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Abstract We propose an uni-parametric deformation
method of action principles of scalar fields coupled to grav-
ity which generates new models with massive stealth field
configurations, i.e. with vanishing energy-momentum tensor.
The method applies to a wide class of models and we pro-
vide three examples. In particular we observe that in the case
of the standard massive scalar action principle, the respec-
tive deformed action contains the stealth configurations and
it preserves the massive ones of the undeformed model. We
also observe that, in this latter example, the effect of the
energy-momentum tensor of the massive (non-stealth) field
can be amplified or damped by the deformation parameter,
alternatively the mass of the stealth field.

It is generally believed that matter curves the space, a con-
sequence of the interpretation of the equations of gravity-
matter systems, which tells that the energy- momentum ten-
sor of matter fields feedback the curvature of the geometry
equations. However, it seems mathematically possible the
existence of non-trivial matter-field configurations with van-
ishing energy- momentum tensor, such that the first statement
will not be always truth. Indeed, there are examples of sys-
tems where this happens. In the references [1-9] the authors
impose separately the vanishing Einstein tensor equation,
the vanishing energy- momentum tensor equation (obtained
from some scalar theory), and the matter-field equations of
motion. If these three sets of equations are satisfied the scalar
field would exist but it will not be detected by the back-
ground geometry, since it will not deform it. This is what
a “stealth field” means. It is worth to mention that stealth
solutions appeared also in the references [10—13], and that
an analogous result, for a Dirac fermion field was found in
[14]. Though this behavior of matter may seem strange, the
mathematical possibility on the existence of stealth fields
encourage their study. The non-trivial effect of matter on the
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gravitational background is also suggested by the observation
on galaxies, which have led to the conjecture on the existence
of “dark matter”.

The purpose of this paper is to present a method to con-
struct models with massive stealth fields. This is, the method
takes a given (original) action-principle and produces a
related (deformed) one which contains massive stealth con-
figurations. Just one restriction on the original action princi-
ple is needed, that the trivial vacuum (with vanishing VEV)
must exist. We shall provide three non-trivial examples of
application of our method. Advancing one interesting result,
we shall observe that stealth field mass produces a re-scaling
of the the energy-momentum tensor of a (non-stealth) mas-
sive configuration. Hence the stealth field, though unde-
tectable by the background space-time geometry, can amplify
(or reduce) the gravitational effect of regular matter fields,
which may be interesting from a cosmological point of view.

This paper is organized as follow. In Sect. 1 we introduce
the notation and define what a stealth field is. In Sect. 2 we
define the deformation of the action principle and obtain the
respective equations of motion, as deformations of the origi-
nal equations of motion. We prove that the deformed theories
contain massive fields with mass inversely proportional to the
deformation parameter. This is done on full generality, with-
out reference to any particular model. In Sect. 3 we construct
some examples and characterize their solutions, and in Sect. 4
we present some conclusions.

1 Stealth scalar field definition

In generic space-time background metric g, 4 =0, ..., D—
1, with diagonal components signature (—, +, +, ...), con-
sider the gravity-matter system,

Slg. #1 = Sclgl + Smlg. #1. ey

where Sg[g] is the gravitational action principle for a given
theory of gravity (e.g. general relativity or modified models)
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and Syr[g, ¢] is the action principle for a scalar matter field
¢ coupled to the g,.

The variation with respect to the (inverse) metric tensor
g yields,

3S[g,
_S[gM:p] =v—gHuwlgl - Ewlg. &1, )
8
where
1 38Sglg]
o o 1 8Sulg, ¢l
Eulg, ¢l = —ﬁw 3)

are respectively the generalized Einstein tensor, H,,,[g], and
the Hilbert energy-momentum tensor, Z,,[g, ¢1, up to con-
stant coefficients.

From the variation of the action with respect to the scalar
fields ¢ we define,

[ T

which represents a differential operator acting on the field
¢. In what follows, for functionals F[f] of a function f(x)
valued in the point x, we shall declare the dependence on
this point as F[f](x), whenever is necessary, as in e.g.
8/881 (x)., 8/8¢ (), Hyn[81(x). Epuvlg](x).

The equations of motion of the theory (1) are given by,

T[g’ ¢] =

“

Hyuwlgl = Ewlg. #1=0. T[g.¢]1=0, (&)

respectively for the variation of the metric and the matter
field, and for a non-degenerated metric tensor \/—g # 0.

By definition, a stealth scalar field is a non trivial field
which satisfies the equations of motion and its energy-
momentum tensor vanishes, respectively,

Tlg, ¢1=0, &g ¢1=0. (6)

As consequence of (5), the generalized Einstein tensor must
also vanish,

H,[g] =0, (N
so that in presence of a stealth ¢ the metric tensor must satisfy

identical equations of motion than in the vacuum ¢ = 0. The
stealth scalar field does not feedback the metric background.

2 @-deformation of scalar field theories
The idea to be developed here can be spelled as follows.

Given an action principle with a saddle point with vanish-
ing expectation value of a scalar field (trivial vacua) we can
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construct a new (deformed-) one, with saddle points at the
trivial and at a massive configurations. As a consequence of
the construction, the deformed action principle, which is an
extension of the original one, will have also vanishing energy
momentum tensor. Surprisingly enough, the details of the
original theory are not important, so that we can construct
full class of models sharing these features.

Let us illustrate this with a simple example. Let f(x) be
any function of x € R with a saddle point at x = 0,

af

=0, 8
. @®)

and let y(x) another function which possess, for definiteness,
two zerosat x = 0Oand x = 1,

y(0)=0, y(1)=0. ©))

We define the composition of functions F(x) := f(y(x)),
which inherits from the parent functions f and y the proper-
ties,

dF
dx

_dF

e — 10
I (10)

x=1

x=0

such that it has two saddle points, at x = 0, 1. It is straight-
forward to prove this. We can use the chain rule to evaluate
dF/dx atx =0, 1,

dF|  _ (df() dy)
dx o1 dy dx x=0,1
_ 4o dy(x)
dy |y—o dx |,

Here the df(y)/dyly=o vanishes because from (9) y takes
zero-value and from (8) the derivative of f vanishes when
the argument is zero. Hence from an arbitrary function f (x)
with saddle point at x = 0 (8) we can construct another
arbitrary function F'(x) with saddle points at the kernel of
the map y : R — R, in this example x = 0, 1.

We can promote the latter statements to functionals, i.e. to
action principles and the solutions of the equations of motion.
f is the analogous of an action principle for a scalar field
represented by the variable x, of which x = 0 represents its
trivial vacua and x = 1 will represent a non-trivial (massive)
configuration. F is the analogous of a new action constructed
from a transformed scalar field, y(x), i.e. which is a map from
x to y in the class of differentiable functions. Now if x = 01is
a saddle point of the action f, then the new action principle
F must have saddle points at the trivial vacuum (x = 0) and
at the non-trivial configuration (represented by x = 1). Note
that F(x) takes the same values at x = 0 and x = 1 since
F(1) = F(0) = f(0). Hence both configurations, trivial and
non-trivial, are at the same foot.
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Now let us introduce a second variable, g, such that now
y = y(x,g) is two-parametric and, consequently F :=
f(y(x, g)) is also two-parametric. We can easily prove that,

dF
dg

_ (3f(y(x,g)) (3y(x,g) N 3y(x,g)>>
- ay ax g

x=0,1 x=0,1

=0, 1D
since df (y(x, £))/9yly=0 = O whenever (8) and y (x, g)|y=0
= 0 (in correspondence with (9)) hold. Hence, the functional
F := f(y(x, g)) has saddle points at x = 0, 1, no matter
what the value of g is. Continuing our analogy, g will rep-
resent a metric tensor, and the implication of (11) is that the
energy momentum tensor provided by the new action prin-
ciple will vanish for either configuration.

We shall apply now the same logic in the language of func-
tional calculus in order to construct new classes of (generic)
action principles which have saddle points at massive con-
figurations and which are also stealth.

The field transformation to be considered is:

¢’lg, 91 = (1 — 6°0)g, (12)

where 0 is a real-valued parameter and

1
U¢ = ﬁau(\/—_gg’“’auqb) ,
is the Laplace-Beltrami operator acting upon ¢. The kernel
of the deformation map (12) is degenerated, consisting of the
trivial vacuum ¢ = 0 and the massive configuration ¢ = ¢,
with mass m = 6~!. Indeed,
¢’lg. dml = —0>@A =0 D =0, m=06"", (13
is equivalent to the Klein—Gordon equation in curved space.
(12) is a map between the class of differentiable functions
in R (the analogous of y(x, g)) which will be used to map
a generic action principle of a scalar field into a new action
principle with saddle points at ¢ = 0, ¢,,. The latter will
posses vanishing energy momentum tensor. Though we shall
prove this in full generality, for the convenience of the reader,
we shall advance here one example.

2.1 Quick example

In order to illustrate the non-trivial effects of the deforma-
tion map (12) let us construct the simplest example we can
imagine, the deformation of the “mass term” action,

- M?2
Slg, ¢l = ‘T/de V=g %, (14)

where M is the mass-coupling constant. The equation of
motion for the scalar field is,
—M*J/=g¢$=0. (15)
Hence (14) has a saddle point at ¢ = 0. Now let us construct
the deformed action,

~ p M?
Slg, =——

lg. ¢"] >

M2

x (9% —20% g0 +0* C9)?).

/ dPx /=g(¢°1g, pm))?

(16)

where we replaced the original field ¢ by ¢”. This action
can be regarded as a degenerated (single-parameter) case of
the two-parametric fourth-order action principle analyzed in
[15]. The equation of motion for ¢ yields,
—M*/=g(1 —6*0)%¢p =0. (17)
Itis clear from (17) that the equation of motion is satisfied by
the solutions of the Klein—Gordon equation (13). Now let us
verify that the gravitational energy-momentum tensor van-
ishes. A direct calculation of the energy momentum tensor
produces,

~ 1 2
Einlg. 91 = = Mg, ((1 - 0°D)p)
—%MZGZgWD¢(1 —0°0)¢

1
3 M20% (8,57 + 6055 — 8,08"°)

XV, ¢V, ((1 - GZD)qb), (18)

which is evidently zero for the massive ¢ = ¢,,. Hence, in
spite of it mass the configuration ¢,,, possesses a trivial energy
momentum tensor. We shall stress here the non-triviality of
the action (16) no-matter of what its origin was, and that we
derived the equation of motion and the energy momentum
tensor in a standard way. The reader may also wish to give a
quick look to two more examples in Sect. 3.

2.2 General models with stealth configurations

In this subsection we shall prove that the results of the exam-
ple (2.1) can be extended to a wide class of action principles,
i.e. which will possess solutions of the equations of motion
with non-trivial mass and with vanishing energy momentum
tensor.

We define the matter field 6-deformed action principle,

S%,1g. ¢1 := Sulg. ¢°Ig. #11. (19)
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consisting on the replacement of ¢ by ¢’ (12). The
deformation of the gravity plus matter field is defined
similarly,

S[g. 91 := Slg. ¢lg, #11 = Sclgl + S4lg. ¢1. (20)

Note that the pure gravity sector Sg[g] is not affected by the
deformation, and that the deformed action will be of higher
order in derivatives with respect to the original action.

Let us assume that the minimal degree of the matter field
action as a functional of ¢ is > 1, such that the respective
equations of motion admit the vacuum solution ¢ = 0 and
Smlg,0] = 0. This implies that Sy[g, ¢’ = 0] = 0 also
vanishes for both, trivial ¢ = 0 and for the massive configu-
ration of mass 6!,

Sulg. #lls—o = Sulg. #°Lg. 1l g0 (.10 1)

i.e. for solutions of (13).
Morally speaking, this means that the massive stealth field
¢ = ¢, (13) and the vacuum ¢ = 0 are at the same foot.
The equations of motion of deformed theory are given by:

587 587
(g, &1 —0. (g, &l —o0. 22)
SgHy 8¢
which yield respectively,
Hyulg]l — Eulg. ¢1=0, Tlg.¢1=0, (23)

where Hy,,[g] was defined in (3) and

~ 1 889 g,

Eulg, 9= —ﬁ%, (24)
~ 889 g,

Tiulg. @l = #. (25)

Note that in (23) the generalized Einstein tensor H,[g]
remains undeformed, since the field transformation (12) does
not affect the metric tensor.

2.3 Variation of the action with respect to ¢

The variation with respect to ¢ should be carried out taking
into account that the action depends on ¢ implicitly by means
of ¢?[g, @], so that we should consider the chain rule for
functional derivation (see e.g. Appendix A in [16]). Indeed,
given two functionals F[f] and G[ f], and its composition
F[G[ f1], the generalized chain rule reads,

dDZ3F[G[f]] 8GLf1(z)
8GIf1x) 8f(y)

SFIGLAN _ / 06)

8f(y)

@ Springer

Applying this in the computation of (25), in the point y, we
obtain the variation of the deformed action,

b 8Smlg, ¢%18¢%(2)
3¢%(z)  Sp(y)

6
Sy lg. o] _ / 27

3¢ (y)

where we have used the definition (19) in r.h.s. The latter
expression is equivalent to,

55 Ls. 91 / Dt 8¢ (2)
= | d"zY"g, , 28
56() 2T7[g, ¢1(2) 560) (28)
where,
T%lg, ¢1:=Tlg. ¢°1, (29)
and it is understood that
S 6
SM[(;g',q5 1 _ dSulg. 4] ’ 30)
5¢%(2) 592 lp—sgtig.01
and therefore equivalent to the original operator (4) valued
in ¢°[g, ¢1.
Replacing,
5¢9(Z) 2 D
=(1-06°0,)8 -y, 31
560) ( )87 (z—y) (3D

in (28), integrating by parts and adopting the notation (25),
we finally obtain the equation of motion for the matter field
of the deformed system (23),

Tlg, ¢l =(1—-60’D)T"g, ¢]. (32)
2.4 Variation of the action with respect to g"¥

Let Lyr[g, ¢] the Lagrangian density, such that,

Sulg. ¢1 = / dPxy=gLulg, o). (33)

In correspondence with the substitution (19), the 6-deformed
action principle is given by

Shlg. ¢l = / dPxy=gLu[g.¢°g. ¢1]. (34)

Considering again the functional chain rule (26), and that
the deformed action functional (34) depends on g"" explic-
itly and also implicitly, by means of the functional ¢ =
459 [g, ¢], we obtain that the variation of the deformed action
principle (19) is equivalent to,
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8Sulg. ¢°1g. 1l _ 8Smlg. ¢]
8¢ (y) 88" (Y) | pge
8Smlg, ¢°1 8¢°(2)
dP . (35
+/ STseP ) sgy T )

Here, the first term on the r.h.s. corresponds to the variation
with respect to the explicit dependence of the action, while
the second encodes its implicit dependence. Alternatively,
(35) can be written also as,

8Sulg. ¢°lg. ¢l __ — o
(Sgﬂv(y) = 8 uuv[gv ¢](y)
¢9(z)

m(y)’

/ dPT'1, 910) 5 (36)

where we have defined

o080 = Eulg. ¢°1.

and considered (3), and (29)—(30). From (36) and (24), the
energy-momentum tensor provided by the deformed matter
action is given by,

Euwlg. ¢10) = &) [g, P1(»)
8¢ (z)

dPzr?
(2. 015 s

Vf__
(37

To complete the calculation, we need to replace the functional

8¢°(2) _ 8¢"1g, $1(2)
g1 (y) sgmv(y)
62 D
)

+ J_ [0 (V=888 595" (2 = ) |

[0 (V8P — o)
2/
0, (V=88 »u9)] .

in (37), which after integration by parts yields,

2

0
[g¢]+2F

——(m" +8960 —

Euwlg. ¢l = @) Tg. ¢]

guvgap)

X (3,¢) 0o ( s ¢>]) : (38)

1
V=8
2.5 Stealth theorem

Let us prove now that the massive field ¢ = ¢, (13) is a
stealth field. The core of the proof is based in the fact that for

this configuration ¢?[g, ¢,,] = 0. Let us replace ¢,, in the
equations of motion of the deformed theory (23),

Hyulgl — E,008. ¢ml =0, TIg ¢ml =0, (39)

in an arbitrary background metric tensor g,,. The second
equation is equivalent to,

Tlg, oml = (1—0’DHT[g, ¢l = 1—6*)T[g,0] = 0.
(40)

As we have argued, if the original theory (5) admits a vacuum
solution ¢ = 0, then T'[g, 0] = 0, which implies (40). Now,
let us evaluate the energy-momentum tensor in ¢ = ¢,,, or
equivalent in ¢9 =0,

2

2¢—
2

0
= (3057 + 85780 — guve™)

E;w[g Om] = u;w[ga 0]+ — g;w(D(Pm)T g, 0]

1
X (0pPm) 05 <\/_—g’r[gv O]) .

Again, since 7'[g, 0] = 0, the second and third term on the
r.h.s. vanish, while the first term Z,,[g, 0] = 0 must also
vanish as we argued that the vacuum solution ¢ = 0 of
the original theory must exist and it has to have, naturally,
a vanishing energy-momentum tensor. Hence, the equations
of motion (39) are reduced to

H,,[gl=0,

which corresponds to the equation of motion of the pure
gravity theory given by Sg[g]. Hence, ¢,, is stealth, since
in its presence the gravity background must satisfy identical
equations than in the vacuum ¢ = 0.

3 Examples

Here we shall present two more examples. The reader may
analyze these cases in independence of the general results of
Sect. 2.

Deformation of the massless field action

Consider now the action of a massless scalar field,

1
Sulg. 1=~ / dPx gV V. @1)

whose equation of motion for ¢ is,

_ 8Sulg. @)

5 ==g0¢=0. (42)

Tlg. ¢]:

@ Springer
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According to the deformation recipe, the deformed action is
given now by,

1
Slg. o1 = _Edex v —g V“((l - 92D)¢)

XV, ((1 - 92D)¢). 43)
A direct calculation of the equation of motion for ¢ yields,
885 1g. 41

¥le, 4] := J=z <D¢ — 20 P + 94D3¢)

3¢
= (1-6%0) (\/—_gD(l - GZD)q&) =0, (44)

which turns out to have the general form (32). As it can be
seen in the line (44), the equation of motion is satisfied by
the solutions of the Klein—Gordon equation (13).

Now let us obtain the gravitational energy-momentum ten-
sor directly from the action (43),

~

1
S8, 91 = =18 V" (1 = 02D V, (1 = 0’0y
+%VM(1 —0°0)p V(1 — 0’0o
+%92g,wD¢ O — 6°0)¢

1
—592(555;’ + 8087, — gﬂvgp“)vp¢va

x (D(l _ 92D)¢) . 45)

Again, the energy-momentum tensor vanishes for the solu-
tions of the Klein—Gordon equation (13). The action (43)
describes massive stealth configurations of mass m = o1,
among others non-stealth configurations. On the one hand,
the original matter field equation (42) admits massless solu-
tions, including the trivial one ¢ = 0. On the other hand,
the 6-deformed system admits a extension of original space
of solutions with stealth fields. Indeed, from the Eq. (44),
written also as,

~ 5 2
Fle, ¢l = V=g (1 iy D) O =0. (46)

we find that the solutions are given by the trivial one, ¢ = 0,
the massless one, [J¢ = 0, and the double-degeneracy mas-
sive stealth ¢ = ¢,,. Let us evaluate the massless solutions
in the energy-momentum tensor (45). We obtain,

1/1

Eulg ol = -5 (ng% Vop — Vo w)

= Euwlg. 9], (47)

i.e., the deformed energy-momentum takes the same value
than the undeformed energy-momentum tensor. Therefore,
the space of solutions of the gravitational sector remains
invariant with respect to the original theory (41). This means
that, in terms of gravity effects, after deformation the stealth

@ Springer

field yields the same results than the trivial matter vacuum,
while for the massless configurations the geometry is sourced
by the same energy-momentum tensor than in the original
theory.

Deformation of the massive field action

In the case of the scalar field ¢, with mass M the matter
action principle is given by,

1
Sulg. 91 =~ [ aPx v=g (V9,0 + M%) . @)

which corresponds to the sum of the massless field action
(41) with the square potential action (14), and whose equa-
tion of motion for ¢ is proportional to the Klein—Gordon
equation,

Tlg. ¢l = V=g (0-M*)¢ =0. 49)

Following the 6-deformation recipe of the action (48), which
produces a linear combination of (16) and (43), we obtain
the equation of motion,

~ 2
Tlg.¢l=v=g(1-0°0) (O-M?)g=0. (50
which has the general form (32), as expected. As for
the energy momentum-tensor, the 8-deformed action yields
again a linear combination of (18) and (45), ie.
respectively

= _ 1 040 0 201042
Zulg, ol = =78 (V¢ Vp¢" + M (@7)

1 1
5V’ Vi + 567,006 (O - M?) ¢

1
—592(5553 + 8087 — gwg”")qubva

x (D—M2)¢9, (51)

where ¢? := (1 — 620)¢ as it has been already defined in
(12). Among the solutions of the equation of motion (50),
we have ¢ = ¢, of mass m = #~!, which are the stealth
solutions. The other massive solutions, say ¢ = ¢y, which
satisfy
O — M)y =0, (52)
have mass M. As we observe, the massive solutions of the
undeformed theory remain after the deformation.

Now we analyze the energy-momentum tensor for these
fields. First we replace ¢ in the definition of ¢? which yields
to,
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M2
?’lg, dm) = (1—0’D)py = Ay, A <1 _ W) ’

(53)
so that their energy-momentum tensor (51) is given by,
~ 1.5 0 2,2
Eils. dul = =732 (V0 out Vobus + M%)
1.5
+§)\ V/4¢M Vv‘l"M

=22 Eulg, oul, (54)

which means that the energy-momentum tensor of the orig-
inal gravity-matter system is rescaled by factor A’ in the
deformed theory.

Hence, the space of solutions for the scalar field in the
undeformed theory consist of the trivial solution ¢ = 0 and
the massive solution ¢s. In the deformed theory this space
is extended by the massive stealth fields ¢,,. The energy-
momentum tensor (54) vanishes for the trivial solution and
for the massive stealth fields but for the solutions ¢ = ¢y
the deformed theory yields arescaled energy-momentum ten-
sor. Note that this can be interpreted also as a rescaling of
the Newton coupling constant by a factor, Gy — A%Gy, in
the standard nomenclature. Hence, the mass of the stealth
field (equivalently the deformation parameter) can be used
to smooth or amplify the effects of the massive field of mass
M on the gravitational background.

4 Overview and remarks

In this paper we show that for a wide class of scalar field
action principles in curved space we can construct a defor-
mation which admits massive stealth configurations. The the-
ory here presented consists of a method for the construction
of action principles which insures the existence of massive
stealth fields, independently of the solutions of the gravity
field equations. In the proof, we just need to assume that the
Klein—Gordon equation admits non-trivial solutions.

As for new developments, it would be interesting to extend
our construction to gauge theories. For example, one possible
way is to couple the scalar fields to (non-)abelian gauge fields,
in a curved background, and use the correspondent general-
ization of the field transformation (12) to obtain stealth solu-
tions with non-trivial gauge charges. Also, in a similar spirit
but in absence of scalar fields, we can consider redefinitions
of gauge fields to produce deformation of gauge theories
with non-trivial propagating degrees of freedom, in spite of
which they will not feedback the gravitational background.
Indeed, non-linear electrodynamics can produce stealth con-
figurations [8]. In this direction, an example was found in
2 4+ 1 dimensions [17], where it was shown that the corre-
spondent (deformed) gauge theory contains self-dual fields

in 2 4+ 1 dimensions [18] which are stealth. It is worth men-
tioning that further analogies between stealth matter sources
and self-duality can be found in [19].

As for the stability of stealth fields, in our framework,
since they do not depend on any specific background, they
must be robust under background perturbations, so we expect
they must be stable. This should be corroborated by means
of the appropriated methods (see e.g. [20]).

Let us comment that though stealth fields do not curve
space, they may give rise to new cosmological effects, for
example by means of the energy-momentum tensor rescaling
of regular matter fields, which depends on the stealth field
mass parameter observed in (54). It would be interesting to
check whether this may help with the cosmological constant
problem or the amplification of the gravitational effects of the
visible matter in galaxies. See e.g. [21,22] for other possible
cosmological implications of stealth fields.

Finally, as the reader must have noticed, the theories
obtained by means of our method are in general of higher
order (see examples (16) and (43)). The consistency of these
theories in the quantum level requires the analysis of spe-
cific models in deeper detail, using similar techniques than
in [15,23,24] and reference therein. This problem should be
studied elsewhere.
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