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We examine the quantum null energy condition (QNEC) for a 2þ 1-dimensional conformal field theory
(CFT) at strong coupling in the background of a wormhole spacetime by employing the AdS=CFT
correspondence. First, we numerically construct a novel 3þ 1-dimensional vacuum AdS black hole
solution with nontrivial topology, which is dual to a wormhole geometry connecting two flat universes.
Although the bulk null energy condition (NEC) is not violated, the NEC for the holographic stress-energy
tensor is violated near the wormhole throat. Next, we investigate the entanglement entropy for a half-space
anchored to the boundary wormhole throat. We propose a natural prescription for regularizing the IR
divergent part of the entanglement entropy and show that the QNEC is violated at the throat. This is the first
counterexample to the QNEC, indicating that IR effects are crucial.

DOI: 10.1103/PhysRevD.99.026004

I. INTRODUCTION

The null energy condition (NEC) is key to understanding
the basic properties of spacetime structure. It holds for most
physically reasonable classical fields and plays a crucial
role in various theorems concerning singularities [1] and
black hole (BH) mechanics [2]. However, as a local
condition, the NEC can be violated [3] when quantum
effects are considered. As an improved condition, an
(achronal) averaged null energy condition (ANEC) that
integrates the NEC along a null geodesic was proposed and
used in improved versions of singularity theorems [4,5] and
topological censorship [6].
The quantum null energy condition (QNEC)[7–9] is a

new alternative condition to the NECwhich is nonlocal, as it
involves the von Neumann entropy [or entanglement
entropy (EE)] S of quantum fields in some subregion A
of the spacetime considered. More concretely, the QNEC
gives a lower bound for the null-null component of the
stress-energy tensor Tkk as

2π

Z
∂A

ffiffiffi
γ

p
Tkk ≥

D2S
Dλ2

; ð1Þ

where D2S=Dλ2 is the second variation under null defor-
mations of the von Neumann entropy for A, and γ is the
determinant of the boundary metric on the subregion
boundary ∂A. The QNEC was originally derived from the
quantum focusing conjecture [7], where a “quantum expan-
sion” of the null geodesic congruence never increases toward
the future. The QNEC was first shown in Minkowski
spacetime for free bosonic field theories [8] and later for
the cases of holographicCFTs inMinkowski space [9] or in a
class of curved spacetimes [10].
In this paper, we study the QNEC for quantum field

theories at strong coupling on a wormhole geometry via the
AdS=CFT correspondence [11] and show that it can be
violated. Recently, bulk wormholes have gained some
attention in the context of the AdS=CFT duality due to
puzzles they raise when a bulk geometry connects multiple
boundaries that each allow a well-defined QFT [12,13].
Here, we numerically construct a novel 3þ 1-dimensional
static-vacuum-AdS black hole solution with nontrivial
topology, where the AdS boundary metric is conformal
to a wormhole geometry that connects two flat universes.
According to the AdS=CFT dictionary [11], this corre-
sponds to a thermal state in the boundary field theory at
strong coupling on this background. As in the case of
Ref. [12], Tkk is negative near the wormhole throat. We
focus on the von Neumann entropy for a half-space
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subregion whose boundary is the wormhole throat.
According to the HRT formula [14,15], the corresponding
minimal surface is anchored to the AdS boundary at the
throat and extends to the bulk black hole at spatial infinity.
Because the half-space minimal surface asymptotically
approaches the IR region of the black hole horizon,
it shares the same IR divergence, and we propose a novel
definition of the IR-regularized entropy Sreg for the
half-space:

Sreg ≔ SUV −
1

2
SBH: ð2Þ

Here, SUV denotes the UV-regularized entropy for the given
half-space and SBH denotes the Bekenstein-Hawking
entropy of the bulk black hole. By this definition, we
can subtract the thermal part of the entropy, and thereby
manifest a purely entanglement part of the entropy for the
boundary wormhole. We find that although Eq. (1) is
satisfied in a UV expansion near the AdS boundary, it can
be violated when IR-effects near spatial infinity are taken
into account. As far as we know, this is the first counter-
example to the QNEC due to IR-effects.
We note that Fu, Koeller, and Marolf [16] considered

an example that violates the QNEC in a curved spacetime
within d ≥ 5 Gauss-Bonnet theory under a local statio-
narity condition. In [10], the same authors proposed
UV conditions for a curved spacetime QNEC to be
preserved. In fact, under the new conditions, they showed
that the QNEC in the same d ≥ 5 Gauss-Bonnet theory
is preserved. The UV conditions discussed in [10] are
dependent upon the spacetime dimensions, and for three-
dimensional curved spacetimes, the conditions simply
reduce to local stationarity at the entangling surface. Our
counterexample satisfies the local stationarity condition
[10] at the wormhole throat; nevertheless, the QNEC
is violated.
In the next section, we numerically construct our

bulk geometry with a three-dimensional wormhole on
the conformal boundary. We also give the regularized
stress-energy tensor for CFT on the boundary wormhole
and check that the NEC itself is violated near the wormhole
throat as expected. In Sec. III, we holographically define
our regularized entanglement entropy Sreg for a half-space
of the wormhole geometry by introducing the notion of a
regularized surface area Areg. Then, in Sec. IV, we numeri-
cally examine the QNEC in our wormhole spacetime and
show that the QNEC is violated. Section V is devoted to a
summary and discussion.

II. THE BULK GEOMETRY

We first recall the 3þ 1-dimensional static-vacuum-AdS
black hole metrics for different horizon topologies, in units
where LAdS ¼ 1 and the conformal boundary is at z ¼ 0
[17,18]:

ds2 ¼ 1

z2

�
−fkðzÞdt2 þ

dz2

fkðzÞ
þ dΣ2

k

�
;

dΣ2
k ¼

8>><
>>:

dr2 þ sinðrÞ2dϕ2 k ¼ 1;

dr2 þ r2dϕ2 k ¼ 0;

dr2 þ cosh2rdϕ2 k ¼ −1;

fkðzÞ ¼ 1þ kz2 − μz3: ð3Þ

Here, μ determines the black hole mass and k the horizon
topology. For k ¼ 1, r ∈ ½0; πÞ, for k ¼ 0, r ∈ ½0;∞Þ and
for k ¼ −1, r ∈ ð−∞;∞Þ. Near the throat of the hyper-
boloid at r ¼ 0, the boundary metric is conformal to a
cylinder. A static spacetime interpolating between a k ¼ −1
black hole near r ¼ 0 and a k ¼ 0 black hole as r → ∞will
have, on the boundary, a wormhole connecting two flat
universes.
To find such a spacetime, we numerically solve the

Einstein-DeTurck equation,

Rμν þ 3gμν −∇ðμξνÞ ¼ 0: ð4Þ

The DeTurck vector is defined in terms of the Christoffel
symbols of the metric g and a reference metric ḡ as
ξμ ¼ gαβðΓμ

αβ − Γ̄μ
αβÞ. The final term in Eq. (4) fixes a

gauge for the vacuum Einstein equation resulting in a set of
elliptic rather than hyperbolic equations better suited to
numerical boundary value problems [19,20]. Solutions to
Eq. (4) with ξμ ¼ 0 also solve the Einstein equation.
Subject to certain boundary conditions, Eq. (4) satisfies
a maximum principle; hence, an appropriate choice of ḡ
will ensure that ξμ vanishes everywhere [20]. We use ξ2 as a
test of numerical accuracy, as shown in Fig. 1.
We choose a numerical domain of x ∈ ½0; 1� and y ∈ ½0; 1�

in which we construct one half of the wormhole geometry.
The other half follows from a reflection across x ¼ 0. Over
this domain, an ansatz for g (modified from Ref. [21]) is

ds2 ¼ 1

gðxÞ2y2
�
−ð1 − yÞfðx; yÞTdt2 þ gðxÞ2A

ð1 − yÞfðx; yÞ dy
2

þ 4Bðdxþ xð1 − x2Þ2FdyÞ2
ð1 − x2Þ4 þ lðxÞS

ð1 − x2Þ2 dϕ
2

�
ð5Þ
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FIG. 1. Convergence of max(ξ2) for N × N grid and ζ ¼ −:9.
Data presented below has N ¼ 64.
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where 0 ≤ ϕ ≤ 2π, X ≡ fT; S; A; B; Fg are functions of x
and y and

fðx; yÞ ¼ 1þ yþ y2x2ð3 − 2x2Þ;
gðxÞ ¼ 2þ x2ð3 − 2x2Þ;
lðxÞ ¼ ζð1 − x2Þ4 þ ½1þ x2ð1 − x2Þ2�2: ð6Þ

We choose T ¼ S ¼ A ¼ B ¼ 1 and F ¼ 0 for ḡ. Using a
Newton-Raphson pseudospectral numerical method over an
N × N Chebyshev grid also requires a seed for which we
chose ḡ. We impose the boundary conditions

∂xTjx¼0 ¼ ∂xSjx¼0 ¼ ∂xAjx¼0 ¼ ∂xBjx¼0 ¼ ∂xFjx¼0 ¼ 0;

Tjx¼1 ¼ Sjx¼1 ¼ Ajx¼1 ¼ Bjx¼1 ¼ 1; Fjx¼1 ¼ 0;

Tjy¼0 ¼ Sjy¼0 ¼ Ajy¼0 ¼ Bjy¼0 ¼ 1; Fjy¼0 ¼ 0;

Ty¼1 ¼ Ajy¼1: ð7Þ

A smooth, constant temperature horizon requires
T
A jy¼1 ¼ 1, giving the last boundary conditions.
Further boundary conditions at y ¼ 1 are easily found
from the near horizon expansions Xðx; yÞ ≈ Xðx; 1Þ þ
ðy − 1Þ∂yXðx; yÞjy¼1 þ … into Eq. (4) [22]. For all ζ,
the bulk black hole has temperature TBH ¼ 1

4π.
If, at x ¼ 0, we instead chose to impose Dirichlet

conditions, T¼ S¼A¼B¼ 1, F ¼ 0, as well as the redefi-
nition t ↦ 2t, we would explicitly impose the k ¼ −1
metric in Eq. (3). However, all that is required for our
wormhole geometry is the reflection symmetry. Further-

more, at x¼1, the redefinitions x¼
ffiffiffiffiffiffiffiffiffiffiffi
1− 1

3R

p
, t ↦ 3t give the

k ¼ 0 metric in Eq. (3). At y ¼ 0, with R≡ R
x 2dx0
ð1−ðx0Þ2Þ2, the

metric is

ds2 ¼ dy2

y2
þ 1

y2g2ðxÞ ½−dt
2 þ dR2 þ l̃ðRÞdϕ2�: ð8Þ

Near x ¼ 0, l̃ðRÞ ¼ 1þ ζ þ ð1 − ζ
2
ÞR2 þOðR4Þ and near

x ¼ 1, l̃ðRÞ ¼ R2 þOðRÞ. When −1 < ζ < 2, the S1 is

minimized at R ¼ 0ðx ¼ 0Þ corresponding to the throat of a
wormhole connecting two flat universes. This surface is
locally stationary for any ζ. Plots of thewormhole radius as a
function of R and ζ are shown in Fig. 2.
The spacetime is asymptotically locally AdS [23] with

Fefferman-Graham (FG) expansion near z ¼ 0,

ds2 ¼ 1

z2
½dz2 þ ðhð0Þab þ z2hð2Þab þ z3hð3Þab Þdxadxb�: ð9Þ

The following expansions, inserted into Eq. (4) and solved

order by order in y, can be used to find hðiÞab:

Xðx; yÞ ≈ Xð0ÞðxÞ þ Xð2ÞðxÞ y
2

2
þ Xð3ÞðxÞ y

3

6
þOðy4Þ

yðz; rÞ ≈ z

�
1

gðrÞ þ z2yð3ÞðrÞ þ z3yð4ÞðrÞ þOðz4Þ
�

xðz; rÞ ≈ rþ z2xð2ÞðrÞ þ z4xð4ÞðrÞ þOðz5Þ: ð10Þ

Analytic expressions exist for Xð2Þ in terms of geometric
invariants on the boundary, but Xð3Þ require numerics
[24]. The expressions are not illuminating and are omitted.
An example of this procedure is in Ref. [25]. From this
expansion, one finds that the regularized holographic
stress-energy tensor is [24]

hTabi ¼
3hð3Þab

16πG4

: ð11Þ

The off-diagonal terms vanish and the diagonal terms are

hð3Þij dx
idxj¼ 1

6gðrÞ3 ½h
ð0Þ
tt ðTð3Þ−2jÞdt2þhð0Þrr ðBð3Þ þ jÞdr2

þhð0ÞϕϕðSð3Þ þ jÞdϕ2�; j¼ 2gðrÞ−4:

ð12Þ

Importantly, we find Tð3Þ þ Sð3Þ þ Bð3Þ ¼ 0 implying a
vanishing trace of the stress-energy tensor, as required
for a CFT3.
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FIG. 2. The wormhole radius as a function of the boundary coordinate R. (Left) The radius near the wormhole throat (black) againstffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ þ ð1 − ζ

2
ÞR2

p
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radius plotted against R for the same
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The null-null component of the stress-energy tensor,
plotted in Fig. 3, can be defined in terms of the future
directed null vector ka ¼ ∂t þ ∂R with R defined as before:

R≡ R
dr

ffiffiffiffiffiffiffiffi
hð0Þrr

q
. For −1 < ζ < 2, hTkki < 0 near the

throat. Near spatial infinity, hTkki ¼ 3
16πG4

ð 1
27
Þ > 0, which

is the value for a TBH ¼ 1
4π, k ¼ 0 black hole divided by 27

due to the choice of conformal frame [see Eq. (10)].

III. HALF-SPACE ENTANGLEMENT ENTROPIES

We are interested in the entanglement entropy of
the subregion A defined by rb ≤ r < ∞. We call this a
“half-space” entanglement entropy since ∂A at r ¼ rb
splits the fixed time t Cauchy surface into two pieces (if
rb ¼ 0, this is the wormhole throat). The holographic

entanglement entropy of the subregion A is given by the
HRT formula [14,15],

SðAÞ ¼ AðΣAÞ
4G4

; ð13Þ

where ΣA is the codimension-two minimal area surface
in the bulk anchored to the boundary at ∂A and homolo-
gous to A with AðΣAÞ denoting its area [26]. As shown in
Fig. 4(a), there are two competing minimal surfaces. One,
which we call ΣA;1, touches the black hole horizon as
x → 1, and the other, which we call ΣA;2, touches the black
hole horizon as x → −1 (the reflection of ΣA;1 for r ≥ −rb)
and also includes the black hole horizon, as required by
the homology constraint. Notably, the areas of both
surfaces diverge do to the noncompact black hole horizon
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FIG. 3. (Left) The radius of the wormhole as a function of bulk position for ζ ¼ −:9. Here, C ¼ lðxÞSðx; yÞ=ð1 − x2Þ2. Curves are
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with finite cross-sectional area. However, since ΣA;1

diverges in only one direction, its area is always less
than ΣA;2. In particular, this means that the minimal
surfaces never undergo a phase transition. From here
on, we will refer to ΣA;1 as ΣA, the minimal surface for the
region A.
To find ΣA, we minimize the area functional,

A ¼ 2π

Z
1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν∂sYμ∂sYν;

q
ð14Þ

where YμðsÞ ¼ fxðsÞ; yðsÞgμ. The minimal surfaces have
boundary conditions fx;ygjs¼0¼frb;0g and fx;∂sygjs¼1 ¼
f1;0g and solutions have yjs¼1 ¼ 1.
Equation (14) is both UV and IR divergent. From the

boundary perspective, the divergences in the former case
are due to short distance correlations across ∂A and in the
latter case to thermal correlations extending to spatial
infinity. To eliminate the UV divergence, we introduce a
bulk UV cutoff for the integral Eq. (14), zðx; yÞ ¼ ϵ. As
usual, the UV-part can be regularized by subtracting a
counterterm proportional to the area of ∂A as

AUV ≔ A −
2π

ffiffiffiffiffiffiffiffiffiffiffi
lðrbÞ

p
gðrbÞð1 − r2bÞ

1

ϵ
: ð15Þ

In the bulk, the IR divergence comes from the fx; yg →
f1; 1g region where the minimal surface and bulk black
hole coincide. Hence, the area of the minimal surface has
the same divergence as half the black hole. As a concrete
realization of Eq. (2), we define a regularized area, Areg as

Areg ≔ AUV −
1

2
ABH: ð16Þ

A plot of Areg is shown in Fig. 4(b).
As a simple example that will be useful in understanding

the QNEC, we note the half-space minimal surface for a
static cylindrical black hole where dΣ2

0 ¼ dx21 þ dx22 in
Eq. (3) with x2 ¼ x2 þ L2. With fixed x1 subregion
boundaries, the minimal surfaces solve the equation

x01ðzÞ ¼
ðc1zÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − ðc1zÞ4Þð1 − μz3Þ
p : ð17Þ

For jc1j > μ1=3, the minimal surface has a turning point and
gives the entanglement entropy for a strip-shaped subre-
gion. Half-space subregions have jc1j ≤ μ1=3 and the sur-
face with minimal area that touches the horizon at x1 → ∞
has jc1j ¼ μ1=3. Furthermore, near z ¼ 0, the minimal
surface satisfies a UV expansion:

x1ðzÞ ¼ xmin þ
c1
3
z3 þOðz4Þ: ð18Þ

IV. VIOLATION OF THE QNEC

The QNEC relates the null energy density of a QFT to
the second null variation of the entanglement entropy at a
point p on ∂A. Though the individual pieces of the QNEC
are UV divergent, given certain conditions at p, the
combination in Eq. (1) is finite. The condition for a
2þ 1-dimensional curved spacetime is that the expansion
θjp vanishes [10]. In our spacetime, this criteria is satisfied
at the wormhole throat, rb ¼ 0, independent of ζ. An
important point is that, a priori, the IR divergences of our
minimal surfaces do not contribute to the QNEC as they are
the same for all half-space entanglement entropies [see
Eq. (16)]. Said differently, the QNEC is manifestly IR finite
since it involves a local variation of the entangling surface.
To simplify the numerics and exploit the isometries

along ∂t and ∂ϕ, we investigate an integrated form of the
QNEC where all points of ∂A are moved equally in the ka

direction, as in Eq. (1). Importantly, because our spacetimes
are static and asymptotically flat (AF), the half-space
minimal surface lies on a single t slice. Hence, null and
spatial variations of the entanglement entropy are propor-
tional. This is shown in Fig. 5. For example, in the case of
the static cylindrical black hole, the null variation of the
half-space entanglement entropy vanishes, due to trans-
lation invariance in the x1-direction. Importantly, this is not
the case for strip-shaped subregions whose minimal surface
will be time-dependent when the two subregion endpoints
lie on different t slices.
In terms of regularized quantities and our wormhole

metric, Eq. (1) becomes [27]

Q≡ 2πhTkki −
1

32πG4

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p δ2Areg

δr2

����
r¼0

≥ 0: ð19Þ

In Fig. 6(a), this inequality is violated at the throat.

A

C

B
k

FIG. 5. In static AF universes, half-space subregions and their
minimal surfaces lie on a single t slice (horizontal lines). DðBÞ ⊆
DðAÞ ⊆ DðCÞ (shaded) implies ΣA, ΣB, ΣC are achronally
separated.
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The QNEC violation is surprising because many proofs
exist [8–10,28]. However, these proofs do not consider
thermal states, where IR degrees of freedom play an
important role. Proofs in Refs. [9,10] rely on entanglement
wedge nesting (EWN), a statement that for subregions
A and B, if the domains of dependence satisfy DðBÞ ⊆
DðAÞ, then ΣA and ΣB are achronally separated [29]. In
Fefferman-Graham gauge, one can show that the minimal
surface embedding satisfies a UV expansion,

xðzÞ ¼ rb þ
K
2
z2 þ c1

3
z3 þOðz4Þ; ð20Þ

where K is the trace of the extrinsic curvature at rb [30].
This is true in our work. Entanglement wedge nesting
constrains δc1=δr to be bounded by a function proportional
to hTkki. The main assumption of Refs. [9,10] is that when
K ¼ 0 at a point p, we also have the vanishing of

W ≡ 1ffiffiffi
γ

p δAðΣAÞ
δr

þ hð0Þrr c1

����
p
¼ 0: ð21Þ

Hence, we may replace c1 with δAðΣAÞ=δr and another
variation results in the QNEC. However, thermal states do
not generically obey this equation. For a strongly-coupled
thermal CFT on a cylinder (dual to the cylindrical black
hole), δAðΣAÞ=δr ¼ 0. This follows from the translation
symmetry of the spacetime. However, c1 vanishes only
when TBH ¼ 0 [μ → 0 in Eq. (17)]. Likewise, in Fig. 6(b),
we show that in the wormhole, Eq. (21) does not hold.
However, as shown in Fig. 6(b), the constraint of entan-
glement wedge nesting on c1 [31], which is obeyed and
agrees with Eq. (19) in the vacuum, is

E≡ 2πG4hTkki þ
hð0Þrr

4
krδλc1

�����
r¼0

≥ 0: ð22Þ

This inequality is not only obeyed but nearly saturated as
has recently been conjectured [32]. That the constraint on
the UV parameter c1 from entanglement wedge nesting is
obeyed, but the QNEC is violated demonstrates that the
entanglement variation in Eq. (19) crucially includes an IR
contribution. Furthermore, whereas for the cylindrical
black hole, the everywhere positive energy density realizes
the QNEC, in the wormhole geometry, a negative energy at
the throat leads to its violation.

V. SUMMARY AND DISCUSSION

The QNEC illustrates new and beautiful connections
between interacting QFTs and gravity. Intriguingly, it
relates the variation of a nonlocal observable, the entan-
glement entropy of a subregion, to a local observable, Tkk,
and is believed to hold even in curved spacetime at points
where θjp vanishes [where Eq. (1) and Eq. (19) are equal].
However, for thermal states, which have finite energy
density that extends to spatial infinity, less is known. In
this paper, we have demonstrated that for these states on a
particular wormhole background, the QNEC is violated. On
the other hand, a purely UVexpression, Eq. (22), is obeyed
and nearly saturated. This is a hint that the QNEC in Eq. (1)
may govern states perturbatively close to the vacuum with
no flux at spatial infinity. One could investigate this in zero
temperature analogues of our spacetime, though such
solutions have yet to be found. Thermal states, dual to
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FIG. 6. (a) Equation (19) for ζ ¼ −:9. Curves correspond to ϵ from .01 to 10−4 (light to dark). (Inset) Estimating numerical error,

Δ≡ j QðϵÞ
Qðϵ�Þ − 1j with ϵ� ¼ 5 × 10−4. (b) Nonvanishing of Eq. (21) due to IR effects. Curves correspond to ϵ from .01 to 10−4 (light to

dark). (Inset, left) Comparison of analytic K to numerical fits of the minimal surface embedding Oðz2Þ terms. (Inset, right) EWN is
satisfied and nearly saturated.
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bulk black holes, may instead involve a coarse-grained
version of Eq. (1) [33,34].
A possibility for the violation is that the bulk geometry

that we have constructed is not the dominant contribution to
the gravitational path integral with the prescribed boundary
conditions. While we have not performed an exhaustive
search, we believe our bulk solution is the dual to a thermal
state on wormhole boundary. In particular, we expect that a
strongly coupled infinite rank gauge theory on a non-
compact manifold confines only at zero temperature [35].
In bulk language, an example of this is the well-known
statement that planar AdS black holes always dominate in
the canonical ensemble at any temperature [36]. Since our
spacetime asymptotically contains a black hole whose
event horizon is planar, we expect it dominates over any
bulk that lacks a black hole or lacks one whose event
horizon is asymptotically planar.
It must be emphasized that while entanglement entropies

for thermal states on noncompact manifolds are IR diver-
gent, a priori Eq. (1) does not require an IR regulator. In
fact, we specifically chose an IR regulator in Eq. (2) that
respects the asympotically flat nature of our spacetime.
This was in part motivated by the compactified black hole
spacetime which featured a similar divergence and in which
our choice of IR regulator respects the translation invari-
ance of the background. On the other hand, if one considers
the QNEC to be fundamental, then our work emphasizes
that a modification of Eq. (1) to account for IR effects is
necessary.
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Note added

After this paper appeared as a preprint, a new paper [37]
dealing with the IR regulators for the QNEC appeared. The
paper proposed two methods which may preserve the
QNEC: One method considers the strip-shaped minimal
surface instead of the half-space and the other method puts
the system in a finite box. Some evidence in favor of
the strip regulator is the saturation of the QNEC in an

out-of-equilibrium holographic theory [38]. Furthermore,
these regulators lead to a nice result that the variation in
entanglement entropy is proportional to the thermal entropy
density, δA=δrb ¼ −2πs [Eq. (9) of [37]].
While these methods ensure Eq. (21) for the compacti-

fied black brane, it is not obvious that they accurately
capture the half-space entanglement entropy since they lead
to different minimal surfaces. Furthermore, for the com-
pactified black brane, such regulators violate translation
invariance on the boundary. On the other hand, in such a
translationally invariant spacetime, we can derive the same
result of Eq. (9) of [37] using our regulator prescription,
also illustrated in Fig. 7,

A0 − AIR − ðA − AIRÞ ¼ A0 − ðA0
IR þ ΔAIRÞ − ðA − AIRÞ

¼ ðA − AIRÞ0 − ðA − AIRÞ − ΔAIR

¼ −ΔAIR ¼ −2πsΔr ð23Þ

The two minimal surfaces are related by a diffeomor-
phism, r → rþ Δr, but such a diffeomorphism also moves
the starting point for our regulator, AIR → A0

IR. Hence, the
change in regulated area is equal to the change in the
regulator area and we recover Eq. (9) of [37].
It is not entirely clear if the QNEC in Eq. (1) could be

preserved by the methods of Ref. [37] when the spacetimes
in question admit no translation invariance (as in the
present paper). Nevertheless, our work points to the same
conclusion—the QNEC must be modified to include IR
effects. In contrast to [37], the IR-regulator in our proposal
does not affect the functional derivative, and the regularized
entropy in Eq. (2) provides a natural physical interpretation
in that it isolates the purely entanglement part of the
entropy.

FIG. 7. Recovering ΔAreg ¼ −2πsΔr as in [37].
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