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1 Introduction

The bootstrap [1, 2] serves as an extremely useful tool in the study of conformal field

theories (see [3–6] for reviews). An interesting direction of study is its interplay with

duality symmetries. For example, in [7] it was found that S-duality invariant points of N=4

supersymmetric Yang-Mill saturate the bootstrap bounds on the anomalous dimensions of

low twist non-BPS operators, in [8] it was found that crossing has interesting implications

for the structure of the S-matrix in Chern Simons theories with matter. Recently, a rather

simple proposal has been put forward to generate crossing symmetric genus zero correlation

functions in two dimensional conformal field theories [9]. In this paper, we construct

correlation functions in SU(N)k WZW models using the proposal and examine level-rank

duality of the models in this context.

In two dimensions, crossing together with modular invariance has provided strong

constraints from the early days [11–20]. For some recent developments in 2D bootstrap

see [21]–[41], and in particular [42]–[48] for work on theories with currents. The basic

idea in [9] is to make use of transformation properties of conformal blocks under crossing
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to arrive at crossing symmetric candidate correlation functions. Correlation functions are

generated by starting from a seed contribution (as given by the contributions of confor-

mal blocks of some primaries of low dimension running in the intermediate channel) and

summing over the orbit of the seed under crossing transformations to obtain a crossing

symmetric candidate correlation function. In two dimensions, crossing symmetry acts as

the modular group on conformal blocks. Thus the sum over the orbit of the seed contribu-

tion corresponds to “modular averaging”.1 It was shown in [9] that modular averaging can

be used to successfully compute genus zero four point functions of minimal models. Mod-

ular averaging has appeared in the physics literature in the context of three-dimensional

quantum gravity and is often referred to as Farey tail sums (see e.g. [49–55]). It was argued

in [9] that terms that arise from the orbit of the seed contribution would arise naturally in

a semiclassical holographic AdS3 dual computation of the CFT correlator.

Our focus will be on WZW correlators of [12], involving two Kac-Moody primaries

in the fundamental and two in the anti-fundamental representation. Here, we perform

modular averaging by both the prescriptions given in [9] - averaging over the stabiliser

subgroup of the correlator and over the entire modular group, mostly focussing on the

first one (we review these prescription in section 2). For averaging performed using the

stabilser group, we find that the correlators can be constructed from modular averaging

of the contribution of the vacuum block in all the cases we examine. Primary examples

of models where the sums can be done exactly are models with N = k (the orbits for

these models are finite). For models where we have not been able to show that the orbit

is finite, we consider examples with specific values of N and k, and perform the averaging

numerically. Construction of correlators from averaging over whole of the modular group is

more involved. Here, we find some examples where modular averaging does not reproduce

the correlator.

An interesting feature of WZW models is level-rank duality [56]. Dual primary fields

under N ↔ k are related by transposition of the Young tableaux of their representations.

The correlators considered in this paper are the simplest related to each other by this

duality. From the point of view of modular averaging, both N and k simply appear

as parameters in the matrices associated with the action of the modular group on the

conformal blocks. Thus modular averaging puts N and k in a more equal footing; one can

hope that writing correlators as modular averages can reveal various aspects of level-rank

duality. This expectation is borne out. We establish a one to one correspondence between

elements of the orbits of the vacuum conformal blocks of dual theories. The contributions

of paired terms to their respective correlators are simply related. This allows us to obtain

the ratio between the OPE coefficients associated with dual correlators analytically without

performing the sums involved in the modular averagings. The pairing of terms also indicates

that holographic computations can make some properties of the level-rank duality manifest.

This paper is organised as follows. In section 2, we briefly review some basic ingredients

that will be necessary for our analysis. In section 3 (and appendix A) we obtain the

1This is very similar in spirit to the proposal of [10] to compute partition functions from vacuum

characters.
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transformation properties of the conformal blocks of the correlators under the action of the

modular group. In section 4 (and appendices C, D) we compute correlators by modular

averaging. In section 5, we examine level-rank duality.

2 Review

We start by recalling some basic facts about four point functions in two dimensional con-

formal field theories. We then go on to describe the proposal of [9] to construct crossing

symmetric correlation functions from modular averaging.

The four-point correlator of operators O1, O2, O3 and O4 in 2D CFTs on the Riemann

sphere can be written as the product of a factor that determines its transformation prop-

erties under global conformal transformations and a function of a conformally invariant

cross-ratio. It will be our convention to take

〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉 = G0

(
za, z̄a

)
G1234(x, x̄) (2.1)

with

G0

(
za, z̄a

)
=
∏
a<b

(
zµabab · z̄

µ̄ab
ab

)
, (2.2)

where zab = za − zb (a, b = 1. .4), µab = (1
3

∑4
c=1 hc)− ha − hb (hi being the dimensions of

the operators Oi) and the cross-ratio

x =
z12z34

z14z32
. (2.3)

Conformal transformations can be used to set z2 to 0 and z3 to 1 and set z4 to infinity,

the coordinate z1 then corresponds to the cross-ratio. Thus the cross-ratio space is the

Riemann sphere with three punctures.

Correlators in two dimensional CFTs can be constructed from holomorphic and anti-

holomorophic conformal blocks. Although correlators need to be single valued functions of

the cross-ratio space,2 there is no such requirement on the conformal blocks. Conformal

blocks have monodromies in the cross-ratio space. Thus it is natural to consider confor-

mal blocks as functions in the universal covering space of the cross-ratio space. This is

H+ = {u+ iv | v > 0 and u, v ∈ R}, the upper half plane.3 The elliptic lambda function

λ(τ) =

(
θ2(τ)

θ3(τ)

)4

, (2.4)

where τ = u+iv provides a surjective map (x = λ(τ)) from H+ to the cross-ratio space [57].

PSL(2,Z) action on the upper half plane has a close connection to the map. Under the

action of the generators of the modular group

T : τ → τ + 1 and S : τ → −1

τ
, (2.5)

2We will be dealing with bosonic operators.
3The observation that conformal blocks should be single-valued on the upper half plane was made in [58],

where an elliptic recursion representation was obtained for them.
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images in the cross-ratio space have rather simple transformations

T · x =
x

x− 1
and S · x = 1− x. (2.6)

Furthermore, the function λ(τ) is invariant under the normal subgroup Γ(2) of PSL(2,Z):

λ(γτ) = λ(τ), ∀γ ∈ Γ(2). (2.7)

Thus, the condition that correlators have to be single valued in the cross-ratio space trans-

lates to invariance under Γ(2) in H+.

At this stage, it is natural to seek for the interpretation of the action of the entire

PSL(2,Z) on the correlators in the CFT. For this, one has to look at crossing symmetry.

For a general ordering of the operators, we define

〈Op(zp, z̄p)Oq(zq, z̄q)Or(zr, z̄r)Os(zs, z̄s)〉 = G0

(
za, z̄a

)
Gpqrs(xpqrs, x̄pqrs), (2.8)

with G0 as defined in (2.2) and

xpqrs =
zpqzrs
zpszrq

. (2.9)

Note that with this we have x = x1234, where x is the cross-ratio introduced in (2.3). Our

choice of G0 is invariant under permutations of the operators {Oa(za)} inside the correlator

thus crossing symmetry reduces to the statement that Gabcd(xabcd) is invariant under action

of the same permutation on {a, b, c, d} in both the subscripts. Permutations that leave the

cross ratio x invariant yield:

G1234(x, x̄) = G2143(x, x̄) = G3412(x, x̄) = G4321(x, x̄). (2.10)

On the other hand, permutations which act non-trivially on the cross-ratio4 give

G1234(x, x̄) = G1243

(
x

x− 1
,

x̄

x̄− 1

)
= G3241

(
1

1− x
,

1

1− x̄

)
= G3214

(
1

x
,

1

x̄

)
= G4231(1− x, 1− x̄) = G4213

(
x− 1

x
,
x̄− 1

x̄

)
.

(2.11)

The arguments of the functions in (2.11) can be related by the actions of S and T as given

in (2.6). The actions are isomorphic to the anharmonic group, S3. This is precisely equal

to PSL(2,Z)/Γ(2). Thus crossing symmetry and single valuedness5 together specify the

full PSL(2,Z) action on the correlators. Combining (2.6), (2.10) and (2.11) they can be

written in a very compact form [9]:

~G(γτ, γτ̄) = σ(γ) · ~G(τ, τ̄), γ ∈ PSL(2,Z) (2.12)

where

~G = (G1234(τ, τ̄), G2134(τ, τ̄), G4132(τ, τ̄), G1432(τ, τ̄), G2431(τ, τ̄), G4231(τ, τ̄))t (2.13)

4These relations differ from the ones in [9] since our choice for the cross-ratio x is different.
5Recall that correlators need to be invariant under Γ(2) so that they are single valued.
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and σ(γ) are the six dimensional matrices associated with the linear representation of

PSL(2,Z)/Γ(2) = S3 with

σ(S) =



0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

1 0 0 0 0 0


and σ(T ) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


. (2.14)

We note that there is further simplification when all or some of the operators Oa are

identical. For instance, in the case that all the four operators are identical ~G has only one

independent component. Equation (2.12) requires it to be a modular invariant scalar.

Modular averaging can be used to obtain solutions of equations of the form of (2.12).

The general structure of four point functions in a CFT gives fiducial functions over which

the averaging can be performed. Conformal invariance implies that the stripped correla-

tors in (2.8) can be written as a sum over contributions associated with conformal pri-

maries (φk):

Gpqrs(y, ȳ) =
∑
k

COpOqφkCOrOsφk × y
hφk−

H
3 ȳh̄φk−

H̄
3 F φkpqrs(y, ȳ), (2.15)

where COpOqφk , COrOsφk are three point structure constants, H = (hp + hq + hr + hs) and

H̄ = (h̄p + h̄q + h̄r + h̄s). The functions F φkpqrs(y, ȳ) are analytic at y, ȳ = 0 and F φkpqrs(0, 0) =

1. It will be our convention to call {yhφk−
H
3 ȳh̄φk−

H̄
3 F φkpqrs(y, ȳ)} as the conformal block

corresponding to primary φk. These can be further factorized into holomorphic and anti-

holomorchic conformal blocks for each φk. Given the form of (2.15), in the limit of y → 0

the stripped correlator is well approximated by including contributions from the low lying

primaries that appear in the sum i.e.

Gpqrs(y, ȳ) ≈Glight
pqrs(y, ȳ)

=
∑

k≤kmax

COpOqφkCOrOsφk × y
hφk−

H
3 ȳh̄φk−

H̄
3 F φkpqrs(y, ȳ) for y → 0. (2.16)

where the sum now runs over primaries which have weights less than or equal to

(hkmax , h̄kmax). The simplest approximation is to keep only the primary with the lowest

weight. Reference [9] proposed that modular averaging of ~Glight can be used to construct

candidate CFT correlators which satisfy the requirements single-valuedness and crossing.

~Gcandidate(τ, τ̄) = N−1 ·
∑

γ∈PSL(2,Z)

σ−1(γ) · ~Glight(γτ, γτ̄), (2.17)

where N is a normalisation which can be determined from the τ → i∞ (y → 0) behaviour

of ~G(τ, τ̄). In general, the sum in (2.17) is difficult to perform and might even need

regularisation. The complications associated with dealing with a sum involving vector

valued modular objects can be ameliorated for correlators with identical operators. As
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described earlier, in the presence of identical operators, various components of ~G (as defined

in (2.13)) become related - the vector space effectively collapses to a lower dimensional one.

As a result, the subgroup of PSL(2,Z) that leaves any particular component of the vector

inert under action of σ(γ) is enhanced.6 If the subgroup associated with the component Ga
in the collapsed vector space is Γa, a natural candidate Ga can be constructed by defining

Gcandidate
a (τ, τ̄) = N−1 ·

∑
γ∈Γa

Glight
a (γτ, γτ̄). (2.18)

The above program to obtain CFT correlators was implemented for minimal models

in [9]. It was found that for a large number of them, the candidate correlators did match

with the exact ones by taking only the contribution of the Virasoro vacuum block while

constructing Glight
a - the lightest block served the purpose.

3 SU(N)k WZW model: conformal blocks, actions of S and T

As mentioned in the introduction, our focus will be on WZW correlators involving two Kac-

Moody primaries in the fundamental and two in the anti-fundamental representation. In

this section, we will obtain the transformation properties of the conformal blocks associated

with the correlators under the action of crossing.

We begin by recalling some basic facts about the correlators (our discussion follows

that of [12, 13, 59, 60]) and in the process set up our notation. The SU(N) WZW model

at level k on the two sphere is described by the action:

SWZW
k [g] =

k

16π

∫
d2z Tr(∂µg−1∂µg)− ik

24π

∫
B
d3 ~X εαβγTr(g−1∂αgg−1∂βgg−1∂γg),

k = 1, 2, . . .

(3.1)

where g(z, z̄) is a matrix valued bosonic field which takes values in the group SU(N). The

second term is an integral over the three ball B, whose boundary is the two sphere. The

pre-factors of the two terms in the action are chosen so that theory is conformal at the

quantum level. The action enjoys an SU(N)(z) × SU(N)(z̄) invariance. The associated

currents are

j(z) ≡ −k(∂zg)g−1, j̄(z̄) ≡ kg−1(∂z̄g) (3.2)

which can be expanded in terms of the generators of SU(N) as

j(z) =
∑

a
ja(z)ta, j̄(z̄) =

∑
a
j̄a(z̄)ta. (3.3)

The Laurent series expansion coefficients of the currents together with the Virasoro gener-

ators generate two copies of the Kac-Moody algebra at level k.

Kac-Moody primaries serve as the highest weight states in the theory. For the (N, k)

theory the spectrum of Kac-Moody primaries consists operators transforming in all repre-

sentations of SU(N) which have integrable Young tableaux i.e. those in which the number

6In the case that all the operators are distinct, this subgroup is Γ(2) for all the components.
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of columns is at most k. The conformal dimension of a Kac-Moody primary transforming

in a representation R is

hR =
C(R)

2(k +N)
, (3.4)

where C(R) is the quadratic Casimir of the representation.

We will follow the notation of [12] and denote a fundamental Kac-Moody primary by

g β
α (z, z̄), where α is a fundamental index of the SU(N) left and β is a fundamental index of

the SU(N) right. On the other hand, an anti-fundamental will be denoted by g−1σ
ρ , where

where ρ is an anti-fundamental index of the SU(N) right and σ is an anti-fundamental

index of the SU(N) left. The conformal dimension of these fields can be easily obtained

from (3.4)

hg = hg−1 =
N2 − 1

2N(k +N)
. (3.5)

For correlators involving two fundamentals and two anti-fundamentals, primaries that run

in the intermediate channels will be as per the fusion rules

g × g−1 = 1 + θ, g × g = ξ + χ, g−1 × g−1 = ξ + χ, (3.6)

where 1 is the identity field, θ the adjoint, ξ the antisymmetric and χ the symmetric. The

associated dimensions are

h1 = 0, hθ =
N

N + k
, hξ =

(N − 2)(N + 1)

N(N + k)
and hχ =

(N + 2)(N − 1)

N(N + k)
. (3.7)

Our main interest will be the correlator

〈gg−1g−1g〉 ≡ 〈gα1
β1(z1, z̄1) · g−1

β2

α2
(z2, z̄2) · g−1

β3

α3
(z3, z̄3) · gα4

β4(z4, z̄4)〉 (3.8)

Recall that as per our conventions α1, α4 are SU(N) left fundamental indices, α2, α3 are

SU(N) left anti-fundamental indices, β1, β4 are SU(N) right fundamental indices, β2, β3 are

SU(N) right anti-fundamental indices. We will be eventually interested in making choices

for the indices such that the correlator contains two pairs of identical operators so that

we can carry out modular averaging as per the prescription in (2.18). For this we need

the conformal blocks associated with the correlator and their transformations under the

modular group.

The correlator has been studied in detail in [12]. We briefly describe their analy-

sis adopting the discussion to our conventions. First, we define the stripped correlator

Gβ1α2α3β4

α1β2β3α4
(x, x̄) as in (2.1)

〈gg−1g−1g〉 =
(∏
a<b

zµabab z̄
µ̄ab
ab

)
Gβ1α2α3β4

α1β2β3α4
(x, x̄), (3.9)

where x is the cross-ratio defined in (2.3). Invariance of the correlator under SU(N) left

and right implies

Gβ1α2α3β4

α1β2β3α4
(x, x̄) =

∑
A,B=1,2

(IA)(ĪB)GAB(x, x̄), (3.10)
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where

I1 = δα2
α1
δα3
α4
, Ī1 = δβ1

β2
δβ4

β3
, I2 = δα3

α1
δα2
α4

and Ī2 = δβ1

β3
δβ4

β2
. (3.11)

One then imposes the Knizhnik-Zamolodchikov (KZ) equations on the correlator. The

KZ equations are a consequence of the Kac-Moody symmetries. For a correlator involving

Kac-Moody primaries φi, transforming in the representations Ri they are[
∂zi −

1

k +N

∑
j 6=i

∑
a t
a
Ri
⊗ taRj

zi − zj

]
〈φ1(z1, z̄1) · · ·φn(zn, z̄n)〉 = 0, ∀ i, (3.12)

where taRi are SU(N) generators in the representation Ri. Similar set of equations hold

in the anti-holomorphic coordinates. Imposing them on the correlator (3.8) yields the

following equations for the matrix GAB defined in (3.10).

∂G

∂x
=

[
1

x
P +

1

x− 1
Q

]
G and

∂G

∂x̄
= G

[
1

x̄
P t +

1

x̄− 1
Qt
]
, (3.13)

where the matrices P and Q are given by

P = − 1

N(k +N)

(
2(N2−1)

3 N

0 −N2+2
3

)
and Q = − 1

N(k +N)

(
−N2+2

3 0

N 2(N2−1)
3

)
. (3.14)

The general solution to these equations takes the form

GAB(x, x̄) = XijF
i
A(x)F jB(x̄), (3.15)

where the indices i, j run over the primaries in the intermediate channel. These are the

identity (1) and the adjoint (θ) fields. F iA(x) are the conformal blocks

F1
1 (x) = x−

4hg
3 (1− x)hθ−

4hg
3 F

(
1

k̃
,−1

k̃
; 1− N

k̃
;x

)
,

F1
2 (x) =

1

k
x1− 4hg

3 (1− x)hθ−
4hg

3 F

(
1 +

1

k̃
, 1− 1

k̃
; 2− N

k̃
;x

)
,

F θ1 (x) = xhθ−
4hg

3 (1− x)hθ−
4hg

3 F

(
N

k̃
− 1

k̃
,
N

k̃
+

1

k̃
; 1 +

N

k̃
;x

)
,

F θ2 (x) = −Nxhθ−
4hg

3 (1− x)hθ−
4hg

3 F

(
N

k̃
− 1

k̃
,
N

k̃
+

1

k̃
;
N

k̃
;x

)
, (3.16)

where k̃ = k + N and F (a, b, c;x) is the Gauss hypergeometric function.7 We define the

holomorphic and the anti-holomorphic blocks:

F1(x) = I1F
1
1 (x) + I2F

1
2 (x) (3.17)

F̄1(x̄) = Ī1F
1
1 (x̄) + Ī2F

1
2 (x̄) (3.18)

Fθ(x) = I1F
θ
1 (x) + I2F

θ
2 (x) (3.19)

F̄θ(x̄) = Ī1F
θ
1 (x̄) + Ī2F

θ
2 (x̄). (3.20)

7Our conventions for the definition of the Gauss hypergeometric function will be same as that of [61].
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With this, the correlator factorises into holomorphic and anti-holomorphic parts:

Gβ1α2α3β4

α1β2β3α4
(x, x̄) = XijF i(x)F̄ j(x̄). (3.21)

As discussed in section 2, general correlators transform as a six dimensional modular

vector under the action of the modular group. Just as in the correlator described above,

there are two holomorphic and two anti-holomorphic blocks associated with each corre-

lator. This implies that the vector valued modular form requires 24 coefficients for its

specification. This number is large even if one wants to carry out modular averaging as

per (2.17) numerically. Luckily, one can simplify the computation by exploiting the fact

that (3.21) implies that the Xij are independent of the SU(N) left and right tensor indices.

We will make choices for these so that the correlator has two pairs of identical operators

i.e. we will take α1 = α4, β1 = β4, α2 = α3, β2 = β3. With this we have

I1 = I2 ≡ I and Ī1 = Ī2 ≡ Ī . (3.22)

As a result, the six dimensional vector space collapses to a three dimensional one (after

use of equation (2.10)):

~G =
(
Gβ1α2α2β1

α1β2β2α1
(τ, τ̄), Gβ1α2α1β2

α1β2β1α2
(τ, τ̄), Gβ1α1α2β2

α1β1β2α2
(τ, τ̄)

)
, (3.23)

its transformations under the modular group as given by (2.12) reduces to

~G(T · τ, T · τ̄) = σ(T ) · ~G(τ, τ̄),

~G(S · τ, S · τ̄) = σ(S) · ~G(τ, τ̄),
(3.24)

where

σ(T ) =

0 1 0

1 0 0

0 0 1

 , σ(S) =

1 0 0

0 0 1

0 1 0

 . (3.25)

We list the conformal blocks associated with the three correlators in (3.23) and their

transformation properties under the modular group in appendix A.

We will primarily perform the modular averaging as per the algorithm in (2.18) (al-

though also briefly consider averaging as per the prescription in (2.17) in appendix D). For

the representation of PSL(2,Z) generated by the matrices in (3.25), it is easy to see that

the vector (1, 0, 0) is left invariant by the subgroup generated by the actions of S and T 2.

This is called the theta group [62]. This subgroup is an index 3 subgroup of PSL(2,Z)

which contains Γ(2) as an index 2 normal subgroup. In order to carry out the modular

averaging as per (2.18), we require the actions of the elements of this subgroup on the

conformal blocks associated with the stripped correlator Gβ1α2α2β1

α1β2β2α1
(τ, τ̄). These blocks are

H1(x) = IF1
1 (x) + IF1

2 (x)

Hθ(x) = IF θ1 (x) + IF θ2 (x), (3.26)

with I and Ī as defined in (3.22).
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The transformation properties of these blocks under S and T 2 can be obtained from

appendix A. The action of T 2 is given by

Hi
(
T 2.x

)
= Hj (x)Mji(T

2), (3.27)

where

M(T 2) = e−i4π(N2−1)/3Nk̃

(
1 0

0 ei2πN/k̃

)
. (3.28)

The action of S is given by

Hi (S.x) = Hj (x)Mji(S), (3.29)

where

M(S) =

 − k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃)

− NΓ2(N/k̃)
Γ(N/k̃−1/k̃)Γ(N/k̃+1/k̃)

− Γ2(k/k̃)
NΓ(k/k̃−1/k̃)Γ(k/k̃+1/k̃)

k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃)

 . (3.30)

Successive actions of M(T 2) and M(S) can be used to obtain the action of any element

γ of the theta subgroup of the modular group on Hi(x), we shall denote the associated

matrix by M(γ). With the definitions in (3.26), the most general form of solutions to the

KZ equations with two identical operators can be written as

Gβ1α2α2β1

α1β2β2α1
(x, x̄) = XijHi(x)H̄j(x̄). (3.31)

Under the action of an element γ of the theta subgroup, the matrix X transforms as

X →M(γ)XM †(γ). (3.32)

We note that under composition

M(γ2.γ1) = M(γ1).M(γ2). (3.33)

4 Correlators from modular averaging

Having obtained the transformation properties of the conformal blocks we now turn to

constructing correlators from modular averaging. In this section, we will carry out the

modular averaging as per the prescription in (2.18). As described in the previous section,

we will focus on the correlator (3.8) after making choices for SU(N) left and right indices

so that two pairs of operators are identical. Glight will be taken to be the contribution of

the vacuum conformal block, as in [9] we will refer to this as the seed contribution. The

transformation (3.32) of the matrix X implies that one can write the result of modular

averaging as

Xav = N−1 ·
∑
γ∈ Γ

M(γ) · Cseed ·M(γ)†, (4.1)

where we have used Γ to denote the theta subgroup and

Cseed =

(
1 0

0 0

)
. (4.2)
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The normalization constant N is determined by demanding [X]11 = 1, so that the x → 0

behaviour of the correlator is correct. For comparison we record the (exact)result of [12]:

XKZ =

1 0

0
Γ(N/k̃−1/k̃)Γ(N/k̃+1/k̃)Γ2(1−N/k̃)

N2Γ(1−N/k̃+1/k̃)Γ(1−N/k̃−1/k̃)Γ2(N/k̃)

 . (4.3)

Before carrying out the sum in explicit examples, let us discuss some generalities. Any

element of Γ can be expressed as

γ = T 2n1ST 2n2S · · ·ST 2nk , (4.4)

for some choice of integers ni (see e.g. [59]). Since we are dealing with a normalised sum,

the sum can be reduced to be over the orbit of Cseed. Given this, our interest shall be

in γ whose action will generate distinct elements. In this context, note that for all (N, k)

the action of M(T 2) on Cseed is trivial. Also, in the representations under consideration

(which are given in (3.28)), T 2 has finite order. Thus, all distinct M(γ) can be generated

by considering non-negative values of ni upto the order of T 2. Furthermore, for M(γ) of

the form eiα1, its action (3.32) on any X is trivial. We define m(N, k) as the smallest

positive integer such that

M(T 2m(N,k)) ∝ 1. (4.5)

With this, given the trivial actions described above, a list of γs whose actions contain the

orbit of Cseed can be constructed by considering 1 and all elements of the form

γ = ST 2r1S · · ·ST 2r` , (4.6)

with ` taking values over natural numbers, ri = 1 · · · (m − 1) for i = 1 · · · (` − 1) and

r` = 0 · · · (m − 1). We define the length of an element in the list to be the value of `

associated with it (and denote it as `(γ)). 1 is defined to be the element of zero length.

The composition rule (3.33) implies

M(γ) = M(T 2r`)M(S) · · ·M(S)M(T 2r1)M(S). (4.7)

If the stabilser of Cseed under the action Cseed →M(γ) ·Cseed ·M(γ)† has finite index,

then the sum reduces to a finite number of terms. Otherwise, one has to deal with an

infinite sum. We begin by discussing some models in which the stabiliser is of finite index.

Models with N = k are particularly simple. For N = k, the actions of S and T as

given by (3.30) and (3.28) can be written as

M(S) =

(
sin π

2k −k cos π
2k

− 1
k cos π

2k − sin π
2k

)
, M(T 2) = e−

2πi
3
.
(N2−1)

N2

(
1 0

0 −1

)
. (4.8)

Note that M(T 4) ∝ 1, thus the highest power of T that needs to be included while

generating the matrices M(γ) in the list in (4.6) is T 2. Let us start by discussing a

particular example.
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γ M(γ) · Cseed ·M(γ)†

1

(
1 0

0 0

)
S

(
1
4 − 1

4
√
3

− 1
4
√
3

1
12

)

ST 2

(
1
4

1
4
√
3

1
4
√
3

1
12

)

Xav

(
1 0

0 1
9

)

Table 1. Orbit of the vacuum block for N = 3, k = 3

N = 3, k = 3: for N = 3, k = 3, the matrices M(S) and M(T 2) are

M(S) =

(
1
2 −3

√
3

2

− 1
2
√

3
−1

2

)
, M(T 2) = e−

16πi
27

(
1 0

0 −1

)
(4.9)

The orbit of Cseed consists of three matrices. It is generated by the action of 1, S and ST 2.

We tabulate the results of these actions in table 1. The normalised sum over the orbit (4.1)

reproduces the KZ result.

For general values N (= k), one can show that the orbit of Cseed is finite by taking

repeated products of the matrices M(S) and M(T 2). The orbit is the set{(
sin2 α − 1

k sinα cosα

− 1
k sinα cosα 1

k2 cos2 α

)}
(4.10)

where α = π(2s+1)
2k with s = 0 · · · (k − 1) for k odd, and α = πs

2k with s = 0 · · · (2k − 1) for

k even (we derive this in appendix B).

The sums over the orbits can be performed using the identities

k−1∑
s=0

sin2 π(2s+ 1)

2k
=
k

2
=

k−1∑
s=0

cos2 π(2s+ 1)

2k
,

k−1∑
s=0

sin
π(2s+ 1)

k
= 0

for k odd and
2k−1∑
s=0

sin2 πs

2k
= k =

2k−1∑
s=0

cos2 πs

2k
,

2k−1∑
s=0

sin
πs

k
= 0

for k even. Normalising the sum, one finds

Xav =

(
1 0

0 1/k2

)
, (4.11)

which is in agreement with (4.3).

We now turn to models with N 6= k models with finite orbits. For k = 1 and any finite

N the actions of S and T 2 as given by (3.30) and (3.28) take the identity block to a multiple
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of itself. Thus the adjoint block decouples and upon modular averaging the correlator is

given by |F1
1(τ)|2, in keeping with [12]. Next, we discuss two models: N = 4, k = 2 and

N = 2, k = 4. These examples will reappear in our discussion of the properties of modular

averaging under interchange of N and k in section 5.

N = 4, k = 2: for N = 4, k = 2 we note that M(T 6) ∝ 1. The orbit of Cseed consists

of four matrices. It is generated by the action of 1, S, ST 2 and ST 4. The normalised sum

over the orbit (4.1) reproduces the KZ result which is 1
16 3√2

.

N = 2, k = 4: for N = 2, k = 4 we note that M(T 6) ∝ 1. The orbit of Cseed consists

of four matrices. It is generated by the action of 1, S, ST 2 and ST 4. The normalised sum

over the orbit (4.1) reproduces the KZ result which is 1
2 3√4

.

Finally, we present some models whose orbits do not seem to be finite. We will analyse

the models numerically. As described in our general discussion in the beginning of the

section, a list of γs whose actions contain the orbit of Cseed can be obtained by considering

elements of the form (4.6). To implement the numerics, we will organise the sum over the

actions of the elements of the list in terms of the length of the elements. We define8

Xav(`max) = N (`max)−1 ·
′∑

`(γ)≤`max

M(γ) · Cseed ·M(γ)†, (4.12)

where the primed sum indicates that we include distinct elements of the orbit of Cseed in

the sum. The normalisation constant N (`max) is determined by requiring Xav
11 (`max) = 1,

so that the x→ 0 behaviour of the correlator is correctly reproduced at every value of `max.

N = 2, k = 3: for N = 2, k = 3, we have performed sum in (4.12) upto `max = 9. This

involves 429226 distinct contributions to the sum. We find Xav
22 (9) = 0.29863, which is in

good agreement with the exact result (4.3), XKZ
22 ≈ 0.29831. The off diagonal entries of

Xav(9) are of the order of 10−13. Figure 1 shows our results for Xav
22 (`max) as a function

of `max. Note that Xav
22 (`max) approaches the exact result in an oscillatory manner. Prior

to normalisation of the sum, both the (1, 1)-element as well as the (2, 2)-element of the

matrix have approximately linear growths (all terms in the sum make positive definite

contributions to these elements). However, as exhibited by the plot, the ratio of the two

quantities (which is Xav
22 (`max)) tends to a constant. Off-diagonal entries are small as a

result of phase cancellations.

N = 3, k = 2: for N = 3, k = 2, we have performed sum in (4.12) upto `max = 9. This

involves 429226 distinct contributions to the sum. We find Xav
22 (9) = 0.0932166, which is in

good agreement with the exact result (4.3), XKZ
22 ≈ 0.0931172. The off diagonal entries of

Xav(9) are of the order of 10−14. Figure 2 shows our results for Xav
22 (`max) as a function of

`max. As in the previous example, Xav
22 (`max) approaches the exact result in an oscillatory

manner. Other features of the numerics are also similar.9

8Our implementation of the numerics is similar to [9].
9This is also true for all models that we study numerically.
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1 2 3 4 5 6 7 8 9
ℓmax

0.27

0.28

0.29

0.30

0.31

0.32

X22
av(ℓmax )

Figure 1. Orange dots show Xav
22 (`max) in the range [0.268, 0.320] plotted against `max. Blue

horizontal line at 0.29831 represents XKZ
22 .

1 2 3 4 5 6 7 8 9
ℓmax

0.085

0.090

0.095

0.100

X22
av(ℓmax )

Figure 2. Orange dots show Xav
22 (`max) in the range [0.084, 0.100] plotted against `max. Blue

horizontal line at 0.0931172 represents XKZ
22 .

N = 4, k = 3: for N = 4, k = 3, we have performed sum in (4.12) upto `max = 8.

This involves 2338785 distinct contributions to the sum. We find Xav
22 (8) = 0.0592407,

which is in good agreement with the exact result (4.3), XKZ
22 ≈ 0.0591147. The off diagonal

entries of Xav(8) are of the order of 10−14. Figure 3 shows our results for Xav
22 (`max) as a

function of `max.

N = 3, k = 4: for N = 3, k = 4, we have performed sum in (4.12) upto `max = 8.

This involves 2338785 distinct contributions to the sum. We find Xav
22 (8) = 0.117725,

which is in good agreement with the exact result (4.3), XKZ
22 ≈ 0.117474. The off diagonal

entries of Xav(8) are of the order of 10−14. Figure 4 shows our results for Xav
22 (`max) as a

function of `max.

It is interesting to ask whether it is possible to develop an understanding of the nature

of the orbit associated with the (N, k) model and at what value of ` it terminates (if at all).

We have developed a systematic algorithm for this purpose, we discuss this in appendix F.

As the values of N and k are increased the numerics can become quite involved. Getting

accurate results might require large values of `max. Models with (N, k) equals to (5, 6) and

(6, 5) provide examples of this. We discuss them in appendix C.
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1 2 3 4 5 6 7 8
ℓmax

0.045

0.050

0.055

0.060

0.065

X22
av(ℓmax )

Figure 3. Orange dots show Xav
22 (`max) in the range [0.0425, 0.0650] plotted against `max. Blue

horizontal line at 0.0591147 represents XKZ
22 .

1 2 3 4 5 6 7 8
ℓmax

0.09

0.10

0.11

0.12

0.13

X22
av(ℓmax )

Figure 4. Orange dots show Xav
22 (`max) in the range [0.084, 0.130] plotted against `max. Blue

horizontal line at 0.117474 represents XKZ
22 .

Large N : it is interesting to consider the large N limit of the system, this can be

interesting from the point of view of holography. For finite k, the matrices M(S) and

M(T 2) have following 1
N expansions upto order 1

N2 .

M(S) =

 1
k +

π2(k2−1)
6kN2 −N + π2

6N −
k

3N2

(
π2k + 3kψ(2)(1)

)
(−1 + 1

k2 ) 1
N − 1

k −
π2(k2−1)

6kN2

 , (4.13)

M(T 2) =


e

2πi
3 − 4πk

3N
e
πi
6 − 4π

9N2

{
(2(−1)2/3π−

3(−1)1/6)k2 + 3(−1)1/6
} 0

0
e

2πi
3 +

2πk

3N
e
πi
6 − 2π

9N2

{
((−1)2/3π+

3(−1)1/6)k2 + 6(−1)1/6
}

 ,

(4.14)

where ψ(m)(z) = dm+1

dzm+1 ln Γ(z) is the Polygamma function. We have performed modular

averaging using above matrices and obtained the associated correlators (it is not possible

to carry out the sums analytically, we have performed them making specific choices of N
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100 150 200 250 300 350 400
N

0.00002

0.00004

0.00006

0.00008

X22
av

Figure 5. Plot for k = 2. Red dots show Xav
22 (1) while blue dots show Xav

22 (2) in the range

[0, 0.0000965] plotted against N . Green dots represent XKZ
22 against N .

100 150 200 250 300 350 400
N

0.00005

0.00010

0.00015

X22
av

Figure 6. Plot for k = 3. Red dots show Xav
22 (1) while blue dots show Xav

22 (2) in the range

[0, 0.0001750] plotted against N . Green dots represent XKZ
22 against N .

and k with (N � k) using the numerical recipe described in the first part of this section).

The agreement with the results of KZ is good even for low values of `.

The results the for k = 2, 3 at `max = 1, 2 are summarised in figures 5, 6. The

results indicate that one can obtain correlators by taking the large N limit of the matrices

M(S) and M(T 2) (even working at low `). This hints that low ` terms should be the most

relevant in the context of semi-classical holography.

Finally, we have also considered the prescription for constructing correlators by aver-

aging over the whole PSL(2,Z) (2.17). This involves averaging over a vector and hence is

more complicated. We briefly present our results on this in appendix D and leave more

detailed explorations for the future.

In summary, in all the cases that we have examined, modular averaging over the theta

subgroup successfully reproduces the result of [12]. The correlators can be considered as

extremal in the sense of [9]. For extremal correlators, modular averaging sums can be

thought of as providing an alternate prescription for their computation. Next, we will

examine the properties of these sums involved under interchange of N and k.
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5 N ↔ k in modular averages

As described in the introduction, an interesting property of WZW models is level-rank

duality. In this section, we will show that there is a simple one to one correspondence

between individual terms in the modular averaging sums for correlators in the (N, k) and

(k,N) theories.

We will be simultaneously dealing with the (N, k) and (k,N) theories in this section,

let us begin by introducing notation adapted for the purpose. We will include labels in the

matrices (3.28) and (3.30) which generate the actions of S and T 2, to indicate the theory

they belong to.

MN,k(T
2) = e−i4π(N2−1)/3Nk̃

(
1 0

0 ei2πN/k̃

)
≡ eiα(N,k)

(
1 0

0 eiφ(N,k)

)
(5.1)

and

MN,k(S) =

 − k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃)

− NΓ2(N/k̃)
Γ(N/k̃−1/k̃)Γ(N/k̃+1/k̃)

− Γ2(k/k̃)
NΓ(k/k̃−1/k̃)Γ(k/k̃+1/k̃)

k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃)

 ≡ (as(N, k) bs(N, k)

cs(N, k) ds(N, k)

)
.

(5.2)

We note that ds(N, k) = −as(N, k) and bs(N, k).cs(N, k) = 1 + as(N, k).ds(N, k). Also,

as(N, k) and the product bs(N, k).cs(N, k) are symmetric under the interchange of N and

k, i.e.

as(N, k) = as(k,N), ds(N, k) = ds(k,N), bs(N, k).cs(N, k) = bs(k,N).cs(k,N).

(5.3)

Recall that the matrices given in (4.7) provide a list whose actions contain the orbit of

Cseed. We will denote the matrices in the list by

M `
N,k(r1, r2 · · · , r`) ≡M `

N,k(ri) ≡MN,k(T
2r`)MN,k(S) · · ·MN,k(S)MN,k(T

2r1)MN,k(S).

(5.4)

Note that with this M `
N,k(ri) is a function of r1, r2 · · · rl; with ri = 1 · · · (m(N, k)− 1) for

i = 1 · · · (` − 1) and r` = 0 · · · (m(N, k)− 1) with m(N, k) as defined in (4.5). We define

M0
N,k to be the identity matrix. We now introduce another set of matrices

M̃ `
N,k(p1, p2 · · · , p`) ≡ M̃ `

N,k(pi)

≡MN,k(T
−2p`)MN,k(S) · · ·MN,k(S)MN,k(T

−2p1)MN,k(S). (5.5)

M̃ `
N,k(pi) is a function of p1, p2 · · · pl; with pi = 1 · · · (m(N, k)− 1) for i = 1 · · · (`− 1) and

p` = 0 · · · (m(N, k)− 1). We will define M̃0
N,k to be the identity matrix.

At any given length `, the set of matrices generated from the action of M `
N,k(ri) on

Cseed is exactly same as the set generated from the action of M̃ `
N,k(pi) on Cseed i.e.{

M `
N,k(ri)CseedM

†`
N,k(ri); ri = 1 · · · (m(N, k)− 1)

for i = 1 · · · (`− 1), r` = 0 · · · (m(N, k)− 1)
}

(5.6)

=
{
M̃ `
N,k(pi)CseedM̃

†`
N,k(pi); pi = 1 · · · (m(N, k)− 1)

for i = 1 · · · (`− 1), p` = 0 · · · (m(N, k)− 1))
}
.
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This is a consequence of the fact that for any X following equality (between sets) holds{
MN,k(T

2r)XM †N,k(T
2r); r = 0 · · · (m(N, k)− 1)

}
=
{
MN,k(T

−2p)XM †N,k(T
−2p); p = 0 · · · (m(N, k)− 1)

}
. (5.7)

Given the equivalence in (5.6), while carrying out modular averaging, either set can

be used to generate the sum over the orbit of Cseed. While establishing the relationship

between the modular averages in the (N, k) and (k,N) theories, it will be useful to generate

the orbit for the (N, k) theory using the M `
N,k matrices and for the (k,N) theory using M̃ `

k,N

matrices. The essential point will be to establish that the actions of the two matrices10

M `
N,k(r1, r2 · · · r`) and M̃ `

k,N (r1, r2 · · · r`) (5.8)

on Cseed are closely related. Let us begin by looking at the general from of the matrices

M `
N,k(r1, r2 · · · r`) and M̃ `

N,k(r1, r2 · · · r`) . As shown in appendix E, they can be written as

M `
N,k(r1, · · · r`) = exp

(
iα(N, k)

(∑
ri

))
×

(
a`N,k(r1, · · · r`) bs(N, k)b`N,k(r1, · · · r`)

cs(N, k)c`N,k(r1, · · · r`) d`N,k(r1, · · · r`)

)
(5.9)

M̃ `
N,k(r1, · · · r`) = exp

(
−iα(N, k)

(∑
ri

))
×

(
ã`N,k(r1, · · · r`) bs(N, k)b̃`N,k(r1, · · · r`)

cs(N, k)c̃`N,k(r1, · · · r`) d̃`N,k(r1, · · · r`),

)
(5.10)

with the functions appearing above obeying the relationships

ã`k,N (r1, · · · r`) = a`N,k(r1, · · · r`), b̃`k,N (r1, · · · r`) = b`N,k(r1, · · · r`),
c̃`k,N (r1, · · · r`) = c`N,k(r1, · · · r`), d̃`k,N (r1, · · · r`) = d`N,k(r1, · · · r`). (5.11)

Now, let us discuss the implications of these relations for modular averages. As men-

tioned before, we will generate the orbit of the (N, k) theory using the matrices M `
N,k and

the (k,N) theory using the M̃ `
k,N matrices. Firstly, note that (5.9) and (5.10) imply that

any duplications in the action of M `
N,k on Cseed implies a duplication in the action of M̃ `

k,N

on Cseed and vice versa11 i.e.

M `
N,k(ri)CseedM

†`
N,k(ri) = M `

N,k(si)CseedM
†`
N,k(si)

⇐⇒ M̃ `
k,N (ri)CseedM̃

†`
k,N (ri) = M̃ `

k,N (si)CseedM̃
†`
k,N (si) (5.12)

Furthermore, we have

M `
N,k(ri)CseedM

†`
N,k(ri)

∣∣
11

= M̃ `
k,N (ri)CseedM̃

†`
k,N (ri)

∣∣
11

(5.13)

10Note since gcd(k + N,N) = gcd(k,N) = gcd(k + N, k), m(N, k) = m(k,N). This implies that the

arguments of M `
N,k and M̃ `

k,N take the same values.
11This together with (5.6) explains why the number of duplicates for theories related under N ↔ k were

same in our numerical analysis in section 4.
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and

c2
s(k,N)M `

N,k(ri)CseedM
†`
N,k(ri)

∣∣
22

= c2
s(N, k)M̃ `

k,N (ri)CseedM̃
†`
k,N (ri)

∣∣
22
. (5.14)

With this,12 it is natural to pair the matrix

M `
N,k(ri)CseedM

†`
N,k(ri)

in the orbit of Cseed of the (N, k) theory with the matrix

M̃ `
k,N (ri)CseedM̃

†`
k,N (ri)

in the orbit of Cseed of the (k,N) theory. This establishes our one to one correspondence

between the terms that appear in the modular averaging sums of the two theories. Note

that (5.13) implies that the normalisations of both the sums are equal. With this, (5.14)

implies that the all paired terms in the sums contribute to the sums with the ratio

c2
s(N, k)

c2
s(k,N)

. (5.15)

Of course, since the ratio is same for all the pairs, from the point of view of modular

averaging one can trivially write the relation (even without performing the sums)

Xav(N, k)
∣∣
22

Xav(k,N)
∣∣
22

=
c2
s(N, k)

c2
s(k,N)

=
k2Γ4

(
k/k̃

)
Γ2
(
N/k̃ − 1/k̃

)
Γ2
(
N/k̃ + 1/k̃

)
N2Γ2

(
k/k̃ − 1/k̃

)
Γ2
(
k/k̃ + 1/k̃

)
Γ4
(
N/k̃

) . (5.16)

One can check by making use of gamma function identities that this is indeed consistent

with the KZ result (4.3). Thus, the one to one correspondence between the terms in the two

sums has given us relations between OPE coefficients in the theories (as OPE coefficients

can be obtained by taking the small cross-ratio limit of the expressions of the correlators

in terms of conformal blocks).

It is natural to ask if the one to one correspondence between the terms in the modular

averaging sums in the two theories has any physical interpretation. In this context, we note

that it was argued in [9] that for “heavy operators” the modular averaging for genus zero

correlators can be interpreted as a semiclassical AdS3 dual computation. More specifically,

if the operator dimensions are of the order of the central charge (c) of the theory but less

than c/12 then the bulk path integral has saddles corresponding to geodesic propagation of

heavy particles between the operator insertion points in the boundary [65–74]. Performing

the sum over the saddles incorporating the back reaction of the heavy particle geodesics

on the geometry and exchange of light primaries, yields the sum over modular channels.

But, the operators considered in this article cannot be made heavy in the semiclassical

limit, since hg/c ∼ 1/Nk. One possibility is that the situation is similar to [10] where the

topological sectors for the saddle point sum was as given in the semi classical limit even in

the quantum regime. In any case, a computation similar to ours for operators satisfying the

heavy operator criterion should help reveal how level-rank duality works from a holographic

point of view.

12It is easy to check that these relationships hold for the (4,2) and (2,4) models (which have finite orbits).

For other models we have checked them numerically.
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6 Conclusions

In this article, we have analysed correlators involving two fundamentals and two anti-

fundamentals in SU(N)k WZW theories using modular averaging. After determining the

transformations of the conformal blocks under S and T transformations, correlators were

expressed as sum of the action of the elements of the theta subgroup of PSL(2,Z) on the

vacuum block. We found that for all models with N = k the orbit of the vacuum block

is finite and modular averaging reproduces the correlators correctly. In models where we

were unable to characterise the orbit we performed the sums numerically; modular averag-

ing successfully reproduced the correlators, providing strong evidence that the correlators

examined in this paper are extremal in the sense of [9]. We also considered construction

of correlators from averaging of the entire modular group. This is more involved. Here

we have found examples where the averaging does not reproduce the correlator (see ap-

pendix D). Interestingly, [9] argues that it is the modular averaging over the theta subgroup

that has a direct interpretation in the holographic context.

We have found a close relationship between modular averaging for correlators involving

fundamentals and anti-fundamentals in the (N, k) and (k,N) theories. In section 5, we

established a one to one correspondence between the orbits of the vacuum conformal blocks

of the two theories. The contributions of the paired terms to their respective sums was

given by a ratio of elements of braids matrices in the theories. This allowed us to obtain

a simple relationship between OPE coefficients. A prescription relating general correlators

of WZW models under level-rank duality has been given in [56]. The braid matrices of the

theories for general correlators have been related in [63, 64]. It will be interesting to study

the implications of these relations for modular averaging in more general correlators.

As discussed in the later part of the previous section, we believe that our results give a

strong hint that holographic computations can make various aspects of level-rank duality in

WZW models manifest. A first step in this direction can be to consider correlators of heavy

operators in the theories and analyse their conformal blocks in the semi-classical limit.
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A Conformal blocks and their transformations

In this appendix, we list the conformal blocks associate with the following three

correlators13

〈gα1
β1(z1, z̄1) · g−1

β2

α2
(z2, z̄2) · g−1

β3

α3
(z3, z̄3) · gα4

β4(z4, z̄4)〉 (A.1)

〈gα1
β1(z1, z̄1) · g−1

β2

α2
(z2, z̄2) · gα4

β4(z3, z̄3) · g−1
β3

α3
(z4, z̄4)〉 (A.2)

〈gα1
β1(z1, z̄1) · gα4

β4(z2, z̄2) · g−1
β2

α2
(z3, z̄3) · g−1

β3

α3
(z4, z̄4)〉 (A.3)

13The other three independent correlators in (2.13) are related to these by the interchange I1 ↔ I2. Thus

they can be easily obtained from the data in this appendix.
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and their transformation properties under the modular tranformations (after the identifi-

cation (3.22) described in section 3). We will refer to the correlators listed above as the

first, second and third correlators. Blocks and their transformation matrices will be given

subscripts to indicate the correlator they belong to.

For the first correlator

〈gα1
β1(z1, z̄1) · g−1

β2

α2
(z2, z̄2) · g−1

β3

α3
(z3, z̄3) · gα4

β4(z4, z̄4)〉

the holomorphic conformal blocks14 are

F1
(1)(x) = I1F

1
(1)1(x) + I2F

1
(1)2(x),

Fθ(1)(x) = I1F
θ
(1)1(x) + I2F

θ
(1)2(x), (A.4)

where

F1
(1)1(x) = x−

4hg
3 (1− x)hθ−

4hg
3 F

(
1

k̃
,−1

k̃
; 1− N

k̃
;x

)
,

F1
(1)2(x) =

1

k
x1− 4hg

3 (1− x)hθ−
4hg

3 F

(
1 +

1

k̃
, 1− 1

k̃
; 2− N

k̃
;x

)
,

F θ(1)1(x) = xhθ−
4hg

3 (1− x)hθ−
4hg

3 F

(
N

k̃
− 1

k̃
,
N

k̃
+

1

k̃
; 1 +

N

k̃
;x

)
,

F θ(1)2(x) = −Nxhθ−
4hg

3 (1− x)hθ−
4hg

3 F

(
N

k̃
− 1

k̃
,
N

k̃
+

1

k̃
;
N

k̃
;x

)
. (A.5)

The holomorphic blocks for the correlator

〈gα1
β1(z1, z̄1) · g−1

β2

α2
(z2, z̄2) · gα4

β4(z3, z̄3) · g−1
β3

α3
(z4, z̄4)〉

are

F1
(2)(x) = I1F

1
(2)1(x) + I2F

1
(2)2(x),

Fθ(2)(x) = I1F
θ
(2)1(x) + I2F

θ
(2)2(x), (A.6)

where

F1
(2)1(x) = x−

4hg
3 (1− x)hχ−

4hg
3 F

(
1

k̃
, 1− N

k̃
+

1

k̃
; 1− N

k̃
;x

)
,

F1
(2)2(x) = −1

k
x1− 4hg

3 (1− x)hχ−
4hg

3 F

(
1 +

1

k̃
, 1− N

k̃
+

1

k̃
; 2− N

k̃
;x

)
,

F θ(2)1(x) = xhθ̂−
4hg

3 (1− x)hχ−
4hg

3 F

(
1 +

1

k̃
,
N

k̃
+

1

k̃
; 1 +

N

k̃
;x

)
,

F θ(2)2(x) = −Nxhθ̂−
4hg

3 (1− x)hχ−
4hg

3 F

(
1

k̃
,
N

k̃
+

1

k̃
;
N

k̃
;x

)
. (A.7)

14The blocks for this correlator have already been discussed in the main text. We rewrite them here with

the subscript convention discussed above, so as to have a consistent notation for this appendix.

– 21 –



J
H
E
P
1
0
(
2
0
1
9
)
0
6
1

The holomorphic blocks for the correlator

〈gα1
β1(z1, z̄1) · gα4

β4(z2, z̄2) · g−1
β2

α2
(z3, z̄3) · g−1

β3

α3
(z4, z̄4)〉

are

Fξ(3)(x) = I1F
ξ
(3)1(x) + I2F

ξ
(3)2(x),

Fχ(3)(x) = I1F
χ
(3)1(x) + I2F

χ
(3)2(x), (A.8)

where

F ξ(3)1(x) = xhξ−
4hg

3 (1− x)hθ̂−
4hg

3 F

(
1− 1

k̃
,
N

k̃
− 1

k̃
; 1− 2

k̃
;x

)
,

F ξ(3)2(x) = −xhξ−
4hg

3 (1− x)hθ̂−
4hg

3 F

(
−1

k̃
,
N

k̃
− 1

k̃
; 1− 2

k̃
;x

)
,

Fχ(3)1(x) = xhχ−
4hg

3 (1− x)hθ̂−
4hg

3 F

(
1 +

1

k̃
,
N

k̃
+

1

k̃
; 1 +

2

k̃
;x

)
,

Fχ(3)2(x) = xhχ−
4hg

3 (1− x)hθ̂−
4hg

3 F

(
1

k̃
,
N

k̃
+

1

k̃
; 1 +

2

k̃
;x

)
. (A.9)

With the choices for tensor indices as in (3.22), we will denote the holomorphic blocks of

the three correlators by Hi(q)(x) with q = 1, 2, 3 i.e.

H1
(1)(x) = IF1

(1)1(x) + IF1
(1)2(x),

Hθ(1)(x) = IF θ(1)1(x) + IF θ(1)2(x),

H1
(2)(x) = IF1

(2)1(x) + IF1
(2)2(x),

Hθ(2)(x) = IF θ(2)1(x) + IF θ(2)2(x),

Hξ(3)(x) = IF ξ(3)1(x) + IF ξ(3)2(x),

Hχ(3)(x) = IFχ(3)1(x) + IFχ(3)2(x). (A.10)

We note that with I1 = I2 the three correlators are equal to those in (3.23).

The actions of T and S on these can be computed using the following identities of

hypergeometric functions [61].

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z),

F (a, b; c;
z

z − 1
) = (1− z)aF (a, c− b; c; z) = (1− z)bF (c− a, b; c; z),

F (a, b; c; 1− z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F (a, b; a+ b− c+ 1; z) (A.11)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
zc−a−bF (c− a, c− b; c− a− b+ 1; z).

F (a, b; c; 1− z) =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
zc−a−b(1− z)1−cF (1− b, 1− a; 1 + c− a− b, z)

+
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(1− z)1−cF (1 + b− c, 1 + a− c; 1 + a+ b− c; z)

(A.12)
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Action of T : the action of T on the blocks Hi(1)(x) are given by

Hi(1) (T.x) = Hj(2) (x)M(1)ji(T ), (A.13)

where

M(1)(T ) = (−1)−2(N2−1)/3Nk̃

(
1 0

0 (−1)N/k̃

)
. (A.14)

The action of T on the blocks Hi(2)(x) are given by

Hi(2) (T.x) = Hj(1) (x)M(2)ji(T ), (A.15)

where

M(2)(T ) = (−1)−2(N2−1)/3Nk̃

(
1 0

0 (−1)N/k̃

)
. (A.16)

The action of T on the blocks Hi(3)(x) are given by

Hi(3) (T.x) = Hj(3) (x)M(3)ji(T ), (A.17)

where

M(3)(T ) = −(−1)(N2−3N−4)/3Nk̃

(
1 0

0 −(−1)2/k̃

)
. (A.18)

Action of S: the action of S on the blocks Hi(1)(x) are given by

Hi(1) (S.x) = Hj(1) (x)M(1)ji(S), (A.19)

where

M(1)(S) =

 − k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃)

− NΓ2(N/k̃)
Γ(N/k̃−1/k̃)Γ(N/k̃+1/k̃)

− Γ2(k/k̃)
NΓ(k/k̃−1/k̃)Γ(k/k̃+1/k̃)

k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃)

 . (A.20)

The action of S on the blocks Hi(2)(x) are given by

Hi(2) (S.x) = Hj(3) (x)M(2)ji(S), (A.21)

where

M(2)(S) =

 Γ(k/k̃)Γ(2/k̃)
Γ(1/k̃)Γ(k/k̃+1/k̃)

NΓ(N/k̃)Γ(2/k̃)
Γ(1/k̃)Γ(N/k̃+1/k̃)

Γ(k/k̃)Γ(−2/k̃)
Γ(k/k̃−1/k̃)Γ(−1/k̃)

− NΓ(N/k̃)Γ(−2/k̃)
Γ(N/k̃−1/k̃)Γ(−1/k̃)

 . (A.22)

The action of S on the blocks Hi(3)(x) are given by

Hi(3) (S.x) = Hj(2) (x)M(3)ji(S), (A.23)

where

M(3)(S) =

 2Γ(−2/k̃)Γ(N/k̃)
Γ(−1/k̃)Γ(N/k̃−1/k̃)

2Γ(2/k̃)Γ(N/k̃)
Γ(1/k̃)Γ(N/k̃+1/k̃)

Γ(1−2/k̃)Γ(−N/k̃)
Γ(−1/k̃)Γ(k/k̃−1/k̃)

Γ(1+2/k̃)Γ(−N/k̃)
Γ(1/k̃)Γ(k/k̃+1/k̃)

 . (A.24)
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B Generators of the orbit for N = k theories

In this section, we show that for general values of N(= k) the orbit of Cseed is as given

in (4.10). We will do this by showing that the orbit can in effect be generated by considering

the action of matrices of the form(
sinα −k cosα

− 1
k cosα − sinα

)
, (B.1)

on Cseed, where α = π(2s+1)
2k with s = 0 · · · (k − 1) for k odd, and α = πs

2k with s =

0 · · · (2k − 1) for k even. It is easy to check that the actions of these matrices on Cseed

indeed generates the orbits described in (4.10). We begin by noting that for M(γ) of

the form

M(γ) ≡

(
aγ bγ
cγ dγ

)
,

its action on Cseed yields (
|aγ |2 aγc∗γ
a∗γcγ |cγ |2

)
. (B.2)

Thus, the result of the action only depends on aγ and cγ (and is independent of bγ and dγ).

Furthermore, since (B.2) is quadratic in aγ and cγ , elements of the orbit are only sensitive

to their relative sign. Thus deformations of M(γ)s which modify bγ , dγ and the relative

sign between aγ , cγ keep their actions on Cseed unchanged. We will use such deformations

to show that the orbit is in effect generated by the matrices given in (B.1). Let us start by

considering the first few matrices in the list (4.7) of M(γ) (for theories with N = k). In

what follows, we will use the symbol ‘∼’ to denote a deformation of a matrix M(γ) which

keeps its action on Cseed unchanged.

M(1) =

(
1 0

0 1

)
∼

(
1 0

0 −1

)
=

(
sin πk

2k −k cos πk2k

− 1
k cos πk2k − sin πk

2k

)
;

M(S) =

(
sin π

2k −k cos π
2k

− 1
k cos π

2k − sin π
2k

)
;

M(ST 2) =

(
sin π

2k −k cos π
2k

1
k cos π

2k sin π
2k

)
∼

(
sin π(2k−1)

2k −k cos π(2k−1)
2k

− 1
k cos π(2k−1)

2k − sin π(2k−1)
2k

)
;

M(ST 2S) =

(
sin π(2−k)

2k −k cos π(2−k)
2k

− 1
k cos π(2−k)

2k − sin π(2−k)
2k

)
∼

(
sin π(2+k)

2k −k cos π(2+k)
2k

− 1
k cos π(2+k)

2k − sin π(2+k)
2k

)
;

M(ST 2ST 2) =

(
− cos 2π

2k −k sin 2π
2k

1
k sin 2π

2k − cos 2π
2k

)
∼

(
sin π(3k−2)

2k −k cos π(3k−2)
2k

− 1
k cos π(3k−2)

2k − sin π(3k−2)
2k

)

∼

(
sin π(k−2)

2k −k cos π(k−2)
2k

− 1
k cos π(k−2)

2k − sin π(k−2)
2k

)
;

M(ST 2ST 2S) =

(
− sin 3π

2k k cos 3π
2k

1
k cos 3π

2k sin 3π
2k

)
∼

(
sin 3π

2k −k cos 3π
2k

− 1
k cos 3π

2k − sin 3π
2k

)
.
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γ M(γ) · Cseed ·M(γ)†

1

(
1 0

0 0

)
S

(
1
2 −

1
4

− 1
4

1
8

)
ST 2

(
1
2

1
4

1
4

1
8

)
ST 2S

(
0 0

0 1
4

)
Xav

(
1 0

0 1
4

)
Table 2. Orbit of the vacuum block for N = 2, k = 2.

Proceeding as above, all the M(γ) can be brought to the form in (B.1) by making use of

the identities (
sinβ −k cosβ

− 1
k cosβ − sinβ

)
.

(
1 0

0 −1

)
.

(
sinα −k cosα

− 1
k cosα − sinα

)

=

(
sin(α+ β − π

2 ) −k cos(α+ β − π
2 )

− 1
k cos(α+ β − π

2 ) − sin(α+ β − π
2 )

)
and (

sinα −k cosα

− 1
k cosα − sinα

)
∼

(
sin (α+ π) −k cos (α+ π)

− 1
k cos (α+ π) − sin (α+ π)

)
for any angle α and β.

For completeness, we provide the orbit the N(= k) = 2 theory. It can easily be checked

that this is same as that given by the matrices in (4.10). For N = 2, k = 2 the matrices

M(S) and M(T 2) are

M(S) =

(
1√
2
−
√

2

− 1
2
√

2
− 1√

2

)
, M(T 2) = e−

iπ
2

(
1 0

0 −1

)
. (B.3)

The orbit of Cseed consists of four matrices. It is generated by the action of 1, S, ST 2 and

ST 2S. We tabulate the results of these actions in table 2. The normalised sum over the

orbit (4.1) reproduces the KZ result.

C Further numerical examples

Here we provide a couple of examples where the numerics are quite involved as discussed

at the end of section 4.

N = 5, k = 6: for N = 5, k = 6, the value of m(5, 6) as defined in (4.5) is 11. Thus

with each increment in `max by 1, there is approximately a tenfold increase in the number

of new terms added to the sum (4.12). With the available computing resources we have
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Figure 7. Orange dots show Xav
22 (`max) in the range [0.005, 0.225] plotted against `max. Blue

horizontal line at 0.0405346 represents XKZ
22 .

1 2 3 4 5 6
ℓmax

0.02

0.04

0.06

0.08

0.10

0.12

0.14

X22
av(ℓmax )

Figure 8. Orange dots show Xav
22 (`max) in the range [0.000, 0.150] plotted against `max. Blue

horizontal line at 0.0274114 represents XKZ
22 .

performed the sum upto `max = 6. This involves 1193006 distinct contributions to the sum.

We find Xav
22 (6) = 0.026177, alongside we note the exact result (4.3), XKZ

22 ≈ 0.0405346.

The off diagonal entries of Xav(6) are of the order of 10−14. Figure 7 shows our results for

Xav
22 (`max) as a function of `max, all qualitative features of the numerics are same as those

in the examples discussed in section 4.

N = 6, k = 5: for N = 6, k = 5, the value of m(6, 5) as defined in (4.5) is 11.

Thus similarly, with each increment in `max by 1, there is approximately a tenfold increase

in the number of new terms added to the sum (4.12). With the available computing

resources we have performed the sum upto `max = 6. This involves 1193006 distinct

contributions to the sum. We find Xav
22 (6) = 0.0177022, alongside we note the exact

result (4.3), XKZ
22 ≈ 0.0274114. The off diagonal entries of Xav(6) are of the order of 10−14.

Figure 8 shows our results for Xav
22 (`max) as a function of `max. All the features of the

numerics are similar to the previous example.
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D Averaging over all of PSL(2,Z)

In this appendix, we briefly discuss the construction of correlator from averaging over the

full modular group. To implement the prescription (2.17), the six holomorphic blocks

in (A.10) of the three correlators in (3.23) can be put in a six dimensional row:

~H(τ) =

(
H1

(1)(τ),Hθ(1)(τ),H1
(2)(τ),Hθ(2)(τ),Hξ(3)(τ),Hχ(3)(τ)

)
. (D.1)

On this, T and S act as

Hi(T.τ) = Hj(τ)Mji(T ) and Hi(S.τ) = Hj(τ)Mji(S) (D.2)

with

M(T ) =

 0 M(1)(T ) 0

M(2)(T ) 0 0

0 0 M(3)(T )

 and M(S) =

M(1)(S) 0 0

0 0 M(2)(S)

0 M(3)(S) 0

 ,

(D.3)

where the two dimensional matrices (M(i)(T ) and M(i)(S)) are as defined in appendix A.

The light contribution as defined in (2.16) can be taken as

Glight
B (τ, τ̄) = CBi(B)j(B)H

i(B)(τ)H̄j(B)(τ̄), B = 1, 2, 3 , (D.4)

where repeated indices are summed over with i(1), j(1) ∈ {1, 2}, i(2), j(2) ∈ {3, 4} and

i(3), j(3) ∈ {5, 6},

CB =

(
1 0

0 0

)
, B = 1, 2, 3 . (D.5)

Under the action γ ∈ PSL(2,Z),

CBi(B)j(B)H
i(B)(τ)H̄j(B)(τ̄)→M(γ)ki(B)C

B
i(B)j(B)M(γ)†j(B)lH

k(τ)H̄l(τ̄) . (D.6)

For each γ we arrange the three 6× 6 matrices

σ−1(γ)ABM(γ)ki(B)C
B
i(B)j(B)M(γ)†j(B)l , A = 1, 2, 3 , (D.7)

in a three dimensional column ~X(γ). The sum (2.17) then reads

~Xav = N−1 ·
∑

γ∈PSL(2,Z)

~X(γ) , (D.8)

where the normalisation N is the (1, 1) element of
[∑

γ
~X(γ)

]1
. Hence the candidate for

the vector-valued modular function (3.23) is given by[
~Xav
]A
kl
Hk(τ)H̄l(τ̄), A = 1, 2, 3 . (D.9)

To incorporate the distinct contributions ~X(γ) to the sum (D.8), elements γ are arranged

in a list similar to (4.6) where we replace all T 2ri by T ri , and m denotes the smallest

positive integer such that

M(Tm) ∝ 1 .
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(ℓmax )

Figure 9. Orange dots show
[
~Xav
]1
22

(`max) in the range [0.245, 0.390] plotted against `max. Blue

horizontal line at 0.29831 represents the KZ result.

We perform the sum (D.8) taking distinct contributions of elements γ of all lengths upto

a maximum value `max:

~Xav(`max) = N (`max)−1 ·
′∑

`(γ)≤`max

~X(γ) , (D.10)

where the primed sum indicates that distinct elements are added. Our results are as follows

N = 2, k = 2: for N = 2, k = 2, the sum (D.10) is finite and consists of six distinct

contributions, reproducing the KZ result,
[
~Xav
]1
22

= 1
4 .

N = 2, k = 4: for N = 2, k = 4, the sum (D.10) is finite and consists of four distinct

contributions, reproducing the KZ result,
[
~Xav
]1
22

= 1
2 3√4

.

N = 2, k = 3: for N = 2, k = 3, the sum (D.10) seems to be infinite. We have

performed the sum upto `max = 6. This invloves 83651 distinct contributions to the sum.

We find
[
~Xav
]1
22

(6) = 0.296026, which is in good agreement with the KZ result. Figure 9

shows our results for
[
~Xav
]1
22

(`max) as a function of `max.

Finally, let us discuss some examples where modular averaging does not yield the

correlator.

N = 3, k = 2: for N = 3, k = 2, the sum (D.10) seems to be infinite. We have

performed the sum upto `max = 6. This invloves 664111 distinct contributions to the sum.

We find
[
~Xav
]1
22

(6) = 0.151496, which is not in agreement with the KZ result, although

crossing symmetric. Figure 10 shows our results for
[
~Xav
]1
22

(`max) as a function of `max.

N = 4, k = 2: for N = 4, k = 2, the sum (D.10) seems to be infinite. We have

performed the sum upto `max = 8. This invloves 69219 distinct contributions to the sum.

We find
[
~Xav
]1
22

(8) = 0.111064, which is not in agreement with the KZ result, although

crossing symmetric. Figure 11 shows our results for
[
~Xav
]1
22

(`max) as a function of `max.

Thus while summing over the entire modular group we have found examples where the
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Figure 10. Red dots show
[
~Xav
]1
22

(`max) in the range [0.08, 0.20] plotted against `max. Blue

horizontal line at 0.0931172 represents the KZ result.

1 2 3 4 5 6 7 8
ℓmax

0.06

0.08

0.10

0.12

[X
av
]22
1

(ℓmax )

Figure 11. Red dots show
[
~Xav
]1
22

(`max) in the range [0.045, 0.130] plotted against `max. Blue

horizontal line at 0.0496063 represents the KZ result.

averaging does not reproduce the correlator (see appendix D). We note that, [9] argues

that it is the modular averaging over the theta subgroup that has a direct interpretation

in the holographic context.

Increasing N and k makes the numerics quite involved, we leave this for future work.

E The matrices M `
N,k and M̃ `

N,k

In this appendix, we obtain the general form of the matrices M `
N,k and M̃ `

N,k. We then

use these to derive the relations given in (5.11). The elements of matrices M `
N,k can be

computed recursively in ` using their defining equation in (5.4)

M `+1
N,k (r1, · · · r`+1) = M(T 2r`+1)M(S)M `

N,k(r1, · · · r`). (E.1)

This gives the following relations for the functions that appear in (5.9)

a`+1
N,k(r1, · · · r`+1) = as(N, k)a`N,k(r1 · · · r`) + bs(N, k)cs(N, k)c`N,k(r1 · · · r`)

b`+1
N,k(r1, · · · r`+1) = as(N, k)b`N,k(r1 · · · r`) + d`N,k(r1 · · · r`)
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c`+1
N,k(r1, · · · r`+1) = eir`+1φ(N,k)

(
ds(N, k)c`N,k(r1 · · · r`) + a`N,k(r1 · · · r`)

)
d`+1
N,k(r1, · · · r`+1) = eir`+1φ(N,k)

(
ds(N, k)d`N,k(r1 · · · r`) + bs(N, k)cs(N, k)b`N,k(r1 · · · r`)

)
Similarly, the matrices M̃ `

N,k can be computed recursively in ` using their defining

equation n (5.5)

M̃ `+1
N,k (r1, · · · r`+1) = M(T−2r`+1)M(S)M̃ `

N,k(r1, · · · r`). (E.2)

This gives following relations for the functions that appear in (5.10)

ã`+1
N,k(r1, · · · r`+1) = as(N, k)ã`N,k(r1 · · · r`) + bs(N, k)cs(N, k)c̃`N,k(r1 · · · r`)

b̃`+1
N,k(r1, · · · r`+1) = as(N, k)b̃`N,k(r1 · · · r`) + d̃`N,k(r1 · · · r`)

c̃`+1
N,k(r1, · · · r`+1) = e−ir`+1φ(N,k)

(
ds(N, k)c̃`N,k(r1 · · · r`) + ã`N,k(r1 · · · r`)

)
d̃`+1
N,k(r1, · · · r`+1) = e−ir`+1φ(N,k)

(
ds(N, k)d̃`N,k(r1 · · · r`) + bs(N, k)cs(N, k)b̃`N,k(r1 · · · r`)

)
.

Now, making use of relations in (5.3) and the fact that15

eirφ(N,k) = e−irφ(k,N) for any integer r, (E.3)

it is easy to see that ã`k,N (ri), b̃
`
k,N (ri), c̃

`
k,N (ri), d̃

`
k,N (ri) have exactly the same recurrence

relations as a`N,k(ri), b
`
N,k(ri), c

`
N,k(ri), d

`
N,k(ri). Given that they have same initial values,

hence the equalities in (5.11).

F Truncation of sums

The sum in (4.12) terminates after a (lowest) value `0max if the actions of γs in the list (4.6)

with `(γ) > `0max do not generate new elements of the orbit of Cseed, i.e. the orbit is finite.

Note that if there is an ` such that no new terms are generated, higher values of ` also do

not generate new terms in the orbit (with this the value of the sum in (4.12) at higher `max

does not change). Thus comparison of the terms generated at a certain ` with the ones at

lower ` can be used to determine the cases with finite orbit. It is possible to implement

this consideration at each point in the (N, k) lattice (of course the non-trivial cases are

for N, k ≥ 2). Before discussing the details, we summarise our results. Truncations start

from `0max = 1. Here, it is possible to determine analytically the values of (N, k) for which

the truncations occur — (3, 3), (2, 4) and (4, 2) are the only points where the modular sum

truncates at `0max = 1. For higher values of `, except for cases with N = k we have not

been able to carry out a general analysis so as to determine the points in the (N, k) lattice

for which truncations occur (the results for N = k are given in section 4, recall that all

these models exhibit truncation). For N 6= k we have implemented the above algorithm

numerically, and found that upto ` = 5, for points in the (N, k) lattice with N, k ≤ 6 (and

N 6= k) there are no truncations.

15Recall that φ(N, k) = 2πN
k+N

.
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The details of the analysis are as follows. We recall (B.2). The action of 1 on Cseed is

given by (
1 0

0 0

)
. (F.1)

The actions of γs of `(γ) = 1 on Cseed are given by a2
S aScSe

− i2πNr1
k̃

aScSe
i2πNr1

k̃ c2
S

 , (F.2)

for r1 = 0, · · · , (m(N, k)−1). Here aS is the 1-1 entry of the matrix M(S) (see for e.g (5.2)).

Clearly the phases at the off-diagonal entries are the m(N, k)-th roots of unity, hence all

distinct and add up to zero. The actions of γs of `(γ) = 2 on Cseed are given by16

 1− 2a2
S + 2a4

S − 2a2
S(a2

S − 1) cos(2πNr1
k̃

) aScSe
− i2πNr2

k̃ (1− e−
i2πNr1

k̃ )
(
a2
S − (a2

S − 1)e
i2πNr1

k̃

)
aScSe

i2πNr2
k̃ (1− e

i2πNr1
k̃ )

(
a2
S − (a2

S − 1)e−
i2πNr1

k̃

)
2a2

Sc
2
S

(
1− cos(2πNr1

k̃
)
)

,
(F.3)

for r1 = 1, · · · , (m(N, k)−1) and r2 = 0, · · · , (m(N, k)−1). Comparing with the structure

of the terms generated at length zero (F.1) and one (F.2), we see that truncation requires

that the following equality necessarily holds for all r1 = 1 · · · (m(N, k)− 1).

cos

(
2πNr1

k̃

)
=

2a2
s − 1

a2
S

. (F.4)

Hence necessarily a2
S ≥

1
4 , which holds only when (N, k) lies on the line N = 2 or k = 2

or at the point (3, 3). Furthermore at any (N, k) the r.h.s. of (F.4) is fixed which restricts

the number of values r1 can take. This in turn gives a necessary condition for the possible

values for m(N, k): it must be 2 or 3. Hence (2, 2), (3, 3), (2, 4) and (4, 2) models are the

only ones which satisfy this criterion. Going through each of these possibilities case by

case one finds that truncation and `0max = 1 occurs for (3, 3), (2, 4) and (4, 2). Similar

considerations necessary to determine truncations at higher ` are more involved (except

for the cases with N = k); we have implemented them numerically and found for points in

the (N, k) lattice with N, k ≤ 6 (and N 6= k), there are no truncations upto ` = 5.
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