 .1 5

Α
¢

n

5 1 0 1 5
n

0 .0 0 5

0 .0 1 0

0 .0 1 5

0 .0 2 0

0 .0 2 5

0 .0 3 0

Α
¢

n

5 1 0 1 5
n

0 .0 0 0 1

0 .0 0 0 2

0 .0 0 0 3

0 .0 0 0 4

0 .0 0 0 5

0 .0 0 0 6

Α
¢

n

5 1 0 1 5
n

2 0

4 0

6 0

8 0

1 0 0

rn

5 1 0 1 5
n

2 0

4 0

6 0

8 0

1 0 0

rn

5 1 0 1 5
n

2 0

4 0

6 0

8 0

1 0 0

1 2 0

rn

Figure 23. Graphical illustration of table 4. First row: eigenvalues ωn vs.n. Second row: slopes

α′
n vs.n.Third row: radii rn vs. n.
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Figure 24. Three leading wavefunctions (No 1,2,5) for the scale k = 0.54 GeV, as a function of

ln q2.
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Figure 25. Three leading wavefunctions (No 1,2,5) for the scale k = 1 GeV, as a function of ln q2.
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Figure 26. Three leading wavefunctions (No 1,2,5) for the scale k = 5 GeV, as a function of ln q2.

‘ultraviolet’ than the leading one and should be less important in the description of the

large transverse distance IR region. A similar observation was made in [28].

9 Summary and outlook

In this paper we have started to address the UV part of our renormalization group program

which aims at finding an interpolation between the perturbative BFKL pomeron in QCD

and the soft Pomeron which describes the high energy scattering of hadrons.

Our first goal was to find a formulation of the BFKL Pomeron with an infrared cutoff.

This regulator was constructed in such a way that the BFKL Pomeron becomes part of the

exact renormalization group equations in the Multi Regge Kinematics. As a first step we

have derived a partial differential equation of the BFKL Green’s function (corresponding to

a perturbative Bethe-Salpeter resummation) with respect to the infrared cutoff parameter.

This equation has the nonlinear form of the infrared evolution equations first found by

Lipatov and Kirschner.

In a second step we have defined, starting from the high energy effective action of

Lipatov, an effective field theory which describes the LO BFKL equation. It contains

the reggeized gluon as well as elementary gluons and, at least for fixed coupling, it takes

care of the bootstrap property of the reggeized gluon induced by s-channel unitarity. For

this field theory we then have defined a set of RG equations which have the form of the
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Wetterich equations for the proper vertices in the MRK. By making use of very special

features of this effective field theory we have derived, from the flow equations, the same

nonlinear evolution equation obtained before. This means that the BFKL resummation

can be obtained from an IR regulated Wilsonian flow for a suitable infinite truncation in

1PI vertices of the effective average action.

We have also discussed how to move to another dynamically equivalent effective de-

scription in terms of Pomeron Fields, which is directly suitable for the transition to a RFT.

Conceptually the Pomeron field appears as a bound state of two reggeized gluons. How-

ever, since the BFKL Green’s function, once an infrared regulator has been introduced,

contains an infinite number of discrete poles in the angular momentum plane, we have

to define a sequence of Pomeron fields which in the next step serve as input to an RFT

analysis in the infrared region. We therefore come to the third part of this paper where

we have performed a numerical analysis of the BFKL equation with our infrared regulator.

As a first step we have investigated the leading poles in the angular momentum plane:

for different numerical values of the infrared cutoff we have computed the positions of the

leading poles, the q2 slopes of the trajectory functions and the bound state wave functions.

Our results show several features which will play an important role in the next step of our

analysis: only the wavefunction of the leading eigenstate is ‘soft’ and has its support in the

region of small momenta, whereas the nonleading states extend more and more into the

UV region. Moreover, the q2 slopes of the trajectory functions are largest for the leading

eigenvalue and then go to zero for nonleading states.

These numerical results define the Pomeron fields which will serve as an input for

the next step of our program, the RGE analysis of the interactions of these fields in the

infrared region. For this we shall need to consider the interactions among the leading

Pomeron states, which can be obtained by projecting the 2 → 4 reggeized gluon vertex

onto the various states of the Pomeron spectrum one wants to take into account.

One can also extend our formal analysis of the first and second part to include the QCD

odderon states [21, 22],3 analyzing in the generalized MRK the propagation of 3 reggeized

gluons in a color singlet state (C and P odd) defined by the symmetric color tensor dabc.

This would require to introduce the BKP kernel [38, 39] and the corresponding non local

6 reggeizing gluon vertex in the truncation, together with the tower of the higher order

inelastic vertex functions with χ and a field emissions. Similarly a numerical analysis

on the discretized spectrum of the odderon states should be performed together with a

subsequent evaluation of the interacting vertices. The LL 2 → 6 reggeized gluon vertex

with the necessary quantum numbers is indeed known [40, 41].

Another line of research would be to push all this analysis to the next-to-leading

accuracy, i.e. work with the Quasi-Multi-regge-Kinematics accuracy.

3The known QCD Odderon states have different intercept and coupling properties to external parti-

cles [37].
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A Rapidity-dependence of propagators

As discussed before, in order to reproduce the BFKL kernel, we introduce separate fields for

the reggeized gluons, Ai(t, x), A†i (t, x) and for elementary gluons, ai(t, x), a†i (t, x) (i=1,2)

and χ, χ†. Following the derivation of Lipatov’s effective action, the elementary gluons

do not propagate in time t (rapidity), i.e. their Green’s function are proportional to delta

functions:

δ(t′ − t) =
1

2πi

(
1

t′ − t− iε
− 1

t′ − t+ iε

)
. (A.1)

As usual, the infinitesimal regulator ε will be removed at the of the calculations. In contrast,

the reggeized gluon propagates with rapidity, and the Green’s function is proportional to

θ(t′ − t). Here we have to make sure that the zero-time propagation of the elementary

gluon and the finite-time propagation of the reggeized gluon do not overlap. We therefore

introduce an infinitesimal cutoff, δ > 0:

θ(t′ − t)→ θ(t′ − t− δ), (A.2)

which will be removed at the end of the calculations. With these modifications the Green’s

functions become

Ga(ω,q
2) ∼ e−ωεθ(ω) + eωεθ(−ω)

q2 +Rk(q2)
(A.3)

and

GA(ω,q2) ∼ e±iωη

∓ZAiω + (q2 +Rk(q2))Ik(q2)
· 1

q2 +Rk(q2)
. (A.4)

With our results for the gluon trajectory function we have

(
q2 +Rk(q

2)
)
Ik(q

2) = Θ(k2 − q2)

[
g2

4π2
+

q2

k2

g2

16π2
+ . . .

]
(A.5)

+Θ(q2 − k2)

[
q2

k2

g2

4π2
+

(
q2

k2

)2
g2

16π2
+ . . .

]
.

Keeping only the leading terms:

(q2 +Rk(q
2))Ik(q

2) ≈ Θ(k2 − q2)
g2

4π2
+ Θ(q2 − k2)

q2

k2

g2

4π2
(A.6)

we have, in the language of RFT, a reggeon with zero mass and slope α′ = g2

4π2 .

With these notations it is easy to see that the propagation of the two fields does not

overlap. As an example, we consider the ‘selfenergy’ diagram shown in figure 27: If we
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Figure 27. Example of a vanishing diagram. The wavy line denotes the reggeized gluon, the

straight line the elementary gluon.

denote the time coordinates of the left and right vertices by t1 and t2, resp., the Green’s

function of the elementary gluon is nonzero only for t1 = t2, whereas the reggeized gluon

is nonzero only for t2 − t1 > η > 0. In fact, the energy integral∫
dω′Ga(ω

′)GA(ω − ω′) (A.7)

=

∫
dω′

e−iη(ω−ω′)

i(ω − ω′)− ωg((q− q′)2)

[
e−ω

′εΘ(ω′) + eω
′εΘ(−ω′)

]
= e−iωη

∫ ∞
0

dω′e−iω
′ε

[
eiω

′η

i(ω − ω′)− ωg((q− q′)2)
+

e−iω
′η

i(ω + ω′)− ωg((q− q′)2)

]
vanishes as long as η > 0. It is easy to see that, while ε could have been set to zero from

the beginning, the parameter η has to be kept positive and nonzero until the end of the

calculations. It is straightforward to generalize this proof of equivalence also to the higher

order vertex functions.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J. Bartels, C. Contreras and G.P. Vacca, Could reggeon field theory be an effective theory for

QCD in the Regge limit?, JHEP 03 (2016) 201 [arXiv:1512.07182] [INSPIRE].

[2] J. Bartels, C. Contreras and G.P. Vacca, Pomeron-Odderon interactions in a reggeon field

theory, Phys. Rev. D 95 (2017) 014013 [arXiv:1608.08836] [INSPIRE].

[3] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993)

90 [arXiv:1710.05815] [INSPIRE].

[4] T.R. Morris, Derivative expansion of the exact renormalization group, Phys. Lett. B 329

(1994) 241 [hep-ph/9403340] [INSPIRE].

[5] V.N. Gribov and A.A. Migdal, Strong coupling in the Pomeranchuk pole problem, Sov. Phys.

JETP 28 (1969) 784 [Zh. Eksp. Teor. Fiz. 55 (1968) 1498] [INSPIRE].

[6] V.N. Gribov and A.A. Migdal, Properties of the Pomeranchuk pole and the branch cuts

related to it at low momentum transfer, Sov. J. Nucl. Phys. 8 (1969) 583 [Yad. Fiz. 8 (1968)

1002] [INSPIRE].

[7] H.D.I. Abarbanel and J.B. Bronzan, Structure of the Pomeranchuk singularity in reggeon

field theory, Phys. Rev. D 9 (1974) 2397 [INSPIRE].

– 43 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP03(2016)201
https://arxiv.org/abs/1512.07182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07182
https://doi.org/10.1103/PhysRevD.95.014013
https://arxiv.org/abs/1608.08836
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.08836
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/0370-2693(93)90726-X
https://arxiv.org/abs/1710.05815
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B301,90%22
https://doi.org/10.1016/0370-2693(94)90767-6
https://doi.org/10.1016/0370-2693(94)90767-6
https://arxiv.org/abs/hep-ph/9403340
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9403340
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,28,784%22
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,8,583%22
https://doi.org/10.1103/physrevd.9.2397
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D9,2397%22


J
H
E
P
0
1
(
2
0
1
9
)
0
0
4

[8] A.A. Migdal, A.M. Polyakov and K.A. Ter-Martirosian, Theory of interacting Pomerons,

Phys. Lett. B 48 (1974) 239 [Pisma Zh. Eksp. Teor. Fiz. 68 (1975) 817] [INSPIRE].

[9] V.A. Abramovsky, V.N. Gribov and O.V. Kancheli, Character of inclusive spectra and

fluctuations produced in inelastic processes by multi-Pomeron exchange, Yad. Fiz. 18 (1973)

595 [Sov. J. Nucl. Phys. 18 (1974) 308] [INSPIRE].

[10] J. Bartels, M. Salvadore and G.P. Vacca, AGK cutting rules and multiple scattering in

hadronic collisions, Eur. Phys. J. C 42 (2005) 53 [hep-ph/0503049] [INSPIRE].

[11] L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys.

B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].

[12] L.N. Lipatov, Reggeization of the vector meson and the vacuum singularity in non-Abelian

gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [INSPIRE].

[13] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-reggeon processes in the Yang-Mills theory,

Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [INSPIRE].

[14] E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian

gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377]

[INSPIRE].

[15] I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics,

Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].

[16] J. Bartels and M. Wusthoff, The triple Regge limit of diffractive dissociation in deep inelastic

scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].

[17] J. Bartels, L.N. Lipatov and M. Wusthoff, Conformal invariance of the transition vertex

2→ 4 gluons, Nucl. Phys. B 464 (1996) 298 [hep-ph/9509303] [INSPIRE].

[18] M.A. Braun and G.P. Vacca, Triple Pomeron vertex in the limit Nc →∞, Eur. Phys. J. C 6

(1999) 147 [hep-ph/9711486] [INSPIRE].

[19] J. Bartels, M.G. Ryskin and G.P. Vacca, On the triple Pomeron vertex in perturbative QCD,

Eur. Phys. J. C 27 (2003) 101 [hep-ph/0207173] [INSPIRE].

[20] J. Bartels, L.N. Lipatov and G.P. Vacca, Interactions of reggeized gluons in the Mobius

representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].

[21] J. Bartels, L.N. Lipatov and G.P. Vacca, A new odderon solution in perturbative QCD, Phys.

Lett. B 477 (2000) 178 [hep-ph/9912423] [INSPIRE].

[22] R.A. Janik and J. Wosiek, Solution of the odderon problem, Phys. Rev. Lett. 82 (1999) 1092

[hep-th/9802100] [INSPIRE].

[23] M. Braun, G.P. Vacca and G. Venturi, Properties of the hard Pomeron with a running

coupling constant and the high-energy scattering, Phys. Lett. B 388 (1996) 823

[hep-ph/9605304] [INSPIRE].

[24] E. Levin, L. Lipatov and M. Siddikov, BFKL Pomeron with massive gluons and running

coupling, Phys. Rev. D 94 (2016) 096004 [arXiv:1608.03816] [INSPIRE].

[25] E. Levin, L. Lipatov and M. Siddikov, Semiclassical solution to the BFKL equation with

massive gluons, Eur. Phys. J. C 75 (2015) 558 [arXiv:1508.04118] [INSPIRE].

[26] E. Levin, L. Lipatov and M. Siddikov, BFKL Pomeron with massive gluons, Phys. Rev. D

89 (2014) 074002 [arXiv:1401.4671] [INSPIRE].

– 44 –

https://doi.org/10.1016/0370-2693(74)90021-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B48,239%22
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,18,308%22
https://doi.org/10.1140/epjc/s2005-02258-1
https://arxiv.org/abs/hep-ph/0503049
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0503049
https://doi.org/10.1016/0550-3213(95)00390-E
https://doi.org/10.1016/0550-3213(95)00390-E
https://arxiv.org/abs/hep-ph/9502308
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9502308
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,23,338%22
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,44,443%22
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,45,199%22
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,28,822%22
https://doi.org/10.1007/BF01496591
https://inspirehep.net/search?p=find+J+%22Z.Physik,C66,157%22
https://doi.org/10.1016/0550-3213(96)00029-6
https://arxiv.org/abs/hep-ph/9509303
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9509303
https://doi.org/10.1007/s100520050328
https://doi.org/10.1007/s100520050328
https://arxiv.org/abs/hep-ph/9711486
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9711486
https://doi.org/10.1140/epjc/s2002-01089-x
https://arxiv.org/abs/hep-ph/0207173
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0207173
https://doi.org/10.1016/j.nuclphysb.2004.10.008
https://arxiv.org/abs/hep-ph/0404110
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0404110
https://doi.org/10.1016/S0370-2693(00)00221-5
https://doi.org/10.1016/S0370-2693(00)00221-5
https://arxiv.org/abs/hep-ph/9912423
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9912423
https://doi.org/10.1103/PhysRevLett.82.1092
https://arxiv.org/abs/hep-th/9802100
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802100
https://doi.org/10.1016/S0370-2693(96)01214-2
https://arxiv.org/abs/hep-ph/9605304
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9605304
https://doi.org/10.1103/PhysRevD.94.096004
https://arxiv.org/abs/1608.03816
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.03816
https://doi.org/10.1140/epjc/s10052-015-3777-y
https://arxiv.org/abs/1508.04118
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.04118
https://doi.org/10.1103/PhysRevD.89.074002
https://doi.org/10.1103/PhysRevD.89.074002
https://arxiv.org/abs/1401.4671
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4671


J
H
E
P
0
1
(
2
0
1
9
)
0
0
4

[27] L.N. Lipatov, The bare Pomeron in quantum chromodynamics, Sov. Phys. JETP 63 (1986)

904 [Zh. Eksp. Teor. Fiz. 90 (1986) 1536] [INSPIRE].

[28] H. Kowalski, L.N. Lipatov, D.A. Ross and O. Schulz, Decoupling of the leading contribution

in the discrete BFKL analysis of high-precision HERA data, Eur. Phys. J. C 77 (2017) 777

[arXiv:1707.01460] [INSPIRE].

[29] H. Kowalski, L.N. Lipatov and D.A. Ross, The behaviour of the Green function for the

BFKL Pomeron with running coupling, Eur. Phys. J. C 76 (2016) 23 [arXiv:1508.05744]

[INSPIRE].

[30] H. Kowalski, L. Lipatov and D. Ross, The Green function for the BFKL Pomeron and the

transition to DGLAP evolution, Eur. Phys. J. C 74 (2014) 2919 [arXiv:1401.6298]

[INSPIRE].

[31] R. Kirschner and L.n. Lipatov, Doubly logarithmic asymptotic of the quark scattering

amplitude with nonvacuum exchange in the T channel, Sov. Phys. JETP 56 (1982) 266 [Zh.

Eksp. Teor. Fiz. 83 (1982) 488] [INSPIRE].

[32] R. Kirschner and L.N. Lipatov, Double logarithmic asymptotics of quark scattering

amplitudes with flavor exchange, Phys. Rev. D 26 (1982) 1202 [INSPIRE].

[33] R. Kirschner and L.n. Lipatov, Double logarithmic asymptotics and Regge singularities of

quark amplitudes with flavor exchange, Nucl. Phys. B 213 (1983) 122 [INSPIRE].

[34] D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007

[hep-th/0103195] [INSPIRE].

[35] M. Hentschinski, The high energy behavior of QCD: the effective action and the

triple-Pomeron-vertex, Ph.D. thesis, Hamburg U., Hamburg, Germany, (2009)

[arXiv:0908.2576] [INSPIRE].

[36] M. Siddikov, private communication.

[37] J. Bartels, M.A. Braun, D. Colferai and G.P. Vacca, Diffractive ηc photoproduction and

electroproduction with the perturbative QCD odderon, Eur. Phys. J. C 20 (2001) 323

[hep-ph/0102221] [INSPIRE].

[38] J. Bartels, High-energy behavior in a non-Abelian gauge theory (II), Nucl. Phys. B 175

(1980) 365 [INSPIRE].

[39] J. Kwiecinski and M. Praszalowicz, Three gluon integral equation and odd c singlet Regge

singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].

[40] J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026

[hep-ph/9908454] [INSPIRE].

[41] J. Bartels, M. Braun and G.P. Vacca, Pomeron vertices in perturbative QCD in diffractive

scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].

– 45 –

https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,63,904%22
https://doi.org/10.1140/epjc/s10052-017-5359-7
https://arxiv.org/abs/1707.01460
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.01460
https://doi.org/10.1140/epjc/s10052-015-3865-z
https://arxiv.org/abs/1508.05744
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.05744
https://doi.org/10.1140/epjc/s10052-014-2919-y
https://arxiv.org/abs/1401.6298
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6298
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,56,266%22
https://doi.org/10.1103/PhysRevD.26.1202
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D26,1202%22
https://doi.org/10.1016/0550-3213(83)90178-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B213,122%22
https://doi.org/10.1103/PhysRevD.64.105007
https://arxiv.org/abs/hep-th/0103195
https://inspirehep.net/search?p=find+EPRINT+hep-th/0103195
https://arxiv.org/abs/0908.2576
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.2576
https://doi.org/10.1007/s100520100676
https://arxiv.org/abs/hep-ph/0102221
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0102221
https://doi.org/10.1016/0550-3213(80)90019-X
https://doi.org/10.1016/0550-3213(80)90019-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B175,365%22
https://doi.org/10.1016/0370-2693(80)90909-0
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B94,413%22
https://doi.org/10.1088/1126-6708/1999/09/026
https://arxiv.org/abs/hep-ph/9908454
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9908454
https://doi.org/10.1140/epjc/s2005-02152-x
https://arxiv.org/abs/hep-ph/0412218
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0412218

	Introduction
	The setup: the LO BFKL equation
	Regulators and the tau-derivative of the BFKL Geen's function
	An effective field theory for deriving the BFKL Green's function
	Elements of the field theory
	From reggeized gluons to Pomeron fields

	RG flow equations
	Two-point function
	Vertex functions
	Flow equation for the 4-point function
	Flow equation for the 5-point and 6-point functions
	Introducing the running coupling

	A nonlinear equation for the tau-derivative of 4-point function
	Numerical studies (1): Higgs-mass regulator
	Eigenvalues and eigenfunctions in the forward direction
	q**2 slopes of the eigenvalues
	Running coupling

	Numerical studies (2): Wilsonian optimized IR regulator
	Summary and outlook
	Rapidity-dependence of propagators

