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factors with multiple matter representations. We present three explicit examples. Two

are Cremmer-Scherk-Schwarz gaugings with unbroken N = 6, 4 supersymmetry and U(1)
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1 Introduction and summary of results

Gauged supergravities — supergravities in which all or part of the R-symmetry is gauged

and some fields transform nontrivially under the gauge group — have been the subject

of active investigation both in their own right and because of their relation to the low-

energy limit of string compactifications with fluxes. Such theories typically feature a rich

array of interesting physical properties. Due to the presence of a nontrivial potential for

scalar fields, they can allow for a non-vanishing cosmological constant, moduli stabilization,
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and spontaneous breaking of supersymmetry. Moreover, gauged supergravities with Anti-

de Sitter vacua play a prominent role in the low-energy limit of the holographic relation

between string and gauge theories.

An SO(8) gauging of four-dimensionalN = 8 supergravity [1] was first formulated by de

Wit and Nicolai in ref. [2]. Non-compact gaugings of N = 8 supergravity via deformations

of de Wit and Nicolai construction were later studied in refs. [3–5]. Compact and non-

compact gaugings of maximal supergravity in five dimensions were obtained by one of the

current authors and collaborators [6], including a gauging which has zero cosmological

constant and preserves N = 2 supersymmetry [7]. Along similar lines, gaugings of N = 2

supersymmetric Maxwell-Einstein supergravity theories in five dimensions were first given

by Sierra, Townsend and one of the current authors in refs. [8–10] and further generalized

to theories involving tensor fields in refs. [11–13].

The introduction of the so-called embedding tensor formalism [14–18], which makes

use of a manifestly U-duality-covariant formulation of the action, provided novel strategies

for the construction of gauged supergravities. At the level of the supergravity Lagrangian,

gauge covariant derivatives are written in a U-duality-covariant form

∂µ → Dµ ≡ ∂µ − gAMµ Θ α
M tα , (1.1)

where the index M labels all the vector fields in the theory and tα are generators of the

U-duality group. The embedding tensor Θ α
M specifies the explicit embedding of the gauge

group into the global symmetry group (U-duality). The closure of the gauge algebra implies

that the tensor Θ α
M must satisfy a quadratic constraint while supersymmetry implies that it

must also satisfy a linear constraint. All quantities relevant to the supergravity Lagrangian,

including the scalar potential, can then be expressed in terms of Θ α
M (see [19, 20] for a

detailed review). The embedding tensor formalism led to the discovery of new families of

gaugings of N = 8 supergravity, including a new SO(8) family in four dimensions [21–23].

Despite this progress, a complete classification of gauged supergravities has thus far re-

mained elusive and is the subject of ongoing efforts.

In recent years, the study of scattering amplitudes has provided a new perspective

on various gravity and supergravity theories. Particular progress has been achieved by

the double-copy construction introduced by Bern, Carrasco and one of the current au-

thors [24, 25], which allows the construction of gravitational amplitudes using gauge-theory

building blocks. The key ingredient of this construction is an organization of gauge-theory

amplitudes in which numerator factors obey the same algebraic conditions as color factors.

If presentations of amplitudes with this property are available, the gauge theory is said

to obey color/kinematics duality. Amplitudes which are invariant under linearized diffeo-

morphisms, and thus can be regarded as the amplitudes of a gravitational theory, are then

obtained by substituting color factors with a second set of numerators.

It has been shown that many families of gravitational and non-gravitational theories are

amenable to double-copy methods. These include pure supergravities [24, 26, 27], various

finite or infinite families of matter-coupled supergravities [28–33], and conformal super-

gravities [34, 35]. Effective non-gravitational theories for which a double-copy construction

is known include the Dirac-Born-Infeld and the special Galileon theories, as well as the
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nonlinear sigma model [36–42]. New double-copy structures have also been identified for

various string-theory amplitudes, [43–51], within the Cachazo-He-Yuan formalism [52–56],

in the context of ambitwistor string theories [57], and at the level of linearized supermul-

tiplets [58–62].

While various Yang-Mills-Einstein theories have been investigated in detail [38, 55, 63–

73], amplitudes in gauged supergravities have been comparatively less studied. Very re-

cently, the current authors formulated a double-copy construction for simple U(1)R gauged

N = 2 supergravities that admit Minkowski vacua [71]. On general grounds, one can show

that such theories have massive gravitini and spontaneously-broken supersymmetry. To

capture this property, it is natural to consider a double-copy construction that [71]:

1. Contains massive gravitini, which are realized as bilinears of massive W bosons from

one gauge theory and massive fermions from the other;

2. Reproduces the construction for the ungauged supergravity theory (with unbroken

supersymmetry) in the massless limit.

Based on these requirements, the desired double copy must have the schematic form(
gauged supergravity

)
=
(

Higgs-YM
)
⊗
(
�SYM

)
. (1.2)

The two theories entering the construction are a spontaneously-broken gauge theory and a

gauge theory with explicitly-broken supersymmetry. Both theories are obtained by starting

from a higher-dimensional massless theory, which is then taken on the Coulomb branch

as outlined in ref. [74]. The second gauge-theory factor is obtained with an additional

orbifolding procedure which results in a theory with massless adjoint bosons and massive

fermions in a matter representation.1 Finally, the free parameters in the family of U(1)R
gaugings are identified with the freedom of choosing the vacuum expectation values (VEVs)

in the gauge theories entering the double copy.

In this paper we address two important problems: (1) the description of non-Abelian

R-symmetry gaugings as double copies and (2) the application of the double-copy method

for studying gaugings of N = 8 supergravity. For non-Abelian gaugings, we will seek

a double-copy construction which obeys the two requirement listed above as well as the

additional one that:

3. One of the gauge theories contains trilinear scalar couplings depending on an anti-

symmetric tensor F IJK , which in turn determines the non-Abelian part of the R-

symmetry gauging.

Similarly to the simpler construction described in ref. [71], the gauge theories entering the

double-copy construction are obtained, through a combination of Higgsing and orbifolding,

from higher-dimensional theories which obey color/kinematics duality. In contrast to our

previous work, which has as starting point higher-dimensional pure Yang-Mills (YM) or

1While there are many ways to break supersymmetry explicitly, the one used in ref. [74] and outlined

here is singled out by the requirement of color/kinematics duality and by the details of the double-copy

with the chosen spontaneously-broken theory.
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super-Yang-Mills (SYM) theories, we begin with massive deformations of these theories

that are chosen to preserve the duality between color and kinematics. We show that

color/kinematics duality amounts to requiring that the fermionic mass matrix M squares

to a diagonal matrix and obeys[
{ΓI ,M},ΓJ

]
+ iλF IJKΓK = 0 , (1.3)

where ΓI are the Dirac matrices in the extra dimensions, unrelated to the four-dimensional

Dirac matrices. The tensor F IJK obeys either standard or modified Jacobi identities (and

is related to the structure constants of the supergravity unbroken gauge group). Gauge

theories solving the constraint (1.3) are then taken on the Coulomb branch and subjected

to an orbifold projection, in close analogy with the strategy of ref. [71].2

We shall focus on three explicit examples. The first two are Cremmer-Scherk-Schwarz

(CSS)-type gaugings [75–77] with unbroken Abelian gauge groups and N = 6, 4 residual su-

persymmetry. The last example is a non-Abelian gauging with SU(2)×U(1) unbroken gauge

group and N = 4 residual supersymmetry. In all these cases, the double copy allows to

quickly calculate the mass spectra of the theory and to access information about the unbro-

ken symmetries. Our results are in agreement with the supergravity literature [21, 22, 78].

We also present examples in which the double copy involves two explicitly-broken gauge

theories and hence produces a supergravity theory with explicit supersymmetry breaking.

The structure of this paper is as follows. In section 2, we study higher-dimensional

massive theories which preserve color/kinematics duality, obtaining simple constraints of

the form (1.3). In section 3, we focus on N = 4 SYM theory and list some explicit solutions

to the constraints. In section 4, we spell out the Higgsing and orbifolding procedure em-

ployed to construct the lower-dimensional theories which are then used to obtain various

gauged supergravities with the double-copy technique, provided that some simple consis-

tency requirements are satisfied. In section 5, we present examples of our construction,

leaving a complete classification of gaugings with Minkowski vacua to future work. We

conclude the paper with a discussion of our results.

2 Color/kinematics duality with massive fermions and φ3 interactions

Our starting point is a massless gauge theory with scalars and fermions in arbitrary dimen-

sion D, which is general enough to include the Lagrangians of the gauge theories discussed

in ref. [31] as well as certain supersymmetric theories:

L=−1

4
(F âµν)2 +

1

2
(Dµφ

âI)2 − g2

4
f âb̂êf ĉd̂êφâIφb̂JφĉIφd̂J +

i

2
ψ̄��Dψ +

g

2
φâI ψ̄ΓItâψ . (2.1)

If fermions are taken in definite (possibly reducible) matter representations,3 this La-

grangian is that of the non-supersymmetric theory entering the double-copy construction

2In case the theory is orbifolded in the unbroken gauge phase, an ungauged supergravity would

be obtained.
3By matter representation we mean a representation of the gauge group that is different from the adjoint

representation.
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for homogeneous supergravities [31]. Following a standard construction, L-loop n-point

gauge-theory amplitudes are written as

A(L)
n = iL−1gn−2+2L

∑
i∈cubic

∫
dLD`

(2π)LD
1

Si

cini
Di

, (2.2)

where the sum runs over cubic graphs, Di denotes the product of the inverse scalar prop-

agators of the cubic graph i, and Si are symmetry factors. ci and ni are group-theory

and kinematic factors associated with that graph, respectively. The defining commutation

relations of the gauge group as well as its Jacobi identities imply that there exist triplets

of graphs {i, j, k} such that ci + cj + ck = 0. A scattering amplitude is said to obey

color/kinematics duality if the kinematic numerators obey the same algebraic relations as

the color factors:

ni − nj = nk ⇔ ci − cj = ck . (2.3)

Imposing color/kinematics duality on the two-fermion-two-scalar amplitudes following from

the Lagrangian (2.1) constrains the Γ matrices to be generators of a Clifford algebra [31],{
ΓI ,ΓJ

}
= −2δIJ ; (2.4)

in turn this implies that (2.1) can be regarded as a higher-dimensional YM theory with

fermions reduced to four-dimensions. The remaining two parameters — the dimension

D and the choice of irreducible representations for fermions — reproduce the existing

classification of homogeneous supergravities [79]. In addition, by allowing the fermions in

eq. (2.1) to be in the adjoint representation, the Lagrangian includes, as special cases, SYM

theories with N = 1, 2, 4.

In this paper, we will discuss massive deformations of the Lagrangian (2.1) which

preserve the duality between color and kinematics. We will be particularly interested in

theories with trilinear scalar couplings. Upon reduction to four dimensions, the deformed

Lagrangian is

L = −1

4
(F âµν)2 +

1

2
(Dµφ

âI)2 − 1

2
m2
IJφ

âIφâJ− g2

4
f âb̂êf ĉd̂êφâIφb̂JφĉIφd̂J

− gλ

3!
f âb̂ĉF IJKφâIφb̂JφĉK +

i

2
ψ̄��Dψ −

1

2
ψ̄Mψ +

g

2
φâI ψ̄ΓItâψ . (2.5)

The covariant derivatives are

Dµφ
âI = ∂µφ

âI + gf âb̂ĉAb̂µφ
ĉI , (2.6)

Dµψ = ∂µψ − igtâAâµψ . (2.7)

For the discussion of color/kinematics duality in this section, we will keep general the

representation R of fermionic fields. In later sections we will choose it to be the adjoint.

Following the notation in refs. [31, 74, 80], gauge-theory gauge-group indices are hatted

throughout the paper. Gauge representation indices, fermion global indices, and spacetime

spinor indices are not explicitly displayed in eq. (2.7). I, J = 4, . . . , 3+nS are global indices

running over the number of scalars in the theory. We shall choose the scalar mass matrix
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m2
IJ to be diagonal; moreover, while the fermion mass matrix M can have off-diagonal

entries, we shall assume that its square is also diagonal.

Our conventions are collected in appendix A. We use a mostly-minus metric. The

matrix γ0 is Hermitian and we have the relation (γµ)† = −γ0γµγ0 (µ = 0, 1, 2, 3). Spinors

in the above Lagrangian obey Majorana conditions

ψ̄ = ψtC4ΩgCD−4 , (2.8)

where C4 is the four-dimensional charge-conjugation matrix. Ωg and CD−4 are matrices

acting on the gauge and flavor indices carried by the fermions.4 We also note that reality

of the Lagrangian (2.5) requires that

(ΓI)†γ0 = −γ0ΓI and M †γ0 = γ0M . (2.9)

In the following, it will be convenient to avoid displaying explicitly the flavor/global indices

for the fermions; similarly to spacetime spinor indices, their contraction is realized as matrix

multiplication.

Color/kinematics duality of the massless limit of the bosonic part of the Lagrangian

was established in [64]. Demanding that it also holds for the four-fermion, four-scalar

and two-fermion-two-scalar amplitudes of the complete Lagrangian yields constrains on

the scalar and fermion mass matrices and the three-index tensor F IJK . We shall derive

and solve them in the following sections. A study of the five-point amplitudes reveals no

additional constraints.

2.1 Four-fermion amplitudes

To write down the four-fermion amplitude it is convenient to introduce the (4 + nS)-

dimensional Dirac matrices

ΓA =

{
γµ ⊗ 1l µ = A < 4

γ5 ⊗ ΓI I = A ≥ 4
. (2.10)

Denoting collectively the spacetime and flavor spinor indices as a1, . . . a4, we can write the

four-fermion amplitude in a compact form as5

A4

(
1ψı̂1a1 , 2ψı̂2a2 , 3ψı̂3a3 , 4ψı̂4a4) =

∑
A

ig2

s−m2
A

(
(CDΓA)a1a2(CDΓA)a3a4

)
tâı̂1 ı̂2t

â
ı̂3 ı̂4 + Perms ,

(2.11)

where the matrix CD is CD = C4CD−4 and m2
A denotes the mass of the particle exchanged

in the s channel. For the four-dimensional components of the index A, the exchanged

particle is a vector field, so the mass vanishes; for A ≥ 4, this particle is a scalar field so

the mass is the relevant entry of the scalar mass matrix in eq. (2.5).

4More concretely, for adjoint fermions Ωg is the identity matrix. For fermions in a pseudo-real represen-

tation, Ωg is a unitary antisymmetric matrix which relates the generators of the gauge-group representation

to the generators of the conjugate representation.
5We define tâı̂1 ı̂2 with lower indices as (Ωgt

â)ı̂1 ı̂2 , i.e. the representation indices ı̂1, . . . , ı̂4 for the gauge

matrices have been lowered with Ωg.
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Every term in this amplitude is manifestly gauge invariant so, a priori, we need not

impose any specific correlation between color factor relations and kinematic factor relations.

If however we double-copy eq. (2.11) with vector amplitudes and expect to obtain an

amplitude that is invariant under local supersymmetry, then the numerators should be

required to obey relations analogous to those of the color factors.

For fermions in the adjoint representation the color factors obey the Jacobi identity

tâı̂1 [̂ı2
tâı̂3 ı̂4] = 0 . (2.12)

Since we will interpret the mass of the exchanged particle as being induced through dimen-

sional reduction and, moreover, it does not appear explicitly in the numerator factors, it

is natural that we demand that the numerators obey the same relation as if all exchanged

particles were massless. Stripping away the fermion wave functions (since the numerator

relation should hold for all values of momenta), the kinematic relation dual to eq. (2.12)

reduces to

(CDΓA)a1[a2(CDΓA)a3a4] = 0 , (2.13)

up to a possible projector enforcing the chirality of fermion wave function. This condi-

tion can be satisfied if the theory is a YM theory with one irreducible spin-1/2 fermion

in dimensions6 D = 3, 4, 6, 10; it is equivalent to requiring that the supergravity theory

obtained from a double copy has supersymmetry restored in the massless limit (the gauge

theory itself is not supersymmetric if bosons and fermions have different representations).

Upon dimensional reduction the color-factor relation is decomposed into representations of

the unbroken lower-dimensional gauge group, similarly to the case of vector-field scattering

amplitudes. Thus, the numerator relation (2.13) continues to be the appropriate one for

double-copy constructions in which massive fermions combine with massive W bosons.

Starting from section 3, we will focus on the case where the range of the indices is

I, J = 4, . . . , 9, i.e. when the theory is a massive deformation of N = 4 SYM. In this case,

the spinors obey the chirality condition

Γ11ψ ≡ [Γ∗6 ⊗ γ5]ψ = ψ , (2.14)

where Γ11, γ5 and Γ∗6 are the chirality matrices in 10, 4 and 6 dimensions, which we take to

be Hermitian. We also note that the matrix M needs to obey the condition

{M,Γ11} = 0 , (2.15)

for the mass term to be consistent with the chirality projection in ten dimensions. These

constraints ensure that the number of degrees of freedom is that of N = 4 SYM theory.

2.2 Two-fermion two-scalar amplitudes

The two-fermion-two-scalar amplitude given by the Lagrangian (2.5) is

A4

(
1ψ̄ı̂1 , 2ψı̂2 , 3φ

âI , 4φb̂J
)

= ig2v̄2ΓI ��p1 +��p4 +M

(p1 + p4)2 +M2
ΓJu1 (tâtb̂) ı̂1

ı̂2
+ (3↔ 4)

+ g2v̄2
��p3 −��p4

(p1 + p2)2
u1δ

IJ f âb̂ĉ(tĉ) ı̂1
ı̂2

+ ig2λF IJK
v̄2ΓKu1

(p1 + p2)2
f âb̂ĉ(tĉ) ı̂1

ı̂2
. (2.16)

6It also trivially holds in D = 2 because of over-antisymmetrization.

– 7 –



J
H
E
P
0
6
(
2
0
1
9
)
0
9
9

As mentioned previously, we do not display explicitly global indices for the spinor wave-

functions and take them contracted through matrix multiplication. The spinor polariza-

tions obey the massive Dirac equation with a possibly off-diagonal mass matrix

(�p+M)u = 0 , v̄(�p−M) = 0 . (2.17)

While the spinors u and v should be present in the color/kinematics-duality constraints

on the numerators, their momentum dependence allows us to strip them off; their only

remnant is a projector enforcing their chirality properties. In odd dimensions, the resulting

constraints are

(1)
{

ΓI ,ΓJ
}

= −2δIJ , (2.18)

(2) ΓIΓJM + ΓIMΓJ −MΓJΓI − ΓJMΓI + iλF IJKΓK = 0 . (2.19)

In even dimension, the second equation is modified to include the chirality projector P+:

(2′)
(
ΓIΓJM + ΓIMΓJ −MΓJΓI − ΓJMΓI + iλF IJKΓK

)
P+ = 0 . (2.20)

A similar version of this relation, in which M also acts on flavor indices, can be obtained

when more than one irreducible spinor is present (as in the theories considered in ref. [31]).

2.3 Four-scalar amplitudes

To find the constraints stemming from color/kinematics duality on the trilinear bosonic

interactions, we analyze the four-scalar amplitudes. The kinematic numerators determin-

ing the scattering amplitude of four massless scalars following from the Lagrangian (2.5),

A4

(
1φI , 2φJ , 3φK , 4φL

)
, are

ns = δIJδKL(t− u) + s(δILδJK − δIKδJL)− λ2F IJMFKLM , (2.21)

nu = δIKδJL(s− t) + u(δIJδKL − δILδJK)− λ2FKIMF JLM , (2.22)

nt = δILδJK(u− s) + t(δIKδJL − δIJδKL)− λ2F JKMF ILM . (2.23)

Imposing the numerator identity

ns + nu + nt = 0 (2.24)

results in Jacobi relations that need to be obeyed by the F IJK-tensors, which are then

identified as the supergravity gauge-group structure constants, as explained in ref. [64].

To understand the constraints we impose on scattering amplitudes with massive scalar

fields, it is important to recall that, on the one hand, these amplitudes are double-copied

with amplitudes with massive vector fields and, on the other, the resulting supergravity

amplitudes should exhibit standard gauge invariance from a higher-dimensional perspec-

tive [74]. It is natural to assign complex representations to massive scalars. Moreover, when

viewed as numerators in a higher-dimensional theory, the scalar amplitudes’ numerators

should obey standard Jacobi relations.
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The amplitudes with four scalars of identical mass, A4

(
1ϕi, 2ϕj , 3ϕk̄, 4ϕl̄

)
, are given

by cubic graphs with numerators7

ns = (s−m2
s)(δ

il̄δjk̄ − δik̄δjl̄)− λ2F ijm̄Fmk̄l̄ , (2.25)

nu = δik̄δjl̄(s− t)− uδil̄δjk̄ + λ2F aik̄F ajl̄ , (2.26)

nt = δil̄δjk̄(u− s) + tδik̄δjl̄ − λ2F ajk̄F ail̄ . (2.27)

The terms independent of the tensor F are due to either vector-field exchange or the quartic-

scalar interaction. The mass dependence in numerators appears from resolving the quartic

scalar vertices into cubic graphs. Due to representation assignment, it is natural to associate

a zero mass to the propagators for the t, u channels; the s channel could potentially be

assigned a nonzero mass ms, as shown. This is a consequence of the structure of color and

kinematics factors in scattering amplitudes involving massive W bosons which double-copy

with this amplitude.8

Requiring the kinematic numerator relation for amplitudes in theories with at least two

types of massive scalars implies that the F -tensor and the s-channel mass are related as

λ2
(
F ijm̄Fmk̄l̄ − F aik̄F ajl̄ + F ajk̄F ail̄

)
−m2

s(δ
il̄δjk̄ − δik̄δjl̄) = 0 . (2.28)

The case of theories with a single massive scalar must be considered separately; in that case

the quartic scalar does not contribute to the s-channel because the relevant combination

of Kronecker-delta functions, (δil̄δjk̄ − δik̄δjl̄), vanishes by symmetry. Thus, thre is no s-

channel mass term and consequently the F tensor should obey a standard Jacobi identity:

F ijm̄Fmk̄l̄ − F aik̄F ajl̄ + F ajk̄F ail̄ = 0 . (2.29)

In the following sections, we will solve the constraints (2.19), (2.20) on F and, if more than

one massive scalar are present, we will determine their masses from eqs. (2.28).

2.4 Solution for general F IJK in D dimensions

Before focusing on the case of N = 4 SYM theory, which descends from N = 1 SYM theory

in ten dimensions and hence corresponds to a six-dimensional internal space, we may

consider the general case with an unconstrained number of internal dimensions.

If we assume that F IJK is given, the general solution of the equation

ΓIΓJM + ΓIMΓJ −MΓJΓI − ΓJMΓI + iλF IJKΓK = 0 (2.30)

7Note that other equivalent numerator factors may be used in particular cases. For example, the s-

channel numerator can be set to zero for massive scalar amplitudes in the N = 2∗ theory and in N = 2

SQCD [26, 32, 81].
8Indeed, interpreting the mass of W bosons as momentum in higher dimensions [74] implies that higher-

dimension color factors obey standard Jacobi relations. Upon dimensional reduction, color factors are

decomposed following the breaking of the adjoint representation of the higher-dimensional gauge group;

while some resulting components of the higher-dimensional color factor vanish, they come with a nonvan-

ishing kinematic numerator and contribute to the double copy [82].
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is the sum of the general solution of the homogeneous (F IJK = 0) equation and of a

particular solution of the inhomogeneous (F IJK 6= 0) equation. Thus, defining X =

{ΓI ,M}, for the homogeneous solution we need to solve[
X,ΓJ

]
= 0 . (2.31)

This implies that X also commutes with all the antisymmetrized products, ΓI1...In of Dirac

matrices. As these products form a basis in the space of matrices, it follows that {ΓI ,M} ∝
I. In turn this equation implies that M is a linear combination of Γ matrices. Thus, the

general solution of the homogeneous (F IJK = 0) part of eq. (2.30) is

M = uLΓL , (2.32)

where uL are free parameters of unit mass dimension.

For the particular solutions we may distinguish between two cases: (1) The F IJK are

structure constants of a simple Lie algebra, (2) the F IJK have a more general interpretation

(e.g. F IJK do not satisfy the Jacobi identity). For the first case, one can argue that M

should be linearly related to F IJK and moreover the adjoint Lie algebra indices need to be

contracted with gamma matrices for the group symmetry not to be broken. With this in

mind, a particular solution to eq. (2.30) is given by

M = i
λ

4!
FIJKΓIJK . (2.33)

To show that eq. (2.33) is a solution, one needs only use that FIJK is totally antisymmetric;

thus, eq. (2.33) solves eq. (2.30) even if FIJK does not obey the Jacobi identity.

Retuning to F IJK being the structure constants of a Lie algebra, it is not difficult

to find the corresponding generators. Defining T I ≡ {ΓI ,M}, one can show that after

anti-commuting eq. (2.30) with M one obtains

0 =
{[
{ΓI ,M},ΓJ

]
+ iλF IJKΓK ,M

}
=
[
T I , T J

]
−
{[
M2,ΓI

]
,ΓJ

}
+ iλF IJKTK . (2.34)

If, for a moment, we restrict our attention to the case where M2 is proportional to the

identity, then the commutator
[
M2,ΓI

]
vanishes and eq. (2.34) becomes the defining rela-

tion for a Lie algebra. However, such an M2 ∝ I is not the generic situation. Instead, we

can investigate directly the commutation properties of T I introduced above. Using their

explicit form,

T I ≡ {ΓI ,M} = i
λ

4
F JIKΓJΓK , (2.35)

their commutator is[
T I , T J

]
=
λ2

4

(
F ILKFKJM − F IMKFKJL

)
ΓLΓM

Jacobi
= −iλF IJKTK , (2.36)

where, in the last equality, we used the Jacobi identity for F IJK . Thus, the T I are Lie-

algebra generators precisely when F IJK are structure constants of a Lie algebra. From

eq. (2.34), we can conclude that
{[
M2,ΓI

]
,ΓJ

}
= 0 whenever F IJK comes from a Lie
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algebra. This relation relies on the Jacobi identity and can be confirmed through direct

calculation. The general solution to eq. (2.30) obtained by combining (2.32) and (2.33) is

M = uLΓL + i
λ

4!
FIJKΓIJK . (2.37)

It is interesting to compute the squared mass matrix. One obtains

M2 =
1

2
{M,M} = −

(
uI − 1

2
T I
)2
− λ2

48
F IJKFKJI , (2.38)

which is in general not proportional to the unit matrix because of the appearance of T I .

Note that in our conventions M is anti-Hermitian, hence M2 is negative definite.

As a further generalization, note that if we do not take the FIJK as given, linearity of

eq. (2.30) allows us to superpose several particular solutions for different structure constants

and couplings, through the replacement

λFIJK → λFIJK + λ′F ′IJK + . . . (2.39)

in all of the above formulas.

It should be emphasized that this is the most general C/K-duality-satisfying theory

obtained as a massive deformation of the Lagrangian (2.1) in which only fermions and

scalars acquire masses and the FIJK-tensors obey Jacobi relations.9 In principle, we can

also consider a replacement of the form (2.39) in which some of the indices in the structure

constants overlap. In this case we can no longer interpret them as belonging to the adjoint

of a given gauge group. Ultimately, whether the FIJK-tensors obey a conventional or

modified Jacobi identity is the result of imposing color/kinematics duality on four-scalar

amplitudes in the gauge theory entering the double-copy construction.

3 Massive deformations of N = 4 SYM theory

To focus on double-copy constructions of gaugings of N = 8 supergravity with Minkowski

vacua (which also posses some unbroken global symmetry), we discuss in detail solutions

to the constraint (2.19) which reduce to N = 4 SYM theory in the massless limit. To

this end, we will take fermions to also transform in the adjoint representation of the gauge

group and we will set the number of scalar fields nS = 6. We will start from a massive

deformation of N = 4 SYM which solves eq. (2.19) in dimension higher than four and use a

combination of Higgsing and orbifolding to construct a four-dimensional theory which still

obeys color/kinematics duality. Hence, it will make sense to collect the solutions of our

constraint into two groups according to whether or not they admit an uplift to dimension

higher than four.

9More general theories can in principle be considered which include massive vector fields in matter

representations. In the following sections we will focus on the case in which vector masses (and additional

representations) are obtained by going on the Coulomb branch of the theory.
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3.1 Solutions that uplift to D > 4

Solutions which admit uplift to higher dimensions, organized following their unbroken

symmetry and mass spectra, are:

i. SO(5). We take

M = uΓ9 , F IJK ≡ 0 . (3.1)

The fermion mass term in this case is the one obtained by giving a vacuum expectation

value to φ9. Only one fermionic mass is present in the spectrum. The solution can be

uplifted up to 9D and can also be obtained from the spontaneously-broken theory of

ref. [74] by orbifolding away bosonic fields in massive vector multiplets and fermionic

fields in massless vector multiplets.

ii. SU(2)× SU(2): the interesting solution. We take

M = i
λ

4
Γ789 , F 789 = 1 . (3.2)

There is a single mass in the spectrum which is given by10 m1 = λ/4. This solution is

the analog of the D-dimensional solution presented in section 2.4 and can be uplifted

up to seven dimensions. Note that only one of the two SU(2) factors is reflected by

the trilinear scalar couplings.

iii. SU(2)R: the N = 2∗ theory. To look for solutions preserving some supersymme-

try, we employ a complex basis for the Dirac matrices, splitting the SO(6) index I

as I = (4, 5, 1, 1̄, 2, 2̄). This decompostion makes the SU(2) ⊂ SU(4) subgroup man-

ifest which will be the surviving R-symmetry. A natural Ansatz preserving SU(2)

symmetry is

M =
λ

4
Γ511̄ +

λ

4
Γ522̄ , F 5i̄ = iδi̄ . (3.3)

It is easy to see that the square of the mass matrix is proportional to a half-rank

projector,

M2 = −λ
2

8

(
1 + Γ11̄22̄

)
, (3.4)

suggesting that this choice corresponds to the N = 2∗ theory. Since in this case

supersymmetry requires that two scalar fields are massive, the relevant numerator

identity is (2.28). It fixes the mass for the s-channel exchange to be

F 511̄F 522̄ −m2
s = 0 → ms = λ . (3.5)

Hence, the two complex scalars have mass m1 = λ/2.11 This theory can be uplifted

to five dimensions.

10In our convention the physical masses are given by the eigenvalues of −M2 (M is negative-definite).
11The mass of the s-channel (λ) is twice the mass of individual external states (λ/2) this is a consequence of

mass conservation in the vertices of the theory, which in turn can be related to the flow of compact momenta.
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iv. SO(2) × SO(2): hybrid solutions. Since the constraint (2.19) is linear in M ,

further solutions can be obtained by linearly superposing solutions (i) and (ii) or

solutions (i) and (iii).12 For example, a three-parameter family of solutions is given by

M = i
λ

4
Γ789 + u1Γ9 + u2Γ6, F 789 = 1 . (3.6)

There are two distinct fermionic masses:

m2
1,2 = (λ/4± u1)2 + (u2)2 . (3.7)

We note that, in this case, the gauge symmetry of a supergravity obtained through

the double copy is spontaneously broken. This solution can be uplifted up to 6D (or

7D, if u2 = 0).

We stress that the list above is not exhaustive. Rather, it reflects our choice of focusing

on gaugings of N = 8 supergravity which possess some residual global symmetry and a

non-Abelian unbroken gauge group.

3.2 Solutions in D = 4

While we shall not discuss constructions that are indigenous to four dimensions, we include

here for completeness solutions to eq. (2.19) that cannot be uplifted to higher dimensions:

v. SU(2)× SU(2). We take

M = i
λ1

4
Γ789 + i

λ2

4
Γ456 , λF 789 = λ1, λF 456 = λ2 . (3.8)

The mass is given by m2 = λ2
1/16 + λ2

2/16.

vi. SO(2)× SO(2). A four-parameter family of solutions is obtained with

M = i
λ1

4
Γ789 + i

λ2

4
Γ456 + u1Γ6 + u2Γ9, λF 789 = λ1, λF 456 = λ2 . (3.9)

This solution is in a sense a superposition from solutions (i) and (v). There are four

distinct fermionic masses given by

m2
1,2,3,4 = (λ1/4± u1)2 + (λ2/4± u2)2 . (3.10)

.

3.3 Relation between gauge-theory trilinear couplings and supergravity gauge

group

Looking ahead to the supergravity theories produced by the double-copy construction with

the ingredients presented in this section, it is important to point out that the symmetries

used in this section to classify the massive deformations do not necessarily become gauged

12Solutions (ii) and (iii) can also be superposed, but the result has no surviving symmetry and we do not

consider such cases here.
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in the resulting supergravity theory. Rather, the non-Abelian part of the supergravity

gauge symmetry can be related to the symmetries of the trilinear scalar couplings.

In particular:

• If three massless adjoint scalars enter a trilinear coupling in one of the gauge theories,

the corresponding F IJK-tensor will give (part of) the structure constants of the

supergravity unbroken gauge group.

• If two massive (matter) and one massless (adjoint) scalars enter a trilinear coupling

in one of the gauge theories, the supergravity theory will have an unbroken U(1)

factor under which the supergravity fields constructed out of the massive scalars will

be charged.

• If a spontaneously-broken gauge theory enters the construction, a U(1) factor is also

produced since these theories generically have couplings between the massless scalar

acquiring the VEV and pairs of massive scalars.

• In general, supergravity U(1) photons will be linear combinations of massless vectors

with different double-copy origins. The correct linear combination is often obtained

by the requirement that vector fields which remain massless are not charged under

the U(1) symmetry.

For example, the deformation (ii) is characterized by its SU(2) × SU(2) global symmetry.

Its trilinear couplings, however, correspond to a single SU(2) factor in the supergravity

gauge group.

4 Gaugings of N = 8 supergravity with Minkowski vacua

In this sections, we use the theories identified in the previous sections to formulate double-

copy constructions for amplitudes in three distinct gaugings of N = 8 supergravity. Our

construction follows three-steps:

1. We start from a massive deformation of N = 4 SYM which satisfies the con-

straint (2.19) in dimension higher than four.

2. We take the theory on the Coulomb branch by assigning compact momenta to some

of the fields, as explained in ref. [74]. This step generates various matter fields which

are, in general, not in the adjoint representation.

3. We use an orbifold projection [29] to truncate away some of the fields such that,

through double copy, the remaining ones reproduce in the massless limit the field

content of ungauged N = 8 supergravity.

The last two operations preserve color/kinematics duality, and hence yield a lower-dimen-

sional theory which can be used in the double-copy method.

Indeed, assigning compact (higher-dimensional) momenta to some of the fields breaks

the gauge group G into a (not necessarily semisimple) subgroup, with respect to which
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massive fields transform in various (not necessarily irreducible) matter representations. In

most cases, in the following sections we will take G = SU(N) for some arbitrary N =

N1 + . . .+Nk. The unbroken gauge group will be SU(N1)⊗ . . .⊗ SU(Nk)⊗ U(1)k−1 and

massive fields will transform in various bifundamental representations. Since masses in

the lower-dimensional theory are given by the compact momenta, color/kinematics will be

inherited from the higher-dimensional unbroken theory.

Next, we identify a discrete subgroup Γ ⊂ G×SU(4) which leaves invariant the compact

momenta (or, from the perspective of the lower-dimensional theory, the VEVs of scalar

fields) and project out at the level of the amplitude all asymptotic states which are not

invariant under the transformations

Φ→ Rig
†
iΦgi , ∀ (Ri, gi) ∈ Γ . (4.1)

Here Φ denotes a generic gauge-theory field. Since both SU(4) and G are symmetries of the

Lagrangian and Γ is preserved by the choice of compact momenta, the orbifold realizes a

consistent truncation. Numerator relations in the truncated theory are inherited from those

of the parent theory. The orbifold construction can be easily implemented by introducing

the projector

PΓΦ =
1

|Γ|
∑

(Ri,gi)∈Γ

Rig
†
iΦgi , (4.2)

where |Γ| is the order of the orbifold group. We note that, for theories containing fermions,

we need to impose an additional consistency requirement which guarantees that CPT-

conjugate pairs of fermionic states survive the projection. This translates into

PΓΛgC
−1
6 = Λ∗gC

−1
6 P

∗
Γ , (4.3)

where Λg is a matrix that acts on gauge indices and maps each representation into

its conjugate.

The final product of the above construction is a theory which contains massless fields

in the adjoint representation of the unbroken gauge group13 together with various matter

representations. The effect of steps 1 and 3 above is to produce a theory which is explicitly

broken. It will also be convenient to consider double copies in which one of the theories is

spontaneously-broken, i.e. only step 2 above is implemented.

Combining the numerators of pairs of gauge theories which obey color/kinematics

duality leads, through the double-copy relation

M(L)
n = iL−1

(κ
4

)n−2+2L ∑
i∈cubic

∫
dLD`

(2π)LD
1

Si

niñi
Di

, (4.4)

to gravitational amplitudes (i.e. amplitudes invariant under linearized diffeomorphisms).

At the level of the spectrum, pairs of gauge-theory states correspond to a supergravity state

only when they transform in conjugate gauge-group representations and they have the same

13Since the unbroken gauge group is a product group, the adjoint representation is understood as the

sum of adjoint representations of all the factors.
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Figure 1. Diagrams generically arising when a theory is taken on the Coulomb branch through

assigning compact momenta. In some cases, the third diagram has vanishing color factor but is

formally assigned a nonzero numerator factor. Mass flow follows the direction of the arrow and is

conserved at each vertex.

mass. Consequently, in the above formula, we combine pairs of numerators only when all

lines in the corresponding graphs carry conjugate representations and have propagators

with the same mass squared.

4.1 Consistency requirements

As a consequence of the particular kind of double-copy procedure we are adopting, several

consistency requirements need to be obeyed by the gauge theories entering the construction,

which include:

• Mass matching of spectra between the two gauge theories. Namely, the double copy

requires that only gauge-theory numerators corresponding to the same set of prop-

agators can be combined in the double-copy formula.14 Note that because of this

requirement, we will take the mass matrices squared to be diagonal. Enforcing this

requirement relates the VEV parameters on the two sides of the double copy.

• No massive gravitons. Double copies which involve two massive W bosons combining

to give a massive graviton should be excluded. This amounts to requiring that W

bosons from the two gauge theories cannot be assigned to conjugate representations

(which in turn imposes nontrivial constraints on the choice of orbifold projectors;

such constraints are implemented on a case-by-case basis).

• No Kaluza-Klein towers. As we pointed out previously, there exist amplitudes in

a Coulomb-branch theory that have certain vanishing color factors but non-zero

kinematic numerator factors. This situation arises because Coulomb-branch am-

plitudes are obtained from higher-dimensional massless theories by (1) assigning

compact momenta to some of the higher-dimensional massless fields, resulting in

lower-dimensional masses and (2) modifying the color factors to reflect the breaking

14It should be noted that there exist double copies in which this requirement is relaxed, e.g. the double-

copy construction for conformal supergravities.
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of a larger gauge group. These steps do not alter the higher-dimensional numerator

relations, which generically will be three-term relations mirroring the color factors of

that theory. However, the second step sets some color factors to zero,15 thereby turn-

ing three-term color-factor relations into two-term relations and associating formally

a vanishing color factor to a nonzero numerator factor. If two sets of such numera-

tors are combined in the double-copy formula, the resulting amplitude exhibits poles

that correspond to additional massive states which are not present in the expected

lower-dimensional spectrum. These poles correspond to physical asymptotic states

which need to be added to the theory, thereby reconstructing the full Kaluza-Klein

tower of massive states. Since we will be interested only in theories with a finite

number of fields, we will need to make sure that, whenever one color factor vanishes

in one theory, the corresponding kinematic numerator vanishes in the other theory

(and vice versa).

• States of N = 8 multiplet in the massless limit. Since orbifolding generates states in

various matter representations, we will need to make sure that the spectrum of un-

gauged N = 8 supergravity is recovered in the massless limit. In some cases, this will

force us to combine different irreducible matter representation into a single reducible

representation, to avoid multiple copies of the corresponding supergravity states af-

ter the double-copy.16 Concretely, after Higgsing and orbifolding, a gauge-theory

Lagrangian can be written explicitly in terms of the representation matrices tR1 and

tR2 . Combining these representations implies that the Lagrangian be rewritten only

in terms of tR1⊕R2 . In turn, this requires that parameters of the Lagrangian related

to the VEVs of the scalar fields (or compact momenta) be related in specific ways.

To illustrate this point, let us consider the couplings between massive and massless

scalars in the spontaneously-broken Lagrangian. They have the form [74]

− 2
∑
i

mih
âϕtâRiϕ , (4.5)

where here i labels the matter representations generated by spontaneous symmetry

breaking, h is the Higgs field and mi is the mass (with sign) corresponding to the

i-th representation. These couplings can be rewritten in terms of the representation

matrices of a direct sum of two representations, say tR1⊕R2 , only if the corresponding

mi are equal.

After all requirements are imposed, we have two possible families of constructions. The

first has the schematic form:(
spontaneously-broken

gauging

)
=
(

Higgs-YM theory
)
⊗
(
�SYM theory

)
. (4.6)

15This is because only certain combinations of representations of the unbroken gauge group can label the

structure constants of the original group.
16This is analogous in spirit with treating the adjoint representation of a product gauge group as a single

(reducible) representation rather than decomposing it into its irreducible components. This interpretation

eliminates the possibility of multiple gravitons.
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Orbifold of Coulomb Orbifold of Orbifold

branch of N = 4 SYM N = 2∗ theory of YM theory

(no residual supersymmetry) + massive ferms (ii)

Coulomb branch CSS gauging CSS gauging gauged N = 8

of N = 4 SYM with N = 4 with N = 6 supergravity

residual susy residual susy with SU(2)×U(1)

gauge group and

N = 4 residual susy

Table 1. Double-copy constructions of gravitational theories from the theories discussed in sec-

tion 3, to be discussed in the next section.

In table 1, we list some possible double copies of this class, which will be discussed

in detail in section 5. We emphasize that each entry corresponds to a different orbifold

projection of the higher-dimensional theories on the Coulomb-branch. The consistency

requirements discussed in this section are imposed on a case-by-case basis.

Another class of constructions involves two explicitly-broken gauge theories. The re-

sulting supergravity theory will not possess spontaneously-broken supersymmetry, and can

be thought of as a gauging of N = 8 supergravity with additional explicit supersymmetry-

breaking terms. The schematic form will be:(
explicitly-broken

gauging

)
=
(
�SYM theory

)
⊗
(
�SYM theory

)
. (4.7)

While these theories are not the main focus of this paper, we will also discuss some examples

of this class of theories in the following section.

5 Examples

In this section, we present various examples of double-copy constructions for gaugings of

N = 8 supergravity. We discuss separately the case of spontaneous and explicit supersym-

metry breaking and work out spectra and unbroken gauge groups for the theories under

consideration. For the theory with SU(2)×U(1) unbroken gauge group and spontaneously-

broken supersymmetry, we also work out selected three-point amplitudes.

5.1 Spontaneously-broken gaugings

5.1.1 CSS gauging with N = 6 unbroken supersymmetry

Our simplest example involves, as the first (left) gauge-theory factor, an orbifold of the

N = 2∗ theory. The gauge group is taken to be SU(2N). The N = 2∗ theory has a U(1)

symmetry acting as a complex phase on one half-hypermultiplet and as the conjugate phase

on the other. Denoting with R(θ) the corresponding group element, we orbifold the first

theory as

Φ→ R

(
2π

3

)
g†Φg , gleft = diag

(
IN , e

4π
3
iIN
)
, (5.1)
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Rep. R L Sugra fields mass2

G V(0)
N=2 V(0)

N=4 HN=6 0

R Φ+
N=2 V(m)

N=4 Ψ
(m)
N=6 u2

R̄ Φ−N=2 V(m)
N=4 Ψ

(m)
N=6 u2

Table 2. Fields and mass spectra for the CSS gauging of N = 8 supergravity with N = 6 residual

supersymmetry. V(0)
N=N and V(m)

N=N denote massless and massive vector multiplets, while HN=N

and Ψ
(m)
N=N denote graviton and massive gravitini multiplets, respectively. Φ±N=2 denote the two

half-hypermultiplets.

where Φ denotes a generic field of the theory. The net result of this operation is a theory

with SU(N)× SU(N)×U(1) unbroken gauge group and matter fields in its bifundamental

representation. Writing an SU(2N) group element as a 2 × 2 block matrix with N × N
entries, the fields of the theory populate it as(

V(0)
N=2 Φ+

N=2

Φ−N=2 V
(0)
N=2

)
, (5.2)

where Φ±N=2 are the two half-hypermultiplets which transform in the bifundamental rep-

resentation R of SU(N) × SU(N) × U(1) and its conjugate R̄. For the second (right)

gauge theory we take N = 4 SYM on the Coulomb branch, with VEV given to one of the

scalars as

〈φ4〉 =
1

g
diag

(
uIN ,−uIN

)
.

In this simple example, we do not need to combine any representations and u is the only

free parameter. Mass matching implies that the hypermultiplet mass be equal to u. The

resulting spectrum is given in table 2 and corresponds to the spectrum of CSS gauging with

N = 6 supersymmetry.17 The unbroken gauge group is U(1), as it can be inferred from the

trilinear scalar coupling between φ4 and two massive scalars in the spontaneously-broken

gauge-theory factor.

It is instructive to also consider a different realization of the same gauging which arises

by starting from a SO(N+2) gauge group. The left gauge theory is obtained orbifolding by

Φ→ R
(
π
)
g†Φg , gleft = R̃(π) , (5.3)

where R̃(θ) is a freely-chosen rotation matrix in SO(N + 2) and R(θ) is the same U(1)

element as before. The result of the orbifold projection is a theory with an N = 2 vector

multiplet in the adjoint of SO(N) × SO(2) and a hypermultiplet in the bifundamental

representation (N, 2). The right theory is N = 4 SYM on the Coulomb branch with a

17We should note that CSS gaugings can be interpreted as gauging noncompact semidirect product groups

of the form U(1)nTm where m ≤ 24 [83]. In this case m = 12 and the 12 massive vector fields correspond to

the 12 non-compact translation generators. The vacuum of the theory is invariant only under the compact

U(1) subgroup.
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Rep. R L Sugra fields mass2

G Aµ, φ
i V(0)

N=4 HN=4 ⊕ 6V(0)
N=4 0

R ψr V(m)
N=4 4Ψ

(m)
N=4 u2

Table 3. Fields and mass spectra for the CSS gauging of N = 8 supergravity with N = 4 residual

supersymmetry.

VEV realizing the breaking pattern SO(N + 2)→ SO(N)× SO(2),

〈φ4〉 =
u

g


0 1 · · · 0

−1 0 · · · 0

· · · · · · · · ·
0 0 · · · 0

 .

We have chosen without any loss of generality the matrix R̃(θ) to act nontrivially on the

first two directions. The main difference of this variant of the construction is that both the

hypermultiplet and the massive N = 4 vector multiplet are in real representations. The

spectrum is equivalent to the one given in table 2, but now the bifundamental representation

and its conjugate are not treated as distinct and the orbifold action does not separate the

two halves of the hypermultiplet.

5.1.2 CSS gauging with N = 4 unbroken supersymmetry

The CSS gauging with N = 4 residual supersymmetry is the closest analog to the con-

struction given in ref. [71] and is obtained by starting from a SO(N + 2) gauge group and

orbifolding by

Φ→ (−1)F g†Φg , gleft = R̃(π) , (5.4)

where R̃(θ) is the same matrix as in the previous subsection and F is the fermion number.

The orbifold projection breaks SO(N + 2) → SO(N) × SO(2) with the surviving fields

organized as (
Aµ, φ

i ψr

ψr Aµ, φ
i

)
, (5.5)

with i = 1, . . . , 6 and r = 1, . . . , 4. Hence, in this case the orbifold construction breaks

supersymmetry completely. We double-copy this theory with N = 4 SYM on the Coulomb

branch with VEV as in the previous subsection,

〈φ4〉 =
u

g


0 1 · · · 0

−1 0 · · · 0

· · · · · · · · ·
0 0 · · · 0

 .

The spectrum is listed in table 3 and the gauge group is U(1), as before.
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5.1.3 SU(2)×U(1) gauging with N = 4 unbroken supersymmetry

This is our main non-Abelian example. We start from a copy of the theory (ii) from

section 3 in seven dimensions and take the gauge group to be SU(3N). We orbifold the

theory by projecting out states which are not invariant under the transformation

ψ → e
2π
5

Γ56g†ψg , φ→ R56

(
4π

5

)
g†φg, g = diag

(
IN , e

i 2π
5 IN , e

i 4π
5 IN

)
, (5.6)

where R56(θ) is the matrix generating rotations on the 5-6 plane. To make sure that this

transformation is a symmetry of the Lagrangian, we take the scalar mass-matrix to be

m55 = m = m66 , mIJ = 0 otherwise .

After the projection, the fields of the theory are organized as follows:Aµ, φ
i ψr φ+

ψ̃r
′
Aµ, φ

i ψr

φ− ψ̃r
′
Aµ, φ

i

 , (5.7)

where i = 4, 7, 8, 9, r = 1, 2, r′ = 3, 4, and φ± = φ5 ± iφ6. In order to end up with a

number of states reproducing the spectrum of N = 8 supergravity, we need to combine the

representations (N, N̄, 1) with (1, N, N̄) and the representation (N̄ ,N, 1) with (1, N̄ , N)

into (reducible) representations which are denoted as R1, R̄1. The representations are

organized as follows:  G R1 R2

R̄1 G R1

R̄2 R̄1 G

 . (5.8)

We then want to double-copy this theory with N = 4 SYM on the Coulomb branch. This

theory is obtained by taking a VEV of the form

〈φ4〉 =
1

g
diag

(
u1IN , u2IN , u3IN

)
, u1 + u2 + u3 = 0 .

Since the representations which have been combined need to have the same VEV parameter

(or, alternatively, the same mass), we get the condition

u1 − u2 = u2 − u3 → u2 =
u1 + u3

2
= 0 .

In addition, by matching the mass spectra of the two theories we find that

M2 = −λ
2

16
= −u2

1 , m2 = 4u2
1 . (5.9)

We list the fields from the double copy with their respective mass spectra in table 4.

The vacuum of this theory has an unbroken SU(2) × U(1) gauge group and preserves

N = 4 supersymmetry. The SU(2) factor in the gauge group originates from the trilinear

coupling between three massless scalars of the theory (ii) from section 3. This gauging
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Rep. R L Sugra fields mass2

G Aµ ⊕ φi V(0)
N=4 HN=4 ⊕ 4V(0)

N=4 0

R1 ψr V(m)
N=4 2Ψ

(m)
N=4 u2

1

R̄1 ψ̃r
′ V(m)

N=4 2Ψ
(m)
N=4 u2

1

R2 φ+ V(m)
N=4 V(m)

N=4 4u2
1

R̄2 φ− V(m)
N=4 V(m)

N=4 4u2
1

Table 4. Fields and mass spectra for the gauging of N = 8 supergravity with N = 4 residual

supersymmetry. The spectrum and unbroken gauge symmetry in the ground state correspond to

the CSO∗(4, 4) with noncompact gauge group SO∗(4) and maximal compact subgroup SU(2)×U(1)

in the notation of [21].

has been previously obtained in ref. [21] using the embedding tensor formalism. It was

labelled as a CSO∗(4, 4) gauging with noncompact gauge group SO∗(4)nT 16 whose maximal

compact subgroup is SU(2)×U(1). In this gauging, 22 of the 28 vectors become gauged and

6 remain untouched. 18 of the 22 vectors become massive due to spontaneous symmetry

breaking of the non-compact gauge group.18 The two massive noncompact gauge fields of

SO∗(4) belongs to two massive N = 4 BPS multiplets.

To gain additional information on this gauging, we study amplitudes between two

massive and one massless vectors. We choose specific polarizations for the external states

and write the massive spinor polarizations as

u− =

(
−MU−

|q]
[i⊥q]

U−|i⊥〉

)
, v̄+ =

(
U †−[i⊥| −U †−

〈q|
〈i⊥q〉M

)
. (5.10)

Here U± are four component Weyl spinors with positive/negative 6D chirality (see ap-

pendix A for details). The relevant double-copy amplitudes are19

A
(
ψ̄+ψ−φ

i
)
⊗A

(
ψ̄+ψ−A+

)
=
−iκ
2
√

2
Ω

(
(U †1−MΓiU2−)(V †1−V2−)

−k1 · q
k2 · q

(U †1−ΓiMU2−)(V †1−V2−)

)
(5.11)

where U1− and U2− are both 6D spinors with negative chirality and we introduce the

short-hand notation:

Ω =
[1⊥3⊥]3

[1⊥2⊥][2⊥3⊥]
, Ω± =

(
1± k1 · q

k2 · q

)
Ω .

18Here we should point out that a subtle issue regarding the uniqueness of the identification of the

gauged supergravity theory obtained by the double-copy methods. It was shown in [84] that there exist two

inequivalent gaugings of maximal supergravity theory with the same gauge group [SO∗(4)× SO∗(4)] n T 16

and identical spectra which have different uplifts to ten dimensions. These two gaugings are related by

some outer automorphism. Our identification is modulo such possible ambiguities.
19We note that an extra factor of 1/2 comes from the normalization of the gauge-group generators in the

double-copy formula.
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To rewrite the expressions above in a more transparent form, we choose ten-dimensional

Γ matrices which are listed in appendix B. We now need to introduce some additional

notation. We label the massive vector fields constructed as the product of two spin-1/2

fields as Wµξa, where µ is a spacetime index, a = 1, 2, 3, 4 is a SO(5) R-symmetry spinor

index and ξ = 1, 2 is an additional index labelling the massive gravitino multiplet to which

the massive vector field belongs. In addition, Wµξa has a gauge SU(2) fundamental index

which is not explicitly displayed. Denoting by W
ξa
µ the conjugate field, we have a total of

16 massive vectors belonging to massive gravitini multiplets. They are complemented with

two massive vectors W and W which belong to two distinct massive vector multiplets and

are not charged under the SU(2) part of the gauge group.

Apart from massive vectors, the theory also contains 10 massless vectors. Vectors

constructed combining a scalar field from the explicitly-broken theory with a vector in

the spontaneously-broken theory are labeled as A4
µ, A

i
µ (i = 7, 8, 9). Their indices are

inherited from the gauge-theory scalars. Vectors constructed combining a scalar field from

the spontaneously-broken theory with a vector in the explicitly-broken theory are labeled

as Ã4
µ, Ã

I
µ (I = 5, 6, 7, 8, 9). Using Ω± defined above, the amplitudes involving two massive

and one massless vectors with our specific choice of external polarizations are

M3

(
1W

ξa
+ , 2W−ζb, 3A

i
+

)
= −i κ

2
√

2
(λ/4)δξζδ

a
bσ

i−6 Ω− , i = 7, 8, 9 (5.12)

M3

(
1W

ξa
+ , 2W−ζb, 3A

4
+

)
= −i κ

2
√

2
(λ/4)δξζδ

a
b Ω+ , (5.13)

M3

(
1W

ξa
+ , 2W−ζb, 3Ã

4
+

)
= −i κ

2
√

2
(λ/4)δξζδ

a
b Ω− , (5.14)

M3

(
1W

ξa
+ , 2W−ζb, 3Ã

I
+

)
= −i κ

2
√

2
(λ/4)δξζ(Γ̃

4I)ab Ω+ , I = 5, . . . , 9 , (5.15)

where the subscripts label the vectors’ polarizations. We recall that Ã4
µ is the vector

field originating from the scalar acquiring the VEV in the spontaneously-broken gauge

theory. The Pauli matrices σ1,2,3 act on the gauge SU(2) fundamental indices which are not

explicitly displayed. Γ̃5I are the R-symmetry generators. Additional amplitudes involving

one or more massless vectors are:

M3

(
1Ai+, 2A

j
−, 3A

k
+

)
=
√

2κ(λ/4)εijkΩ , (5.16)

M3

(
1W+, 2W−, 3Ã

4
+

)
= i

κ

2
√

2
(λ/4)(Ω− − Ω+) . (5.17)

To further elucidate the meaning of these amplitudes, we recall that the spinor-helicity

structures above correspond to the following covariant terms:

Ω−√
2

= (pW̄ − pW ) · εA (εW · εW̄ )− (pA · εW̄ )(εA · εW ) + (pA · εW )(εA · εW̄ )

→ D[µWν]D
µW ν (5.18)

Ω+

√
2

= −(pA · εW̄ )(εA · εW ) + (pA · εW )(εA · εW̄ ) → iWµF
µνWν . (5.19)

Hence, we see that A7,8,9
µ become the three SU(2) gluons. Furthermore, the combination

gsg = κλ/4 (5.20)
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appears both inside covariant derivatives and field strengths and is identified with the

supergravity gauge coupling constant.20 The U(1) photon is the linear combination of the

vectors A4
µ = φ4⊗Aµ and Ã4

µ = Aµ⊗φ4 which does not belong to the gravity supermultiplet.

While all 10 massless vectors are associated to nonzero three-point amplitudes in (5.12)–

(5.15), the amplitudes proportional to the spinor-helicity structure Ω− involve the gauge

fields and, from a Lagrangian perspective, originate from the covariant derivatives. In

contrast, (5.13) and (5.15) have a different interpretation. With some work, it is possible

to show that these amplitudes are related by supersymmetry to amplitudes involving a

graviton, a longitudinal mode of a W boson, and a transverse mode of a W boson. From

a Lagrangian perspective, these originate from the kinetic terms of the massive W bosons.

5.2 Explicitly-broken theories

5.2.1 Example with N = 4 unbroken supersymmetry

In this case, we start from two copies of the N = 2∗ theory (iii). The gauge group is now

taken to be SU(4N). Denoting with R(θ) the U(1) transformation acting on the two halves

of the hypermultiplet with conjugate phases, we orbifold the first theory as

Φ→ R

(
2π

3

)
g†Φg , gleft = diag

(
IN , IN , e

4π
3
iIN , e

2π
3
iIN
)
. (5.21)

The second theory is orbifolded as

Φ→ R

(
2π

3

)
g†Φg , gright = diag

(
IN , e

2πi
3 IN , e

4πi
3 IN , e

4πi
3 IN

)
. (5.22)

For the scalar VEVs for the two theories we take

left : 〈φ4〉 =
1

g
diag

(
u1IN , u2IN , u3IN , u4IN

)
,

right : 〈φ4〉 =
1

g
diag

(
ũ1IN1 , ũ2IN , ũ3IN , ũ4IN

)
, (5.23)

with u1 + u2 + u3 + u4 = 0 = ũ1 + ũ2 + ũ3 + ũ4. Schematically, we get the following

organization for the fields of the two theories:
V(0)
N=2 V(m)

N=2 Φ+
N=2 Φ−N=2

V(m)
N=2 V(0)

N=2 Φ+
N=2 Φ−N=2

Φ−N=2 Φ−N=2 V(0)
N=2 Φ+

N=2

Φ+
N=2 Φ+

N=2 Φ−N=2 V(0)
N=2

 ⊗


V(0)
N=2 Φ+

N=2 Φ−N=2 Φ−N=2

Φ−N=2 V(0)
N=2 Φ+

N=2 Φ+
N=2

Φ+
N=2 Φ−N=2 V(0)

N=2 V(m)
N=2

Φ+
N=2 Φ−N=2 V(m)

N=2 V(0)
N=2



t

. (5.24)

As before, some representations need to be combined, which results on constraints on

the corresponding VEV parameters. We have the following representation structure for

both theories: 
G R1 R2 R3

R̄1 G R̄3 R̄2

R̄2 R3 G R4

R̄3 R2 R̄4 G

 . (5.25)

20The SU(2) generators in the fundamental representation are normalized as ti = 1
2
σi.
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Rep. L R sugra fields mass2

G VN=2 VN=2 HN=4 ⊕ 2V(0)
N=4 0

R1 V(m)
N=2 Φ+

N=2 Ψ
(m)
N=4 4u2

1

R̄1 V(m)
N=2 Φ−N=2 Ψ

(m)
N=4 4u2

1

R4 Φ+
N=2 V(m)

N=2 Ψ
(m)
N=4 4u2

1

R̄4 Φ−N=2 V(m)
N=2 Ψ

(m)
N=4 4u2

1

R2 Φ+
N=2 Φ−N=2 V(m)

N=4 (u1 − u3)2 + 4u2
1 − 4u2

3

R̄2 Φ−N=2 Φ+
N=2 V(m)

N=4 (u1 − u3)2 + 4u2
1 − 4u2

3

R3 Φ−N=2 Φ−N=2 V(m)
N=4 (u1 + u3)2 + 4u2

1 − 4u2
3

R̄3 Φ+
N=2 Φ+

N=2 V(m)
N=4 (u1 + u3)2 + 4u2

1 − 4u2
3

Table 5. Spectrum of the explicitly-broken theory with N = 4 residual supersymmetry and U(1)2

unbroken gauge group.

From combining different irreducible representations into the representations R2, R3 and

their conjugates, we get the following relations between the VEV parameters:

u1 + u2 = u3 + u4 → u4 = −u3 , u2 = −u1 . (5.26)

Solving mass-matching conditions leads to21

m2 = −M2 = m̃2 = −M̃2 = 4(u2
1 − u2

3) , ũ2
1 = u2

3, ũ2
3 = u2

1. (5.27)

We list the fields from the double copy with their respective mass spectra in table 5. The

unbroken gauge symmetry is U(1)2, with one U(1) factor from each gauge-theory copy.

The gauge coupling constant is related to the parameters above as

gs = 2κ
√
u2

1 − u2
3 . (5.28)

In particular, to have a sensible theory we need to take u2
1 ≥ u2

3.

5.2.2 Example with N = 0 unbroken supersymmetry

We start from two copies of theory (ii) from section 3. The gauge group is taken to be

SU(4N) as in the previous example. We consider the Coulomb branch of the theory giving

a VEV to φ4 and project away fields non-invariant under the transformation

Φ→ R56

(4π

3

)
g†Φg . (5.29)

21The choice ũ2
1 = u2

1, ũ
2
3 = u2

3 also solves the constraints, but does not allow for non-Abelian gauge in-

teractions.
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Rep. R L sugra fields mass2

G Aµ ⊕ φi Aµ ⊕ φi 1hµν ⊕ 8Aµ ⊕ 18φ 0

R1 Wµ ⊕ φi ψr ⊕ φ+ 2ψµ ⊕Wµ ⊕ 8χ⊕ 3φ 4u2
1

R̄1 Wµ ⊕ φi ψ̃r
′ ⊕ φ− 2ψµ ⊕Wµ ⊕ 8χ⊕ 3φ 4u2

1

R4 ψr ⊕ φ+ Wµ ⊕ φi 2ψµ ⊕Wµ ⊕ 8χ⊕ 3φ 4u2
1

R̄4 ψ̃r
′ ⊕ φ− Wµ ⊕ φi 2ψµ ⊕Wµ ⊕ 8χ⊕ 3φ 4u2

1

R2 ψr ⊕ φ+ ψ̃r
′ ⊕ φ− 4Wµ ⊕ 4χ⊕ 5φ (u1 − u3)2 + 4u2

1 − 4u2
3

R̄2 ψ̃r
′ ⊕ φ− ψr ⊕ φ+ 4Wµ ⊕ 4χ⊕ 5φ (u1 − u3)2 + 4u2

1 − 4u2
3

R3 ψ̃r
′ ⊕ φ− ψ̃r

′ ⊕ φ− 4Wµ ⊕ 4χ⊕ 5φ (u1 + u3)2 + 4u2
1 − 4u2

3

R̄3 ψr ⊕ φ+ ψr ⊕ φ+ 4Wµ ⊕ 4χ⊕ 5φ (u1 + u3)2 + 4u2
1 − 4u2

3

Table 6. Spectrum of the explicitly-broken theory with SO(4) ×U(1)2 unbroken gauge symmetry

and no residual supersymmetry.

We take the same expressions for the SU(4N) elements gright, gleft as in the previous sub-

section. We further set the scalar mass-matrix to

m55 = m = m66 , mIJ = 0 otherwise .

The VEVs for the two theories are written as follows,

left : 〈φ4〉 = diag
(
u1IN , u2IN , u3IN , u4IN

)
,

right : 〈φ4〉 = diag
(
ũ1IN , ũ2IN , ũ3IN , ũ4IN

)
, (5.30)

with u1 +u2 +u3 +u4 = 0 = ũ1 + ũ2 + ũ3 + ũ4. We note that we cannot give VEVs to any

other scalar without either breaking the supergravity gauge group or spoiling the symmetry

used for the orbifold projection. Schematically, we get the following organization for the

fields of the two theories:
Aµ, φ

i Wµ, ϕ
i ψr, φ+ ψ̃r

′
, φ−

Wµ, ϕ
i Aµ, φ

i ψr, φ+ ψ̃r
′
, φ−

ψ̃r
′
, φ− ψ̃r

′
, φ− Aµ, φ

i ψr, φ+

ψr, φ+ ψr, φ+ ψ̃r
′
, φ− Aµ, φ

i

 ⊗


Aµ, φ

i ψr, φ+ ψ̃r
′
, φ− ψ̃r

′
, φ−

ψ̃r
′
, φ− Aµ, φ

i ψr, φ+ ψr, φ+

ψr, φ+ ψ̃r
′
, φ− Aµ, φ

i Wµ, ϕ
i

ψr, φ+ ψ̃r
′
, φ− Wµ, ϕ

i Aµ, φ
i


t

.

(5.31)

As before, some representations need to be combined. The representation structure

and mass-matching conditions are the same as in the N = 4 explicitly-broken example.

We list the fields from the double copy with their respective mass spectra in table 6.

Putting all together, we have a two-parameters family of theories with SO(4) ×U(1)2

unbroken gauge symmetry and no residual supersymmetry. The scalar spectrum has three

distinct nonzero masses. It should be noted that the mass spectrum does not obey the

supertrace conditions identified in [21],

StrM2k = 0 , (5.32)
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whereM denotes the mass matrix. This fact signals that we are dealing with an explicitly-

broken theory.

6 Conclusion and discussion

We have discussed the construction of Abelian and non-Abelian gaugings of N = 8 su-

pergravity from the double-copy perspective. Our results rely on the existence of several

massive deformations ofN = 4 SYM theory in higher dimensions which preserve the duality

between color and kinematics and possess trilinear scalar couplings. These couplings con-

tain the basic information that specifies the supergravity gauge-group structure constants.

In several of the examples we discussed, the trilinear scalar couplings are accompanied

by fermion mass matrices proportional to rank-three elements of the Clifford algebra. In

contrast to the perhaps more familiar construction of Higgsed supergravities [74], these

mass terms do not admit a straightforward interpretation as compact higher-dimensional

momenta; it remains to be seen whether a different geometrical interpretation can be found.

Our analysis relies on two main tools: spontaneous symmetry breaking and the orb-

ifold projection. Both procedures are known to preserve color/kinematics duality [29, 74]

and yield gauge theories with multiple matter representations which can be used directly in

the double-copy construction thus avoiding possibly cumbersome checks of the duality. At

the same time, it is possible that gauge theories obtained by other means give additional

gaugings of N = 8 supergravity which cannot be constructed with the techniques presented

in this paper. In particular, the higher-dimensional theories subjected to spontaneous sym-

metry breaking and orbifolding are the most general color/kinematics-duality-preserving

massive deformations which involve only scalar and fermion masses. Since the vectors

of the theory acquire masses only due to the Higgs mechanism when the theory is taken

on the Coulomb branch in a lower dimension, it is in principle possible to envision more

complicated constructions which may result in additional gaugings beyond the ones in the

current paper.

We have also discussed in detail several examples of gaugings of N = 8 supergravity.

They illustrate that our construction can give both supergravities with spontaneously-

broken and explicitly-broken supersymmetry. Gaugings with spontaneously-broken super-

symmetry can be obtained when one of the gauge theories in the constructions is sponta-

neously broken. In contrast, the double-copy of two explicitly-broken gauge theories gives a

gravitational theory in which supersymmetry is broken by explicit mass terms. It would be

interesting to consider double copies of more general spontaneously-broken gauge theories,

particularly theories with spontaneously-broken supersymmetry.

The current methods for exploring the non-compact generators of the U-duality group

make use of single- and multi-soft scalar limits [85]. As we have seen, one of the examples

realizes a gauging of N = 8 supergravity with a noncompact gauge group — CSO∗(4, 4) ⊂
E7(7). It is possible that the methods developed here may offer a path towards a double-copy

identification of the noncompact U-duality generators as well as a mean for understanding

their implications in the quantum theory.
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To understand whether all supergravity theories are double copies, it is important to

develop a direct relation between traditional supergravity methods and the double copy.

While certain properties of the gaugings under consideration (e.g. unbroken gauge group,

mass spectrum) can be easily identified from the double-copy perspective, others remain

elusive. More specifically, a better understanding of the choice of symplectic frame and

of the role played by duality transformations would be desirable. It would also be very

interesting to see how the embedding tensor can be traced back to the gauge theories

entering the construction.

While this paper focuses on gaugings of N = 8 supergravity, we emphasize that the

massive gauge theories introduced in section 2 can also be used as building blocks for ex-

tending the double-copy construction to larger families of homogeneous Yang-Mills-Einstein

theories, along the lines of ref. [31]. More specifically, the solution of the master constraint

discussed in section 2.4 can be used to give a construction of Yang-Mills-Einstein theories

with arbitrary gauge groups, as long as the number of vector multiplets is large enough.

We plan to return to this direction in the future.

A complete classification of double-copy-constructible gaugings with Minkowski vacua

is still missing. Gaugings with large-rank groups appear especially challenging from this

perspective. This is because, to this date, trilinear scalar couplings provide the only known

mechanism for introducing non-Abelian gauge interactions in a supergravity through the

double copy. Conversely, vector fields that are realized as bilinears of gauge-theory fermions

do not appear to be involved in unbroken gauge interactions. More work in this direction

is necessary if a complete classification of gaugings from the double copy is to be obtained.

Our results open the door to a systematic study of the amplitudes of gauged super-

gravities with N = 8 or less supersymmetry. Given the prominent role played by ungauged

maximal supergravity in recent calculations, it would be natural to investigate the ultravi-

olet properties of various gaugings with Minkowski vacua. In this respect, the gauging with

N = 4 residual supersymmetry appears particularly amenable to loop-level calculations.
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A Spinor-helicity conventions

In this appendix we spell out our conventions. Our notation differs from the one of ref. [86]

by the replacement ηµν → −ηµν . Our metric has mostly-minus signature both in four and
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higher dimensions, and the Dirac matrices obey

{γµ, γν} = 2ηµν , {ΓM ,ΓN} = 2ηMN . (A.1)

In particular, γ0 is Hermitian while the other Dirac matrices are anti-Hermitian. The

four-dimensional Dirac matrices are

γ0 = σ1 ⊗ 1 ,

γ1 = iσ2 ⊗ σ1 ,

γ2 = iσ2 ⊗ σ2 ,

γ3 = iσ2 ⊗ σ3 ,

γ5 = σ3 ⊗ 1 . (A.2)

Charge-conjugation and B matrix are

C4 = σ3 ⊗ σ2 , B = σ2 × σ2 =

(
0 εȧḃ
εab 0

)
, (A.3)

with ε12 = −ε12 = +1. The charge-conjugation matrix obeys Ct4 = −C4 and (γµ)t =

−C−1
4 γµC4. Employing spinor-helicity variables

λ(p) =

(
|p]a
|p〉ȧ

)
(A.4)

the Majorana condition becomes

λ∗ = Bλ →

{(
|p]a
)∗

= εȧḃ|p〉
ḃ = |p〉ȧ(

|p〉ȧ
)∗

= εab|p]b = |p]a
. (A.5)

Note this condition implies that for real momenta we have

([pq])∗ = 〈qp〉 . (A.6)

Null momenta can be written using spinor-helicity variables in the following way

�p = −|p〉[p| − |p]〈p| . (A.7)

We also use repeatedly the identity

〈pq〉[qp] = 2p · q .

Massless vector polarizations have expressions

�ε+ =

√
2

〈qp〉
(
|q〉[p|+ |p]〈q|

)
(A.8)

�ε− =

√
2

[qp]

(
|p〉[q|+ |q]〈p|

)
(A.9)

For massive momenta, we have

ki = k⊥i +
m2

2ki · q
q = k⊥i −

M2

2ki · q
q . (A.10)

The fermionic mass matrix M anticommutes with the four-dimensional momenta.
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Using the spinor-helicity formalism, one obtains the identities

2(ε+1 · ε
−
2 )(ε+3 · k1) = −

√
2
k1 · q
k2 · q

Ω =
1√
2

(Ω− − Ω+) , (A.11)

2(ε+1 · ε
−
2 )(ε+3 · k1) + cyclic =

√
2Ω , (A.12)

2(ε+1 · ε
+
2 )(ε−3 · k1) = 0 , (A.13)

where we have used the notation

Ω =
[1⊥3⊥]3

[1⊥2⊥][2⊥3⊥]
.

Massive spinor polarizations are chosen as:

u+ =

(
U+|i⊥]

−MU+
|q〉
〈i⊥q〉

)
, u− =

(
−MU−

|q]
[i⊥q]

U−|i⊥〉

)
, (A.14)

v̄+ =
(
U †−[i⊥| −U †−

〈q|
〈i⊥q〉M

)
, (A.15)

v̄− =
(
−U †+

[q|
[i⊥q]

M U †+〈i⊥|
)
, (A.16)

here U± are four component Weyl spinors with positive/negative 6D chirality. Imposing

the Majorana condition in 10D yields

U± = C∗6U
∗
∓ , (A.17)

where C6 is the charge-conjugation matrix in the compact directions. Using this relation,

we see that our choice of polarization satisfies

u± = B−1
10 (u∓)∗ . (A.18)

B Gamma matrices

To study the gauging with N = 4 residual supersymmetry encountered in section 5.1.3, we

choose ten-dimensional Dirac matrices in a chiral basis. The expressions for the spacetime

matrices are:

γ0 = σ1 ⊗ 1 ,

γ1 = iσ2 ⊗ σ1 ,

γ2 = iσ2 ⊗ σ2 ,

γ3 = iσ2 ⊗ σ3 ,

γ5 = σ3 ⊗ 1 . (B.1)
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While the Dirac matrices in the internal directions are:

Γ4 = iγ5 ⊗ σ2 ⊗ σ3 ⊗ σ1 ,

Γ5 = iγ5 ⊗ σ2 ⊗ σ3 ⊗ σ2 ,

Γ6 = iγ5 ⊗ σ2 ⊗ σ3 ⊗ σ3 ,

Γ7 = iγ5 ⊗ σ1 ⊗ 1⊗ 1 ,

Γ8 = iγ5 ⊗ σ2 ⊗ σ1 ⊗ 1 ,

Γ9 = iγ5 ⊗ σ2 ⊗ σ2 ⊗ 1 . (B.2)

The corresponding expressions for charge-conjugation and chirality matrix are

C4 = σ3 ⊗ σ2 , C6 = σ2 ⊗ σ1 ⊗ σ2 , Γ∗6 = σ3 ⊗ 1⊗ 1 . (B.3)

Note that the four-dimensional basis of gamma matrices is the same as in Elvang and

Huang [86]. We also have

C10 = C4C6 , B10 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ1 ⊗ σ2 . (B.4)

This choice satisfies the relations

C10ΓAC−1
10 = −(ΓA)t , B10Γ∗B

−1
10 = (Γ∗)

∗ , (B.5)

where Γ∗ is the ten-dimensional chirality matrix (the last condition is necessary for the

existence of Majorana-Weyl spinors). We note that the M matrix can be written as

M = i
λ

4
Γ456 = i

λ

4
γ5(σ2 ⊗ σ3 ⊗ 1) . (B.6)

Similarly, the generator for rotations in the 5-6 plane (used in the orbifold projection) has

a diagonal form:

Γ89 = i1⊗ σ3 ⊗ 1 . (B.7)

Using

Ri = eφiΓ
89

(B.8)

The requirement (4.3) becomes

(C6e
φiΓ

89
C−1

6 )(ΛGGΛG) = 1 . (B.9)

Remembering that G acts as an overall phase on the various unbroken group representations

and that (ΛGGΛG) = G−1, we can finally write

(C6e
φiΓ

89
C−1

6 ) = e−φiΓ
89

(B.10)

which is indeed satisfied for our choice of Dirac matrices.

– 31 –



J
H
E
P
0
6
(
2
0
1
9
)
0
9
9

C Feynman rules

We conclude by listing some of the Feynman rules to be employed in the calculations. The

fermionic propagator is written as

p = −i �p+M

p2 +M2
. (C.1)

Here we take M to be a matrix which anticommutes with �p. Note that this expression

is different from the one of standard Quantum Field Theory books, −i �p−M
p2−M2 , which is

derived under the assumption that M is proportional to the identity. Note that M is a

matrix in the flavor indices, which squares to a diagonal matrix but is otherwise generic.

Scalar and gluon propagators are

p
I J = i

δIJ

p2
,

p
µ ν = −iη

µν

p2
. (C.2)

We list only the vertices relevant to the computations in this paper:

p1

p2

p3, â, I = igΓItâ , (C.3)

p1

p2

p3, â, µ = igγµtâ , (C.4)

p1, â, I

p2, b̂, J

p3, ĉ, µ = gf âb̂ĉδIJ(p1 − p2)µ , (C.5)

p1, â, I

p2, b̂, J

p3, ĉ, K = −igλf âb̂ĉF IJK . (C.6)

These rules are employed for studying the gauge-theory amplitudes in section 2.

– 32 –



J
H
E
P
0
6
(
2
0
1
9
)
0
9
9

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].

[2] B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

[3] C.M. Hull, Noncompact Gaugings of N = 8 Supergravity, Phys. Lett. B 142 (1984) 39

[INSPIRE].

[4] C.M. Hull and N.P. Warner, Noncompact Gaugings From Higher Dimensions, Class. Quant.

Grav. 5 (1988) 1517 [INSPIRE].

[5] C.M. Hull and N.P. Warner, The Structure of the Gauged N = 8 Supergravity Theories, Nucl.

Phys. B 253 (1985) 650 [INSPIRE].

[6] M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 Supergravity in

Five-Dimensions, Phys. Lett. 154B (1985) 268 [INSPIRE].

[7] M. Günaydin, L.J. Romans and N.P. Warner, IIB, or Not IIB: That Is the Question, Phys.

Lett. 164B (1985) 309 [INSPIRE].

[8] M. Günaydin, G. Sierra and P.K. Townsend, The Geometry of N = 2 Maxwell-Einstein

Supergravity and Jordan Algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].

[9] M. Günaydin, G. Sierra and P.K. Townsend, Gauging the d = 5 Maxwell-Einstein

Supergravity Theories: More on Jordan Algebras, Nucl. Phys. B 253 (1985) 573 [INSPIRE].

[10] M. Günaydin, G. Sierra and P.K. Townsend, More on d = 5 Maxwell-Einstein Supergravity:

Symmetric Spaces and Kinks, Class. Quant. Grav. 3 (1986) 763 [INSPIRE].

[11] M. Günaydin and M. Zagermann, The gauging of five-dimensional, N = 2 Maxwell-Einstein

supergravity theories coupled to tensor multiplets, Nucl. Phys. B 572 (2000) 131

[hep-th/9912027] [INSPIRE].

[12] M. Günaydin and M. Zagermann, Gauging the full R symmetry group in five-dimensional,

N = 2 Yang-Mills Einstein tensor supergravity, Phys. Rev. D 63 (2001) 064023

[hep-th/0004117] [INSPIRE].

[13] M. Günaydin and M. Zagermann, The vacua of 5-D, N = 2 gauged Yang-Mills/Einstein

tensor supergravity: Abelian case, Phys. Rev. D 62 (2000) 044028 [hep-th/0002228]

[INSPIRE].

[14] H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev.

Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

[15] H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in

three-dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [INSPIRE].

[16] B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal

supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

[17] B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 5 supergravities, Nucl. Phys.

B 716 (2005) 215 [hep-th/0412173] [INSPIRE].

– 33 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(79)90331-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B159,141%22
https://doi.org/10.1016/0550-3213(82)90120-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B208,323%22
https://doi.org/10.1016/0370-2693(84)91131-6
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B142,39%22
https://doi.org/10.1088/0264-9381/5/12/005
https://doi.org/10.1088/0264-9381/5/12/005
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,5,1517%22
https://doi.org/10.1016/0550-3213(85)90551-6
https://doi.org/10.1016/0550-3213(85)90551-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B253,650%22
https://doi.org/10.1016/0370-2693(85)90361-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B154,268%22
https://doi.org/10.1016/0370-2693(85)90332-6
https://doi.org/10.1016/0370-2693(85)90332-6
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B164,309%22
https://doi.org/10.1016/0550-3213(84)90142-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B242,244%22
https://doi.org/10.1016/0550-3213(85)90547-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B253,573%22
https://doi.org/10.1088/0264-9381/3/5/007
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,3,763%22
https://doi.org/10.1016/S0550-3213(99)00801-9
https://arxiv.org/abs/hep-th/9912027
https://inspirehep.net/search?p=find+EPRINT+hep-th/9912027
https://doi.org/10.1103/PhysRevD.63.064023
https://arxiv.org/abs/hep-th/0004117
https://inspirehep.net/search?p=find+EPRINT+hep-th/0004117
https://doi.org/10.1103/PhysRevD.62.044028
https://arxiv.org/abs/hep-th/0002228
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002228
https://doi.org/10.1103/PhysRevLett.86.1686
https://doi.org/10.1103/PhysRevLett.86.1686
https://arxiv.org/abs/hep-th/0010076
https://inspirehep.net/search?p=find+EPRINT+hep-th/0010076
https://doi.org/10.1088/1126-6708/2001/04/022
https://arxiv.org/abs/hep-th/0103032
https://inspirehep.net/search?p=find+EPRINT+hep-th/0103032
https://doi.org/10.1016/S0550-3213(03)00059-2
https://arxiv.org/abs/hep-th/0212239
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212239
https://doi.org/10.1016/j.nuclphysb.2005.03.032
https://doi.org/10.1016/j.nuclphysb.2005.03.032
https://arxiv.org/abs/hep-th/0412173
https://inspirehep.net/search?p=find+EPRINT+hep-th/0412173


J
H
E
P
0
6
(
2
0
1
9
)
0
9
9

[18] B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonAbelian

vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].

[19] H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant.

Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].

[20] M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745]

[INSPIRE].

[21] F. Catino, G. Dall’Agata, G. Inverso and F. Zwirner, On the moduli space of spontaneously

broken N = 8 supergravity, JHEP 09 (2013) 040 [arXiv:1307.4389] [INSPIRE].

[22] G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions,

Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].

[23] G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged

supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

[24] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,

Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[25] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double

Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

[26] H. Johansson and A. Ochirov, Pure Gravities via Color-Kinematics Duality for Fundamental

Matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].

[27] Z. Bern, C. Boucher-Veronneau and H. Johansson, N ≥ 4 Supergravity Amplitudes from

Gauge Theory at One Loop, Phys. Rev. D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].

[28] J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point

amplitudes in pure and matter-coupled N ≤ 4 supergravity, JHEP 03 (2013) 056

[arXiv:1212.1146] [INSPIRE].

[29] M. Chiodaroli, Q. Jin and R. Roiban, Color/kinematics duality for general abelian orbifolds

of N = 4 super Yang-Mills theory, JHEP 01 (2014) 152 [arXiv:1311.3600] [INSPIRE].

[30] Z. Bern, S. Davies, T. Dennen, Y.-t. Huang and J. Nohle, Color-Kinematics Duality for Pure

Yang-Mills and Gravity at One and Two Loops, Phys. Rev. D 92 (2015) 045041

[arXiv:1303.6605] [INSPIRE].

[31] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Complete construction of

magical, symmetric and homogeneous N = 2 supergravities as double copies of gauge

theories, Phys. Rev. Lett. 117 (2016) 011603 [arXiv:1512.09130] [INSPIRE].
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