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We present a lattice QCD study of the contribution of the isovector quark chromoelectric dipole moment
(qcEDM) operator to the nucleon electric dipole moments (nEDM). The calculation was carried out on four
2þ 1þ 1 flavor highly improved staggered quark (HISQ) ensembles generated by the MILC Collaboration.
Wilson-clover quarks were used to construct correlation functions. This clover-on-HISQ formulation is not
fully OðaÞ improved, and gives rise to additional systematics over and above those due to removing excited
state contributions to getting ground-state matrix elements, and the final chiral and continuum extrapolations
to get the physical result. We use the nonsinglet axial Ward identity (AWI) including corrections up toOðaÞ
to show how to control the power-divergent mixing of the isovector qcEDM operator with the lower-
dimensional pseudoscalar operator. The residual corrections are observed to give rise to Oð25%Þ violations
in relations arising from the AWI. We devise three methods attempting to control the resulting uncertainty in
the CP-violating form factor; each of these, however, can have large Oða2Þ corrections. Preliminary results
for the nEDM due to qcEDM are presented choosing the method giving the most uniform behavior.
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I. INTRODUCTION

The observation of permanent electric dipole moments
(EDMs) in nondegenerate systems requires the simulta-
neous breaking of parity ðPÞ and time reversal ðTÞ, or,
equivalently, the combination of charge conjugation and
parity (CP) [1]. Given the smallness of CP-violating (CP)
contributions induced by quark mixing described by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix in the
Standard Model (SM) [2], CP violation (CPV) in nucleon,
nuclear, and atomic/molecular [3–9] systems provides very
strong constraints on the SM Θ term (currently constrained
at the level of Θ ∼ 10−10) and new sources of CPV arising
from physics beyond the Standard Model (BSM) [10,11].
New CP interactions are ubiquitous in BSM models and

may play a key role in relatively low-scale baryogenesis

mechanisms, such as electroweak baryogenesis (see [12]
and references therein). Probing them through hadronic
EDMs, however, requires including corrections due to the
strong interactions between quark and gluon fields. These
are analyzed using low-energy effective operators and
require nonperturbative treatment. For hadronic systems
such as the neutron, lattice QCD has emerged as the tool of
choice to compute the contribution of these CP operators to
the EDMs. Furthermore, it has been shown quantitatively
that improving the precision of these hadronic matrix
elements will drastically improve the constraints that
EDMs provide on CP BSM interactions of the Higgs
particle [13–15].
The outline of this paper is as follows. In Sec. I A, we

review the need for new sources of CP. The parametriza-
tion of CP operators at the hadronic scale using effective
field theory methods is presented in Sec. I B. In this study,
we only calculate the EDMs of the neutron (nEDM)
and proton (pEDM) induced by the isovector component
of the quark chromoelectric dipole moment (qcEDM). The
decomposition of the matrix elements of CP operators
within ground-state nucleons into vector form factors of the
nucleons, and the phase conventions are given in Sec. II. In
Sec. III, we describe the method for calculating these form
factors using clover fermions on background highly
improved staggered quark (HISQ) lattice ensembles pro-
vided by the MILC Collaboration [16,17]. The use of the
axial Ward identity (AWI) to control the power law
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divergence due to mixing with the lower-dimension pseu-
doscalar operator is described in Sec. IV, and some
preliminary numerical results are presented in Sec. V. In
Sec. VI, we discuss the multiplicative renormalization of
the qcEDM operator and the connection to the modified
minimal subtraction (MS) scheme. Our conclusions are
given in Sec. VII. Four appendixes present technical
details: Appendix A discusses the nonsinglet AWI,
Appendix B provides a complete list of dimension-five
CP operators, Appendix C details the nonperturbative
procedure for the extraction of the coefficient, KX1, needed
to control the power-divergent mixing of the qcEDM and
pseudoscalar operators, and Appendix D gives the chiral
perturbation theory determination of the chiral phase αN for
the nucleon.

A. Baryogenesis and the need for new sources
of CPV

The observed Universe has 6.1þ0.3
−0.2 × 10−10 baryons for

every black body photon [18], whereas in a baryon
symmetric universe, we expect no more than about 10−20

baryons and antibaryons for every photon [19]. It is difficult
to include such a large excess of baryons as an initial
condition in an inflationary cosmological scenario [20]. The
way out of the impasse lies in generating the baryon excess
(baryogenesis) dynamically during the evolution of the
Universe.
In the early history of the Universe, if the matter-

antimatter asymmetry was generated postinflation and
reheating, then one has to satisfy Sakharov’s three necessary
conditions [21]: the process has to violate baryon number,
evolution has to occur out of equilibrium, and CP (or,
equivalently, time reversal invariance if CPT remains
unbroken) has to be violated.
To probe sources of CPV, a very promising approach is to

search for static EDMs of elementary particles, atoms, and
nondegenerate states of molecules, all of which are neces-
sarily proportional to their spin. Since under time reversal,
the direction of spin reverses, but the EDM does not, a
nonzero measurement would imply T, or equivalently CP,
violation. Of the elementary particles, atoms and nuclei that
are being investigated, nEDM and pEDM are the cleanest to
analyze using lattice QCD.
CPV exists in the electroweak sector of the SM of

particle interactions due to a phase in the CKM quark
mixing matrix [2], and possibly by a similar phase in the
leptonic sector [22,23], given that the neutrinos have mass
and mix. The contribution of the CP phase in the CKM
quark mixing matrix [2] to nEDM is Oð10−32Þ e-cm [24],
much smaller than the current experimental bound dn <
1.8 × 10−26 e-cm (90% C.L.) [3]. This CPV is too small to
explain baryogenesis [25–30]. Similarly, CPV due to a
possible topological term [31] is unlikely to lead to
appreciable baryon asymmetry [32]. For baryogenesis,
BSM CPV would, therefore, need to have played a major

role. Most extensions of the SM have new sources
of CPV. Each of these contributes to the nEDM, and for
some models it can be as large as 10−26 e-cm. Planned
experiments aim to reach a sensitivity of dn ∼ 3 ×
10−28 e-cm [11].
In order to connect the reduction in the upper bounds or

actual values from EDM searches to new sources of CPV
and models of baryogenesis, robust calculations of the
hadronic EDMs induced by low-energy effective quark and
gluon operators are needed. Lattice QCD offers the most
promising method with control over all uncertainties to
provide the matrix elements of novel CP operators between
nucleon states that are needed to connect the experimental
bound (or value!) of the EDMs to the CP couplings in a
given BSM theory. Here, we present the calculation of the
isovector part of the qcEDM operator.

B. CPV at low energy up to dimension five

At the hadronic scale (≲2 GeV), the effects of BSM
theories that involve heavy degrees of freedom at mass
scales greater than the weak scale, Λ > MW , can be
described in terms of effective local operators composed
of quarks and gluons. Using effective field theory tech-
niques, one can organize all such CP interactions based on
symmetry and dimension. In general, operators with higher
dimension are suppressed by increasing inverse powers
of Λ. The couplings associated with these low-energy
operators encode information about the BSM model at the
Λ ∼ TeV scale with the renormalization group providing
their evolution from Λ to the hadronic scale. The nEDM
induced by any CP interaction can be obtained from the
CP form factor F3 of the electromagnetic current, JEMμ ,
within the nucleon state, as discussed below.
At dimension five and lower, only three CP local

operators arise:

LQCD ⟶ LCP
QCD ¼ LQCD þ i

32π2
ΘGμνG̃μν

−
i
2

X
q

dq q̄σμνF̃μνq −
i
2

X
q

d̃q q̄σμνG̃μνq; ð1Þ

where F̃μν ¼ ϵμναβFαβ=2 is the dual of the electromagnetic
field-strength tensor, G̃μν ¼ ϵμναβGαβ=2 is the dual of the
QCD field-strength tensor, and σμν ¼ ði=2Þ½γμ; γν� [33].
These three CP operators are the d ¼ 4 Θ term and the
d ¼ 5 quark EDM (qEDM) and the qcEDM with dimen-
sionful coefficients dq and d̃q, respectively. Recent work on
the dimension six gluonic operator (the Weinberg operator)
[35] can be found in Refs. [36,37], while there has been less
work done on the CP four-fermion operators [38,39].
To the lowest order, the calculation of the qEDM is

special; it reduces to the calculation of the flavor-diagonal
tensor charges of the neutron. The methodology for this
calculation, including disconnected contributions from up,
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down, strange, and charm quark loops, is mature. First
lattice results obtained by us are given in Ref. [40] and
phenomenological consequences for a particular BSM
theory [split supersymmetry] were analyzed in Ref. [41].
These results were updated in Ref. [42], and the status of
various lattice calculations are reviewed by the Flavor
Lattice Averaging Group in Refs. [43,44].
The calculation of nEDM induced by the Θ term

requires the matrix elements of the product of the gluonic
operator with the JEMμ within the ground state of the
nucleon. While the computation is only slightly more
expensive than of the three-point function with just JEMμ ,
the calculation is still not under control due to both
statistical errors and lack of a clear methodology to fully
remove excited state contributions (ESC), especially from
the low-lying tower of nucleon-pion states. Recent
progress has been reported in Refs. [34,45–48].
Note that because of the anomaly in the AWI, the Θ term

can be rotated into a pseudoscalar mass term
im�ðΘÞ

P
q q̄γ5q under a chiral transformation [49], and

conversely, any phase arising in the determinant of the
quark mass matrix can be traded for Θ. Since the non-
anomalous AWI allow us to remove the rest of the phases
in the mass matrix, we will, henceforth, treat all quark
masses as real and positive. The Θ term is part of the SM,
but is usually neglected under the assumption that some
form of a Peccei-Quinn mechanism that promotes Θ to a
dynamical field relaxes it to the minimum of its effective
action at Θ ¼ 0 [50] in the absence of other CP sources in
the action. It is, however, important to note that in the
presence of other CP operators from BSM, the minimum,
called Θinduced [51], of this effective potential is, in general,
shifted by the disconnected contributions, i.e., those in
which the quark fields in the operator are contracted to
form a quark loop. This contribution to the minimum
induced by the qEDM and qcEDM operators vanishes for
the isovector combination in an isospin-symmetric theory.
We, therefore, do not consider this effect here as we
present only the connected contributions of the qcEDM
operator.
Calculations of even the bare qcEDM operator are the

most challenging computationally of the three D ≤ 5
operators. Furthermore, to get finite results in the con-
tinuum limit, one must resolve its divergent mixing with
theD ¼ 3 pseudoscalar operator i

P
q q̄γ5q as discussed in

Refs. [37,52,53]. Our analysis starts with the Hermitian
flavor diagonal and isovector qcEDM operators defined as

CðqÞ ≡ −
i
2
q̄σμνG̃μνq ¼ i

2
q̄σμνγ5Gμνq

CðaÞ ≡ iψ̄σμνγ5GμνTaψ ; ð2Þ

where q denotes the quark field of a given flavor while
ψ denotes the SUðNfÞ multiplet in the fundamental

representation and Ta represents the generic Hermitian
SUðNfÞ generator, normalized as Tr½ðTaÞ2� ¼ 1

2
.

To the lowest order in d̃q, the nEDM induced by the
qcEDM operator requires calculating

hnjJEMμ jnijqcEDMCP ¼ hnjJEMμ
Z

d4x

�
−
i
2

�

×
X

q∈ u;d;s

d̃qq̄σαβq G̃
αβjni; ð3Þ

where effects of the heavier quarks are ignored. This is a
four-point function—the volume integral of the qcEDM
operator correlated with the electromagnetic current
inserted on each time slice between the nucleon source
and sink. This can be calculated in two ways using lattice
QCD: directly as a four-point function (Fig. 1) [54] or using
the Schwinger source method discussed in [55,56]. Here,
we continue to develop the latter.
In the Schwinger source method, the qcEDM operator, a

bilinear in the quark fields, is added as a source term to the
QCD action. Correlation functions with its insertion can
then be calculated by taking derivatives with respect to its
coupling d̃q. We divide this calculation into two steps: first,
regular, P, and modified, Pϵ, propagators are calculated by
inverting the Dirac operator without and with the qcEDM
term. Second, these two propagators are used to construct
the three-point function with the insertion of the vector
current between nucleon states as shown by the quark-line
diagrams in Fig. 2.
Since the modified propagator inserts arbitrary powers of

the qcEDM operator, one gets uncontrolled divergences if
the continuum limit is taken holding d̃q fixed. We, there-
fore, scale d̃q appropriately to keep the contribution in the
linear regime as we take the continuum limit. For conven-
ience, we will express most quantities in terms of the
dimensionless ratios

ϵq ≡ −
2d̃q
ar

q ¼ u; d; s; ð4Þ

where a is the lattice spacing and r is a dimensionless
parameter in the Wilson discretization of the fermion
action, as described in Eq. (16).

FIG. 1. Illustration of one of the connected quark-line diagrams
contributing to the qcEDM (left), the one-loop disconnected
diagram (middle), and the two loop disconnected diagram (right).
The circle indicates the insertion of the electromagnetic current,
and the square the qcEDM operator.
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II. FORM FACTORS DECOMPOSITION
OF THE ELECTROMAGNETIC CURRENT

MATRIX ELEMENT IN THE PRESENCE OF CPV

The nucleon matrix element of the electromagnetic
current JEMμ ¼Pq eqq̄γμq, where eq is the charge of the
quark, in the presence of parity violating interactions can
be parametrized in terms of the most general set of form
factors consistent with the symmetries of the theory.
Working in the Euclidean space [57] we have

hNðp0ÞjJEMμ jNðpÞi¼ ūNðp0Þ
�
γμF1þ

1

2MN
σμνqνðF2−iF3γ5Þ

þ FA

M2
N
ð=qqμ−q2γμÞγ5

�
uNðpÞ; ð5Þ

where MN is the neutron mass, q ¼ p0 − p is the momen-
tum carried by the electromagnetic current, σμν ¼
ði=2Þ½γμ; γν�, and uNðpÞ represents the free neutron spinor
of momentum p obeying ði=pþMNÞuNðpÞ ¼ 0. F1 and F2

are the Dirac and Pauli form factors, in terms of which the
Sachs electric and magnetic form factors are GE ¼ F1 −
ðq2=4M2

NÞF2 and GM ¼ F1 þ F2, respectively. The ana-
pole form factor FA and the electric dipole form factor F3

violate parity P; and F3 violates CP as well. The zero q2

limit of these form factors gives the charges and dipole
moments: the electric charge is GEð0Þ ¼ F1ð0Þ, and the
magnetic dipole moment is F2ð0Þ=2MN . The nEDM is
obtained from F3ðq2Þ as follows:

dn ¼ lim
q2→0

F3ðq2Þ
2MN

: ð6Þ

In what follows we will specialize to the isovector
qcEDM d̃≡ d̃u ¼ −d̃d (implying ϵ≡ ϵu ¼ −ϵd), which
corresponds to

LCP ¼ d̃ðCðuÞ − CðdÞÞ ¼ d̃Cð3Þ ¼ −
arϵ
2

Cð3Þ: ð7Þ

All lattice results will be presented in terms of the
dimensionless coefficient Xc relating the nEDM to d̃≡ d̃u,

dn ¼ Xc d̃ ¼ −Xc
ar
2
ϵ; ð8Þ

where

Xc ¼
−F3ðq2 ¼ 0Þ

arϵMN
; ð9Þ

with r ¼ 1 in the Wilson-clover action we use.
Subtleties related to the phase convention for the neutron

interpolating field in the presence of CPV have been
discussed and clarified in Refs. [34,54,59]. For complete-
ness, we discuss the relevant issues here from a slightly
different perspective.
The usual representation of the free Dirac equation

ði=pþmÞusðpÞ ¼ 0 is invariant under the Lorentz trans-
formation and the discrete symmetries C, P, and T with
the familiar expressions for their generators [60]. The
asymptotic in and out states of an interacting field theory
are free states, and hence obey the symmetries of the free
theory even when the underlying theory does not preserve
these. There is, however, an important distinction between
the cases when the full theory preserves the symmetry and
when the symmetries only appear asymptotically.
There is a freedom of representation in the free

Dirac equation: an arbitrary transformation u → Xu, Γ →
ΓX ≡ XΓX−1, with X a fixed arbitrary matrix and Γ an
element of the Clifford algebra of the γ matrices, preserves
the form of the free Dirac equation; but all the symmetry
generators need to be written using ΓX instead of Γ. In a
theory where the symmetries are preserved, the same
generators can be chosen to implement the symmetries
on all states, and, hence, interpolating operators can be

FIG. 2. The full calculation requires the reweighting factor times the sum of the connected and disconnected diagrams.

TANMOY BHATTACHARYA et al. PHYS. REV. D 108, 074507 (2023)

074507-4



chosen so that X ¼ 1 for all asymptotic fermionic states
without solving for the dynamics. In a general theory,
however, the symmetry operations on each asymptotic state
that an interpolating operator couples to will have a different
X, and the interpolating operators cannot be chosen to make
all of them unity.
In particular, consider an interpolating field that

produces asymptotic states described by the conventional
us spinors when parity is conserved. When parity is
broken, the asymptotic states that this operator couples
to will instead be solutions of the rotated equation
ði=pþmÞ expðiαγ5Þus ¼ 0, for some a priori unknown
α. To determine the value of this constant, one can study
the propagator, i.e., two-point function of the interpolating
field N. Because of Lorentz symmetry, a spin-1

2
field N

will have a propagator given by [61]

hTNN̄i ¼ eiαðp2Þγ5 ½iAðp2Þ=pþ Σðp2Þ�−1eiα�ðp2Þγ5 : ð10Þ

The asymptotic large-time behavior of this propagator is
given by the residues of its poles. The residue of the pole
at p2 ¼ −M2

N (i.e., p2
Minkowski ¼ M2

N) is given by

Zeiαð−m2
NÞγ5ð−i=pþmÞeiα�ð−m2

NÞγ5 ¼ Z
X
s

ũsðpÞũsðpÞ; ð11Þ

where

ũsðpÞ≡ eiαð−m2
NÞγ5usðpÞ ð12Þ

is the spinor in the rotated representation.
After obtaining αN ≡ αð−M2

NÞ in this way, one has two
options: First, continue to use this representation cognizant
of the fact that this leads to a “rotated” Dirac equation,
and hence all the symmetry operators and projectors need
to be written using the rotated γ matrices. In particular, in
the coefficients of the F2 and F3 form factors in Eq. (5)
we need to replace ½γμ; γν� by eiα

�
Nγ5 ½γμ; γν�eiαNγ5. We

follow this strategy since we do not calculate the full
4 × 4 Dirac structure of the three-point function needed for
the second option.
Conceptually, the much simpler alternative is to rotate

the interpolating field N to NαN ≡ e−iαNγ5N, or equiva-
lently, rotate all the correlation functions constructed from
N as

hNON̄i → hNαNON̄αN i
¼ e−iαNγ5hNON̄ie−iα�Nγ5 : ð13Þ

The residue of the two-point function of the rotated field
NαN at the pole p2 ¼ −M2

N can be written in terms of the
standard spinors usðpÞ on which the discrete symmetries P,
T, and C are realized in the usual form. Then the analysis
of the three-point function hNαNON̄αN i proceeds in the

standard ways, and, in particular, the coefficientF3 of σμνqν
is the CP-odd form factor.
It is important to note that, in general, the ground state

and each excited state will have a different value of α, i.e.,
the rotation depends on the state we choose to study [62]
Here, we will need αN and α5N corresponding to the nucleon
ground state with the insertion of qcEDM and pseudoscalar
operators, respectively.
In summary, as explained in Ref. [34], the rotation phase

αN can be determined from the long-distance behavior of
the neutron propagator:

hΩjNðp⃗; tÞN̄ðp⃗; 0ÞjΩi ¼
X
N

jAN j2e−ENtũN ¯̃uN

¼
X
N

jAN j2e−ENteiαNγ5

× ð−i=pþmNÞeiαNγ5 ; ð14Þ

where the vacuum-to-N transition matrix element of the
interpolating operator N, AN ≡ hΩjNjNi, and the phase
angles αN depend on the state, the interpolating operator,
and CP violating couplings. Here, and henceforth, we have
also assumed PT symmetry, so that αN is real. These phases
can then be used to rotate the three-point functions as
specified in Eq. (13), to the standard basis in which the
form factors are given by Eq. (5). As explained above, we
use the first method instead in which the coefficient of F2

and F3 in Eq. (5) are rotated. For further details, we refer
the reader to Ref. [34].

III. METHOD FOR CALCULATING THE MATRIX
ELEMENTS OF THE QCEDM OPERATOR

The calculations presented here use the nonunitary
clover-on-HISQ formulation, in which correlation func-
tions are calculated using Wilson-clover fermions on four
ensembles of background gauge configurations generated
with 2þ 1þ 1 flavors HISQ by the MILC Collaboration
[16,17]. The lattice parameters are specified in Table I, and
the gauge fields are smoothed using hypercubic-smearing
[63] before calculating the correlation functions. Three of
these ensembles, a12m310, a09m310, and a06m310, have

TABLE I. The parameters of the four HISQ ensembles gen-
erated by the MILC Collaboration [16,17] used in the analysis,
including the valence pion mass on them. For each lattice
configuration, the observables are measured using 128 randomly
chosen source positions.

ID a (fm) Mπ (MeV) L3 × T Nconf

a12m310 0.1207(11) 310.2(2.8) 243 × 64 1013
a12m220L 0.1189(09) 227.6(1.7) 403 × 64 475
a09m310 0.0888(08) 313.0(2.8) 323 × 96 447
a06m310 0.0582(04) 319.3(0.5) 483 × 144 72
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a pion mass of Mπ ≈ 315 MeV and three different lattice
spacings, a ≈ 0.12, 0.09, and 0.06 fm, respectively, to
study the continuum limit. The fourth ensemble,
a12m220L, at a ≈ 0.12 fm, Mπ ≈ 225 MeV provides a
first check on the dependence on M2

π. For the valence
quarks, the clover coefficient was fixed at its tadpole-
improved value csw ¼ 1=u30, where u0 is the fourth root of
the plaquette on the smoothed lattices. Further details of
the ensembles, the quark mass parameters, methodology,
statistics, and the interpolating operator used in the
construction of two- and three-point correlators are given
in our previous publications [34,64–66].
Working within the framework of the Schwinger source

method to calculate the contribution of qcEDM to the
nEDM [55] allows us to recast the challenging calculation
of the four-point function given in Eq. (3) and depicted in
Fig. 1 to a still difficult but well-exercised calculation of
three-point functions [55]. The quark-level diagrams
needed to calculate hNjJEMμ ðqÞjNi in the presence of
qcEDM interactions are illustrated in Fig. 2. The steps
in the calculation are as follows [67]:
(1) Calculate propagators, labeled P in Fig. 2, using the

standard Wilson-clover Dirac operator, which in the
continuum effective field theory (EFT) notation
reads as

OD ¼ DL þmW

DL ¼ =D − a

�
r
2
D2 þ κSWσ · G

�

κSW ¼ r
4
cSW; ð15Þ

with mW ≡ 1
2κ − 4 the Wilson mass, r the Wilson

parameter which we set to unity, and cSW ¼ 1þ
Oðg2Þ the Sheikholeslami-Wohlert coefficient. This
calculation of P uses the same methodology as in
our previous publications [65]. We assume isospin
symmetry so the propagators for u and d quarks are
numerically the same.

(2) Calculate a second set of propagators that include
the qcEDM term with coefficient ϵq ≡ −ð2d̃qÞ=ðarÞ.
This is done by modifying the clover term in the
Dirac matrix:

racSW
4

σμνGμν →
ra
4
σμνðcSW þ iϵqγ5ÞGμν: ð16Þ

Keeping ϵq flavor dependent shows what would need
to be done to study flavor diagonal qcEDM insertions
in future work. Choosing ϵu ¼ −ϵd ¼ ϵ corresponds
to inserting the isovector qcEDM operator Cð3Þ with
coefficient d̃ ¼ −ðarϵÞ=2; see Eq. (7). These propa-
gators, labeled Pϵ, include the full effect of inserting
the qcEDM operator at all possible intermediate
points. Naively, the cost of this inversion is larger
by about 7% with respect to P; however, using P as

the starting guess in the inversion for Pϵ reduces the
number of iterations by 20%–40% depending on the
quark mass. Overall, the average cost of calculating
Pϵ is about 80% of P.

(3) As discussed below, in order to remove power
divergences from the isovector qcEDM operator,
we need to also calculate insertions of the isovector
pseudoscalar density operator Pð3Þ ¼ iψ̄γ5T3ψ. We
implement this with the replacement

amW → amW − 2iϵ5γ5T3 ð17Þ

in the up and down quark propagators. This pre-
scription corresponds to inserting the operator Pð3Þ
with the coefficient given by (−2ϵ5=a).

(4) Using P and Pϵ, we construct four kinds of sequen-
tial sources, labeled Pseq

u , Pseq
d , Pseq

−ϵ;u, and Pseq
−ϵ;d.

These sources are at the sink time slice and include
the insertion of a neutron at zero momentum and the
spin projection operator ð1þ γ4Þð1þ iγ5γ3Þ=2. The
subscripts u or d in Pseq

u and Pseq
d , and similarly in

Pseq
−ϵ;u and Pseq

−ϵ;d, denote the flavor of the free spinor
in this neutron source. For the backward moving
sequential propagators with qcEDM insertion, the
coupling gets a minus sign, i.e., −ϵ.

(5) In our implementation, a number of calculations are
done in the same computer job by placing indepen-
dent sources with maximal separation in time. The
corresponding sequential sources are added together
to obtain the coherent sequential source [64,68],
which is then used in the construction of the four
types of sequential propagators listed above and
illustrated in the four correlation functions shown in
the right half of Fig. 2.

(6) The connected three-point function is then calcu-
lated using the two original and the four sequential
propagators, and with the insertion of JEMμ sepa-
rately on the u and d quark lines. This construction
is similar to those used in our study of the CP-
conserving form factors [64–66]. The difference
here is the combinations involve propagators with
and without the insertion of the CP term as shown
in the four three-point functions in the right half
of Fig. 2.

(7) Looking to the future, to construct the disconnected
quark loop contribution, the electromagnetic current
would be inserted in the quark loop, with and without
the qcEDM term, and correlated with the appropriate
nucleon two-point correlation functions as illustrated
in the left half of Fig. 2. The loop term is integrated
over the time slice t and should be calculated for each
of the quark flavors, u, d, s, c, and b. In this first
study, we neglect these disconnected diagrams since
they are expensive to simulate and their effect is
expected to be small.
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(8) For the full calculation, to include the neglected contribution of the qcEDM operator in the action during the
generation of the gauge configurations, we need to reweight the configurations by the ratio of the determinants of the
Dirac operators for the two theories:

det
�
=DþmW − ra

2
D2 − ra

4
σμνðcSW þ iϵqγ5ÞGμν

�
det
�
=DþmW − r

2
aD2 − rcSW

4
σμνaGμν

�
¼ exp Tr ln

�
1 − iϵq

ra
4
σμνγ5Gμν

�
=DþmW −

r
2
aD2 −

rcSW
4

σμνaGμν

�
−1
�

¼ exp

�
−iϵq

ra
4
Trσμνγ5Gμν

�
=DþmW −

r
2
aD2 −

rcSW
4

σμνaGμν

�
−1
�
þOðϵ2qÞ: ð18Þ

This reweighting factor—exponential of the sum
over flavors of iϵq times the volume integral of the
quark loop with the corresponding qcEDM insertion
—then multiplies the sum of the connected and
disconnected contributions as illustrated by the
overall factor in Fig. 2. For the isovector qcEDM
operator inserted in this study, ϵu ¼ −ϵd ¼ ϵ, the
trace in the exponential cancels between the up and
down quark contributions. In short, for the isovector
qcEDM operator, all disconnected contributions are
either neglected or cancel, so no reweighting is done.

(9) The above calculation is repeated for different values
of ϵ to extract F3ð0Þ as a function of ϵ. The
contribution to the nEDM of the qcEDM operator
is then given by the slope versus ϵ for ϵ in the linear
regime.

A. The extraction of the CP phase αN

The first step in the calculation is to extract the CP phase
αN , defined through Eq. (10), from the nucleon two-point
functions. Since this phase is state dependent, its value for
the ground-state nucleon has to be extracted at large source-
sink separations where ESC have died out as described in
our previous work [34]. The data and the fits for the four
ensembles and with the insertion of ϵ and ϵ5 are shown in
Fig. 3, and the results are summarized in Table II. The
behavior of αN versus ϵ is shown in Fig. 4, which we use to
select the value of ϵ that is small enough to lie in the linear
regime and yet large enough to give a good statistical
signal. This value is highlighted in Fig. 4 and given
in Table II.
To extract the phase, we calculate the ratio [34]

rαðτÞ≡ ℑTrγ5
1þγ4
2

hNð0ÞNðτÞi
ℜTr 1þγ4

2
hNð0ÞNðτÞi

≈ tan α0 ×
1þ sinð2α1Þ

sinð2α0Þ jÃ1j2e−ðM1−M0Þτ

1þ cos2ðα1Þ
cos2ðα0Þ jÃ1j2e−ðM1−M0Þτ

; ð19Þ

which approaches αN ≡ α0 at large τ and allows us to
extract αN from a fit [34].

IV. PSEUDOSCALAR DENSITY VERSUS QCEDM
INSERTIONS

In this section we discuss the connection between
insertions of the isovector qcEDM operator and the iso-
vector pseudoscalar density at finite lattice spacing a. The
discussion is based on the framework of a continuum EFT
for the lattice action and the AWIs, following Refs. [69,70].
We first discuss the nonsinglet AWI and the relation
between qcEDM and pseudoscalar density that follows
from it. We then present the lattice analysis to determine the
relevant nonperturbative coefficients arising in the mixing.

A. Nonsinglet AWI and implications

We will denote by OðdÞ
n , ÕðdÞ

n , OðdÞ;ren
n the set of bare,

subtracted, and renormalized operators of dimension d,
respectively. Subtracted operators, i.e. operators free of
power divergences, are defined as

ÕðdÞ
n0 ¼ OðdÞ

n0 −
X
d0<d;k

βðdÞn0k

ad−d
0 Õ

ðd0Þ
k ; ð20Þ

with the sum over k running over all operators of dimension
d0. The finite (renormalized) operators are given by

OðdÞ;ren
n ¼ Znn0Õ

ðdÞ
n0 : ð21Þ

The presence of Õðd0Þ
k and not Oðd0Þ

k in Eq. (20) is needed to

avoid ambiguities in the definition of coefficients βðdÞn0k of
lower-dimensional operators.
As derived in Appendix A, under the axial transforma-

tion on the quark fields collectively defined by ψT ¼
ðu; d; s; cÞ,
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ψðxÞ → ð1þ iξðaÞðxÞTaγ5ÞψðxÞ
ψ̄ðxÞ → ψ̄ðxÞð1þ iξðaÞðxÞTaγ5Þ; ð22Þ

where ξðaÞðxÞ is the local chiral transformation
parameter and Ta are the generators of flavor SUð4Þ, the
flavor nonsinglet AWI for the expectation value of O is
given by

Z
d4xhOðx1;…; xnÞ½−ψ̄ðxÞfm; Tagγ5ψðxÞð1þOðamÞÞ

− aiKX1C̃
ðaÞ�i

¼ −
Z

d4x

�
δOðx1;…; xnÞ
δðiξðaÞðxÞÞ

	
: ð23Þ

This is correct up to Oða2Þ corrections when applied to the
Wilson-clover fermion action that includes OðaÞ hard
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FIG. 3. A two-state fit to the ratio rα defined in Eq. (19) used to extract the isovector CP phase α for the insertion of the qcEDM (left)
and pseudoscalar (right) operators. The phase is independent of the momentum of the state, and the results are summarized in Table II.
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breaking of chiral symmetry. Note that KX1 is a non-
perturbative constant that characterizes the OðaÞ breaking
of chiral symmetry, and vanishes if the theory is fully OðaÞ
improved. The rhs of Eq. (23) does not contribute to on
shell matrix elements, and hence to the form factor F3. In
this case, insertions of the isovector pseudoscalar density
are proportional to insertions of the subtracted isovector
qcEDM operator. In the next subsection, we show how an
analysis of the unintegrated version of this equation given in
Eq. (A8) allows us to determine the needed nonperturbative
factor KX1 relating the two operators.

B. Determining the nonperturbative parameters

We now specialize to the isovector case, corresponding
to the flavor index a ¼ 3. We also work in the isospin limit
and denote the common light quark masses by ml. Taking

the pion field to be Pð3Þ ≡ iψ̄γ5T3ψ , and specializing to
Oðx1;…; xnÞ → OðzÞ, Eq. (A8) becomes

hOðzÞ½ZAð1þ bAmlaÞ∂μAð3Þ
μ ðxÞ þ iaZAcA∂2Pð3ÞðxÞ

þ 2mliPð3ÞðxÞ − aiKX1C̃
ð3ÞðxÞ�i

¼ −
�

δOðzÞ
δðiξ3ðzÞÞ

	
; ð24Þ

up to Oða2Þ corrections. In order to determine KX1, we
need to first define C̃ð3Þ.

1. Defining the subtracted qcEDM operator C̃ð3Þ

As explained in Appendix B, under isospin symmetry
and when applied to on shell zero-momentum correlators,
Eq. (20), which relates the subtracted qcEDM operator to
the bare unsubtracted one used in the lattice calculation,
reduces to

C̃ð3ÞðxÞ ¼ Cð3ÞðxÞ − A
a2

Pð3ÞðxÞ; ð25Þ

where A is OðαsÞ with OðamÞ and convention-dependent
Oða2Þ corrections. To determine A, we can, for example,
define C̃ð3Þ by demanding hΩjC̃ð3Þjπðp⃗ ¼ 0Þi ¼ 0. This
is particularly simple to implement on the lattice—we,
in the two-point functions CπPð3Þ ðtÞ ¼ hTPð3ÞðtÞπð0Þi and
CπCð3Þ ðtÞ ¼ hTCð3ÞðtÞπð0Þi, place the pseudoscalar and
qcEDM interpolating operators at the sink and use the
same pion source, πð0Þ. Since the pion ground state
dominates these two-point functions at long distances,
the coefficient A is given by the asymptotic behavior of
their ratio:

A ¼ lim
t→∞

a2CπCð3Þ ðtÞ
CπPð3Þ ðtÞ : ð26Þ

Other choices of correlation functions used to determine A
change only the convention-dependent Oða2Þ contribu-
tions. As shown in Table III and Fig. 5, this construction
gives a very precise determination of A. Though formally
OðαsÞ, its value is close to unity at values of the lattice
spacing where current simulations have been done.
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FIG. 4. The value of the phase α (α5) as a function of the
qcEDM (pseudoscalar) coupling ϵ (ϵ5). For small enough ϵ, the
Oðϵ2Þ contributions become negligible, and α=ϵ should be a
constant for different choices of ϵ. The blue data points within the
linear region show the ϵ used in the main simulation. The data
shown are obtained using 50 configurations of the a12m310
ensemble.

TABLE II. The couplings ϵ and ϵ5 used in the simulations with
the qcEDM and pseudoscalar operators, and the corresponding
neutron phases, α and α5, obtained on each ensemble from fits
shown in Fig. 3.

qcEDM γ5

Ensemble ϵ α=ϵ ϵ5 α5=4ϵ5

a12m310 0.0080 −10.835ð55Þ 0.0024 −8.908ð45Þ
a12m220L 0.0010 −21.80ð31Þ 0.0003 −17.88ð24Þ
a09m310 0.0080 −12.360ð36Þ 0.0024 −12.052ð34Þ
a06m310 0.0080 −15.00ð12Þ 0.0012 −19.82ð16Þ

TABLE III. Determination of A defined in Eq. (25) from an
average over the plateau region (t range) of ratios of two-point
functions.

Ensemble cSW a (fm) t range A

a12m310 1.05094 0.1207(11) 6–14 1.21374(62)
a12m220L 1.05091 0.1189(09) 7–14 1.21800(33)
a09m310 1.04243 0.0888(08) 8–22 0.99621(30)
a06m310 1.03493 0.0582(04) 14–30 0.77917(24)
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We can use this determination of A to perform a
consistency check on the phases α5N and αN induced by
the CP operators Pð3Þ and Cð3Þ, respectively. As described
in Appendix D, at leading order in chiral perturbation
theory (χPT), C̃ð3Þ defined in Eq. (25) gives no contribution
to αN . Then, from the right-hand side of Eq. (25) we expect
the relation [see Eq. (D8)]

1

A
αN
α5N

¼ 1þO

�
m2

π

Λ2
χ

�
: ð27Þ

Since α is state dependent, the determination of αN (α5N) are
straightforward only when extracted at asymptotically long
Euclidean times where ESC are negligible. Since the signal
to noise in nucleon correlators degrades exponentially, this
asymptotic region cannot be reached with current statistics.
Instead, we analyze rα defined in Eq. (19) that includes the
lowest excited state contributions. Data in Fig. 6 for the
four ensembles show that the relation [Eq. (27)] is satisfied
to within 10% by the α we determine.

2. Determination of parameter KX1

In terms of the unsubtracted Cð3Þ, the nonsinglet AWI,
Eq. (24), can now be cast as follows:
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(lower panel).
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�
OðzÞ

�
ZAð1þ bAmaÞ∂μAð3Þ

μ ðxÞ þ iaZAcA∂2Pð3ÞðxÞ

þ i2mPð3ÞðxÞ − iKX1

�
aCð3ÞðxÞ − A

a
Pð3Þ

��	

¼ −
�

δOðzÞ
δðiξð3ÞðxÞÞ

	
: ð28Þ

To calculate KX1 and m, consider the two-point functions

C
πAð3Þ

μ
ðtÞ, CπPð3Þ ðtÞ, and CπCð3Þ ðtÞ of Að3Þ

4 ðtÞ, Pð3ÞðtÞ, and
aCð3ÞðtÞ with a common source πð0Þ. Further, let Δ and Δ2

define the symmetric lattice first and second derivatives in
the time direction: e.g., ðΔCÞðtÞ≡ ½Cðtþ 1Þ − Cðt − 1Þ�=2
and ðΔ2CÞðtÞ≡ ½Cðtþ 1Þ þ Cðt − 1Þ − 2CðtÞ�. Then, on
shell, i.e., at t > 1, we have

iaΔC
πAð3Þ

4

ðtÞ − c̄Aa2Δ2CπPð3Þ ðtÞ þ K̄X1ða2CπCð3Þ ðtÞ−ACπPð3Þ ðtÞÞ
CπPð3Þ ðtÞ ¼ 2m̄aþOða2m2; a2Λ2

QCDÞ; ð29Þ

where

c̄A ¼ cA
ð1þ bAmaÞ ð30aÞ

K̄X1 ¼
KX1

ZAð1þ bAmaÞ ð30bÞ

m̄ ¼ m
ZAð1þ bAmaÞ : ð30cÞ

Thus, one can extract the coefficients c̄A and K̄X1 by fitting
the left-hand side and requiring it to be independent
of t and the pion interpolating field π. Simultaneously,
the fit provides 2m̄a, and thus KX1=2ma, which is
required next.
We implemented the identity [Eq. (29)] numerically by

choosing π to be the pseudoscalar interpolating operator
Pð3Þ constructed using Wuppertal-smeared sources for
quark propagators with various radii and at various momen-
tum. As discussed in Appendix C, these three-parameter fits
are very unstable with our statistics. We, therefore, pro-
ceeded by noting that the factor multiplying K̄X1 vanishes
once the contribution of the excited states vanishes. Thus,
within our overall bootstrap procedure, we first make a two-
parameter fit to the large-t region ignoring K̄X1 to determine
m̄ and cA. For each of these bootstrap samples, we then
determine K̄X1 by extending the region to smaller t without
changing the value of cA determined in the large-t fit. This

procedure propagates the 20%–25% uncertainties in the
determination of cA without destabilizing the fits. The
results are given in Table IV.

C. Implications for the nEDM

The relation in Eq. (23) implies that, up toOða2Þ effects,
insertions of the subtracted isovector qcEDM and the
pseudoscalar operators at zero four-momentum transfer
and between on shell states are proportional to each other.
Furthermore, Eq. (28), for zero-momentum on shell matrix
elements, gives hPð3Þi ¼ ½KX1=ð2maþ AKX1Þ�ha2Cð3Þi, a
relation between unsubtracted operators. Thus, we have the
following relations between subtracted and unsubtracted
isovector operators up to Oða2Þ:

aC̃ð3Þ ¼ 2am
KX1

Pð3Þ

a
ð31aÞ

aC̃ð3Þ ¼
�

2am
2amþ AKX1

�
aCð3Þ: ð31bÞ

Note that even though both the quantities KX1 ∼OðαsÞ and
2am are small, for values of the lattice spacing a used in
current simulations, their ratio is Oð1Þ. In the continuum
limit, Pð3Þ can be rotated away, but Eq. (31a) shows that at
a ∼ 0.1 fm, the effect of the lattice operators Pð3Þ=a and
aCð3Þ are comparable.

TABLE IV. The determination of K̄X1 and 2m̄a, and their ratios 2ma=KX1 and 2ma=ð2maþ AKX1Þ using
Eq. (29) and the discussion below it.

Fit-range χ2=d.o.f.

Ensemble cA K̄X1 cA K̄X1 cA K̄X1 2m̄a 2ma
KX1

2ma
2maþAKX1

a12m310 4–11 3–11 0.66 0.88 0.054(10) 0.097(45) 0.02205(46) 0.23(10) 0.158(58)
a12m220L 4–11 3–11 2.08 3.09 0.0342(77) 0.183(35) 0.01152(21) 0.063(12) 0.0491(86)
a09m310 5–15 4–15 0.99 1.09 0.0277(40) 0.047(15) 0.01684(15) 0.35(11) 0.263(61)
a06m310 6–20 5–20 0.29 1.53 0.0093(17) 0.0272(60) 0.010460(37) 0.385(87) 0.331(50)
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Furthermore, if cSW is nonperturbatively tuned, there are
no OðaÞ effects and KX1 vanishes, Pð3Þ gives no contri-
butions, and C̃ð3Þ ¼ Cð3Þ to this order. Finally, we remark
that, in the chiral-continuum limit a → 0, m → 0, chiral
symmetry is broken only by the qcEDM term; therefore,
its entire effect can be rotated away, i.e., C̃ð3Þ gives no
contribution to physics in these limits [52]. This limit is,
however, subtle. As can be seen from the discussion
following Eq. (18) in Ref. [52] when the vacuum chiral
condensates are primarily from the mass term rather than
the CP terms in the action, the mass suppression vanishes,
i.e., the contribution is no longer proportional to mass and
therefore does not vanish as m → 0. Our subtracted
qcEDM operator, as explained in Appendix D, produces
no vacuum expectation value, and the chiral properties of
the vacuum are given by the mass term and the lattice
artifacts of the Wilson-clover action. As a result, we do not
expect the nEDM to vanish in the chiral-continuum limit.
For this reason, we do not impose this constraint on our
final chiral-continuum fit.

V. EXPLORATORY NUMERICAL
CALCULATIONS

We use the method previously described in Ref. [34] for
calculating the contribution of CP interactions that are
based on extracting the form factor F3. In this method, it is
essential to remove the ESC in going from three-point
functions to matrix elements as discussed for the CP Θ
term in Ref. [34]. The methods we use are described in
[34,71–73].
We also caution the reader that, here on, all the data for

the CP form factor F3 will be presented in terms of F̃3

defined in [34]. It can be extracted more reliably on the
lattice and F̃3ð0Þ ¼ F3ð0Þ in the limit of interest, Q2 ¼ 0.

In Fig. 7, we show examples of fits used to remove ESC
in correlation functions with the insertion of V4 in the
presence of the qcEDM and γ5 operators from which F̃3 is
extracted. In these fits, we consider two possible values for
the first excited-state energy as discussed in Ref. [34] for
the similar case of the Θ term: (i) the “standard” fit with the
energy given by the two-point function, and (ii) the “Nπ” fit
using the noninteracting energy of the Nπ state. While the
results depend sensitively on the excited-state spectrum
used in the analysis, the fits have similar χ2=d.o.f., i.e., the
fits do not provide an objective selection criteria. The data
in Fig. 8 and the final results in Sec. VI highlight the size of
this uncontrolled systematic, which needs to be addressed
in future calculations.
We now discuss the calculation of the parameter

KX1, which arises if there is residual OðaÞ chiral sym-
metry breaking, and the extraction of F̃3. The data are
from the “standard” method for removing excited state
contamination.
From Eqs. (31a) and (31b), we note that the ratio

F̃γ5
3 =F̃

qcEDM
3 ¼ KX1=ð2amþ AKX1Þ þOða2Þ. We, how-

ever, notice that the Oða2Þ terms are likely to be large;
in fact, the Oða2Λ2

QCDÞ ∼ 0.01–0.04 corrections on the
right-hand side of Eq. (29) may provide a substantial
correction to the leading term, Oð2amÞ ∼ 0.01. We study
this by noting that under the assumption that corrections are
small, all numbers in a given row of Table V should agree.
This is roughly true for the different Q2, but the Oð25%Þ
difference between F̃γ5

3 =F̃
qcEDM
3 and KX1=ð2amþ AKX1Þ is

indicative ofOða2Þ effects. A similar effect is anticipated in
F̃3ðQ2Þ calculated using the three subtraction schemes
defined in Sec. IV, and shown in Fig. 8. The determinations
using Eqs. (31a) and (31b) are close; however, they could
both have large Oða2Þ effects coming from the AWI. The
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FIG. 7. Fits to remove ESC and obtain ground-state matrix elements from correlation functions with the insertion of qcEDM and γ5
operators along with the V4 current at momentum transfer q ¼ ð0; 0; 1Þ. Data are shown for the a12m310 and a12m220L ensembles.
Top: “standard” excited state fit with the mass gaps taken from fits to the two-point function. Bottom: “Nπ” excited-state fits assuming
the first excited state is Nð0; 0; 1Þπð0; 0; 0Þ, i.e., the energy gap is Mπ . The form factor F̃3 is extracted from such matrix elements.
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direct determination, Eq. (25), can also have large Oða2Þ
effects and is a difference of two numbers of similar size.
Furthermore, any difference between estimates using
Eqs. (31a) and (31b) will get magnified by the large factor
AKX1=2am, to give a large difference from the direct
determination, Eq. (25), value. In short, at this stage, we
do not have control over Oða2Þ errors. Looking at Fig. 8,
estimates from the direct determination have large fluctua-
tions on the a12m220L ensemble, are consistent with the
other two on a06m310, and show a large difference on the
remaining two. Estimates from Eqs. (31a) and (31b) are
consistent. Of these, we choose the results from Eq. (31b) in
our final analyses because they have lower statistical errors.
The extraction of F̃3 at Q2 ¼ 0 is carried out using an

extrapolation linear in Q2 using data at the three smallest
values of Q2 as shown in Fig. 9. To estimate the systematic
uncertainty due to choosing the linear ansatz, we use the

difference between the extrapolated F̃3ð0Þ and the F̃3ðQ2Þ
at the smallest nonzero Q2.

VI. RENORMALIZATION AND CHIRAL-
CONTINUUM EXTRAPOLATION

The subtracted isovector qcEDM operator C̃ð3ÞðaÞ is free
of power divergences but still has logarithmic divergences
as a → 0. In the calculation of the nEDM, it is implicit that
one has to work with QCDþ QED since the operator C̃ð3Þ

has to be inserted together with the electromagnetic current
in the correlation functions. In this theory, C̃ð3Þ mixes with
the qEDM operator Eð3ÞðaÞ defined in Eq. (B1c).
One therefore needs to calculate the mixing and running
of these two operators. Only the anomalous dimension
matrix (universal) part of this has been calculated at OðαsÞ
[52]. In this leading-logarithm approximation (tree-level

FIG. 8. The form factor F̃u−d
3;n =aMNε using the subtracted qcEDM operator for the three different subtraction approaches specified in

the labels and given in Eqs. (25), (31a), and (31b). Top figures are the results from the four ensembles using the “standard” excited-state
fit, and the bottom figures are the result of using the “Nπ” excited-state fits as explained in the text. Differences between the three
approaches specified by the labels are due to residual OðaÞ artifacts in our action, which vanish in the continuum limit. As explained in
the text, we consider estimates using Cð3Þ − APð3Þ (red circles) are the least reliable.

TABLE V. The ratio F̃γ5
3 =F̃

qcEDM
3 for the γ5 and qcEDM unsubtracted lattice operators for the five smallest values

of Q2. As expected, the ratios are, within errors, independent of Q2 and the quark mass, and close to the
KX1=ð2amþ AKX1Þ obtained from the pion correlators (last column) using Eq. (29). We do not find a significant
signal in F̃γ5

3 =F̃
qcEDM
3 with the current data for the a06m310. The data for F̃3 are obtained using the “standard”

method for removing excited-state contamination.

F̃γ5
3 =F̃

qcEDM
3

Ensemble Q2 ¼ 1 Q2 ¼ 2 Q2 ¼ 3 Q2 ¼ 4 Q2 ¼ 5 KX1
2amþAKX1

a12m310 0.879(17) 0.863(14) 0.867(18) 0.844(23) 0.864(13) 0.694(48)
a12m220L 0.81(10) 0.769(77) 0.869(75) 0.98(18) 0.94(11) 0.7807(70)
a09m310 1.063(35) 1.042(40) 1.078(45) 1.006(58) 1.039(44) 0.740(61)
a06m310 0.859(64)
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matching and one-loop running), the lattice and MS
operators are related by

O⃗MSðμÞ ¼U

0
BBB@
�

αsðμÞ
αsða−1Þ

�
−γ11=β0

0

0
�

αsðμÞ
αsða−1Þ

�
−γ22=β0

1
CCCAU−1O⃗ðaÞ;

ð32Þ
where

O⃗ðaÞ ¼
 
C̃ð3ÞðaÞ
Eð3ÞðaÞ

!

O⃗MSðμÞ ¼
 
Cð3Þ
MS

ðμÞ
Eð3Þ
MS

ðμÞ

!

U ¼
 
1 − γ12

γ11−γ22

0 1

!
; ð33Þ

and

αsðμÞ
αsða−1Þ

¼ 1

1 − αsða−1Þ
π β0 logðμaÞ

: ð34Þ

The coefficients of the αs=π term in the beta function and
the anomalous dimension matrix are

β0 ¼
2NF − 11NC

6
; ð35Þ

γ11 ¼
5CF − 2CA

2
; γ12 ¼ 2CF; γ22 ¼

CF

2
; ð36Þ

with

CF ¼ N2
C − 1

NC
; CA ¼ NC: ð37Þ

Using NF ¼ 4 we obtain
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FIG. 9. Dependence of F̃3 onQ2 for the neutron obtained from the insertion of the qcEDM and γ5 operators. Data in the left two columns
are obtained using the “standard” fit to control ESC, and in the right two columns, using the “Nπ.” The latter have much larger errors.
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−
γ11
β0

¼ 2

25
; −

γ22
β0

¼ 4

25
; U ¼

�
1 8

0 1

�
: ð38Þ

Because the matching is done at tree level and followed
by one-loop running, the renormalization process is insen-
sitive to the scheme. Consequently the data for Xc ≡
−F̃3ð0Þ=aMNε [see Eq. (9)] carry an unresolved uncertainty
of order αsðμÞ=π. At this order, one can, therefore, choose
to use either the renormalized or unrenormalized tensor
charges. We have chosen to use the renormalized values
given in Ref. [52].

The resulting renormalized values for Xc are given in
Table VI for two ways of removing ESC–with and without
including an Nπ excited state. Their extrapolation, linear in
a and Mπ , to the physical point is shown in Fig. 10. The
data show no significant dependence on the lattice spacing
a. The dependence on M2

π is much larger with the Nπ
analysis; however, it is important to note that this chiral
behavior is predicated on a single point, i.e., a12m220L.
The final results in the continuum limit are Xc ≡
−F3ð0Þ=aMNε ¼ 2.6ð2.9Þ for the “standard” excited-state
fit, and 14(10) for the “Nπ” excited-state fit, where the
quoted errors are statistical.
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FIG. 10. Extrapolation to the continuum and physical pion mass limit using the fit ansatz c1 þ c2M2
π þ c3a. Results from different

ensembles are renormalized in MS scheme at μ ¼ 2 GeV using Eq. (32). Left column shows the results from the “standard” excited-state
fit, and the right column shows the results from the “Nπ” excited-state fits. Extrapolated values are F̃3ð0Þ=aMNε ¼ −2.6ð2.9Þ for the
“standard” excited-state fit, and F̃3ð0Þ=aMNε ¼ −14ð10Þ for the “Nπ” excited-state fit.

TABLE VI. Results for Xc ≡ dN=d̃, renormalized in the MS scheme at 2 GeVas explained in the text, are given for
the two methods used for removing ESC—without (standard fit) and with a Nπ excited state. The results for the
matrix elements of the qEDM operator, which are given by the tensor charges, guT and gdT , are quoted from our
published work [65].

qEDM Xc, Standard fit Xc, Nπ fit

Ensemble guT gdT Lattice 2 GeV Lattice 2 GeV

a12m310 0.859(12) −0.206ð7Þ 0.239(86) 0.205(85) 0.28(16) 0.25(16)
a12m220L 0.846(11) −0.203ð5Þ −1.2ð1.4Þ −1.3ð1.4Þ −7.8ð5.4Þ −7.8ð5.4Þ
a09m310 0.824(7) −0.203ð3Þ 0.15(28) 0.17(28) 0.55(50) 0.57(50)
a06m310 0.784(15) −0.192ð8Þ 2.3(3.2) 2.4(3.2) 4.3(6.1) 4.4(6.2)
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VII. CONCLUSIONS

In the analysis of the contribution of the qcEDM operator
to nEDM dn presented here, we have focused on the issue
of the power-divergent mixing of the qcEDM operator with
the quark-pseudoscalar operator. This mixing is indepen-
dent of the explicit breaking of the chiral symmetry on the
lattice, and is generic to all hard cutoff schemes. For the
isovector case, the pseudoscalar operator gives no physical
effects in the continuum limit; at finite lattice spacing with
Wilson-clover fermions, however, it results in an effect
proportional to the qcEDM operator itself. This finite lattice
spacing artifact is seen in explicit calculations with the
isovector pseudoscalar operator, which gives a large nEDM
signal on the lattice. More importantly, this proportionality
turns the divergent mixing into an extra finite multiplicative
renormalization of the qcEDM operator, an effect that
survives in the continuum limit if the theory is not fully
OðaÞ improved.
We further show that the uncertainty in this finite

renormalization constant is substantial if cSW is tuned using
tree-level tadpole improvement, i.e., not fully OðaÞ
improved. Any residual, even small, OðaÞ contribution gets
divided by 2am, an equally small number. We have devised
a scheme to determine this finite constant nonperturbatively
provided we can ignore Oða2Þ corrections.
Unfortunately, our data show that at close to physical

masses and at the values of a used in this study, the Oða2Þ
corrections can be as large as ≈25%. This leads to an
irreducible uncertainty in the results, which is in addition to
the uncertainty due to the continuum and chiral extrapo-
lations. Using techniques like gradient flow that remove
chiral symmetry breaking, this source of uncertainty can be
avoided.
A χPT analysis presented in Appendix D predicts the

ratio of the phase α generated on the insertion of the
qcEDM and pseudoscalar operators given in Eq. (27). Our
data on the four ensembles (see Fig. 6) show agreement
with this analysis within 10%.
To study excited state contributions in the extraction of

ground-state matrix elements of the qcEDM and pseudo-
scalar operators, we have made fits with two choices of the
mass of the first excited state, that from fits to the nucleon
two-point correlation function and the Nπ state. The fits
cannot be distinguished by the χ2=d.o.f.; however, the
results differ by a factor of 5.
To obtain a result for the isovector contribution of the

qcEDM operator to nEDM, future work needs to address
two challenges, in addition to issues of chiral and
continuum extrapolation, exposed by this study: (i) pos-
sibly large Oða2Þ effects as discussed in Sec. Vand (ii) the
difference in estimates between removing ESC with and
without including Nπ excited states in the spectral
decomposition of the correlation functions as discussed
in Sec. VI.
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APPENDIX A: NONSINGLET AWI AT OðaÞ
The starting point of the demonstration that, on shell, the

effect of the isovector pseudoscalar operator is proportional
to qcEDM is the nonsinglet AWI obtained by considering
the axial transformation on the quark fields ψT ¼
ðu; d; s; cÞ defined in Eq. (22). We will be concerned with
a rotation of the u and d quarks by equal and opposite
amount, i.e., Ta ¼ diagð1;−1; 0; 0Þ=2, but for now we keep
the notation generic. Denoting by Oðx1;…; xnÞ any prod-
uct of local operators, the nonsinglet AWI reads as

hOðx1;…; xnÞð∂μxAa
μðxÞ − ψ̄ðxÞfmW; Tagγ5ψðxÞ − XaðxÞÞi

¼ −
�
δOðx1;…; xnÞ
δðiξaðxÞÞ

	
; ðA1Þ

where

Aa
μðxÞ ¼ ψ̄ðxÞTaγμγ5ψðxÞ; ðA2Þ

and XaðxÞ is given by the variation of the Wilson-Clover
term [69,75,76] [see Eq. (15)],

Xa

2
¼ −aψ̄Ta

�
r
2
D2 þ κSWσ · G

�
γ5ψ : ðA3Þ

Insertions of XaðxÞ vanish at tree level in the continuum
limit, but quantum effects induce power-divergent mixing
with lower-dimensional operators, which has to be taken
into account when taking the continuum limit. This is done
by writing [69,75,76]

XaðxÞ ¼ aX̃aðxÞ − ψ̄ðxÞfTa;msubgγ5ψðxÞ
− ðZA − 1Þ∂μxAa

μðxÞ; ðA4Þ
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where X̃aðxÞ is a “subtracted” dimension-five operator, i.e.,
lower-dimensional operators are subtracted from it so that it
is free of power divergences, and the Green’s functions of
aX̃aðxÞ with elementary fields vanish in the continuum
limit [77], andmsub is a “mass” counterterm for the fermion
that arises from the explicit chiral symmetry breaking in
Wilson fermions [78]. aX̃aðxÞ has no impact on the analysis
of the axial Ward identity with elementary fields, though it
induces contact terms in the continuum limit of axial Ward
identity involving composite fields [69,70]. X̃aðxÞ is how-
ever essential for our analysis of the qcEDM at finite a.
Using the above expression in Eq. (A1), one arrives at

hOðx1;…;xnÞðZA∂
μ
xAa

μðxÞ− ψ̄ðxÞfm;Tagγ5ψðxÞ−aX̃aðxÞÞi

¼−
�
δOðx1;…;xnÞ
δðiξaðxÞÞ

	
; ðA5Þ

with

m ¼ mW −msub: ðA6Þ

Note that we can define the flavor-diagonal matrix that
appears in the pseudoscalar operator on the lhs as
fm; Tag≡ ZAm̄þOðam2Þ, where m̄ is the standard def-
inition [79] of the quark mass from AWI.
Next, we project the subtracted operator X̃a on the basis

of subtracted Hermitian dimension-five operators Oð5Þ
n ,

given in Ref. [52],

X̃a ¼ i
X
n

KXnÕ
ð5Þ
n ; ðA7Þ

and analyze the consequences of Eq. (A7) for Eq. (A5). The

basis of unsubtracted dimension-five operatorsOð5Þ
n appear-

ing on the rhs of Eq. (A7) for generic nonsinglet generator
Ta and generic diagonal quark mass m, is given in
Ref. [52]. As discussed in Appendix B, in our situation,
however, only one subtraction coefficient, KX1 is needed:
up to corrections of Oða2mÞ and OðaαEM=πÞ, Eq. (A5)
becomes

hOðx1;…;xnÞ½ZAð1þbAmaÞ∂μxAa
μðxÞ

−aZAcA∂2ðψ̄Taγ5ψÞ− ψ̄ðxÞfm;Tagγ5ψðxÞ−aiKX1C̃
ðaÞ�i

¼−
�
δOðx1;…;xnÞ
δðiξaðxÞÞ

	
: ðA8Þ

A detailed analysis in Appendix C shows that the propor-
tionality coefficient KX1 is given by

KX1 ¼
r
2
ðcSW − 1 − 2βð5Þ1 ðgÞÞ

βð5Þ1 ðgÞ ¼ a2g2 þOðg4Þ; ðA9Þ

and starts at Oðg2Þ. Finally, upon integration over
R
d4x,

Eq. (A8) gives the final result in Eq. (23).

APPENDIX B: DIMENSION-FIVE OPERATORS

To derive Eq. (A8) from Eq. (A5), we need to show that
only four of the following full list of dimension-five CPV
operators contribute [52,80]:

Oð5Þ
1 ≡ CðaÞ ¼ iψ̄σμνγ5GμνTaψ ðB1aÞ

Oð5Þ
2 ≡ ∂

2PðaÞ ¼ ∂
2ðψ̄iγ5TaψÞ ðB1bÞ

Oð5Þ
3 ≡ Eð3Þ ¼ ie

2
ψ̄σμνFμνfQ; Tagψ ðB1cÞ

Oð5Þ
4 ¼ Tr½mQ2Ta� i

2
ϵμναβFμνFαβ ðB1dÞ

Oð5Þ
5 ¼ Tr½mTa� i

2
ϵμναβGb

μνGb
αβ ðB1eÞ

Oð5Þ
6 ¼ iTr½mTa�∂μðψ̄γμγ5ψÞ ðB1fÞ

Oð5Þ
7 ¼ i

2
∂μðψ̄γμγ5fm; TagψÞ

−
i
3
Tr½mTa�∂μðψ̄γμγ5ψÞ ðB1gÞ

Oð5Þ
8 ¼ 1

2
ψ̄ iγ5fm2; Tagψ ðB1hÞ

Oð5Þ
9 ¼ Tr½m2�ψ̄iγ5Taψ ðB1iÞ

Oð5Þ
10 ¼ Tr½mTa�ψ̄iγ5mψ ðB1jÞ

Oð5Þ
11 ¼ iψ̄Eγ5TaψE ðB1kÞ

Oð5Þ
12 ¼ ∂μ½ψ̄Eγ

μγ5Taψ þ ψ̄γμγ5TaψE� ðB1lÞ

Oð5Þ
13 ¼ ψ̄γ5=∂TaψE þ H:c: ðB1mÞ

Oð5Þ
14 ¼ ie

2
ψ̄fQ; Tag=AðγÞγ5ψE þ H:c: ðB1nÞ

Here we have used the notation ψE ≡ ð=DþmÞψ . To
simplify the discussion, we will start by assuming that the
mass matrix is proportional to the identity and point out
the minor modifications later on. Keeping in mind that
Oðx1;…; xnÞ has the structure Nðx1ÞJμEMðx2ÞN̄ðx3Þwith N
the neutron source and sink operator and JμEM the electro-

magnetic current, the various Õð5Þ
n contribute to Eq. (A5)

as follows.
(1) Oð5Þ

1 is the isovector qcEDM operator itself and
contributes an OðaÞ term to the lhs of Eq. (A5). In
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fact, as shown below, this is the leading OðaÞ
contribution.

(2) Insertions of the operators Oð5Þ
2;6;7 in Eq. (A5) effec-

tively amount to an OðaÞ shift of the axial current,
which [up to corrections of Oðaðmu −mdÞÞ for
Ta ¼ T3] can be parametrized as

ZAAa
μ→ ð1þbAmaÞZA½Aa

μ−acA∂μðψ̄Taγ5ψÞ� ðB2Þ

up to Oða2Þ, where m denotes the light quark mass.
In short, the three KX2; KX6, and KX7 are reduced to
bA and cA.

(3) Oð5Þ
3;4 involve one and two powers of the electromag-

netic field strength. In order to eliminate the photon
field in the correlation functions in Eq. (A5), one
needs electromagnetic loops, making the contribu-

tion of Oð5Þ
3;4 to Eq. (A5) of OðaαEM=πÞ, and thus

negligible to the order we are working.

(4) Oð5Þ
5 vanishes under the assumption that m ∝ I. It

otherwise provides a term of OðamÞ to the lhs of
Eq. (A5). In the case of the isovector operator, the
effect is Oðaðmu −mdÞÞ and hence negligible.

(5) Oð5Þ
8;9 become m2ψ̄iγ5taψ when m ∝ I. Therefore,

their contributions have the same form of the
pseudoscalar insertion in Eq. (A5), but suppressed
by OðamÞ.

(6) Oð5Þ
10 vanishes under the assumption m ∝ I. In the

case of general flavor structure form,Oð5Þ
10 contribute

terms of Oðam2Þ to Eq. (A5). When considering
isovector insertions, the new contribution scales as
Oðamðmu −mdÞÞ, which can be safely neglected.

(7) The operators Oð5Þ
11;12;13;14 vanish by using the quark

equations of motion but can contribute contact terms
to the lhs of Eq. (A5). However, it turns out that none
of them actually contributes to the order we are

working. Oð5Þ
11 contains two equation of motion

operators. Therefore, when inserted into Eq. (A5),
it will always involve a contraction with a quark field
in the neutron source or sink operator, and thus it
will not contribute to the residue of the neutron pole.

Oð5Þ
12 is a total derivative and drops out of Eq. (A5).

Oð5Þ
13 is gauge-variant operator and drops out of

Eq. (A5) as long as Oðx1;…; xnÞ is a gauge singlet,
which is the case for Oðx1; x2; x3Þ ∝ Nðx1Þ
JμEMðx2ÞN̄ðx3Þ. Oð5Þ

14 involves the photon field and
can contribute only at OðaαEM=πÞ to Eq. (A5).

APPENDIX C: ORIGIN OF THE ARTIFACT KX1

In this appendix, we give a more explicit form of X̃a and
identify the coefficient KX1 given in Eq. (A9). This is done
by manipulating the rhs of Eq. (A3) and comparing it to
Eq. (A4). In order to reexpress the first term on the rhs of
Eq. (A3), we note the identity

ψ̄TaD2γ5ψ ¼ ψ̄Ta

�
γ5D2

L −
1

2
σ ·Gγ5

�
ψ − aOa

6; ðC1Þ

where DL is defined in Eq. (15) and Oa
6 is a dimension-six

operator with tree-level matrix elements of Oða0Þ. We next

introduce subtracted operators Õa
6 and −iÕð5Þ

1 ≡ ðψ̄Taσ ·
Gγ5ψÞsub by introducing subtraction coefficients β and β̃ as
follows:

aOa
6 ¼ aÕa

6 þ
β1
a2

ψ̄Taγ5ψ þβ4
a
∂μAa

μ − i
X
n

βð5Þn Õð5Þ
n ðC2aÞ

−iOð5Þ
1 ¼ −iÕð5Þ

1 þ β̃1
a2

ψ̄Taγ5ψ þ β̃4
a
∂μAa

μ; ðC2bÞ

where the Õð5Þ
n are the subtracted versions of Oð5Þ

n given in
Eq. (B1). By using Eq. (C2) in Eq. (C1) and defining

Oa
EOM ¼ ψ̄Taγ5ðDL −mWÞðDL þmWÞψ ; ðC3Þ

one arrives at

aψ̄TaD2γ5ψ ¼ −a2Õa
6 þ aOa

EOM þ ia

�
1

2
þ βð5Þ1

�
Õð5Þ

1

þ ia
X
n≠1

βð5Þn Õð5Þ
n −

�
β4 þ

β̃4
2

�
∂μAa

μ

−
1

a

�
β1 þ

β̃1
2
− ðamWÞ2

�
ψ̄Taγ5ψ : ðC4Þ

Using the above results one can write Xa as follows:

Xa ¼ ra2Õa
6 þ i

r
2
ðcSW − 1 − 2βð5Þ1 ÞaÕð5Þ

1

− iar
X
n≠1

βð5Þn Õð5Þ
n − arOa

EOM −
r
2
ðβ̃4ðcSW − 1Þ

− 2β4Þ∂μAaμ −
r
2a

ðβ̃1ðcSW − 1Þ − 2β1

þ 2ðamWÞ2Þψ̄Taγ5ψ : ðC5Þ

Comparing Eqs. (A4) and (C5) we see that the first line
of Eq. (C5) provides an explicit representation for the
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subtracted dimension-five operator aX̃a appearing in

Eq. (A4) with the identification ðr=2ÞðcSW − 1 − 2βð5Þ1 Þ ¼
KX1 as in Eq. (A9).

APPENDIX D: DETERMINATION
OF αN USING χPT

Consider computing correlation functions of the local
nucleon interpolating field

NchiralðxÞ ¼ εabcqaTðxÞCγ5iτ2qbðxÞqcðxÞ ðD1Þ

in the presence of CP isovector pseudoscalar and qcEDM
terms in the Lagrangian

−
ϵ5
a
q̄iγ5τ3q −

1

4
ðarÞϵq̄iγ5σμνγ5Gμντ3q: ðD2Þ

As discussed in [81,82], this field has good chiral proper-
ties, and transforms linearly under an isovector axial
rotation. In particular, it could eliminate the pseudoscalar
interaction from the Lagrangian. The only effect would be
to replace

NchiralðxÞ →
�
1þ i

ϵ5
2m̄a

γ5τ3

�
NchiralðxÞ; ðD3Þ

plus OðaÞ corrections. In χPT, the nucleon field Nχ

transforms as [81]

Nχ →

�
1þ i

π · τ
2Fπ

�
NχðxÞ: ðD4Þ

Similarly, we build the chiral Lagrangian to include the
contribution of the pseudoscalar and chromoelectric inter-
actions to the correlation functions. At lowest order, these
interactions induce pion tadpole terms, of the form

Lπ ¼ m2
π

�
ϵ5
ma

þ ϵ
r

4ma
r̃

�
Fππ3; ðD5Þ

where r̃ is the ratio of the vacuum matrix elements of the
chromomagnetic operator and scalar density

r̃ ¼ a2h0jψ̄σμνGμνψ j0i
h0jψ̄ψ j0i ¼ Oða2Λ2

χÞ þOðαsÞ: ðD6Þ

The OðαsÞ corrections arise from the power-divergent
mixing of the chromomagnetic and scalar operators and
depend on the regularization and renormalization scheme
chosen for the chromomagnetic operator, and typically
suffer from renormalon ambiguities when calculated per-
turbatively. This power-divergent subtraction is present in
hard-cutoff schemes like the lattice or gradient flow, but is
not needed in dimensional regularization. In the MS

scheme, r̃ is, therefore, related only to m2
0, the ratio of

chromomagnetic and scalar condensates typically used in
QCD sum rules literature [10,59,83–85] by r̃ ¼ a2m2

0

noting that gGμν
sum rule ¼ Gμν

our definition. The sum rule estimate
is m2

0 ≈ 0.8 GeV2. Only preliminary lattice QCD calcula-
tions of this ratio in the gradient flow scheme exist [53,85].
In our calculations, we, however, use a subtracted qcEDM
operator C̃3 [see Eq. (26)] which has r̃jC̃3

¼ 0 at leading
order in chiral perturbation theory. For the isovector case,
such a subtraction does not change any physical matrix
elements in the continuum theory, but it does affect the
phase αN that depends on the interpolating operator.
The leading contribution to this phase comes from

diagrams in which a pion is emitted by the nucleon
interpolating field given in Eq. (D4), and annihilated by
Eq. (D5), leading to

αN ¼ −
1

2

�
ϵ5
ma

þ ϵ
r

4ma
ðr̃þOða2m2

πÞÞ
�
; ðD7Þ

where the corrections arise from subleading pion- and pion-
nucleon interactions induced by the chromoelectric oper-
ator, and depend on additional nonperturbative matrix
elements of the chromoelectric/chromomagnetic operators.
In Eq. (D7), we assumed that the OðαsÞ terms in Eq. (D6)
are smaller or comparable to the Oða2Þ piece.
As discussed above, in Sec. IV, we defined a subtracted

chromoelectric operator by imposing its matrix element
between a pion and vacuum state to vanish. The subtraction
leads to an ϵ5 ≡ ϵ=A in Eq. (D7), and the r̃jC̃3

relevant to the
subtracted operator reduces to zero. This means that the
ratio between the phases induced by the subtracted and
unsubtracted operators, which we denote by α̃N and αN
respectively, is

α̃N
αN

∼
a2m2

π

r̃
¼ O

�
m2

π

Λ2
χ

�
; ðD8Þ

so that α̃N is a ∼10% correction to the phase obtained from
the subtraction piece alone. This expectation is confirmed
by the explicit calculation illustrated in Fig. 6.
With just the pseudoscalar operator [first term in

Eq. (D5)], one gets αchiral5 ¼ −ϵ5=2ma from Eq. (D7) if
the nucleon interpolating operator has the same chiral
properties as the operator in Eq. (D1). In our calculations,
the quark fields q are smeared, and the source used is

NðxÞ ¼ εabcqaTðxÞCγ5iτ2
1þ γ4

2
qbðxÞqcðxÞ; ðD9Þ

which suppresses parity mixing. Consequently, one expects
a smaller α5. To check the chiral analysis, we calculated the
two-point function with the Nchiral interpolating operator,
but with smeared quark fields. Instead of rα, we also used

QUARK CHROMOELECTRIC DIPOLE MOMENT OPERATOR ON … PHYS. REV. D 108, 074507 (2023)

074507-19



r̄αðτÞ≡ ℑTrγ5hNð0ÞN̄ðτÞi
ℜTrhNð0ÞN̄ðτÞi ⟶

τ→∞
tan 2α0 ðD10Þ

for this calculation. The results in Table VII show that
α5ma=ϵ5 remains close to its value of −0.5 in Eq. (D7), i.e.,
smearing has a small effect on the chiral analysis.
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