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Abstract We study a special Schwinger–Dyson equation in
the context of a pure SU(3) Yang–Mills theory, formulated
in the background field method. Specifically, we consider
the corresponding equation for the vertex that governs the
interaction of two background gluons with a ghost–antighost
pair. By virtue of the background gauge invariance, this ver-
tex satisfies a naive Slavnov–Taylor identity, which is not
deformed by the ghost sector of the theory. In the all-soft
limit, where all momenta vanish, the form of this vertex may
be obtained exactly from the corresponding Ward identity.
This special result is subsequently reproduced at the level of
the Schwinger–Dyson equation, by making extensive use of
Taylor’s theorem and exploiting a plethora of key relations,
particular to the background field method. This information
permits the determination of the error associated with two
distinct truncation schemes, where the potential advantage
from employing lattice data for the ghost dressing function
is quantitatively assessed.

1 Introduction

The Schwinger–Dyson equations (SDEs) form an infinite
tower of coupled non-linear integral equations that govern
the dynamical evolution of all n-point Green’s (correlation)
functions of a quantum field theory [1–3]. The SDEs are
derived formally from the generating functional of the theory
[4,5], and constitute one of the few nonperturbative frame-
works available in the continuum [6–12]. Over the years they
have been employed in the study of a wide array of physical
phenomena, encompassing, among others, superconductiv-
ity [13–16], dynamical chiral symmetry breaking [6,17–21],
and the emergence of mass in strongly coupled theories, such
as pure Yang–Mills theories and Quantum Chromodynamics
(QCD) [22–29].
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Even though, in principle, the SDEs encode the com-
plete dynamical information of all correlation functions of
the theory, in practice their treatment requires the implemen-
tation of truncations. For instance, certain vertices or multi-
particle kernels that enter in the diagrammatic representa-
tion of a given SDE may be set to their tree-level value, or
be completely neglected. Similarly, dressed-loop approxima-
tions may be adopted, where only a given order of diagrams
in a loop-wise expansion is retained. However, due the lack
of a definite expansion parameter, there is no a-priori way
of estimating the error committed due to such approxima-
tions. Instead, the errors may be estimated only a-posteriori,
either by direct comparison with experimental results or lat-
tice simulations, or, more laboriously, by introducing fur-
ther structures, i.e., dressing vertices or adding loops, and
computing their numerical impact. This is to be contrasted
with approaches possessing an obvious expansion parame-
ter, such as large Nc [30–32], or heavy mass (M) expansions
[33,34], where, at the n-th step, the neglected terms are of
order O(1/Nn+1

c ) or O(1/Mn+1).
It would be clearly instructive to consider a toy SDE sce-

nario where the exact result for the Green’s function in ques-
tion is known by virtue of general field-theoretic principles,
and the numerical impact of certain typical truncations may
be easily evaluated. To that end, we turn to the well-known
framework of the Background Field Method (BFM) [35–44],
where the gauge field Aμ is decomposed as Aμ = Bμ + Qμ,
with Bμ the classical (background) part and Qμ the quan-
tum (fluctuating) component, and a special gauge-fixing pro-
cedure is employed. Within this formalism we derive and
analyze the SDE of the four-particle vertex that consists of
two background gluons and a ghost–antighost pair, to be
denoted by BBc̄c . It is important to emphasize that, due
to the background gauge symmetry, this vertex satisfies an
Abelian Slavnov–Taylor identity (STI) when contracted by
the momentum carried by any of its background legs. Note
that Abelian STIs are direct generalizations of tree-level rela-
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tions, and, in contradistinction to the STIs [45,46] of the lin-
ear covariant gauges [47], they receive no modifications from
the ghost sector of the theory.

It turns out that it is possible to obtain an exact nontriv-
ial result for the vertex BBc̄c by appealing directly to this
latter STI, which relates the divergence of BBc̄c with the
three-particle vertex Bcc [48] at different permutations of
its arguments. As some of the momenta involved are set to
zero, certain known limits of the vertex Bcc are triggered; and
finally, in the all-soft limit, i.e., when all incoming momenta
vanish, the STI becomes a Ward identity (WI) that expresses
BBc̄c in terms of the ghost-dressing function at the origin.
Past its formal simplicity, the main advantage of this results
is that, in the Landau gauge, it fully determines the deep
infrared structure of the vertex BBc̄c in terms of a quantity
that has been extensively studied both on the lattice [49–60]
and in the continuum [12,23,61–72].

Evidently, when all incoming momenta are set to zero
at the level of the SDE governing the BBc̄c , and in the
absence of truncations or approximations, i.e., when the SDE
is treated exactly, the above result must emerge identically.
However, as we will elucidate in the main text, the correct
implementation of the all-soft limit is rather subtle, hinging
on fundamental properties of vertices and kernels entering in
the diagrammatic expansion of the SDE under consideration.
Once all field-theoretic principles have been correctly taken
into account, one recovers precisely the same result at the
level of the SDE as that obtained from the WI.

The above analysis is particularly instructive, because it
exposes the delicate interplay required among various com-
ponents in order to preserve fundamental symmetries at the
level of SDEs. In that sense, the derivation of an exact WI
from a vertex SDE, presented in this article, constitutes a
rather noteworthy result. Moreover, the errors induced by
certain truncations or approximations may be estimated by
comparing directly the approximate answer with the exact
result. This possibility is particularly welcome in a SDE con-
text, where the absence of a concrete expansion parameter
obscures the task of assigning errors to the results obtained.

In order to explore this last point in detail, we consider a
concrete truncation, which is rather natural in this context,
namely we approximate the full ghost-gluon vertex by its
tree-level counterpart. We find that if the same approxima-
tion is simultaneously implemented at the level of the SDE
that governs the ghost propagator, and the two equations are
regarded as coupled, the error is 47%. Instead, if the ghost
dressing functions is used as an external input obtained from
the lattice [60,72], the error is reduced by a factor of two.

The article is organized as follows. In Sect. 2 we introduce
the relevant Green’s functions and summarize some of their
main theoretical properties. In Sect. 3 we derive the exact all-
soft limit of the BBc̄c vertex from the STI that it satisfies. In
Sect. 4 we derive the result of the previous section at the level

of the SDE that governs the BBc̄c vertex. In Sect. 5 we use
the above exact result in order to estimate the error induced
when one of the ingredients of the SDE is approximated by
its tree-level value. Then, in Sect. 6 we present our discussion
and conclusions. Finally, the BFM Feynman rules necessary
for our calculations are listed in Appendix A.

2 Theoretical background

In this section we introduce the notation and main theoretical
elements needed in the present work.

When the BFM is applied on the pure SU(3) Yang–Mills
theory that we consider in this work, the gluon Aμ is split into
a background (B) and a quantum (Q) component, accord-
ing to Aμ = Bμ + Qμ. Note that only the quantum glu-
ons may enter inside loops, while the background fields
may appear only as external insertions [42]. The presence
of these two gauge fields induces a considerable prolifera-
tion of Green’s function, composed by combinations of B
and Q fields [10]. In addition, a special gauge-fixing proce-
dure is adopted, which preserves the invariance of the action
under background gauge transformations; consequently the
STIs triggered with respect to background gluons are Abelian
[40].

The subset of BFM Green’s functions composed exclu-
sively out of quantum gluons corresponds precisely to
those obtained within the linear covariant (Rξ ) gauges. In
what follows we will identify the quantum gauge-fixing
parameter ξQ of the BFM, used to define the propagator
〈0| T [

Qa
μ(x)Qb

ν(y)
]|0〉, with the gauge-fixing parameter ξ

introduced in the renormalizable Rξ gauges, i.e., ξQ = ξ [73].
Thus, the full gluon propagator �ab

μν(q) = −iδab�μν(q) is
given by

�μν(q) = Pμν(q)�(q) + ξ
qμqν

q4 ;

Pμν(q) = gμν − qμqν

q2 , (2.1)

where �(q) denotes the scalar form factor of the gluon prop-
agator.

We emphasize that we will be working in the Landau
gauge, corresponding to ξ = 0. However, due to the par-
ticularities of the BFM vertices discussed below, the imple-
mentation of the limit ξ → 0 is rather subtle, and the gluon
propagator with a general value of ξ , as defined in Eq. (2.1),
needs to be employed in intermediate steps.

In addition, we will use extensively the full ghost propa-
gator, Dab(q) = iδabD(q), and the corresponding dressing
function, F(q), defined as

D(q) = F(q)

q2 . (2.2)

123



Eur. Phys. J. C (2022) 82 :1068 Page 3 of 15 1068

(a) (b) (c)

Fig. 1 Diagrammatic representations of the fully dressed three-point
vertices. We show in the panels (a) the conventional ghost-gluon ver-
tex (Qcc) (b) the background ghost-gluon vertex (Bc̄c ) and (c) the

background three-gluon vertex (BQQ ), with their respective momenta
conventions. All momenta are incoming, q + r + p = 0

Turning to the three-point sector of the theory, in Fig. 1
we show the full vertices relevant for our analysis: the con-
ventional ghost-gluon vertex (Qcc) in panel (a), the back-
ground ghost-gluon vertex (Bcc) in panel (b), and the back-
ground three-gluon vertex (BQQ) in panel (c).

Factoring out the corresponding color structures and the
coupling g, we define the vertices � that will be used for the
rest of this work as follows1:

�c̄mcn Qa
μ
(r, p, q) = −g f mna�μ(r, p, q),

�c̄mcn Ba
μ
(r, p, q) = −g f mna�̃μ(r, p, q),

�Ba
αQ

b
μQ

c
ν
(q, r, p) = g f abc�̃αμν(q, r, p). (2.3)

We now briefly summarize some basic properties of the
aforementioned vertices. We start with the conventional
ghost-gluon vertex, �μ(r, p, q), whose tensorial decompo-
sition is given by

�μ(r, p, q) = B1(r, p, q)rμ + B2(r, p, q)qμ, (2.4)

where B1(r, p, q) and B2(r, p, q) are the corresponding form
factors. At tree-level, �(0)

μ = rμ, and therefore B(0)
1 = 1, and

B(0)
2 = 0. �μ(r, p, q) satisfies the STI

�μ(r, p, q) = rνHνμ(r, p, q), (2.5)

where Hνμ(r, p, q) is the ghost-gluon scattering kernel [70,
74].

Due to Taylor’s theorem [45], in the limit of p →
0, known as “Taylor kinematics” or “soft ghost limit”
[9,72,75], the ghost-gluon vertex reduces to its tree-level
value, i.e., �μ(r, 0,−r) = rμ. Similarly, under the assump-
tion that Hνμ(r, p, q) contains no poles of the type 1/r2,
from Eq. (2.5) follows that �μ(r, p, q) vanishes in the soft

1 Vertices with a single B-gluon carry a “tilde”, while those with more
B-gluons carry a “hat”.

antighost limit, i.e., as r → 0; then, from Eq. (2.4) we con-
clude that B2(0,−q, q) = 0.

Turning to �̃μ(r, p, q), in complete analogy with Eq. (2.4)
we have

�̃μ(r, p, q) = B̃1(r, p, q)rμ + B̃2(r, p, q)qμ; (2.6)

its tree-level expression �̃
(0)
μ is given in Eq. (A2), such that

B̃(0)
1 = 2, and B̃(0)

2 = 1. Note that one of the distinctive fea-
tures of �̃μ(r, p, q) is the linear (Abelian) STI that it satisfies

qμ �̃μ(r, p, q) = D−1(p) − D−1(r). (2.7)

Finally, consider the BQQ vertex, denoted by �̃αμν(q,

r, p). This vertex is a central component in SDE studies of
the gluon propagator within the PT-BFM approach, and sev-
eral of its main properties have been explored in the related
literature, see, e.g., [76]. However, for the present study of the
all-soft limit the only relevant characteristic of �̃αμν(q, r, p)
is its ξ -dependence at tree-level [see the Feynman rule for

�̃
(0)
αμν given in Eq. (A1)]. Specifically, we can decompose the

full �̃αμν(q, r, p) as

�̃αμν(q, r, p) = �̃αμν(q, r, p) + 1

ξ

[
gαν rμ − gαμ pν

]
,

(2.8)

where the second term on the r.h.s. is the ξ -dependent
tree-level term. Then, combining Eq. (2.8) and Eq. (A1),
we see immediately that, at tree-level, �̃

(0)
αμν(q, r, p) =

�
(0)
αμν(q, r, p), where�

(0)
αμν(q, r, p) = gμν(r−p)α+gαν(p−

q)μ + gαμ(q − r)ν is the standard tree-level expression of
the conventional three-gluon vertex (QQQ).

We now turn our attention to the four-point sector of the
theory. In Fig. 2 we show the three four-point vertices rele-
vant for our analysis, namely the BBQQ vertex [panel (a)],
the BQc̄c vertex [panel (b)], and the BBc̄c vertex [panel (c)].
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(a) (b) (c)

Fig. 2 Diagrammatic representations of the fully dressed four-point functions: a BBQQ , b BQc̄c , and c BBc̄c . Notice that all momenta are
incoming, i.e., q + r + p + t = 0, and we have factored out −ig2 following the definitions of Eq. (2.9)

These vertices will be denoted as

�Ba
α B

b
β Q

c
μQ

d
ν
(q, r, p, t) = −ig2�̂

abcd
αβμν(q, r, p, t),

�Ba
μQ

b
ν c̄

mcn (q, r, p, t) = −ig2�̃
abmn
μν (q, r, p, t),

�Ba
μB

b
ν c̄

mcn (q, r, p, t) = −ig2�̂
abmn
μν (q, r, p, t), (2.9)

and their corresponding tree-level expressions may be found
in Eqs. (A3), (A4), and (A5), respectively.

Note that �̂
abcd
αβμν(q, r, p, t) depends on ξ already at tree

level, and can be written as

�̂
abcd
αβμν(q, r, p, t) = �̂abcd

αβμν(q, r, p, t)

+ 1

ξ

[
f acx f xbdgαμ gβν − f adx f xbcgαν gβμ

]
. (2.10)

In addition, the vertex �̃
abmn
μν (q, r, p, t) is related to the

�ν(r, p, q) through the simple STI [11,77]

qμ�̃
abmn
μν (q, r, p, t)= f nax f bmx�ν(p, q+t, r)

+ f nbx f max�ν(q+ p, t, r) + f nmx f abx�ν(p, t, q+r).
(2.11)

The vertex �̂
abmn
μν (q, r, p, t), which is central to our anal-

ysis, may be expanded as [78–80]

�̂
abmn
μν (q, r, p, t) =

10∑

i=1

8∑

j=1

Ti j (q, r, p, t)	iμνc
abmn
j , (2.12)

where

	1
μν = gμν, 	

2
μν = qμrν, 	

3
μν = qμ pν, 	

4
μν = qνrμ,

	5
μν = qν pμ, 	6

μν = rμ pν, 	
7
μν = pμrν, 	

8
μν = qμqν,

	9
μν = rμrν, 	

10
μν = pμ pν, (2.13)

and

cabmn
1 = f anx f mbx , cabmn

2 = f max f bnx , cabmn
3 = δabδmn,

cabmn
4 = δamδnb, cabmn

5 = δanδbm, cabmn
6 = dabr f mnr ,

cabmn
7 = damr f bnr , cabmn

8 = danr f bmr . (2.14)

At tree level, only T (0)
11 = T (0)

12 = 1 are nonvanishing.

The Bose symmetry of �̂
abmn
μν (q, r, p, t) under the exch

ange of two background gluons, i.e., (a, μ, q) ↔ (b, ν, r),
imposes additional constraints on the form factorsTi j (q, r, p,
t). Specifically, 45 out of the 80 form factors Ti j (q, r, p, t)
can be written as permutations of the arguments of the
remaining 35, e.g., T73(q, r, p, t) = T33(r, q, p, t).

Of course, in the all-soft limit that we study, the tenso-
rial structures collapse to gμν , which, by virtue of the Bose
symmetry, may be multiplied by ( f anx f mbx + f max f bnx ),
(δamδnb+δanδbm), and δabδmn . However, only the first color
combination respects the ghost–antighost symmetry of the
vertex, so that we finally arrive at the unique structure relevant
for the all-soft limit, namely ( f anx f mbx + f max f bnx )gμν .

Let us finally introduce the renormalization constants Zi

that connect bare and renormalized quantities. In particular,
we have [67,73]

�R(q
2) = Z−1

A �(q2), FR(q
2) = Z−1

c F(q2),

gR = Z−1
g g, (2.15)

and

�μ(r, p, q) := Z−1
1 �R

μ(r, p, q),

�̃μν(q, r, p, t) := Z̃−1
4 �̃

R

μν(q, r, p, t),

�̃μ(r, p, q) := Z̃−1
1 �̃

R

μ(r, p, q),

�̂μν(q, r, p, t) := Ẑ−1
4 �̂

R

μν(q, r, p, t), (2.16)

where we have omitted the color structures for simplicity.
By virtue of the various STIs relating the above Green’s

functions, the renormalization constants satisfy the condi-
tions

Ẑ4 = Z̃1, Z̃1 = Zc, Z̃4 = Z1,

Z−1
g = Z−1

1 Z1/2
A Zc. (2.17)

Note that, in the Landau gauge, the renormalization constant
Z1 is finite (cutoff-independent), as a consequence of Tay-
lor’s theorem [45].
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3 All-soft limit: an exact result

In this section we derive the exact all-soft limit of the vertex
�̂
abmn
μν (q, r, p, t), by resorting to the simple STI that relates

�̂
abmn
μν (q, r, p, t) with the �̃ν of Eq. (2.6), namely

qμ�̂
abmn
μν (q, r, p, t)= f abx f mnx �̃ν(p, t, q + r)

+ f anx f bmx �̃ν(p, q + t, r)+ f amx f nbx �̃ν(q+ p, t, r).
(3.1)

Equation (3.1) may be derived within the systematic approach
provided by the Batalin–Vilkovisky formalism [10,81–83].
A more direct derivation relies on the observation that, at
tree-level [see Eqs. (A2) and (A5)], if we contract �̂

(0)abmn
μν

by qμ and, with the aid of the Jacobi identity, add to the
answer (p− t)ν[ f abx f mnx + f anx f bmx + f amx f nbx ] = 0,
we have

qμ�̂
(0)abmn
μν = f abx f mnx (p − t)ν︸ ︷︷ ︸

�̃
(0)
ν (p,t,q+r)

+ f anx f bmx (p − t − q)ν︸ ︷︷ ︸
�̃

(0)
ν (p,q+t,r)

+ f amx f nbx (p − t + q)ν︸ ︷︷ ︸
�̃

(0)
ν (q+p,t,r)

. (3.2)

Since the STIs triggered with respect to a background leg
maintain their tree-level form, the naive generalization of
Eq. (3.2) leads us to Eq. (3.1).

The way to proceed with Eq. (3.1) is analogous to the
typical derivation of a WI out of a STI: as the momentum
that triggers the STI tends to zero, a Taylor expansion of both
sides is carried out, followed by an appropriate matching
of terms linear in q. In the case of the four-particle vertex

�̂
abmn
μν (q, r, p, t) that we consider, it is convenient to choose

as a point of departure the special kinematic configuration
(q, r, p, t) → (q,−q, 0, 0). In that case, Eq. (3.1) reduces
to

qμ�̂
abmn
μν (q,−q, 0, 0)= f abx f mnx �̃ν(0, 0, 0)

+ f anx f bmx �̃ν(0, q,−q) + f amx f nbx �̃ν(q, 0,−q).

(3.3)

To begin with, it is clear that �̃ν(0, 0, 0) = 0, since it has
just one Lorentz index and all momenta were set to zero.

Then, the second and third terms on the r.h.s of Eq. (3.3)
correspond to the “soft antighost” (i.e., r → 0 ) and “soft
ghost” (or equivalently “Taylor kinematics” where p → 0)
limits of the background ghost-gluon vertex, �̃μ, respec-
tively.

The derivation of the special exact relation that �̃μ, in the
“soft ghost” kinematics satisfies, was shown in [48] using
three different approaches. In what follows, we will sketch
some of the main steps of the derivation based on the STI that
�̃μ satisfies, since we are using a different tensorial basis for
�̃μ. These steps will be also relevant for the derivation of the
“soft antighost” limit.

The starting point is the combination of the most general
tensorial decomposition of �̃μ, written in Eq. (2.6), and the
STI of Eq. (2.7) that �̃μ satisfies, which lead us to

(q ·r)B̃1(r, p, q)+q2 B̃2(r, p, q) = D−1(p)−D−1(r). (3.4)

Next, assuming that there are no poles associated to the r = 0
and p = 0 limits; then, in the soft ghost limit (p = 0 and
r = −q) Eq. (3.4) becomes

B̃1(q, 0,−q) − B̃2(q, 0,−q) = F−1(q). (3.5)

Thus, setting p = 0 and r = −q in Eq. (2.6) and in the
sequence, using the Eq. (3.5), we find that in the soft ghost
limit

�̃μ(q, 0,−q) = qμ

[
B̃1(q, 0,−q) − B̃2(q, 0,−q)

]

= qμF
−1(q). (3.6)

Similarly, in the soft antighost limit (r = 0 and p = −q),
Eq. (3.4) simplifies to

B̃2(0, q,−q) = F−1(q), (3.7)

where we used Lorentz invariance to change the sign of the
arguments of the scalar function B̃2. Then, substituting the
above result in Eq. (2.6), we obtain the exact relation

�̃μ(0, q,−q) = −qμ B̃2(0, q,−q) = −qμF
−1(q). (3.8)

Therefore, we find that both limits are related to each other
as

�̃μ(q, 0,−q) = −�̃μ(0, q,−q) = qμF
−1(q). (3.9)

Let us mention in passing that the results of Eq. (3.9),
derived above in full generality, may also be obtained from
the standard gauge technique Ansatz [74],

�̃μ(r, p, q) =
[
D−1(p) − D−1(r)

p2 − r2

]
(2r + q)μ

+ AT(r, p, q)[(r · q)qμ − q2rμ], (3.10)

provided that the undetermined transverse (automatically
conserved) part is well-behaved in the limit q → 0.
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Substituting the results of Eq. (3.9) into the r.h.s. of
Eq. (3.3), we arrive at

qμ�̂
abmn
μν (q, 0,−q, 0)=qν( f

max f xbn+ f mbx f xan)F−1(q),

(3.11)

which, upon expansion around q = 0, yields the final exact
result

�̂
abmn
μν (0, 0, 0, 0) = gμν( f

max f bnx + f mbx f anx )F−1(0).

(3.12)

Clearly, at tree-level, when F−1(0) = 1, the above result
reduces simply to the momentum-independent expression for

�̂
(0)abmn
μν given in Eq. (A5).
Finally, in terms of the form factors Ti j (q, r, p, t) appear-

ing in Eq. (2.12), the exact result of Eq. (3.12) implies that

T (0) := T11(0, 0, 0, 0) = T12(0, 0, 0, 0) = F−1(0). (3.13)

The remaining form factors Ti j (0, 0, 0, 0) are undetermined,
because their associated tensor structures vanish directly in
the all-soft limit.

4 All-soft limit of the SDE

In this section we derive the all-soft limit of the vertex
�̂
abmn
μν (q, r, p, t) from the SDE that it satisfies. This is a sub-

tle exercise, mainly for two reasons: first, a series of key
gauge cancellations must be implemented before the Landau
gauge limit may be taken safely; and second, several instru-
mental properties of the vertices nested inside the Feynman
diagrams of the SDE must be employed, in order for the result
of Eq. (3.12) to emerge.

We find it convenient to set up the SDE with respect to
the ghost field carrying the momentum t . According to the
standard procedure, the ghost field is attached to all possible
tree-level vertices containing it, while the remaining three
fields connect to the diagram by means of appropriate dressed
kernels. In the particular case that we consider there are two
relevant tree-level vertices: the standard Qc̄c vertex, and the
BQc̄c vertex that is particular to the BFM. The resulting SDE
is represented diagrammatically in Fig. 3, in terms of the
five- and four-particle kernels, denoted byKabcme

5 μνρ andKbcme
4 νρ ,

respectively; the crossed diagram obtained by interchanging
the background gluons of (b) is not shown.

Each of the kernelsKabcme
5 μνρ andKbcme

4 νρ consists of a compo-
nent that sums up the one-particle reducible (1PR) terms, to
be denoted by T abcme

5 μνρ and T bcme
4 νρ , and a component contain-

ing all possible one-particle irreducible (1PI) contributions,

to be denoted by Gabcme
5 μνρ and Gbcme

4 νρ , respectively, as shown
in Fig. 4. Thus, we have

Kabcme
5 μνρ = T abcme

5 μνρ + Gabcme
5 μνρ , Kbcme

4 νρ = T bcme
4 νρ + Gbcme

4 νρ .

(4.1)

Note that Gabcme
5 μνρ coincides with the dressed loop-wise

(skeleton) expansion of the 1PI five-point Green’s function
〈0| T [

Ba
μ Bb

ν Qc
ρ c̄

m ce
]|0〉, while Gbcme

4 νρ corresponds to the

1PI four-point function 〈0| T [
Bb

ν Qc
ρ c̄

m ce
]|0〉.

The renormalization of the SDE for the vertex �̂
abmn
μν

(q, r, p, t) proceeds by introducing the renormalization rela-
tions given in Eqs. (2.15) and (2.16) into each of the graphs in
Fig. 5, employing the constraints listed in Eq. (2.17). Then,
the renormalized version of the vertex SDE reads

�̂
abmn
μν (q, r, p, t) = Zc �̂

(0)abmn
μν − ig2Z1

∑
all graphs,

(4.2)

where all subscripts “R” have been suppressed in order to
avoid notation clutter.

We next evaluate the all-soft limit of the diagrams given
in Fig. 5. In doing so, the cancellation of terms proportional
to 1/ξ must be carried out before the Landau limit, ξ → 0,
is taken.

(i) We start by noticing that the diagrams (a1), (a4), (a6),
and (b2) do not contain vertices with ξ -dependent tree-level
expressions; therefore, the Landau gauge may be reached
directly by setting ξ = 0 throughout. Then, it is elementary
to establish that (a1), (a4), and (a6) vanish in the all-soft
limit, (p, q, r, t) = (0, 0, 0, 0), because the sequence

(p + k)σ �σρ(k)
ξ=0−−→ (p + k)σ Pσρ(k)�(k)

p=0−−→ kσ Pσρ(k)�(k) = 0, (4.3)

is triggered. As for graph (b2), it vanishes because it con-
tains the ghost-gluon vertex in the soft antighost limit, i.e.,
�ρ(0, k,−k) = 0. Thus, in total,

(a1)
abmn
μν = (a4)

abmn
μν = (a6)

abmn
μν = (b2)

abmn
μν = 0. (4.4)

(ii) Diagrams (a2), (a3), (a5), and (b1) eventually vanish,
because they all contain the ghost-gluon vertex in the soft
antighost limit. However, since these graphs contain tree-
level vertices with terms proportional to 1/ξ , a limiting pro-
cedure must be followed in order to safely implement the
Landau gauge, thus triggering the result �ρ(0, k,−k) = 0.
To that end, in the case of graphs (a2), (a3), and (a5) note that

we “gain” a power of ξ by employing (p+k)σ �σρ(k)
p = 0−−−→

kσ �σρ(k) = ξ kρ/k2. The presence of this ξ makes all ξ -
independent terms vanish, as ξ → 0. Furthermore, it cancels
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(a) (b)

Fig. 3 Diagrammatic representation of the SDE for the BBc̄c . The gray ellipses represent the five- and four-points kernels, Kabcem
5 μνρ and Kbcem

4 μν ,
respectively. The diagram obtained from (b) through crossing of the gluon legs, μ, a ↔ ν, b, is not shown

Fig. 4 First row: The skeleton expansion of the five-particle ker-
nel Kabcem

5 μνρ is shown as the sum of the 1PR and 1PI contribu-

tions, denoted by T abcem
5 μνρ and Gabcem

5 μνρ , respectively; the dots indi-

cate additional 1PR graphs not shown. Second row: The corre-
sponding contributions of Kbcem

4 νρ , denoted by T bcem
4 νρ and Gbcem

4 νρ ,
respectively

the 1/ξ terms originating from the vertices, furnishing finite
expressions, given by

(a2)
abmn
μν = g4ccndm1

∫

k

(
kρ

k2

)
D(k)�σλ(k)�λ(0,−k, k)

×
[
cadbc1 gμσ gνρ − cacbd1 gμρgνσ

]
,

(a3)
abmn
μν = g4ccdba1 cdcnm1

∫

k

(
kγ

k2

)
D(k)�ρ(0, k,−k)

×[gμγ kβ + gμβkγ ]
× [

�ρσ (k)�αβ(k)�̃νσα(0, k,−k)

+
(
kβ

k2

)
�ρ

ν (k) +
(
kρ

k2

)
�β

ν (k)

]
,

(a5)
abmn
μν = g4ccdma

1 cndbc1

×
∫

k

(
kρ

k2

)
�αβ(k)D2(k)�̃ν(−k, k, 0)

×�β(0, k,−k)(gμρkα + gμαkρ). (4.5)

The vertex �̃νσα(0, k,−k), appearing in the second equa-
tion, has been defined in Eq. (2.8), whereas the factor ccndm1
is given in Eq. (2.14). In addition, we have introduced the
integral measure

∫

k
:= 1

(2π)4

∫
d4k, (4.6)

where the use of a symmetry-preserving regularization
scheme is implicitly understood.

Since at this point we may set ξ = 0 in the expressions of
Eq. (4.5), the result �ρ(0, k,−k) = 0 makes them all vanish.
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Fig. 5 The diagrammatic representation of the SDE for the vertex BBc̄c , expanded in terms of 1PI vertices; crossed diagrams are not shown. Note
that diagrams (ai ) with i = 1, 2, . . . , 8 originate from the expansion of the 1PR kernel in a in Fig. 3, while (bi ) with i = 1, 2, 3 come from b

Turning to (b1), the term �
(0)
νρσ (0, k,−k) of the BFM

tree-level vertex �̃
(0)
νρσ (0, k,−k) simply yields the standard

Landau gauge result, denoted by (b11), while the term
ξ−1(gνσ kρ+gνρkσ ), once contracted with the adjacent gluon
propagators, yields a finite contribution, denoted by (b12),
given by

(b12)
abmn
μν = g4cgcmb

1 ccnga1 gμβ

×
∫

k
D(k)�ρ(0, k,−k)

[(
kβ

k2

)
�ρ

ν (k)+
(
kρ

k2

)
�β

ν (k)

]
.

(4.7)

Since both (b11) and (b12) contain the vertex �ρ(0, k,−k) =
0, they both vanish when ξ = 0. Thus, we finally have

(a2)
abmn
μν = (a3)

abmn
μν = (a5)

abmn
μν = (b1)

abmn
μν = 0. (4.8)

(iii) The treatment of diagram (a8), which contains all 1PI
corrections of the five-particle kernel, denoted by Gabcme

5 μνρ ,
requires particular care. In what follows we explain why, in
the all-soft limit, (a8) = 0.

Since Gabcme
5 μνρ is computed using the BFM Feynman rules

of Table 1, it is clear that individual diagrams may contain
contributions proportional to 1/ξ . Nonetheless, certain pow-
erful formal properties guarantee that, due to massive cancel-
lations among different diagrams, the entire Gabcme

5 μνρ contains
no such terms, and therefore, the Landau-gauge limit may be
safely implemented.

The rather technical demonstration of the above state-
ment proceeds by appealing to the special relations known as
Background-Quantum identities (BQIs) [10,83,84], derived
through appropriate functional differentiation of the STI
functional within the Batalin–Vilkovisky quantization for-
malism [81,82]. In particular, the BQIs express Green’s func-
tions containing background fields (B) in terms of (i) conven-

tional Green’s functions containing quantum fields (Q) and
(ii) auxiliary Green’s functions involving the so-called “anti-
fields” and “background sources”, arising from interaction
terms particular to the aforementioned formalism. The spe-
cial Feynman rules describing these latter Green’s functions
may be found in Figs. (B.3)–(B.4) of [10]; their most relevant
feature for our purposes is that they are ξ -independent.

Note that the exact form of the BQI that Gabcme
5 μνρ satisfies

is not required for the argument that we present; it suffices
to know that the BQI relates Gabcme

5 μνρ to a finite set of Green’s
functions, all of which are regular as ξ → 0. Consequently,
the limit ξ → 0 of Gabcme

5 μνρ is completely well-defined. The
immediate upshot of the above result is that the all-soft limit
of diagram (a8) vanishes, simply because the Landau gauge
may be taken directly, thus triggering the sequence given in
Eq. (4.3).

(iv) We finally arrive at the contributions that survive the
all-soft limit: they originate from diagrams (a7) and (b3),
together with their crossed counterparts, to be denoted by
(ac7) and (bc3), respectively.

Both (a7) and (b3) containGabcme
4 νρ , namely the 1PI Green’s

function 〈0| T [
Bb

ν Qc
ρ c̄

m ce
]|0〉. The arguments presented in

(iii) for Gabcme
5 μνρ apply unaltered in the case of Gabcme

4 νρ , and
the Landau gauge limit may be taken directly in it. Since the

product �̃
(0)

μρ′σ ′(0, k,−k)�ρ′ρ(k)�σ ′σ (k) is finite as ξ → 0,
diagram (a7) is nonvanishing, and the same is true for (ac7).
Similarly, in (b3) the Gabcme

4 νρ is connected to the rest of the
diagram with propagators and vertices that are regular and
nonvanishing as ξ → 0, and the same happens with (bc3).
The final individual contributions are given by

(a7)
abmn
μν = f ebx f dnx

×
∫

k
�(k)D(k) Pα

ν (k) �̃
adme
μα (0,−k, 0, k),
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Fig. 6 The diagrammatic representation of the SDE for the BBc̄c in the all-soft limit

(b3)
abmn
μν = f eax f dnx

×
∫

k
�(k)D(k) Pα

μ (k) �̃
bdme
να (0,−k, 0, k),

(ac7)
abmn
μν = f enx f bdx

×
∫

k
�(k)D(k) Pα

ν (k) �̃
adme
μα (0,−k, 0, k),

(bc3)
abmn
μν = f enx f adx

×
∫

k
�(k)D(k) Pα

μ (k) �̃
bdme
να (0,−k, 0, k).

(4.9)

As a consequence of the considerations presented in (i)–
(iv), the all-soft limit of Eq. (4.2) is represented diagrammat-
ically by Fig. 6 and written as

�̂
abmn
μν (0, 0, 0, 0) = Zc�̂

(0)abmn
μν

− ig2Z1
[
(a7) + (ac7) + (b3) + (bc3)

]abmn
μν

. (4.10)

The next step consists in determining �̃
adme
μα (0,−k, 0, k),

the common ingredient in all integrals appearing in Eq. (4.9).
To that end, consider the STI in (2.11), and implement the
special kinematic configuration (q, r, p, t) → (q,−k,−q, k),
such that

qμ�̃
adme
μα (q,−k,−q, k)

= f eax f dmx�α(−q, q+k,−k)+ f edx f max�α(0, k,−k)
+ f emx f adx�α(−q, k, q − k). (4.11)

We then carry out a Taylor expansion of both sides around
q = 0. It is elementary to show that the zeroth order in q
vanishes on the r.h.s. because it is proportional to the Jacobi
identity, while the coefficients of the linear terms are related
by

�̃
adme
μα (0,−k, 0, k)

= f aex f dmx
{

∂

∂qμ
[B1(−q, q + k,−k)qα

+B2(−q, q + k,−k)kα]

}

q=0

+ f mex f adx
{

∂

∂qμ
[B1(−q, k, q − k)qα

+B2(−q, k, q − k)(q − k)α]

}

q=0

, (4.12)

where we have used that the momentum k is independent
of q. Then, since B2(0, k,−k) = 0 [see discussion after
Eq. (2.5)], we arrive at

�̃
adme
μα (0,−k, 0, k) = gμα f amx f dex B1(0, k,−k) + · · · ,

(4.13)

where the ellipsis denotes terms proportional to kα , which
will be annihilated upon contraction with the projectors
Pα

ν (k) in Eq. (4.9).
Substituting Eq. (4.13) into Eq. (4.9), and employing the

Jacobi identity together with the identity f abe f abx = CAδex ,
where CA is the Casimir eigenvalue of the adjoint represen-
tation [N for SU(N )], and using that Pμ

μ (k) = 3, one arrives
at the final result

�̂
abmn
μν (0, 0, 0, 0)

= gμν( f
max f xbn + f mbx f xan)

×
{
Zc + i

3

4
g2CA Z1

∫

k
�(k)D(k)B1(0, k,−k)

}
,

(4.14)

or, equivalently, in terms of the form factor T (0) defined in
Eq. (3.13)

T (0) = Zc + i
3

4
g2CA Z1

∫

k
�(k)D(k)B1(0, k,−k). (4.15)

In order to make contact with the exact results of Eqs.
(3.12) and (3.13) we need to employ the SDE that governs the
ghost dressing function F(q) in the Landau gauge, depicted
in Fig. 7. Using for �μ(−q, k + q,−k) the decomposition
given in Eq. (2.4), the ghost SDE is given by

F−1(q) = Zc + ig2CAZ1

×
∫

k
D(k + q)�(k) f (k, q)B1(−q, k + q,−k), (4.16)
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Fig. 7 The SDE for the ghost propagator. The white circles represent
the full gluon and ghost propagators, while the blue one denotes the full
ghost-gluon vertex

where the renormalization constants Zc and Z1 have been
defined in Eqs. (2.15) and (2.16), respectively, and f (k, q) :=
1 − (k · q)2/k2q2.

It is then elementary to demonstrate by setting q = 0 into
Eq. (4.16) that

F−1(0) = T (0). (4.17)

Thus, as announced, the result of (3.12) is recovered from
the SDE of the vertex �̂

abmn
μν (q, r, p, t).

We emphasize that throughout the entire demonstration
leading to Eq. (4.14), together with the subsequent equality
in Eq. (4.17), no approximations have been employed. The
results obtained are therefore exact, and represent a rather
special occurrence within the SDE formalism.

5 Estimating truncation errors

In this section we explore the implications of a simple trunca-
tion implemented at the level of Eq. (4.15), and estimate the
associated errors by comparing the answers with the exact
result of Eq. (3.13). The main points of this analysis may be
summarized as follows.

(i) We approximate the ghost-gluon form factor B1(r, p,
q) by its tree-level value, i.e., we set B1(r, p, q) = 1, and
determine the error induced by this simplification to T (0), in
two different situations:

(a) the ghost propagator D(k) entering into Eq. (4.15)
is self-consistently obtained from its own SDE, namely
Eq. (4.16) solved with B1(r, p, q) = 1,

and
(b) the ghost propagator D(k) is treated as an exter-

nal input, obtained from lattice simulations; it is substi-
tuted into Eq. (4.15), which is subsequently evaluated with
B1(0, k,−k) = 1.

(ii) Note that, in order to simplify the analysis, in both
cases the gluon propagator �(k) will be an external input,
obtained from the combined set of lattice data of [55,59,60,
72]; the corresponding fit, shown on the left panel of Fig. 8, is
given by Eqs. (B5) and (B6) in [72]. We stress that the lattice
data for both the gluon propagator and the ghost dressing
function have been cured from discretization artifacts and
finite-size effects [59,60,85,86].

(iii) As far as the truncation errors are concerned, the main
difference between the two cases is that in (a) the error made
when setting B1(r, p, q) = 1 affects the result for T (0) non-
linearly, while in (b) the effect is practically linear. Specifi-
cally, in (a) the error induced to T (0) by the corresponding
error in B1 is twofold: direct, through the slice B1(0, k,−k) in
Eq. (4.15), and indirect, through the entire B1(−q, k+q,−k)
that enters in the SDE that determines D(k) [see Eq. (4.16)].
The difference between the two cases is that in (b) the indirect
error is eliminated, since D(k) is fixed from the lattice, and
coincides with the answer obtained from the full treatment
of the ghost SDE.

(iv) The result obtained from Eq. (4.15) for the cases (a)
and (b), to be denoted by Ta(0) and Tb(0), respectively, will
be compared with the exact result F−1(0); its benchmark
value, to be denoted by F−1

L (0), is taken from the lattice sim-
ulation of [55,60]. The corresponding relative error, denoted
by δ, is defined as

δi =
∣
∣∣Ti (0) − F−1

L (0)

∣
∣∣

F−1
L (0)

× 100%, i = a, b. (5.1)

(v) All relevant quantities are renormalized using the
momentum subtraction (MOM) scheme, where the renor-
malized two-point functions acquire their tree-level values at
the subtraction point μ, i.e., �−1(μ) = μ2 and F(μ) = 1.
Within MOM we employ the special case of the so-called
Taylor scheme [87–89], which imposes the additional condi-
tion that the renormalized ghost-gluon vertex reduces to tree-
level in the soft ghost kinematics, i.e., �μ(r, 0,−r) = rμ.
This last condition fixes the (finite) ghost-gluon renormal-
ization constant at the special value Z1 = 1. In our computa-
tions, the subtraction point is chosen to be μ = 4.3 GeV; the
corresponding value for αs(μ) = g2/4π is αs(4.3 GeV) =
0.244 [72].

(vi) It is instructive to compare the approximation B1(r, p,
q) = 1 with the full B1(r, p, q) in general kinematics,
obtained from a detailed SDE study of the ghost-gluon
vertex [72]. To that end, in the right panel of Fig. 8 we
show a representative result for B1(r2, p2, ϕ), where ϕ is
the angle between r and p, and we choose ϕ = 2π/3.
When r ≈ p ≈ 1.2 GeV, B1 displays a moderate peak
of approximately 22% over the tree-level value. On the other
hand, when both momenta vanish, B1 reduces to its tree-
level value. On the same plot we highlight by the continuous
orange line the soft antighost limit B1(0, p,−p), entering in
Eq. (4.15).

(vii) For the implementation of the truncation mentioned
in case (a), consider the ghost SDE in Eq. (4.16) , with Z1 = 1
in the Taylor scheme.2 Clearly, for the numerical analy-

2 Note that from F(μ) = 1 follows that Zc = 1 − ig2CA
∫
k D(k +

μ)�(k) f (k, μ)B1(−μ, k + μ,−k).
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Fig. 8 Left panel: The lattice data of [55,59,60,72] (circles), and the
corresponding fit (blue continuous curve) for the gluon propagator,
�(q). Right panel: The ghost-gluon form factor B1(r2, p2, 2π/3) in

general kinematics for a fixed value of angle ϕ = 2π/3. The orange
curve highlights the soft antighost limit of B1(0, p,−p), entering in
Eq. (4.15)

sis, the Euclidean space versions of all expressions must be
used; for the standard conversion rules, see e.g., Eq. (5.1) of
[70].

Let us first emphasize that when the complete B1(−q, k+
q,−k) is employed as input, together with the �(k) men-
tioned in (ii) and the αs(μ) in (v), Eq. (4.16) returns a solution
for F(q) that is in excellent agreement with the lattice data of
[60], see blue continuous curve in the left panel of Fig. 9 [72].
From this curve we may directly deduce that the benchmark
value is given by F−1

L (0) = 0.344 (for μ = 4.3 GeV).
Next, we implement the approximation B1(−q, k +

q,−k) = 1 in Eq. (4.16), keeping �(k) and αs(μ) fixed.
The resulting integral equation is given by

F−1(q) = ig2CA

×
∫

k
�(k) [D(k + q) f (k, q) − D(k + μ) f (k, μ)] ,

(5.2)

and the corresponding solution, to be denoted by Fa(q), is
shown as the red dashed curve in the left panel of Fig. 9. It is
clear that Fa(q) deviates considerably from the lattice results;
in particular, at the origin we have the value F−1

a (0) = 0.501.
Then, by virtue of Eq. (4.17), we have that Ta(0) = F−1

a (0),
and employing Eq. (5.1) we find that the corresponding rel-
ative error is given by δa = 47.5%.

(viii) We now turn to the truncation of case (b). In order
to obtain the relative error we simply need to evaluate the
integral of Eq. (4.15) with B1(0, k,−k) = 1, but setting
D(q) → DL(q) = FL(q)/q2, namely the lattice (and full
SDE) result for the ghost propagator. Thus, the integral to be
determined is given by

Tb(0) = ig2CA

×
∫

k
�(k) [DL(k + q) f (k, q) − DL(k + μ) f (k, μ)] .

(5.3)

It is clear that this “hybrid” treatment invalidates the equality
of Eq. (4.17), since the r.h.s. of Eq. (5.3) does not coincide
with the q = 0 limit of any ghost SDE; thus, Tb(0) �= FL(0).
In particular, using in Eq. (5.3) the same �(k) and αs(μ)

as before, together with a fit to the lattice data for FL(q),
one obtains Tb(0) = 0.427, and the associated relative error
computed from Eq. (5.1) is δb = 24.1%.

(ix) The results derived in this section are pictorially sum-
marized in the right panel of Fig. 9. It is clear that case (b)
leads to a considerably smaller error, since the treatment of
the ghost dressing function as an external input linearizes
the dependence of T (0) on B1. In fact, the relative error
δb = 24.1% is very close to the 22.1% that separates the
peak in B1 from the tree-level value [see Fig. 8 and comments
in (vi)]. This notable reduction in the error with respect to
case (a) suggests that the hybrid treatment may be preferable,
albeit theoretically less rigorous.

6 Discussion and conclusions

In the present study we have considered the SDE of
the special four-particle vertex that controls the interac-
tion of two background gluons with a ghost–antighost pair
(BBc̄c vertex). We focused on the deep infrared limit, where
all incoming momenta vanish. In this extreme limit, the form
factor of the vertex may be determined exactly by virtue
of the Abelian STI that it satisfies. In particular, the two
surviving form factors are expressed in terms of two- and
three-point functions, but without contributions from ghost-
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Fig. 9 Left panel: Lattice data for the ghost dressing function from [60]
(circles), together with SDE results using the full B1 (blue continuous
curve) or its tree-level value (red dashed curve). Right panel: Compar-

ison of the exact value for T (0) with corresponding values obtained
when we use in the Eq. (4.15) the two curves for F(q) shown in the left
panel

gluon kernels. This central result is recovered from the SDE
by exploiting the Abelian STIs of the various vertices nested
inside the diagrammatic expansion, and making repeated use
of Taylor’s theorem. The aforementioned exact result, in turn,
allows for the determination of the error associated with two
related, but inherently distinct truncation procedures.

The realization of the WI at the level of the SDE, pre-
sented in Sect. 3, is particularly noteworthy, combining con-
cepts and techniques in a novel way, not previously presented
in the literature. This construction highlights the importance
of incorporating into the SDEs vertices that satisfy the con-
straints imposed by the fundamental symmetries of the the-
ory, such as the STIs and Taylor’s theorem. In addition, it
exposes the tight connections and delicate balance among
the various SDE components, necessary for maintaining cer-
tain basic relations intact.

In this context, note that in Eq. (4.15), the dependence
of T (0) on the form factor B1 of the ghost-gluon vertex
�μ(r, p, q) does not originate from the graphs (a1), (a2),
(a3), (a4), (a5), (b1), and (b2) in Fig. 5, which contain the
�μ(r, p, q) explicitly, since they all vanish in the all-soft
limit, see Sect. 4. Instead, the answers stem from graphs (a7)
and (b3), which have no explicit dependence on this form

factor, but contain the vertex �̃
adme
μα (0,−k, 0, k), whose WI

in Eq. (4.13) induces the final dependence of T (0) on B1.
SDE calculations are often simplified by using lattice

results as inputs for certain basic Green’s functions, and one
of the truncations considered in this study [case (b) in item
(i) of Sect. 5] is motivated by this particular practice. In the
present analysis, we found that this procedure clearly low-
ers the error induced to T (0) by the uncertainty in B1. To
be sure, the actual amount of error reduction achieved may
be atypically high (a factor of two), owing mostly to the
enhanced sensitivity of the ghost SDE on B1. An analogous
study at the level of the gluon propagator is likely to pro-

duce a milder dependence on B1, and thus, a more moderate
improvement; on the other hand, the SDE of the gluon propa-
gator depends on other poorly known Green’s functions, such
as the four-gluon vertex [79,80,90–95]. Thus, even though
no rigorous conclusions may be drawn, the use of lattice
inputs in SDEs emerges as an advantageous option, because
it reduces the number of active coupled equations and lowers
the overall error. In addition, advances in techniques and pro-
cedures used for the elimination of discretization artifacts and
finite-size effects from the data [59,60,85,86] put the syn-
ergy between (gauge-fixed) lattice simulations and SDEs on
firmer theoretical ground.

Undoubtedly, the BFM provides an excellent testing
ground for the set of ideas presented in this work, mainly
due to the ghost-free STIs satisfied by the relevant Green’s
functions. It would be interesting to carry out lattice simula-
tions directly in the BFM [96,97], following the formalism
introduced in [98,99].

Acknowledgements The work of A. C. A. and B. M. O. are supported
by the CNPq grants 307854/2019-1 and 141409/2021-5, respectively.
A. C. A also acknowledges financial support from the FAPESP project
2017/05685-2 and 464898/2014-5 (INCT-FNA). J. P. is supported by
the Spanish MICINN grant PID2020-113334GB-I00 and the regional
Prometeo/2019/087 from the Generalitat Valenciana.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: All data generated
or analyzed during this study are included in this published article.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended

123



Eur. Phys. J. C (2022) 82 :1068 Page 13 of 15 1068

use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Feynman rules for BFM vertices

In Table 1 of this Appendix, we list the Feynman rules for
the BFM vertices at tree-level.

Table 1 The diagrammatic representations of the new vertices appear-
ing in the BFM and their respective Feynman rules at tree-level [10].
Notice that for the three-point functions we have factored out the cou-

pling g and their respective color structure, following the definitions of
Eq. (2.3), while for the four-point functions, we have factored out only
−ig2 as shown in Eq. (2.9)
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