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We prove that the boundary of the future of a surfaceK consists precisely of the points p that lie on a null
geodesic orthogonal to K such that between K and p there are no points conjugate to K nor intersections
with another such geodesic. Our theorem has applications to holographic screens and their associated light
sheets and in particular enters the proof that holographic screens satisfy an area law.
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I. THEOREM

In this paper, we prove the following theorem establish-
ing necessary and sufficient conditions for a point to
be on the boundary of the future of a surface in spacetime.
(An analogous theorem holds for the past of K.)
Theorem 1: Let ðM; gÞ be a smooth,1 globally hyper-

bolic spacetime and let K be a smooth codimension-two
submanifold ofM that is compact and acausal. Then a point
b ∈ M is on the boundary of the future of K if and only if
all of the following statements hold:

(i) b lies on a future-directed null geodesic γ that
intersects K orthogonally.

(ii) γ has no points conjugate to K strictly before b.
(iii) γ does not intersect any other null geodesic orthogo-

nal to K strictly between K and b.
Theorem 1 enumerates the conditions under which a light

ray, launched normally from a surface, can exit the boundary
of the future of that surface and enter its chronological
future. In essence, this happens onlywhen the light ray either
hits another null geodesic launched orthogonally from the
surface or when the light ray encounters a caustic, in a sense
that will be made precise in terms of special conditions on
the deviationvectors for a family of infinitesimally separated

geodesics. These two possibilities for the fate of the light ray
are illustrated in Fig. 1.
The theorem is useful for characterizing the causal

structure induced by spatial surfaces. In particular, if K
splits a Cauchy surface into two parts, then Theorem 1
implies that the four orthogonal null congruences fully
characterize the associated split of the spacetime into four
portions: the future and past of K and the domains of
dependence of each of the two spatial sides (see Fig. 2).
This is of particular interest when K is a holographic screen
[1]. Then some of the orthogonal congruences form light
sheets [2] such that the entropy of matter on a light sheet is
bounded by the area of K. This relation makes precise the

FIG. 1. Possibilities for how a null geodesic orthogonal to a
surface can exit the boundary of its future. In this example, a
parabolic surface K (blue line) lies in a particular spatial slice.
A future-directed null geodesic (red line) is launched orthogo-
nally from p. At q, it encounters a caustic, entering the interior of
the future of K (red dashed line). The point q is conjugate to K.
Other null geodesics orthogonal to K (black lines) encounter
nonlocal intersections with other such geodesics along the green
line, where they exit the boundary of the future of K.
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1Nowhere in the proof will more than two derivatives be
needed, so the assumption of smoothness for M and K can be
relaxed everywhere in this paper to C2.
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notion that the Universe is like a “hologram” [3–5] and
should be described as such in a quantum gravity theory.
Such holographic theories have indeed been identified for a
special class of spacetimes [6].
Specifically, Theorem 1 plays a role in the recent proof of

a novel area theorem for holographic screens [7,8], where it
was assumed without proof. It also enters the analogous
derivation of a related generalized second law in cosmology
[9] from the quantum focusing conjecture [10].
Although our motivation lies in applications to general

relativity and quantum gravity, we stress that the theorem
itself is purely a statement about Lorentzian geometry. It
does not assume Einstein’s equations and so in particular
does not assume any conditions on the stress tensor of
matter.
Related work. Parts of the “only if” direction of the

theorem are a standard textbook result [11], except for (iii),
which we easily establish. The “if” direction is nontrivial
and takes up the bulk of our proof.
Reference [12] considers the cut locus, i.e., the set of all

cut points associated with geodesics starting at some point
p ∈ M. Given a geodesic γ originating at p, a future null
cut point, in particular, can be defined in terms of the
Lorentzian distance function or equivalently as the final
point on γ that is in the boundary of the future of p. As
shown in Theorem 5.3 of Ref. [12], if q is the future null cut
point on γ of p, then either q corresponds to the first future
conjugate point of p along γ, or another null geodesic from
p intersects γ at q, or both. Our theorem can be viewed as
an analogous result for geodesics orthogonal to codimen-
sion-two surfaces and a generalization of our theorem
implies the result of Ref. [12] as a special case. The

codimension-two surfaces treated by our theorem are of
significant physical interest due to the important role of
holographic screens in the study of quantum gravity (see,
e.g., Ref. [13] for very recent results on the coarse-grained
black hole entropy). We encountered nontrivial differences
in proving the theorem for surfaces. Moreover our con-
dition (ii) places stronger constraints on the associated
deviation vector, as we discuss in Sec. II B.2

The previously known parts of the “only if” direction of
Theorem 1 were originally established in the context of
proving singularity theorems [16,17]. It would be interest-
ing to see whether Theorem 1 can be used to derive new or
stronger results on the formation or the cosmic censorship
of spacetime singularities.
Generalizations. As we are only concerned with the

causal structure, the metric can be freely conformally
rescaled. Thus, a version of Theorem 1 still holds for
noncompact K, as long as it is compact in the conformal
completion of the spacetime, i.e., in a Penrose diagram.
A situation in which this may be of interest is for surfaces
anchored to the boundary of anti–de Sitter space.
Furthermore, the theorem can be generalized to surfaces

of codimension other than two, but in that case we can say
less about the type of conjugate point that orthogonal null
geodesics may encounter. We will discuss this further in
Sec. III.
Notation. Throughout, we use standard notation for

causal structure. A causal curve is one for which the
tangent vector is always timelike or null. The causal
(respectively, chronological) future of a set S in our
spacetime M, denoted by JþðSÞ [respectively, IþðSÞ] is
the set of all q ∈ M such that there exists p ∈ S for which
there is a future-directed causal (respectively, timelike)
curve in M from p to q. For the past [I−ðSÞ, J−ðSÞ, etc.],
similar definitions apply. We will denote the boundary of a
set S by _S. Standard results [11] include that I�ðSÞ is open
and that _J�ðSÞ ¼ _I�ðSÞ. We will call a set S acausal if
there do not exist distinct p; q ∈ S for which there is a
causal path in M from p to q. A spacetime is said to be
globally hyperbolic if it contains no closed causal curves
and if JþðpÞ ∩ J−ðqÞ is compact for all p; q ∈ M.
Equivalently [18], M has the topology of Σ ×R for some
Cauchy surface Σ; that is, Σ is a surface for which, for all
p ∈ M, every inextendable timelike curve through p
intersects Σ exactly once.
Outline. In Sec. II, we review the notion of a conjugate

point and establish some useful lemmas. In Sec. III, we
prove Theorem 1.

FIG. 2. In this generic Penrose diagram, the codimension-two
surface K (black dot) splits a Cauchy surface Σ (dashed line) into
two parts Σin, Σout. This induces a splitting of the spacetime M
into four parts: the past and future of K (red, yellow) and the
domains of dependence of Σin and Σout (green, blue) [8].
Theorem 1 guarantees that this splitting is fully characterized
by the four orthogonal null congruences originating on K (black
diagonal lines).

2Recently, we were made aware of Refs. [14,15], which also
generalize the results of Ref. [12] to codimension-two surfaces.
Our work goes further in that we more strongly constrain the type
of conjugacy to be that of Def. 17. This is crucial for making
contact with the notion of points “conjugate to a surface” used in
the physics literature, e.g., in Ref. [11].
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II. CONJUGATE POINTS TO A SURFACE

A. Exponential map

Let ðM; gÞ be a smooth, globally hyperbolic spacetime of
dimension n > 2. Thus, M is a manifold with metric g of
signature ð−;þ; � � � ;þÞ. (As already noted, we will be
concerned only with the causal structure of M, so g need
only be known up to conformal transformations.)
For p ∈ M, let TpM be the tangent vector space at p and

let TM≡⋃p∈Mfpg × TpM be the tangent bundle of M.
TM has a natural topology that makes it a manifold of
dimension 2n. In the open subsets associated with charts of
M, TM is diffeomorphic to open subsets of R2n, corre-
sponding to n coordinates for the location of p ∈ M and n
components of a tangent vector v ∈ TpM. The tangent
space of TM at ðp; vÞ is

Tp;vTM ¼ TpM × TvTpM: ð1Þ
For every ðp; vÞ ∈ TM, there is a unique inextendable
geodesic,

cp;v∶ ða; bÞ → M; s ↦ cp;vðsÞ; ð2Þ
where a; b ∈ R ∪ f−∞;∞g, with affine parameter s and
tangent vector v ∈ TpM given by the pushforward of d=ds
by cp;v at the point p ¼ cp;vð0Þ ∈ M. It is convenient
to include the degenerate curves obtained with v ¼ 0.
Definition 2.—The exponential map is defined by3

exp ∶ TM → M; ðp; vÞ ↦ cp;vð1Þ: ð3Þ
Restrictions of exp to submanifolds of TM are fre-

quently of interest. To study the congruence of geodesics
emanating from a given point, one may restrict to
expp∶ TpM → M; v ↦ cp;vð1Þ. Moreover, one can define
the differential of expp, expp�∶ TvTpM → Tcp;vð1ÞM,
which describes how expp v varies due to small changes
in v. See Fig. 3 for an illustration of the exponential map
and its differential. In this paper, we will consider a
different restriction suited to the study of the geodesics
orthogonal to a given spatial surface; we will define the
differential in more detail for this restriction below.
Let K ⊂ M be a smooth submanifold. We consider the

normal bundle

NK ≡ ⋃
p∈K

fpg × TpK⊥;

where TpK⊥ is the two-dimensional tangent vector space
perpendicular to K at p. The normal bundle has the
structure of an n-dimensional manifold. Its tangent space
at ðp; vÞ ∈ NK is

Tp;vNK ¼ TpK × TvTpK⊥: ð4Þ

Here, TpK is the tangent space of p in the manifold K; that
is, TpK is the subspace of TpM normal to TpK⊥. Note that
TpK is of the same dimension as K.
Definition 3.—The surface-orthogonal exponential map

expK∶ NK → M; ðp; vÞ ↦ cp;vð1Þ ð5Þ

is the restriction of exp to NK.
Definition 4.—The Jacobian or differential of the

exponential map is given by

expK�∶ Tp;vNK → TM; w ↦ expK�w: ð6Þ

It is a linear map between vectors that captures the
response of expK to small variations in its argument. It is
defined by requiring that ðexpK�wÞðfÞ ¼ wðf∘expKÞ for
any function f∶ M → R. Note expK� w is the pushfor-
ward of w by expK. If xα are coordinates in an open
neighborhood of ðp; vÞ ∈ NK and yβ are coordinates in
an open neighborhood of expKðp; vÞ ∈ M and we write
the vectors in coordinate form, w ¼ P

wαð∂=∂xαÞ and
expK�w ¼ P

ŵβð∂=∂yβÞ, then the components are related
by the Jacobian matrix,

ŵβ ¼
X
α

∂yβ
∂xα w

α: ð7Þ

See Fig. 4 for an illustration of expK, expK�, and the
various tangent spaces used in this paper.
Definition 5.—A Jacobian is an isomorphism if it is

invertible, i.e., if it has no eigenvectors with eigen-
value zero.
Since ðM; gÞ and K are smooth, expK is smooth. The

inverse function theorem [19] thus implies the following.

FIG. 3. An illustration of the exponential map exp, which takes
a vector in TM to a point in M, and the Jacobian of the
exponential map, which takes a vector in the tangent space
TTM of TM to a vector in TM.

3If the spacetime is not geodesically complete, the exponential
map can only be defined on the subset of TM consisting of the
ðp; vÞ such that cp;v can be extended to λ ¼ 1. This restriction
will be left implicit in this paper.
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Lemma 6: If the Jacobian expK� at ðp; vÞ ∈ NK is an
isomorphism, then expK is a diffeomorphism of an open
neighborhood of ðp; vÞ onto an open neighborhood
of expKðp; vÞ ∈ M.
Definition 7.—The exponential map expK is called

singular at ðp; vÞ ∈ NK if expK� is not an isomorphism.
Then ðp; vÞ is called a conjugate point in NK.

B. Jacobi fields

It is instructive to relate the above definition of conjugate
point to an equivalent definition in terms of Jacobi fields.
Definition 8.—Let Q be an open set in R2 and let

f∶ Q → M; ðr; sÞ ↦ fðr; sÞ be a smooth map. If the curves
of constant r and varying s, γr∶ Q → M; s ↦ fðr; sÞ, are
geodesics inM, then f is called a one-parameter family (or
congruence) of geodesics.
Definition 9.—Let ∂s denote the partial derivative with

respect to s. It follows from the above definition that the
pushforward S≡ f�ð∂sÞ ∈ TM is tangent to any geodesic
γr. Similarly, R≡ f�ð∂rÞ ∈ TM is tangent to any curve
μs∶ Q → M; r ↦ fðr; sÞ at fixed s. For general families of
curves, R represents the deviation vector field of the
congruence. In the special case of a geodesic congruence,
R restricted to any γr is called a Jacobi field on γr.
Remark 10.—The Jacobi field R satisfies the geodesic

deviation equation on Q,

D2
SR ¼ RðS; RÞS; ð8Þ

where RðA;BÞ≡ ½DA;DB� −D½A;B� is the curvature
tensor [11,20] and DV ¼ Vμ∇μ is the covariant derivative,

defined with respect to the Levi-Cività connection, along a
vector V.
The exponential map can be used to generate a one-

parameter family of geodesics and its derivative exp�
generates the associated Jacobi fields. We first recall the
more familiar case of geodesics through a point p,
generated by expp, as follows.
Remark 11.—Let R̂; Ŝ ∈ TpM and let ~R and ~S be the

naturally associated constant vector fields in TTpM.4 Then
fðr; sÞ ¼ expp½sðŜþ rR̂Þ� is smooth and defines a one-
parameter family of geodesics. Its tangent vector field is
S ¼ expp�jsðŜþrR̂Þð ~Sþ r ~RÞ and its deviation or Jacobi field

is R ¼ expp�jsðŜþrR̂Þs ~R.
5 It is clear from this construction

that expp is singular (i.e., expp� fails to be an isomorphism)
at sðŜþ rR̂Þ if and only if there exists a nontrivial Jacobi
field of the geodesic γr that vanishes at fðr; sÞ and fðr; 0Þ.
This establishes the equivalence of two common definitions
of conjugacy to a point p.
Remark 12.—A conjugate point in a geodesic congru-

ence with tangent vector kμ corresponds to a caustic, which
is a point at which the expansion θ ¼ ∇μkμ goes to −∞.
We turn to the case relevant to this paper: a one-

parameter family of geodesics orthogonal to a smooth,
compact, acausal, codimension-two submanifold K. (For
example, K could be a topological sphere at an instant
of time.) Subject to this restriction, the map f and vector
fields R and S are defined as before, with TpM replaced
by TpK⊥. One can choose the parameters ðr; sÞ such
that fðr; 0Þ ∈ K and fð0; 0Þ ¼ p. The map ν∶ r ↦
ðfðr; 0Þ; Sjðr;0ÞÞ is a smooth curve in NK with tangent
vector R̄ ∈ TNK. From this curve, the one-parameter
family can be recovered as

fðr; sÞ ¼ expfðr;0ÞsSjðr;0Þ ¼ expKðfðr; 0Þ; sSjðr;0ÞÞ: ð9Þ

Remark 13.—We will be interested in the Jacobi field
R≡ f�∂r only along one geodesic, say γ at r ¼ 0. By
Eq. (8) this depends only on the initial data S and R̄
at p. Thus Rjð0;sÞ will be the same for any curve ν with
tangent vector R̄ at ðp; Sjð0;0ÞÞ ∈ NK. Conversely, one
can extend any given R̄ at ðp; Sjð0;0ÞÞ ∈ NK to a (non-
unique) one-parameter family of geodesics by picking such
a curve ν. We now take advantage of this freedom in order
to find an explicit expression for the Jacobi field in terms
of expK�.

FIG. 4. An illustration of the surface-orthogonal exponential
map expK evaluated at p ∈ K, which takes a vector in TpK⊥ to a
point cp;vð1Þ in M. Here, as in text, the tangent space at p, TpM,
is broken up as a product TpK⊥ × TpK. Also shown is the
Jacobian expK� at v ∈ TpK⊥, which takes a vector w ¼
ðw1; w2Þ ∈ Tp;vNK ¼ TpK × TvTpK⊥ to a vector in Tcp;vð1ÞM.

4Concretely, one can first choose a neighborhood U of p
diffeomorphic toRn, which exists sinceM is a manifold, and then
choose a map ϕ∶ U → TpM such that the pushforward ϕ� is the
identity map from TpM to TvTpM for some v; then ~R and ~S can
be defined as ~R ¼ ϕ�R̂ and ~S ¼ ϕ�Ŝ for v ¼ R̂ or Ŝ, respectively.

5The subscript is the point where the Jacobian map is
evaluated. The vector the Jacobian acts on appears to its right.
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By Eq. (4), one can uniquely decompose R̄ ¼ ðŘ; ~RÞ,
with Ř ∈ TpK and ~R ∈ TSTpK⊥. Let π be the defining
projection of the fiber bundle, π∶ NK → K. Then
μ≡ πðνÞ is a curve on K with tangent vector Ř at p.
Let fðr; 0Þ ¼ μðrÞ.
Further, let Sjðr;0Þ ∈ Tfðr;0ÞK⊥ be defined by K-normal

parallel transport6 of the vector Sjð0;0Þ þ rR̂ ∈ TpK⊥

along μ from p to μðrÞ. Here R̂ ∈ TpK⊥ is the vector
naturally associated with ~R ∈ TSTpK⊥. Similarly, we

define ~S ∈ TSTpK⊥ to be the vector naturally associated
with Sjð0;0Þ.
Lemma 14: With the above choices and definitions,

Eq. (9) yields a suitable one-parameter family of geodesics.
The corresponding Jacobi field and tangent vector along γ
can be written as

Rjð0;sÞ ≡ f�∂rjð0;sÞ ¼ expK�jðp;sSjð0;0ÞÞðŘ; s ~RÞ ð10Þ

and

Sjð0;sÞ ≡ f�∂sjð0;sÞ ¼ expK�jðp;sSjð0;0ÞÞð0; ~SÞ; ð11Þ

respectively.
See the Appendix for a proof of Lemma 14 via a direct

calculation.
We note that Ř and ~R encode the initial value and

derivative, respectively, of R, in accordance with the initial
value problem set up in Remark 13. From Eq. (10), we
obtain a criterion for conjugacy equivalent to that of Def. 7.
Remark 15.—In the above notation, the map expK is

singular at ðp; sSjð0;0ÞÞ ∈ NK if and only if the geodesic γ
possesses a nontrivial Jacobi field that vanishes at
expKðp; sSjð0;0ÞÞ and is tangent to K at p.
Specifically, our interest lies in null geodesics orthogonal

to K. We now show that their conjugate points satisfy an
additional criterion on the associated eigenvector of expK�.
Lemma 16: Let γ be a geodesic orthogonal to K at p,

with conjugate point ðp; sSjð0;0ÞÞ ∈ NK. By Def. 7 there
exists a nonzero vector R̄ ∈ Tp;sSjð0;0ÞNK such that

expK�jðp;sSjð0;0ÞÞR̄ ¼ 0. If γ is null, i.e., if ∥Sjð0;0Þ∥ ¼ 0, then

the projection of R̄ onto TpK is nonvanishing: Ř ≠ 0.
Proof.—By Eqs. (10) and (11), the Jacobi field Rjð0;sÞ is

orthogonal to γ at two points: at p (by construction) and
(trivially) at the assumed conjugate point. By Lemma 8.7 of
Ref. [21], this implies that Rð0;sÞ⊥Sjð0;sÞ for all s. Again

using Eqs. (10) and (11), along with linearity of expK�, this
implies that ~R⊥ ~S and thus expK� jðp;sSjð0;0ÞÞð0; s ~RÞ⊥S.

Prior to the conjugate point, the map expK� is a linear
isomorphism; hence it maps the (1þ 1)-dimensional sub-
space TSTpK⊥ ∋ ~R of Tp;SNK into a (1þ 1)-
dimensional subspace expK�TSTpK⊥ of Tfð0;1ÞM. This
subspace contains both the null tangent vector Sjð0;sÞ and
the component expK�jðp;sSjð0;0ÞÞð0; s ~RÞ of the Jacobi field R,

which is itself a Jacobi field since our choice of initial data
R̄ was arbitrary. In a (1þ 1)-dimensional space, the only
vectors orthogonal to a null vector S are proportional to S.
The general solution to Eq. (8) for a Jacobi field propor-
tional to the tangent vector S is ðαþ βsÞSjð0;sÞ. Therefore
expK� jðp;sSjð0;0ÞÞð0; s ~RÞ must have this form for some real

constants α, β. At s ¼ 0, expK� jðp;sSjð0;0ÞÞð0; s ~RÞ vanishes

trivially, so α ¼ 0.
Now, suppose Ř ¼ 0, so Rjð0;sÞ is just βsSjð0;sÞ. Since our

Jacobi field is nontrivial and S does not vanish, we must
have β ≠ 0. Thus, Rjðs;0Þ vanishes only at p and hence
cannot vanish at expKðp; sSjð0;0ÞÞ. This contradiction

implies that Ř ≠ 0. ▪
We now define a refinement of the notion of a con-

jugate point.
Definition 17.—Let γðsÞ be a geodesic orthogonal to K

at p, with γð0Þ ¼ p and with conjugate point ðp; vÞ. Then
there exists a nontrivial Jacobi field RðsÞ ∈ TM that
vanishes at q ¼ expKðp; vÞ and is tangent to K at p. We
say that q is conjugate to (the surface) K if R is non-
vanishing at p.
Remark.—By Lemma 16, Ř ≠ 0, so the Jacobi field

associated with R̄ as defined in Eq. (10) does not vanish at
p and hence, if ðp; sSjð0;0ÞÞ ∈ NK is a conjugate point, then
the point expKðp; sSjð0;0ÞÞ is conjugate to K for γ null.

FIG. 5. The two types of conjugate points defined in Defs. 17
and 19. The point q1 is conjugate to the point p1, with the Jacobi
field illustrated by the red arrows. The point q2 is conjugate to the
surface K (blue line), at the point p2, with the Jacobi field
illustrated by the green arrows. Geodesics orthogonal to K are
shown in black. If a general conjugate point lies along an
orthogonal null geodesic, then by Lemma 16 there exists a
Jacobi field such that the conjugate point is of the surface type.
Hence, this type of conjugacy appears in Theorem 1.

6Given a vector v ∈ TpK⊥, normal parallel transport defines a
vector field vðrÞ along μ normal to K such that the normal
component of its covariant derivative along μ vanishes,
D⊥

r vðrÞ ¼ 0. Given μðrÞ and the initial vector in TpK⊥, vðrÞ
is unique by Lemma 4.40 of Ref. [21].
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Moreover, we can similarly define the notion of a point
conjugate to another point.
Definition 19.—Given a nontrivial Jacobi field R for a

segment γ of a geodesic such that R vanishes at p and q, we
say that q is conjugate to (the point) p.
See Fig. 5 for an illustration of the two types of conjugate

points defined in Defs. 17 and 19.

III. PROOF OF THE THEOREM

We now prove Theorem 1.
Proof.—For the “only if” direction, we may assume

that b ∈ _IþðKÞ. Then conclusions (i), (ii) are already
established explicitly elsewhere in the literature (e.g.,
Theorem 9.3.11 of Ref. [11] and Theorem 7.27 of
Ref. [22]; see also Lemma VII of Ref. [16], as well
as Ref. [17]).
Conclusion (iii) followsbycontradiction: let γ0 be a distinct

null geodesic orthogonal toK that intersects γ at some point q
strictly between b and K. By acausality of K, γ0 ∩ K is a
single point, p0, which is distinct from q. Hence, K can be
connected to b by a causal curve that is not an unbroken null
geodesic, namely, by following γ0 fromp0 toq and γ fromq to
b. By Proposition 4.5.10 in Ref. [23], this implies that some
r ∈ K can be joined to b by a timelike curve, in contradiction
to b ∈ İþðKÞ. Hence, no such γ0 can exist.
The “if” direction of the theorem states that if (i), (ii), (iii)

hold, then b ∈ İþðKÞ. We will prove the following equiv-
alent statement: If b ∉ İþðKÞ satisfies (i), then b will fail to
satisfy (ii) or (iii).
Let the geodesic γðsÞ guaranteed by (i) be parametrized

so that γð0Þ ¼ p≡ γ ∩ K and γð1Þ ¼ b. By (i), b ∈ JþðKÞ,
the causal future of K. By assumption, b ∉ İþðKÞ ¼
_JþðKÞ, so it follows that b ∈ IþðKÞ, the chronological
future of K. Since p ∈ İþðKÞ, there exists an s� between 0
and 1 where γ leaves the boundary of the future:

s� ≡ sup γ−1ðγð½0; 1�Þ ∩ _IþðKÞÞ: ð12Þ
The point where γ leaves İþðKÞ, q≡ γðs�Þ, lies in İþðKÞ.7
Thus s� < 1. Moreover, s� > 0 by the obvious generali-
zation of Proposition 4.5.1 in Ref. [23] and achronality of
K. We conclude that

p ∈ _I−ðqÞ ∩ K; q ≠ b; and q ≠ p: ð13Þ
Recall that q ¼ γðs�Þ is the future-most point on γ that is

not in IþðKÞ. Let sn be a strictly decreasing sequence of
real numbers that converges to s�. That is, sn > s� and,
for n sufficiently large, the points qn ≡ γðsnÞ exist and lie
in IþðKÞ. Now, since K is acausal and M is globally

hyperbolic, there exists a Cauchy surface Σ ⊃ K. Given p1,
p2 ∈ M, define Cðp1; p2Þ to be the set of all causal curves
from p1 to p2. Since by Corollary 6.6 of Ref. [22] CðΣ; qnÞ
is compact, it is closed and bounded. Thus, CðK; qnÞ ⊂
CðΣ; qnÞ is bounded. Consider a sequence of curves μm
from K to qn. By Lemma 6.2.1 of Ref. [23], the limit curve
μ of fμmg is causal; sinceK is compact and thus contains its
limit points, μ runs from K to qn, so μ ∈ CðK; qnÞ. Hence,
CðK; qnÞ is closed and therefore compact. Since the proper
time is an upper semicontinuous function on CðΣ; qnÞ, it
attains its maximum over a compact domain, so we
conclude in analogy with Theorem 9.4.5 of Ref. [11] that
there exists a timelike geodesic γn that maximizes the
proper time from K to qn. By Theorem 9.4.3 of Ref. [11],
γn is orthogonal to K.
By construction, the point q is a convergence point (and

hence a limit point) of the sequence fγng. By the time-
reverse of Lemma 6.2.1 of Ref. [23], there exists, through
q, a causal limit curve γ0 of the sequence fγng. This curve
must intersect K because all γn intersect K and K is
compact. Since γ0 passes through q ∈ İþðKÞ, it must not be
smoothly deformable to a timelike curve since IþðKÞ is
open. Thus, by Theorem 9.3.10 of Ref. [11], γ0 must be a
null geodesic orthogonal to K, so if γ0 ≠ γ, condition
(iii) fails to hold. See Fig. 6 for an illustration.
The only alternative is that γ is the only limit curve of the

sequence fγng. In this case, fγng contains a subsequence
whose convergence curve is γ. From now on, let fγng
denote this subsequence. Orthogonality to K of the γn
implies that we can write

qn ¼ expKðpn; vnÞ; ð14Þ

where pn ¼ γn ∩ K, for some vector vn ∈ Tpn
K⊥ tangent

to γn. But since qn ∈ γ, we can also write

qn ¼ expKðp; knÞ; ð15Þ

FIG. 6. Possibilities in the proof. The sequence of timelike
geodesics γn (black) connects K with a sequence of points qn ∈
IþðKÞ on the orthogonal null geodesic γ (red) that joins p ∈ K
with q, after which γ leaves _IþðKÞ (red dashed). In the case on the
left, γ0 (green) is distinct from γ, so condition (iii) fails. In the case
on the right, γ0 ¼ γ, which we prove corresponds to a failure of
condition (ii).

7This follows because _IþðKÞ is closed and hence its inter-
section with a closed segment of γ is closed. Therefore, the
argument of the supremum is a closed interval and the supremum
is its upper end point.
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where kn is tangent to γ. Thus, every qn has a nonunique
preimage.
By the above construction, the sequences fðp; knÞg and

fðpn; vnÞg in NK each have ðp; vÞ as their limit point,
where q ¼ expKðp; vÞ. Hence there exists no open neigh-
borhood O of ðp; vÞ such that expK is a diffeomorphism of
O onto an open neighborhood of q. By Lemma 6, it follows
that expK is singular at ðp; vÞ; i.e., ðp; vÞ is a conjugate
point. By Lemma 16 and Remark 18, q is conjugate to K.
Thus, condition (ii) fails to hold; again, see Fig. 6. ▪
Remark 20.—The fact that K had codimension two was

only important in the last step in the proof of Theorem 1,
i.e., going from knowing that ðp; vÞ is a conjugate point to
showing that q is conjugate to the surface K. For K a
compact, acausal submanifold that is not of codimension
two, the steps in the proof of Theorem 1 still establish that
ðp; vÞ is a conjugate point in the sense of Def. 7. Moreover,
that the corresponding Jacobi field is orthogonal to S
remains true without the codimension-two assumption
(see the proof of Lemma 16) and the one-parameter family
of geodesics is orthogonal to K (because it was defined via
normal parallel transport). As a result, the Jacobi field
defines a deviation of γ in terms of only orthogonal null
geodesics (as proven in, e.g., Corollary 10.40 of Ref. [21]),
but in general that will not mean that q is conjugate to the
surface K in the sense of Def. 17. Specifically, the Jacobi
field is not necessarily nonvanishing at K if K has
codimension greater than two.
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APPENDIX: PROOF OF LEMMA 14

We now prove Lemma 14 by direct calculation.
Proof.—We wish to show that

Rjð0;sÞ ≡ f�∂rjð0;sÞ ¼ expK�jðp;sSjð0;0ÞÞðŘ; s ~RÞ ðA1Þ
and

Sjð0;sÞ ≡ f�∂sjð0;sÞ ¼ expK�jðp;sSjð0;0ÞÞð0; ~SÞ; ðA2Þ
where

fðr; sÞ ¼ expfðr;0ÞsSjðr;0Þ
¼ expKðfðr; 0Þ; sSjðr;0ÞÞ; ðA3Þ

as defined in Sec. II B.
Using the definition of the pushforward, we can write

f�∂rjð0;sÞ as the differential expK�, associated with f in
Eq. (A3), evaluated along the tangent direction sSjð0;0Þ,

Rjð0;sÞ ≡ f�∂rjð0;sÞ
¼ expK�jðp;sSjð0;0ÞÞðŘ; sϕ�ð∂rSjðr;0ÞÞjr¼0Þ: ðA4Þ

In the second line, we used the definition of Ř as the tangent
to μðrÞ at p, along with linearity of expK�. We have again
used the notation ϕ� for the identity map between vectors in
TpM and their naturally associated counterparts in TSTpM.
Next, we must evaluate the derivative of S,

ϕ�ð∂rSjðr;0ÞÞjr¼0∈TSTpK⊥. Let us write Sjðr;0Þ as an explicit
function of both the parameter r along the path μðrÞ≡
fðr; 0Þ ∈ K and the vector Sjð0;0Þ þ rR̂ ∈ TpK⊥ that is
normal parallel transported along μ from μð0Þ ¼ p to μðrÞ:

Sjðr;0Þ ¼ Sðr; Sjð0;0Þ þ rR̂Þjr1¼r2¼r

≡ Sðr1; r2Þjr1¼r2¼r; ðA5Þ
so that the derivative in question can be written as
ϕ�∂rSðr; Sjð0;0Þ þ rR̂Þjr¼0. Since Sðr1; r2Þ is defined by
normal parallel transporting a particular vector (Sjð0;0Þþ
rR̂) in TpK⊥ to μðr1Þ, its variation with respect to r1 gives
the normal part of the covariant derivative ofS along μ, which
vanishes, i.e., ∂r1Sðr1; r2Þ ¼ 0. Hence,

∂
∂r ½Sðr1; Sjð0;0Þ þ r2R̂Þjr1¼r2¼r�

¼
� ∂
∂r2 Sðr; r2Þ

�
r2¼r

¼ R̂: ðA6Þ
Inputting this result into Eq. (A6), we have

Rjð0;sÞ ¼ expK�jðp;sSjð0;0ÞÞðŘ; sϕ�R̂Þ
¼ expK�jðp;sSjð0;0ÞÞðŘ; s ~RÞ: ðA7Þ

We have thus derived the claimed formula for the Jacobi field
stated in Eq. (A1). The proof of Eq. (A2) follows similarly.
Neither fðr; 0Þ or Sjðr;0Þ depend on s. Therefore

Sjð0;sÞ ≡ f�∂sjð0;sÞ
¼ ∂sexpKðfð0; 0Þ; sSjð0;0ÞÞ
¼ expK�jðp;sSjð0;0ÞÞð0;ϕ�Sjð0;0ÞÞ
¼ expK�jðp;sSjð0;0ÞÞð0; ~SÞ: ðA8Þ

This derivation of the Jacobi field and tangent vector
completes the proof of Lemma 14. ▪
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